1
|
Mengal K, Kor G, Siino V, Buřič M, Kozák P, Levander F, Niksirat H. Quantification of proteomic profile changes in the hemolymph of crayfish during in vitro coagulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104760. [PMID: 37331675 DOI: 10.1016/j.dci.2023.104760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Hemolymph is the circulatory fluid that fills the body cavity of crustaceans, analogous to blood in vertebrates. Hemolymph coagulation, similar to blood clotting in vertebrates, plays a crucial role in wound healing and innate immune responses. Despite extensive studies on the clotting process in crustaceans, no comparative quantitative analysis of the protein composition of non-clotted and clotted hemolymph in any decapod has been reported. In this study, we used label-free protein quantification with high-resolution mass spectrometry to identify the proteomic profile of hemolymph in crayfish and quantify significant changes in protein abundances between non-clotted and clotted hemolymph. Our analysis identified a total of two-hundred and nineteen proteins in both hemolymph groups. Furthermore, we discussed the potential functions of the top most high and low-abundant proteins in hemolymph proteomic profile. The quantity of most of the proteins was not significantly changed during coagulation between non-clotted and clotted hemolymph, which may indicate that clotting proteins are likely pre-synthesized, allowing for a swift coagulation response to injury. Four proteins still showed abundance differences (p < 0.05, fold change>2), including C-type lectin domain-containing proteins, Laminin A chain, Tropomyosin, and Reverse transcriptase domain-containing proteins. While the first three proteins were down-regulated, the last one was up-regulated. The down-regulation of structural and cytoskeletal proteins may affect the process of hemocyte degranulation needed for coagulation, while the up-regulation of an immune-related protein might be attributed to the phagocytosis ability of viable hemocytes during coagulation.
Collapse
Affiliation(s)
- Kifayatullah Mengal
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Golara Kor
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Valentina Siino
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Fredrik Levander
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden; National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, 223 87, Sweden
| | - Hamid Niksirat
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
2
|
Zhang P, Fu HJ, Lv LX, Liu CF, Han C, Zhao XF, Wang JX. WSSV exploits AMPK to activate mTORC2 signaling for proliferation by enhancing aerobic glycolysis. Commun Biol 2023; 6:361. [PMID: 37012372 PMCID: PMC10070494 DOI: 10.1038/s42003-023-04735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
AMPK plays significant roles in the modulation of metabolic reprogramming and viral infection. However, the detailed mechanism by which AMPK affects viral infection is unclear. The present study aims to determine how AMPK influences white spot syndrome virus (WSSV) infection in shrimp (Marsupenaeus japonicus). Here, we find that AMPK expression and phosphorylation are significantly upregulated in WSSV-infected shrimp. WSSV replication decreases remarkably after knockdown of Ampkα and the shrimp survival rate of AMPK-inhibitor injection shrimp increases significantly, suggesting that AMPK is beneficial for WSSV proliferation. Mechanistically, WSSV infection increases intracellular Ca2+ level, and activates CaMKK, which result in AMPK phosphorylation and partial nuclear translocation. AMPK directly activates mTORC2-AKT signaling pathway to phosphorylate key enzymes of glycolysis in the cytosol and promotes expression of Hif1α to mediate transcription of key glycolytic enzyme genes, both of which lead to increased glycolysis to provide energy for WSSV proliferation. Our findings reveal a novel mechanism by which WSSV exploits the host CaMKK-AMPK-mTORC2 pathway for its proliferation, and suggest that AMPK might be a target for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Peng Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Hai-Jing Fu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Li-Xia Lv
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Chen-Fei Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Chang Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China.
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Yu T, Sun Z, Cao X, Pang Q, Deng H. Recent trends in T7 phage application in diagnosis and treatment of various diseases. Int Immunopharmacol 2022; 110:109071. [DOI: 10.1016/j.intimp.2022.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
4
|
Zheng Z, Li R, Aweya JJ, Yao D, Wang F, Li S, Tuan TN, Zhang Y. The PirB toxin protein from Vibrio parahaemolyticus induces apoptosis in hemocytes of Penaeus vannamei. Virulence 2021; 12:481-492. [PMID: 33487106 PMCID: PMC7834086 DOI: 10.1080/21505594.2021.1872171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a major debilitating disease that causes massive shrimp death resulting in substantial economic losses in shrimp aquaculture. The Pir toxin proteins secreted by a unique strain of Vibrio parahaemolyticus play an essential role in the pathogenesis of AHPND. At present, most studies on the effects of Pir toxin proteins in shrimp focus on digestive tissues or organs such as hepatopancreas, stomach, etc., with none on the immune organs. In the present study, two recombinant Pir toxin proteins (rPirA and rPirB) of V. parahaemolyticus were expressed with rPirB shown to enter shrimp hemocytes. Employing pull-down and LC-MS/MS analysis, GST-rPirB was found to interact with 13 proteins in hemocytes, including histone H3 and histone H4 and among which histone H4 had the highest protein score. Further analysis using GST pull-down and Far-Western blot analysis revealed that rPirB could interact with histone H4. In addition, using the purified nucleosome protein from Drosophila S2 cells, it was found that PirB protein could specifically bind to histones. When flow cytometry was applied, it was observed that the interaction between PirB and histones in shrimp hemocytes induces apoptosis, which results in the dephosphorylation of Serine 10 in histone H3. Collectively, the current study shows that in addition to its effect on the digestive tract of shrimp, the PirB toxin protein interacts with histones to affect the phosphorylation of histone H3-S10, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Zhou Zheng
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Ruiwei Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Tran Ngoc Tuan
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory , Guangzhou, China
| |
Collapse
|
5
|
Analysis of Litopenaeus vannamei hemocyanin interacting proteins reveals its role in hemolymph clotting. J Proteomics 2019; 201:57-64. [DOI: 10.1016/j.jprot.2019.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
|
6
|
Ho T, Panyim S, Udomkit A. Suppression of argonautes compromises viral infection in Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:130-137. [PMID: 30227218 DOI: 10.1016/j.dci.2018.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Argonaute (Ago) proteins, the catalytic component of an RNA-induced silencing complex (RISC) in RNA interference pathway, function in diverse processes, especially in antiviral defense and transposon regulation. So far, cDNAs encoding four members of Argonaute were found in Penaeus monodon (PmAgo1-4). Two PmAgo proteins, PmAgo1 and PmAgo3 shared high percentage of amino acid identity to Ago1 and Ago2, respectively in other Penaeid shrimps. Therefore, the possible roles of PmAgo1 and PmAgo3 upon viral infection in shrimp were characterized in this study. The level of PmAgo1 mRNA expression in shrimp hemolymph was stimulated upon YHV challenge, but not with dsRNA administration. Interestingly, silencing of either PmAgo1 or PmAgo3 using sequence-specific dsRNAs impaired the efficiency of PmRab7-dsRNA to knockdown shrimp endogenous PmRab7 expression. Inhibition of yellow head virus (YHV) replication and delayed mortality rate were also observed in both PmAgo1-and PmAgo3-knockdown shrimp. In addition, silencing of PmAgo3 transcript, but not PmAgo1, revealed partial inhibition of white spot syndrome virus (WSSV) infection and delayed mortality rate. Therefore, our study provides insights into PmAgo1and PmAgo3 functions that are involved in a dsRNA-mediated gene silencing pathway and play roles in YHV and WSSV replication in the shrimp.
