1
|
Cizauskas HE, Burnham HV, Panni A, Peña A, Alvarez-Arce A, Davis MT, Araujo KN, Delligatti CE, Edassery S, Kirk JA, Arora R, Barefield DY. Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation. Am J Physiol Heart Circ Physiol 2024; 327:H460-H472. [PMID: 38940916 PMCID: PMC11442024 DOI: 10.1152/ajpheart.00148.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance, often treated via electrical cardioversion. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs, suggesting that defects in contractility occur in AFib and are revealed upon restoration of rhythm. This project aims to define the contractile remodeling that occurs in AFib. To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared with sinus rhythm atria. Atrial cardiomyocytes show reduced force of contraction, decreased resting tension, and increased calcium sensitivity in skinned single cardiomyocyte studies. These alterations correlated with degradation of myofilament proteins including myosin heavy chain altering force of contraction, titin altering resting tension, and troponin I altering calcium sensitivity. We measured degradation of other myofilament proteins, including cardiac myosin binding protein C and actinin, that show degradation products in the AFib samples that are absent in the sinus rhythm atria. Many of the degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. These results provide an understanding of the contractile remodeling that occurs in AFib and provide insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.NEW & NOTEWORTHY Atrial fibrillation is the most common cardiac rhythm disorder, and remodeling during atrial fibrillation is highly variable between patients. This study has defined the biophysical changes in contractility that occur in atrial fibrillation along with identifying potential molecular mechanisms that may drive this remodeling. This includes proteolysis of several myofilament proteins including titin, troponin I, myosin heavy chain, myosin binding protein C, and actinin, which is consistent with the observed contractile deficits.
Collapse
Affiliation(s)
- Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Azaria Panni
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Alexandra Peña
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Alejandro Alvarez-Arce
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - M Therese Davis
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Kelly N Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Christine E Delligatti
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Seby Edassery
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Lu Y, Zhao N, Du Y. Comprehensive bioinformatics analysis reveals common potential mechanisms, progression markers, and immune cells of coronary virus disease 2019 and atrial fibrillation. Front Cardiovasc Med 2022; 9:1027026. [PMID: 36352845 PMCID: PMC9637541 DOI: 10.3389/fcvm.2022.1027026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES Atrial fibrillation (AF) is the most common arrhythmia in coronary virus disease 2019 (COVID-19) patients, especially in severe patients. A history of AF can exacerbate COVID-19 symptoms. COVID-19 Patients with new-onset AF have prolonged hospital stays and increased death risk. However, the mechanisms and targets of the interaction between COVID-19 and AF have not been elucidated. MATERIALS AND METHODS We used a series of bioinformatics analyses to understand biological pathways, protein-protein interaction (PPI) networks, gene regulatory networks (GRNs), and protein-chemical interactions between COVID-19 and AF and constructed an AF-related gene signature to assess COVID-19 severity and prognosis. RESULTS We found folate and one-carbon metabolism, calcium regulation, and TFG-β signaling pathway as potential mechanisms linking COVID-19 and AF, which may be involved in alterations in neutrophil metabolism, inflammation, and endothelial cell function. We identified hug genes and found that NF-κb, hsa-miR-1-3p, hsa-miR-124-3p, valproic acid, and quercetin may be key regulatory molecules. We constructed a 3-gene signature consisting of ARG1, GIMAP7, and RFX2 models for the assessment of COVID-19 severity and prognosis, and found that they are associated with neutrophils, T cells, and hematopoietic stem cells, respectively. CONCLUSION Our study reveals a dysregulation of metabolism, inflammation, and immunity between COVID-19 and AF, and identified several therapeutic targets and progression markers. We hope that the results will reveal important insights into the complex interactions between COVID-19 and AF that will drive novel drug development and help in severity assessment.
Collapse
Affiliation(s)
- Yang Lu
- Department of Cardiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tongji Medical College, Union Hospital, Institute of Cardiology, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Zhao
- Department of Cardiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tongji Medical College, Union Hospital, Institute of Cardiology, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yimei Du
- Department of Cardiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tongji Medical College, Union Hospital, Institute of Cardiology, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening. Int J Mol Sci 2021; 22:ijms221910613. [PMID: 34638951 PMCID: PMC8508669 DOI: 10.3390/ijms221910613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/03/2023] Open
Abstract
The protein phosphorylation of the membrane-bound mitochondrial proteins has become of interest from the point of view of its regulatory role of the function of the respiratory chain, opening of the mitochondrial permeability transition pore (mPTP), and initiation of apoptosis. Earlier, we noticed that upon phosphorylation of proteins in some proteins, the degree of their phosphorylation increases with the opening of mPTP. Two isoforms of myelin basic protein and cyclic nucleotide phosphodiesterase were identified in rat brain non-synaptic mitochondria and it was concluded that they are involved in mPTP regulation. In the present study, using the mass spectrometry method, the phosphorylated protein was identified as Calpain 3 in rat brain non-synaptic mitochondria. In the present study, the phosphoprotein Calpain-3 (p94) (CAPN3) was identified in the rat brain mitochondria as a phosphorylated truncated form of p60–62 kDa by two-dimensional electrophoresis and mass spectrometry. We showed that the calpain inhibitor, calpeptin, was able to suppress the Ca2+ efflux from mitochondria, preventing the opening of mPTP. It was found that phosphorylated truncated CALP3 with a molecular weight of 60–62 contains p-Tyr, which indicates the possible involvement of protein tyrosine phosphatase in this process.
Collapse
|
4
|
Darlington A, McCauley MD. Atrial Cardiomyopathy: An Unexplored Limb of Virchow's Triad for AF Stroke Prophylaxis. Front Cardiovasc Med 2020; 7:11. [PMID: 32133372 PMCID: PMC7039862 DOI: 10.3389/fcvm.2020.00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/27/2020] [Indexed: 01/14/2023] Open
Abstract
The most dreaded complication of atrial fibrillation is stroke, and 70–80% of patients with AF-related stroke die or become disabled. The mechanisms of thromboembolism in AF are multifactorial, with evidence demonstrating that all three criteria of Virchow's triad are satisfied in AF: abnormal stasis of blood, endothelial damage, and hypercoagulability. Mechanistic insights into the latter two limbs have resulted in effective stroke prophylactic therapies (left atrial appendage occlusion and oral anticoagulants); however, despite these advances, there remains an excess of stroke in the AF population that may be due, in part, to a lack of mechanistic understanding of atrial hypocontractility resulting in abnormal stasis of blood within the atrium. These observations support the emerging concept of atrial cardiomyopathy as a cause of stroke. In this Review, we evaluate molecular, translational, and clinical evidence for atrial cardiomyopathy as a cause for stroke from AF, and present a rationale for further investigation of this largely unaddressed limb of Virchow's triad in AF.
Collapse
Affiliation(s)
- Ashley Darlington
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Mark D McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States.,Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|