Collapse
Affiliation(s)
- Teerapong Ho
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand.
| |
Collapse
|
7
|
Xu S, Liu WY, Zhao FF, Li YJ, Yue Z, Jiao F, Xie SY. Identification and functional characterization of unfolded protein response transcription factor ATF6 gene in kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2018; 75:223-230. [PMID: 29427718 DOI: 10.1016/j.fsi.2018.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Activating transcription factor 6 (ATF6) pathway is the key branch of unfolded protein response (UPR). In this study, a homolog of ATFα from Marsupenaeus japonicus (MjATF6) was identified using genome sequencing and characterized, so as to investigate the role of ATF6 pathway in anti-viral immunity of M. japonicus. The cDNA of MjATF6 obtained was 1008 bp in length, with an open reading frame (ORF) of 849bp, which had encoded a putative of 283 amino acid proteins. Results of qRT-PCR showed that MjATF6 was distributed in all the six tested tissues, with the higher expression level being seen in hemocytes and hepatopancreas. Furthermore, MjATF6 expression would be up-regulated from 1 day to 7 day under white spot syndrome virus (WSSV) challenge. In comparison, RNA interference-induced MjATF6 knockdown had resulted in a lower 7-day cumulative mortality of M. japonicus in the presence of WSSV infection. Additionally, our results also revealed that less VP28 mRNA was extracted from hemocytes or hepatopancreas of MjATF6 knockdown shrimp than that from the control. Taken together, these results have confirmed that ATF6 pathway is vital for WSSV replication, and that UPR in M. japonicus may facilitate WSSV infection.
Collapse
Affiliation(s)
- Sen Xu
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Wen-Ying Liu
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Fei-Fei Zhao
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - You-Jie Li
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhen Yue
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Fei Jiao
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Shu-Yang Xie
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
8
|
Zhu L, Chang Y, Xing J, Tang X, Sheng X, Zhan W. Comparative proteomic analysis between two haemocyte subpopulations in shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:325-333. [PMID: 28966142 DOI: 10.1016/j.fsi.2017.09.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
In our previous work, granulocytes and hyalinocytes were successfully separated by immunomagnetic bead (IMB) method using monoclonal antibodies (mAbs) against granulocytes of shrimp (Fenneropenaeus chinensis). In order to elucidate the proteomic differentiation between granulocytes and hyalinocytes, in this paper, the differentially expressed proteins were analyzed between non-fixed/un-permeabilized (NFP) haemocytes and fixed/permeabilized (FP) haemocytes using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS). Then the FP haemocytes were separated into two haemocyte subpopulations using IMB method, and the comparative proteome between granulocytes and hyalinocytes was investigated. The results showed that 10 differentially expressed protein spots were detected and identified as 4 proteins in the NFP haemocytes. Twenty one differentially expressed proteins were successfully identified between granulocytes and hyalinocytes, which include 4 unique expressed proteins in granulocytes, 4 significantly highly expressed proteins in granulocytes, and 13 significantly high expressed proteins in hyalinocytes. According to Gene Ontology annotation, the identified proteins between granulocytes and hyalinocytes were classified into six categories, including binding proteins, proteins involved in catalytic activity, enzyme regulator activity, structural molecule activity, translation regulator activity, and ungrouped proteins. Furthermore, quantitative PCR confirmed that the trend of transcription levels of three selected genes were consistent with the proteomic data from 2-DE. The results may lead to better understanding of the functions of haemocyte subpopulations.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Chang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
9
|
Sun JJ, Xu S, He ZH, Shi XZ, Zhao XF, Wang JX. Activation of Toll Pathway Is Different between Kuruma Shrimp and Drosophila. Front Immunol 2017; 8:1151. [PMID: 28979261 PMCID: PMC5611483 DOI: 10.3389/fimmu.2017.01151] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023] Open
Abstract
The Toll pathway is essential for inducing an immune response to defend against bacterial invasion in vertebrates and invertebrates. Although Toll receptors and the transcription factor Dorsal were identified in different shrimp, relatively little is known about how the Toll pathway is activated or the function of the pathway in shrimp antibacterial immunity. In this study, three Tolls (Toll1–3) and the Dorsal were identified in Marsupenaeus japonicus. The Toll pathway can be activated by Gram-positive (G+) and Gram-negative (G−) bacterial infection. Unlike Toll binding to Spätzle in Drosophila, shrimp Tolls could directly bind to pathogen-associated molecular patterns from G+ and G− bacteria, resulting in Dorsal translocation into nucleus to regulate the expression of different antibacterial peptides (AMPs) in the clearance of infected bacteria. These findings suggest that shrimp Tolls are pattern recognition receptors and the Toll pathway in shrimp is different from the Drosophila Toll pathway but identical with the mammalian Toll-like receptor pathway in its activation and antibacterial functions.
Collapse
Affiliation(s)
- Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Sen Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Zhong-Hua He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
10
|
Sun JJ, Lan JF, Zhao XF, Vasta GR, Wang JX. Binding of a C-type lectin's coiled-coil domain to the Domeless receptor directly activates the JAK/STAT pathway in the shrimp immune response to bacterial infection. PLoS Pathog 2017; 13:e1006626. [PMID: 28931061 PMCID: PMC5645147 DOI: 10.1371/journal.ppat.1006626] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/17/2017] [Accepted: 09/03/2017] [Indexed: 11/28/2022] Open
Abstract
C-type lectins (CTLs) are characterized by the presence of a C-type carbohydrate recognition domain (CTLD) that by recognizing microbial glycans, is responsible for their roles as pattern recognition receptors in the immune response to bacterial infection. In addition to the CTLD, however, some CTLs display additional domains that can carry out effector functions, such as the collagenous domain of the mannose-binding lectin. While in vertebrates, the mechanisms involved in these effector functions have been characterized in considerable detail, in invertebrates they remain poorly understood. In this study, we identified in the kuruma shrimp (Marsupenaeus japonicus) a structurally novel CTL (MjCC-CL) that in addition to the canonical CTLD, contains a coiled-coil domain (CCD) responsible for the effector functions that are key to the shrimp's antibacterial response mediated by antimicrobial peptides (AMPs). By the use of in vitro and in vivo experimental approaches we elucidated the mechanism by which the recognition of bacterial glycans by the CTLD of MjCC-CL leads to activation of the JAK/STAT pathway via interaction of the CCD with the surface receptor Domeless, and upregulation of AMP expression. Thus, our study of the shrimp MjCC-CL revealed a striking functional difference with vertebrates, in which the JAK/STAT pathway is indirectly activated by cell death and stress signals through cytokines or growth factors. Instead, by cross-linking microbial pathogens with the cell surface receptor Domeless, a lectin directly activates the JAK/STAT pathway, which plays a central role in the shrimp antibacterial immune responses by upregulating expression of selected AMPs.
Collapse
Affiliation(s)
- Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore and Institute of Marine and Environmental Technology, Baltimore, Maryland, United States of America
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Dai YJ, Hui KM, Zhang YH, Liu Y, Wang YQ, Zhao LJ, Lin L, Chai LQ, Wei S, Lan JF. Three STATs are involved in the regulation of the expression of antimicrobial peptides in the triangle sail mussel, Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2017; 63:181-188. [PMID: 28214598 DOI: 10.1016/j.fsi.2017.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 05/25/2023]
Abstract
Janus kinase (Jak) and signal transducers and activators of transcription (STAT) signaling pathway is associated in antiviral and antibacterial immune response. Previous studies primarily investigated the function of STATs in mammals. For most invertebrates, only one STAT was found in each species, such as STAT92E was found in Drosophila melanogaster. The studies, which focus on the functional difference between various STATs in the same species of invertebrate, are limited. In the present study, three STATs (HcSTAT1, HcSTAT2 and HcSTAT3) were identified in triangle shell pearl mussel, Hyriopsis cumingii. Phylogenetic analysis showed that HcSTAT1 and HcSTAT3 were clustered with Homo sapiens STAT5, and HcSTAT2 was clustered with Pinctada fucata STAT and Crassostea gigas STAT6. All three STATs could be detected in all tested tissues (hemocytes, hepatopancreas, gill, mantle and foot), and were induced expression when challenged with Staphylococcus aureus or Aeromonas hydrophilia in hemocytes and hepatopancreas. HcSTAT1 regulated the expression of HcDef, HcWAP, HcThe and HcTNF. The expression of HcWAP and HcTNF was down-regulated in HcSTAT2-RNAi mussel. And HcSTAT3 affected the expression of HcTNF. The study is the first report of different functions in antibacterial immune responses between STATs in mollusks.
Collapse
Affiliation(s)
- Yun-Jia Dai
- State Key Laboratory of Cotton Biology, School of Life Sciences Henan University, Kaifeng 475004, China; Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Ying-Hao Zhang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Liu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Qing Wang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Juan Zhao
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Li Lin
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Lian-Qin Chai
- State Key Laboratory of Cotton Biology, School of Life Sciences Henan University, Kaifeng 475004, China.
| | - Shun Wei
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiang-Feng Lan
- State Key Laboratory of Cotton Biology, School of Life Sciences Henan University, Kaifeng 475004, China; Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China.
| |
Collapse
|
12
|
Dai YJ, Wang YQ, Zhang YH, Liu Y, Li JQ, Wei S, Zhao LJ, Zhou YC, Lin L, Lan JF. The role of ficolin-like protein (PcFLP1) in the antibacterial immunity of red swamp crayfish (Procambarus clarkii). Mol Immunol 2017; 81:26-34. [PMID: 27888717 DOI: 10.1016/j.molimm.2016.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 01/04/2023]
Abstract
In invertebrates, ficolin-like proteins (FLPs) play important roles in innate immunity against pathogens. Previous studies primarily investigated the functions of FLPs in immune recognition, activation, and regulation. However, limited research has examined the functions of FLPs as immune effectors. In this work, a ficolin-like protein was identified in red swam crayfish (Procambarus clarkii) and designated as PcFLP1. Quantitative RT-PCR and western blot were employed to analyze the distribution and expression profiles of PcFLP1 in the tissues of the crayfish. The results indicated that PcFLP1 was present in all tested tissues, including hemocytes, heart, hepatopancreas, gill, stomach, and mid-intestine. The expression level of PcFLP1 was up-regulated in hemocytes, hepatopancreas and mid-intestines of the crayfish challenged with Vibrio parahaemolyticus. Further study demonstrated that PcFLP1 could protect the hepatopancreatic cells of crayfish from V. parahaemolyticus infection. The recombinant PcFLP1 enhanced bacterial elimination in crayfish, whereas the antibacterial action was inhibited after PcFLP1 was knocked down. Furthermore, PcFLP1 could bound to bacteria and inhibited bacterial replication. These results demonstrated that PcFLP1 plays an important role in the anti-Vibrio immunity of red swamp crayfish.
Collapse
Affiliation(s)
- Yun-Jia Dai
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yu-Qing Wang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ying-Hao Zhang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yan Liu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jin-Quan Li
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shun Wei
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li-Juan Zhao
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong-Can Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, China
| | - Li Lin
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, China.
| | - Jiang-Feng Lan
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
13
|
β-Arrestin 1's Interaction with TC45 Attenuates Stat signaling by dephosphorylating Stat to inhibit antimicrobial peptide expression. Sci Rep 2016; 6:35808. [PMID: 27782165 PMCID: PMC5080627 DOI: 10.1038/srep35808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Impaired phosphatase activity leads to the persistent activation of signal transducers and activators of transcription (Stat). In mammals, Stat family members are often phosphorylated or dephosphorylated by the same enzymes. To date, only one Stat similar to mammalian Stat5a/b has been found in crustaceans and there have been few studies in Stat signal regulation in crustaceans. Here, we report that β-arrestin1 interacts with TC45 (45-kDa form of T cell protein tyrosine phosphatase) in the nucleus to attenuate Stat signaling by promoting dephosphorylation of Stat. Initially, we showed that Stat translocates into the nucleus to induce antimicrobial peptide (AMP) expression after bacterial infection. βArr1 enters the nucleus of hemocytes and recruits TC45 to form the βarr1-TC45-Stat complex, which dephosphorylates Stat efficiently. The interaction of TC45 with Stat decreased and Stat phosphorylation increased in βarr1-silenced shrimp (Marsupenaeus japonicus) after challenge with Vibrio anguillarum. βArr1 directly interacts with Stat in nucleus and accelerates Stat dephosphorylation by recruiting TC45 after V. anguillarum challenge. Further study showed that βarr1 and TC45 also affect AMP expression, which is regulated by Stat. Therefore, βarr1 and TC45 are involved in the anti-V. anguillarum immune response by regulating Stat activity negatively to decrease AMP expression in shrimp.
Collapse
|
14
|
Sun JJ, Lan JF, Xu JD, Niu GJ, Wang JX. Suppressor of cytokine signaling 2 (SOCS2) negatively regulates the expression of antimicrobial peptides by affecting the Stat transcriptional activity in shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2016; 56:473-482. [PMID: 27492125 DOI: 10.1016/j.fsi.2016.07.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
The suppressor of cytokine signaling (SOCS) family is a kind of negative regulators in the Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway in mammals and Drosophila. In kuruma shrimp, Marsupenaeus japonicus, SOCS2 is identified and its expression can be stimulated by peptidoglycan and polycytidylic acid. However, if SOCS2 participates in regulating Jak/Stat pathway in shrimp still needs further study. In this study, SOCS2 with Src homology 2 domain and SOCS box was identified in kuruma shrimp, M. japonicus. SOCS2 existed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine, the expression of SOCS2 was upregulated significantly in the hemocytes and intestine of shrimp challenged with Vibrio anguillarum at 6 h. To analyze SOCS2 function in shrimp immunity, bacterial clearance and survival rate were analyzed after knockdown of SOCS2 in shrimp challenged with V. anguillarum. Results showed that bacterial clearance increased, and the survival rate improved significantly comparing with controls. The SOCS2 was expressed in Escherichia coli and the recombinant SOCS2 was injected into shrimp, and Stat phosphorylation and translocation were analyzed. The result showed that "overexpression" of SOCS2 declined Stat phosphorylation level and inhibited Stat translocation into the nucleus. After knockdown of SOCS2 in shrimp prior to V. anguillarum infection, the expression level of antimicrobial peptides, including anti-lipopolysaccharide factors C1, C2 and D1, and Crustin I was upregulated significantly, and the expression of the AMPs was declined after recombinant SOCS2 injection. The SOCS2 expression was also decreased in Stat-knockdown shrimp challenged by V. anguillarum at 6 and 12 h. Therefore, SOCS2 negatively regulates the AMP expression by inhibiting Stat phosphorylation and translocation into nucleus in shrimp, meanwhile, SOCS2 expression was also regulated by Jak/Stat pathway.
Collapse
Affiliation(s)
- Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| | - Ji-Dong Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
15
|
Dai Y, Wang Y, Zhao L, Qin Z, Yuan J, Qin Q, Lin L, Lan J. A novel L-type lectin was required for the multiplication of WSSV in red swamp crayfish (Procambarus clakii). FISH & SHELLFISH IMMUNOLOGY 2016; 55:48-55. [PMID: 27208793 PMCID: PMC7111660 DOI: 10.1016/j.fsi.2016.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
L-type lectins are involved in glycoproteins secretory pathways and are associated with many immune responses. There is growing evidence that L-type lectins are also involved in viral replication. In this study, a novel L-type lectin (named as PcL-lectin) was identified from red swamp crayfish (Procambarus clakii). Gene sequencing and phylogenetic tree analysis results showed that the PcL-lectin was a kind of endoplasmic reticulum Golgi intermediate compartment-53 (ERGIC-53). The expression level of PcL-lectin was significantly down regulated in crayfish after challenged with white spot syndrome virus (WSSV). Recombinant PcL-lectin protein facilitated the replication of WSSV in crayfish. In addition, WSSV replication was decreased when endogenous PcL-lectin was knocked down by RNA interference in crayfish. Furthermore, PcL-lectin may interact with VP24, an envelope protein of WSSV. Our results suggest that PcL-lectin may be required for the multiplication of WSSV, and will pave a new way for the developing of strategies against WSSV infection.
Collapse
Affiliation(s)
- Yunjia Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuqing Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lingling Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhendong Qin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiwei Qin
- College of Marine Sciences, South China Normal University, Guangzhou, 510642, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jiangfeng Lan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
16
|
Shi XZ, Shi LJ, Zhao YR, Zhao XF, Wang JX. β-Thymosins participate in antiviral immunity of red swamp crayfish (Procambarus clarkii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:213-225. [PMID: 25892020 DOI: 10.1016/j.dci.2015.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
β-Thymosins participate in numerous biological activities, including cell proliferation and differentiation, wound healing, and anti-inflammatory and antimicrobial activities. Many studies have investigated vertebrate β-thymosins, whereas few reports have focused on invertebrate β-thymosins. In this study, nine isoforms of β-thymosins (PcThy-1 to PcThy-8) were identified from the red swamp crayfish Procambarus clarkii. The isoforms contained different numbers of the thymosin β actin-binding motif. PcThy-1 contained one thymosin β actin-binding motif, whereas PcThy-8 contained eight motifs. Western blot analysis with anti-PcThy-4 antibody showed that three to six isoforms were present in one tissue, and PcThy-4, PcThy-5, PcThy-6, and PcThy-7 were the main isoforms in several tissues. Time course expression analysis of PcThys at the protein level showed that PcThy-4 was upregulated in hemocytes and gills after white spot syndrome virus (WSSV) challenge. PcThy-4, which contained four thymosin β actin-binding motifs, was selected for further research. Tissue distribution analysis by quantitative real-time PCR showed that PcThy-4 was present in tissues of the hemocytes, heart, hepatopancreas, gills, stomach, and intestine at the transcriptional level. Transcriptional expression profiles showed that PcThy-4 was upregulated after WSSV challenge. In vivo RNAi and protein injection assay results showed that PcThy-4 inhibited the replication of WSSV in crayfish and enhanced the survival rate after WSSV infection. Furthermore, PcThy-4 promoted hemocyte phagocytosis of WSSV. Overall, results suggested that PcThys protected crayfish from WSSV infection and played an important role in antiviral immune response.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Li-Jie Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Ran Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
17
|
Wang Z, Chen YH, Dai YJ, Tan JM, Huang Y, Lan JF, Ren Q. A novel vertebrates Toll-like receptor counterpart regulating the anti-microbial peptides expression in the freshwater crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2015; 43:219-229. [PMID: 25573502 DOI: 10.1016/j.fsi.2014.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/24/2014] [Accepted: 12/27/2014] [Indexed: 06/04/2023]
Abstract
Toll-like receptors (TLRs) play an important role in regulation of anti-microbial peptides (AMPs) expression. A novel vertebrates TLR counterpart named PcToll, was firstly identified from the freshwater crayfish, Procambarus clarkii. Phylogenetic analysis showed that PcToll together with Drosophila melanogaster and Anopheles gambiae Toll9 were clustered with human Tolls. PcToll was mainly expressed in hepatopancreas and gills and it also could be detected in hemocytes, heart, stomach and intestine. PcToll was upregulated in hemocytes and gills post 24 h Vibrio anguillarum challenge. In hepatopancreas and intestine, the highest expression level of PcToll could be observed at 12 h V. anguillarum challenge. In hemocytes, PcToll went up post 24 h Staphylococcus aureus challenge and in gills, the expression level of PcToll showed no obvious change from 2 to 24 h S. aureus challenge. In hepatopancreas post 12 h S. aureus challenge, PcToll was upregulated and it showed obvious upregulation post 12 h S. aureus challenge in intestine. RNAi results showed that PcToll was involved in regulation of crustins (Cru1, Cru2), anti-lipopolysaccharide factor 2 (ALF2) and lysozyme 1 (Lys1) expression. Overexpression of PcToll in Drosophila S2 cells could induce Drosophila Attacin (Atta), Metchnikowin (Mtk), Drosomycin (Drs) and shrimp Penaeidin (PEN4) expression. From the results, it could be speculated that PcToll might play important roles in crayfish innate immune defense.
Collapse
Affiliation(s)
- Zheng Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Yi-Hong Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yun-Jia Dai
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jing-Min Tan
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Jiang-Feng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| |
Collapse
|
18
|
Xu D, Liu W, Alvarez A, Huang T. Cellular immune responses against viral pathogens in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:287-297. [PMID: 25111591 DOI: 10.1016/j.dci.2014.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Shrimp is one of the most important commercial marine species worldwide; however, viral diseases threaten the healthy development of shrimp aquaculture. In order to develop efficient control strategies against viral diseases, researchers have begun focusing increasing attention to the molecular mechanism of shrimp innate immunity. Although knowledge of shrimp humoral immunity has grown significantly in recent years, very little information is available about the cell-mediated immune responses. Several cellular processes such as phagocytosis, apoptosis, and RNA interference critical in cellular immune response play a significant role in endogenous antiviral activity in shrimp. In this review, we summarize the emerging research and highlight key mediators of cellular immune response to viral pathogens.
Collapse
Affiliation(s)
- Dandan Xu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Weifeng Liu
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Angel Alvarez
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tianzhi Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA..
| |
Collapse
|
19
|
Ren Q, Lan JF, Zhong X, Song XJ, Ma F, Hui KM, Wang W, Yu XQ, Wang JX. A novel Toll like receptor with two TIR domains (HcToll-2) is involved in regulation of antimicrobial peptide gene expression of Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:198-208. [PMID: 24631579 DOI: 10.1016/j.dci.2014.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Animal Toll-like receptors (TLRs) are involved in innate immunity. Toll proteins are generally transmembrane proteins. In this study, an atypical Toll-like receptor (HcToll-2) was identified from the triangle-shell pearl mussel Hyriopsis cumingii, which belongs to phylum Mollusca. Unlike the typical Toll like receptors with extracellular leucine-rich repeats (LRRs), transmembrane, and intracellular Toll/interleukin-1 receptor (TIR) domains, HcToll-2 has two homologous TIR domains located at the C-terminal (designated as HcTIR1 and HcTIR2) and lacks a transmembrane domain. Phylogenetic analysis showed that HcTIR1 was clustered with TIR of sea anemone Toll, and HcTIR2 was clustered with TIR of Drosophila Toll. HcToll-2 mRNA could be detected in the hepatopancreas and was upregulated after challenge with Escherichia coli and Staphylococcus aureus. Recombinant HcLRR protein with GST tag could bind to bacteria and also to LPS and PGN. Over-expression of both HcTIR1 and HcTIR2 induced drosomycin genes in Drosophila S2 cells. RNAi analysis showed that HcToll-2 was required for the expression of theromacin, which is a cysteine-rich antimicrobial peptide (AMP) gene. This research is the first report of an atypical Toll-like receptor HcToll-2 involved in antibacterial immunity through induction of AMP expression.
Collapse
Affiliation(s)
- Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| | - Jiang-Feng Lan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Xue Zhong
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Xiao-Jun Song
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA.
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China.
| |
Collapse
|
20
|
Wang XW, Zhao XF, Wang JX. C-type lectin binds to β-integrin to promote hemocytic phagocytosis in an invertebrate. J Biol Chem 2013; 289:2405-14. [PMID: 24324258 DOI: 10.1074/jbc.m113.528885] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis is a conserved cellular response among metazoans. Opsonins are some molecules that label targets to increase their susceptibility to phagocytosis. Opsonins are usually captured by receptors on the surface of phagocytes. Our previous study found the C-type lectin FcLec4 from Chinese white shrimp Fenneropenaeus chinensis might function as an opsonin to facilitate bacterial clearance. In the present study we purified the native FcLec4 protein and confirmed its opsonic activity in the near relation, kuruma shrimp Marsupenaeus japonicus. The possible receptor of FcLec4 was identified as β-integrin by panning a T7 phage display library of shrimp hemocytes and then confirmed by co-immunoprecipitation assay. We further proved that the interaction between FcLec4 and β-integrin did not rely on the carbohydrate recognition domain but on the N terminus of FcLec4. In addition, inhibition of FcLec4 expression using RNAi delayed bacterial clearance, and β-integrin knockdown suppressed the opsonic activity of FcLec4. This study is the first to show the direct interaction between an opsonin and its receptor in crustaceans. Our study provides new insights into invertebrate phagocytosis and the functions of C-type lectins.
Collapse
Affiliation(s)
- Xian-Wei Wang
- From the Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | |
Collapse
|
21
|
Lan JF, Zhou J, Zhang XW, Wang ZH, Zhao XF, Ren Q, Wang JX. Characterization of an immune deficiency homolog (IMD) in shrimp (Fenneropenaeus chinensis) and crayfish (Procambarus clarkii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:608-617. [PMID: 23850721 DOI: 10.1016/j.dci.2013.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 06/02/2023]
Abstract
The immune deficiency (IMD) signal pathway mediates immunity against Gram-negative bacteria in Drosophila. Recent studies show that the IMD pathway also involves in antiviral innate immune responses. The functions of the pathway in crustacean immunity are largely unknown. In this paper, two IMDs (FcIMD and PcIMD), one of the key elements of the IMD pathway, were identified from Chinese white shrimp Fenneropenaeus chinensis and red swamp crayfish Procambarus clarkii. Both proteins have a death domain located at the C-terminal. FcIMD was mainly expressed in the gills and stomach and PcIMD was mainly detected in the heart, hepatopancreas, and stomach. FcIMD peaked in hemocytes at 12 h after white spot syndrome virus (WSSV) challenge and it peaked in the gills at 6 h after WSSV challenge, but it was decreased at 2 h and kept the low level to 24 h in hemocytes and no obviously change in gill after Vibrio anguillarum challenge. PcIMD first decreased in hemocytes at 2 h and peaked at 12 h in hemocytes after V. anguillarum challenge. It was also upregulated in gill after bacterial challenge, peaked at 2 h, and decreased at 6 h, and then gradually increased at 12-24 h. PcIMD has no significant change in hemocytes and gill after WSSV challenge. Western blot analysis detected FcIMD protein in all tissues, and immunocytochemical analysis localized FcIMD in the cytoplasm of hemocytes. RNA interference analysis showed that the IMD pathway was involved in regulating the expression of three kinds AMP genes, including crustins, anti-lipopolysaccharide factors and lysozymes, in shrimp and crayfish. They are Cru 1, Cru 2, ALF 1, ALF 2 and Lys 1 in crayfish, and Cru1, Cru 3, ALF 6, ALF 8, and Lys2 in shrimp. These results suggest that although IMD distribution and expression patterns have some differences, the IMD pathway may have conserved function for AMP regulation in shrimp and crayfish immunity against Gram-negative bacteria.
Collapse
Affiliation(s)
- Jiang-Feng Lan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Li XC, Zhang XW, Zhou JF, Ma HY, Liu ZD, Zhu L, Yao XJ, Li LG, Fang WH. Identification, characterization, and functional analysis of Tube and Pelle homologs in the mud crab Scylla paramamosain. PLoS One 2013; 8:e76728. [PMID: 24116143 PMCID: PMC3792031 DOI: 10.1371/journal.pone.0076728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/24/2013] [Indexed: 02/06/2023] Open
Abstract
Tube and Pelle are essential components in Drosophila Toll signaling pathway. In this study, we characterized a pair of crustacean homologs of Tube and Pelle in Scylla paramamosain, namely, SpTube and SpPelle, and analyzed their immune functions. The full-length cDNA of SpTube had 2052 bp with a 1578 bp open reading frame (ORF) encoding a protein with 525 aa. A death domain (DD) and a kinase domain were predicted in the deduced protein. The full-length cDNA of SpPelle had 3825 bp with a 3420 bp ORF encoding a protein with 1140 aa. The protein contained a DD and a kinase domain. Two conserved repeat motifs previously called Tube repeat motifs present only in insect Tube or Tube-like sequences were found between these two domains. Alignments and structure predictions demonstrated that SpTubeDD and SpPelleDD significantly differed in sequence and 3D structure. Similar to TubeDD, SpTubeDD contained three common conserved residues (R, K, and R) on one surface that may mediate SpMyD88 binding and two common residues (A and A) on the other surface that may contribute to Pelle binding. By contrast, SpPelleDD lacked similar conservative residues. SpTube, insect Tube-like kinases, and human IRAK4 were found to be RD kinases with an RD dipeptide in the kinase domain. SpPelle, Pelle, insect Pelle-like kinases, and human IRAK1 were found to be non-RD kinases lacking an RD dipeptide. Both SpTube and SpPelle were highly expressed in hemocytes, gills, and hepatopancreas. Upon challenge, SpTube and SpPele were significantly increased in hemocytes by Gram-negative or Gram-positive bacteria, whereas only SpPelle was elevated by White Spot Syndrome Virus. The pull-down assay showed that SpTube can bind to both SpMyD88 and SpPelle. These results suggest that SpTube, SpPelle, and SpMyD88 may form a trimeric complex involved in the immunity of mud crabs against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Xin-Cang Li
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
- * E-mail: (XCL); (WHF)
| | - Xiao-Wen Zhang
- Scholl of Life Science, Henan Normal University, Xinxiang, P. R. China
| | - Jun-Fang Zhou
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Hong-Yu Ma
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Zhi-Dong Liu
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Lei Zhu
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Xiao-Juan Yao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Lin-Gui Li
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Wen-Hong Fang
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
- * E-mail: (XCL); (WHF)
| |
Collapse
|
23
|
Herpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production. J Virol 2013; 87:12814-27. [PMID: 24049179 DOI: 10.1128/jvi.02355-13] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral infection initiates a series of signaling cascades that lead to the transcription of interferons (IFNs), finally inducing interferon-stimulated genes (ISGs) to eliminate viruses. Viruses have evolved a variety of strategies to modulate host IFN-mediated immune responses. Herpes simplex virus 1 (HSV-1) US3, a Ser/Thr kinase conserved in alphaherpesviruses, was previously reported to counteract host innate immunity; however, the molecular mechanism is elusive. In this study, we report that US3 blocks IFN-β production by hyperphosphorylating IFN regulatory factor 3 (IRF3). Ectopic expression of US3 protein significantly inhibited Sendai virus (SeV)-mediated activation of IFN-β and IFN-stimulated response element (ISRE) promoters and the transcription of IFN-β, ISG54, and ISG56. US3 was also shown to block SeV-induced dimerization and nuclear translocation of IRF3. The kinase activity was indispensable for its inhibitory function, as kinase-dead (KD) US3 mutants K220M and D305A could not inhibit IFN-β production. Furthermore, US3 interacted with and hyperphosphorylated IRF3 at Ser175 to prevent IRF3 activation. Finally, the US3 KD mutant viruses were constructed and denoted K220M or D305A HSV-1, respectively. Cells and mice infected with both mutant viruses produced remarkably larger amounts of IFN-β than those infected with wild-type HSV-1. For the first time, these findings provide convincing evidence that US3 hyperphosphorylates IRF3, blocks the production of IFN-β, and subverts host innate immunity.
Collapse
|
24
|
Prohibitin Interacts with envelope proteins of white spot syndrome virus and prevents infection in the red swamp crayfish, Procambarus clarkii. J Virol 2013; 87:12756-65. [PMID: 24049173 DOI: 10.1128/jvi.02198-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses, cell proliferation, and immune regulation. However, the function of PHBs in crustacean immunity remains largely unknown. In the present study, we identified a PHB in Procambarus clarkii red swamp crayfish, which was designated PcPHB1. PcPHB1 was widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge at the mRNA level and the protein level. These observations prompted us to investigate the role of PcPHB1 in the crayfish antiviral response. Recombinant PcPHB1 (rPcPHB1) significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. The quantity of WSSV in PcPHB1 knockdown crayfish was increased compared with that in the controls. The effects of RNA silencing were rescued by rPcPHB1 reinjection. We further confirmed the interaction of PcPHB1 with the WSSV envelope proteins VP28, VP26, and VP24 using pulldown and far-Western overlay assays. Finally, we observed that the colloidal gold-labeled PcPHB1 was located on the outer surface of the WSSV, which suggests that PcPHB1 specifically binds to the envelope proteins of WSSV. VP28, VP26, and VP24 are structural envelope proteins and are essential for attachment and entry into crayfish cells. Therefore, PcPHB1 exerts its anti-WSSV effect by binding to VP28, VP26, and VP24, preventing viral infection. This study is the first report on the antiviral function of PHB in the innate immune system of crustaceans.
Collapse
|
25
|
Phetrungnapha A, Ho T, Udomkit A, Panyim S, Ongvarrasopone C. Molecular cloning and functional characterization of Argonaute-3 gene from Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2013; 35:874-882. [PMID: 23823130 DOI: 10.1016/j.fsi.2013.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 06/08/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
Argonaute (Ago) proteins play a crucial role in the shrimp RNA interference pathway. In this study, we identified and characterized a novel Ago gene from black tiger shrimp, Penaeus monodon. The complete open reading frame of P. monodon Ago3 (PmAgo3) consisted of 2559 nucleotides encoding a polypeptide of 852 amino acids with a predicted molecular weight of 97 kDa and an isoelectric point of 9.42. Analysis of the deduced amino acid sequence of PmAgo3 revealed the presence of two signature domains of the proteins in Argonaute family including PAZ and PIWI. Phylogenetic analysis indicated that PmAgo3 is classified into Ago subfamily and shared the highest amino acid sequence identity (83%) with Litopenaeus vannamei Ago2. Monitoring of the PmAgo3 expression by quantitative real-time PCR revealed that this gene was significantly up-regulated following dsRNA administration, while no significant difference in its expression was observed following yellow head virus (YHV) challenge. In contrast, inhibition of YHV mRNA expression was observed in PmAgo3-knockdown shrimp. These data imply that PmAgo3 is involved in the dsRNA-mediated gene silencing mechanism and plays an important role in YHV replication in the black tiger shrimp.
Collapse
Affiliation(s)
- Amnat Phetrungnapha
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | | | | | | | | |
Collapse
|
26
|
Herpes simplex virus 1 ubiquitin-specific protease UL36 inhibits beta interferon production by deubiquitinating TRAF3. J Virol 2013; 87:11851-60. [PMID: 23986588 DOI: 10.1128/jvi.01211-13] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interferon (IFN)-mediated innate immune defense is a potent antiviral mechanism. Viruses evade innate immunity and limit secretion of beta interferon (IFN-β) to replicate and survive in the host. The largest tegument protein of herpes simplex virus 1 (HSV-1), UL36, contains a novel deubiquitinase (DUB) motif embedded in its N terminus, denoted UL36 ubiquitin-specific protease (UL36USP). In the present study, we demonstrate that HSV-1 UL36USP inhibits Sendai virus (SeV)-induced interferon regulatory factor 3 (IRF3) dimerization, promoter activation, and transcription of IFN-β. The DUB activity of UL36USP is essential to block IFN-β production. UL36USP also inhibited IFN-β promoter activity induced by overexpression of the N terminus of RIG-I (RIG-IN) and MAVS, but not TBK-1, IκB kinase ε (IKKε), and IRF3/5D. UL36USP was subsequently shown to deubiquitinate TRAF3 and prevent the recruitment of the downstream adaptor TBK1. The recombinant HSV-1 lacking UL36USP DUB activity was generated. Cells infected with the mutant virus produced more IFN-β than wild-type (WT) HSV-1-infected cells. These findings demonstrate HSV-1 UL36USP removes polyubiquitin chains on TRAF3 and counteracts the IFN-β pathway.
Collapse
|
27
|
Wang XW, Wang JX. Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. FISH & SHELLFISH IMMUNOLOGY 2013; 34:981-989. [PMID: 22960101 DOI: 10.1016/j.fsi.2012.08.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/04/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
Invertebrates, including shrimp, have developed very complicated innate immune system against pathogens. Much work has been performed on the innate immunity of shrimp, including immune recognition, signal transduction, effector molecules and antiviral responses due to its great economic value. Pattern recognition is the first step of innate immunity. Pattern recognition receptors (PRRs) sense the presence of infection and activate immune responses. The studies on shrimp PRRs revealed the recognition mechanism of shrimp at a certain degree. To date, 11 types of pattern recognition receptors (PRRs) have been identified in shrimp, namely, β-1,3-glucanase-related proteins, β-1,3-glucan-binding proteins, C-type lectins, scavenger receptors, galectins, fibrinogen-related proteins, thioester-containing protein, Down syndrome cell adhesion molecule, serine protease homologs, trans-activation response RNA-binding protein and Toll like receptors. A number of PRRs have been functionally studied and have been found to have different binding specificities and immune functions. The present review aims to summarize the current knowledge on the PRRs of shrimp.
Collapse
Affiliation(s)
- Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | |
Collapse
|
28
|
Li XC, Zhu L, Li LG, Ren Q, Huang YQ, Lu JX, Fang WH, Kang W. A novel myeloid differentiation factor 88 homolog, SpMyD88, exhibiting SpToll-binding activity in the mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:313-322. [PMID: 23280154 DOI: 10.1016/j.dci.2012.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is an essential regulator in the Toll or Toll-like receptor (TLR) signaling pathway. In the current study, we characterized a novel crustacean MyD88 homolog, SpMyD88, and analyzed its binding activity with SpToll. The full-length cDNA sequence of SpMyD88 is 2933 bp, with a 1419 bp open reading frame encoding a 472-amino acid protein. No signal peptide was predicted. A death domain (residues 19-103), a Toll/interleukin-1 receptor (TIR) domain (residues 156-297), and a C-terminal extension (CTE) domain (residues 298-472) were also found. In a phylogenetic tree constructed with MyD88 homologs from both invertebrates and vertebrates, arthropod MyD88s including SpMyD88 formed a cluster containing a unique CTE domain. SpToll shared the highest identity with human TLR4. These two receptors were grouped into a cluster of a tree constructed based on the conserved TIR domains. SpToll also had a close relationship with other shrimp TLRs that possess potential antibacterial activity. SpMyD88 was highly expressed in the hemocytes, gills, hepatopancreas, and eye stalks. Upon challenge with Vibrio harveyi, both SpMyD88 and SpToll were significantly increased in the hemocytes, whereas only SpMyD88 was elevated by Staphylococcus aureus. In addition, a pull-down assay demonstrated that SpMyD88 showed a binding activity with SpToll. These results suggest that SpMyD88 and SpToll are involved in the defense system of mud crabs against Gram-negative bacteria.
Collapse
Affiliation(s)
- Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Labreuche Y, Warr GW. Insights into the antiviral functions of the RNAi machinery in penaeid shrimp. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1002-1010. [PMID: 22732509 DOI: 10.1016/j.fsi.2012.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
Over the last decade, RNA interference pathways have emerged in eukaryotes as critical regulators of many diverse biological functions including, among others, transcriptional gene regulation, post-transcriptional gene silencing, heterochromatin remodelling, suppression of transposon activity, and antiviral defences. Although this gene silencing process has been reported to be relatively well conserved in species of different phyla, there are important discrepancies between plants, invertebrates and mammals. In penaeid shrimp, the existence of an intact and functional RNAi machinery is supported by a rapidly growing body of evidence. However, the extent to which this process participates to the host immune responses remains poorly defined in this non-model organism. This review summarizes our current knowledge of RNAi mechanisms in shrimp and focuses on their implication in antiviral activities and shrimp immune defences.
Collapse
Affiliation(s)
- Yannick Labreuche
- IFREMER, Département Lagons, Ecosystèmes et Aquaculture Durable en Nouvelle-Calédonie, BP 2059, 98846 Nouméa Cedex, New Caledonia, France.
| | | |
Collapse
|
30
|
The multiple functions of TRBP, at the hub of cell responses to viruses, stress, and cancer. Microbiol Mol Biol Rev 2013; 76:652-66. [PMID: 22933564 DOI: 10.1128/mmbr.00012-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The TAR RNA binding protein (TRBP) has emerged as a key player in many cellular processes. First identified as a cellular protein that facilitates the replication of human immunodeficiency virus, TRBP has since been shown to inhibit the activation of protein kinase R (PKR), a protein involved in innate immune responses and the cellular response to stress. It also binds to the PKR activator PACT and regulates its function. TRBP also contributes to RNA interference as an integral part of the minimal RNA-induced silencing complex with Dicer and Argonaute proteins. Due to its multiple functions in the cell, TRBP is involved in oncogenesis when its sequence is mutated or its expression is deregulated. The depletion or overexpression of TRBP results in malignancy, suggesting that the balance of TRBP expression is key to normal cellular function. These studies show that TRBP is multifunctional and mediates cross talk between different pathways. Its activities at the molecular level impact the cellular function from normal development to cancer and the response to infections.
Collapse
|
31
|
Wang S, Shi LJ, Liu N, Chen AJ, Zhao XF, Wang JX. Involvement of Fenneropenaeus chinensis Cathepsin C in antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2012; 33:821-828. [PMID: 22885030 DOI: 10.1016/j.fsi.2012.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 07/22/2012] [Accepted: 07/22/2012] [Indexed: 06/01/2023]
Abstract
Cathepsin C (Cath C) is a lysosomal cysteine protease that belongs to the papain superfamily. Cath C is capable of activating many chymotrypsin-like serine proteases and is reported to be a central coordinator for the activation of many serine proteinases in immune and inflammatory cells. In this study, Cath C cDNA was cloned from Fenneropenaeus chinensis (Fc). The complete cDNA of Fc-Cath C in Chinese white shrimp was found to be 1445-base pairs (bp) long. It contained an open reading frame (ORF) 1356-bp long and encoded a 451-amino acid residue protein, including a 17-amino acid residue signal peptide. Real-time PCR analysis results indicated that Fc-Cath C was present in all the tissues detected and exhibited high level of transcription in the hepatopancreas. In hemocytes, hepatopancreas, gills and intestine, Fc-Cath C was upregulated after stimulation by the Vibrio anguillarum and the white spot syndrome viruses (WSSVs). Replication of the WSSV increased after the injection of Fc-Cath C antiserum or knockdown Cath C by RNA interference. These results implied that Cath C might play a crucial role in the antiviral immune response of shrimp.
Collapse
Affiliation(s)
- Shuai Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | | | | | | | |
Collapse
|
32
|
Ye T, Zong R, Zhang X. The role of white spot syndrome virus (WSSV) VP466 protein in shrimp antiviral phagocytosis. FISH & SHELLFISH IMMUNOLOGY 2012; 33:350-358. [PMID: 22626562 DOI: 10.1016/j.fsi.2012.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
Widespread evidence indicates that the structural proteins of virus play very important roles in virus-host interactions. However, the effect of viral proteins on host immunity has not been addressed. Our previous studies revealed that the host shrimp Rab6 (termed as PjRab previously), tropomyosin, β-actin and the white spot syndrome virus (WSSV) envelope protein VP466 formed a complex. In this study, the VP466 protein was shown to be able to bind host Rab6 protein and increase its GTPase activity in vivo and vitro. Thus, VP466 could function as a GTPase-activating protein (GAP) of Rab6. In the VP466-Rab-actin pathway, the increase of the Rab6 activity induced rearrangements of the actin cytoskeleton, resulting in the formation of actin stress fibers which promoted the phagocytosis against virus. Therefore our findings revealed that a viral protein could be employed by host to initiate the host immunity, representing a novel molecular mechanism in the virus-host interaction. Our study would help to better understand the molecular events in immune response against virus infection in invertebrates.
Collapse
Affiliation(s)
- Ting Ye
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou, PR China
| | | | | |
Collapse
|
33
|
Molecular basis and genetic improvement of economically important traits in aquaculture animals. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5213-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Haq MAB, Priya KK, Rajaram R, Vignesh R, Srinivasan M. Real time PCR quantification of WSSV infection in specific pathogen free (SPF) Litopenaeus vannamei (Boone, 1931) exposed to antiviral nucleotide. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60371-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
35
|
Chen YH, Zhao L, Jia XT, Li XY, Li CZ, Yan H, Weng SP, He JG. Isolation and characterization of cDNAs encoding Ars2 and Pasha homologues, two components of the RNA interference pathway in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2012; 32:373-380. [PMID: 22155278 DOI: 10.1016/j.fsi.2011.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
The RNA interference (RNAi) is an evolutionarily conserved protective mechanism in eukaryotes against parasitic foreign nucleic acids. Previous studies demonstrated that the RNAi mechanism is important for shrimp antiviral immunity. Here, we report the identification and functional analysis of two key components of the shrimp RNAi activity: Litopenaeus vannamei arsenite resistance gene 2 (LvArs2) and partner of drosha (LvPasha). The full-length cDNA of LvArs2 was 3470 bp, including a 5' untranslated region (UTR) of 167 bp, a 3' UTR of 639 bp, and an open reading frame (ORF) of 2664 bp that encoded 887 amino acid residues with an estimated molecular mass of 102.5 kDa. The full-length cDNA of LvPasha was 2654 bp, including a 5' UTR of 99 bp, a 3' UTR of 560 bp, and an ORF of 1995 bp that encoded 664 amino acid residues with an estimated molecular mass of 74.2 kDa. Co-immunoprecipitation demonstrated that LvArs2 interacted with L. vannamei Dicer2 (LvDcr2) and LvPasha in Drosophila Schneider 2 (S2) cells, suggesting that LvArs2 may be involved in regulation of the miRNA/siRNA pathways in L.vannamei. Subcellular localization assays demonstrated both LvArs2 and LvPasha proteins mainly presented in the nucleus. After Poly(C-G) stimulation, the expression of LvArs2 was suppressed and expression of LvPasha was enhanced in shrimp gills. These results suggest that LvArs2 and LvPasha may participate in the defense against RNA viruses in crustacea.
Collapse
Affiliation(s)
- Yi-Hong Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang S, Chen AJ, Shi LJ, Zhao XF, Wang JX. TRBP and eIF6 homologue in Marsupenaeus japonicus play crucial roles in antiviral response. PLoS One 2012; 7:e30057. [PMID: 22279564 PMCID: PMC3261181 DOI: 10.1371/journal.pone.0030057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022] Open
Abstract
Plants and invertebrates can suppress viral infection through RNA silencing, mediated by RNA-induced silencing complex (RISC). Trans-activation response RNA-binding protein (TRBP), consisting of three double-stranded RNA-binding domains, is a component of the RISC. In our previous paper, a TRBP homologue in Fenneropenaeus chinensis (Fc-TRBP) was reported to directly bind to eukaryotic initiation factor 6 (Fc-eIF6). In this study, we further characterized the function of TRBP and the involvement of TRBP and eIF6 in antiviral RNA interference (RNAi) pathway of shrimp. The double-stranded RNA binding domains (dsRBDs) B and C of the TRBP from Marsupenaeus japonicus (Mj-TRBP) were found to mediate the interaction of TRBP and eIF6. Gel-shift assays revealed that the N-terminal of Mj-TRBP dsRBD strongly binds to double-stranded RNA (dsRNA) and that the homodimer of the TRBP mediated by the C-terminal dsRBD increases the affinity to dsRNA. RNAi against either Mj-TRBP or Mj-eIF6 impairs the dsRNA-induced sequence-specific RNAi pathway and facilitates the proliferation of white spot syndrome virus (WSSV). These results further proved the important roles of TRBP and eIF6 in the antiviral response of shrimp.
Collapse
Affiliation(s)
- Shuai Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
- Wuhan Institute of Virology, Chinese Academy of Science, Wuchang, Hubei, People's Republic of China
| | - An-Jing Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
| | - Li-Jie Shi
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
- * E-mail:
| |
Collapse
|
37
|
Phetrungnapha A, Panyim S, Ongvarrasopone C. A Tudor staphylococcal nuclease from Penaeus monodon: cDNA cloning and its involvement in RNA interference. FISH & SHELLFISH IMMUNOLOGY 2011; 31:373-380. [PMID: 21745576 DOI: 10.1016/j.fsi.2011.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/25/2011] [Indexed: 05/31/2023]
Abstract
RNA interference (RNAi) plays an important role in an antiviral defense in shrimp. RNAi technology has been extensively used for inhibition of viral replication and studying gene function. However, the mechanism of shrimp RNAi pathway is still poorly understood. In this study, we identified and characterized an additional protein in the RNAi pathway, Tudor staphylococcal nuclease from Penaeus monodon (PmTSN). The full-length cDNA of PmTSN is 2897 bp, with an open reading frame encoding a putative protein of 889 amino acids. Phylogenetic analysis and domain structure comparison revealed that PmTSN is more closely related to vertebrate TSN by sharing the amino acid sequence identity of 57% with TSN of zebrafish. This represents a new type of TSN proteins by exhibiting the four tandem repeat of staphylococcal nuclease-like domain (SN), followed by a Tudor and a partially truncated C-terminal SN domain. Knockdown of PmTSN by dsRNA targeting SN3 domain resulted in the impairment of dsRNA targeting PmRab7 gene to silence PmRab7 expression. In addition, the efficiency of dsRNA targeting YHV-protease gene inhibiting yellow head virus replication was decreased in the PmTSN-knockdown shrimps. Our results imply that PmTSN is involved in dsRNA-mediated gene silencing in shrimp and thus we identified the additional protein involved in shrimp RNAi pathway.
Collapse
Affiliation(s)
- Amnat Phetrungnapha
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Phutthamonthon District, Nakhon Pathom, Thailand
| | | | | |
Collapse
|
38
|
Enzyme E2 from Chinese white shrimp inhibits replication of white spot syndrome virus and ubiquitinates its RING domain proteins. J Virol 2011; 85:8069-79. [PMID: 21680526 DOI: 10.1128/jvi.00487-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that the ubiquitin (Ub) proteasome pathway (UPP) is closely related to immune defense. We have identified a ubiquitin-conjugating enzyme, E2, from the Chinese white shrimp, Fenneropenaeus chinensis (FcUbc). Injection of recombinant FcUbc protein (rFcUbc) reduced the mortality of shrimp infected with white spot syndrome virus (WSSV) and inhibited replication of WSSV. rFcUbc, but not a mutant FcUbc (mFcUbc), bound to WSSV RING domains (WRDs) from four potential E3 ligase proteins of WSSV in vitro. Importantly, rFcUbc could ubiquitinate the RING domains (named WRD2 and WRD3) of WSSV277 and WSSV304 proteins in vitro and the two proteins in WSSV-infected Drosophila melanogaster Schneider 2 (S2) cells. Furthermore, overexpression of FcUbc increased ubiquitination of WSSV277 and WSSV304 during WSSV infection. In summary, our study demonstrates that FcUbc from Chinese white shrimp inhibited WSSV replication and could ubiquitinate WSSV RING domain-containing proteins. This is the first report about antiviral function of Ubc E2 in shrimp.
Collapse
|
39
|
|