1
|
Gallo PM, Chain RW, Xu J, Whiteman LM, Palladino A, Caricchio R, Costa-Reis P, Sullivan KE, Gallucci S. EGFR-ErbB2 dual kinase inhibitor lapatinib decreases autoantibody levels and worsens renal disease in Interferon α-accelerated murine lupus. Int Immunopharmacol 2024; 140:112692. [PMID: 39079344 PMCID: PMC11456265 DOI: 10.1016/j.intimp.2024.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
Glomerulonephritis remains a major cause of morbidity and mortality in systemic lupus erythematosus (SLE). We have reported that expression of HER2/ErbB2, a member of the EGFR family, is increased in kidneys of patients and mice with lupus nephritis. We therefore asked if EGFR-family inhibition could ameliorate murine lupus nephritis. We used lapatinib, an EGFR-ErbB2 dual kinase inhibitor in female lupus-prone NZBxW/F1 mice, in which lupus onset was accelerated by injecting an IFN-α-expressing adenovirus. Mice received lapatinib (75 mg/Kg) or vehicle from the beginning of the acceleration or after the mice developed severe proteinuria (>300 mg/dL). Autoantibodies, kidney disease and markers of fibrosis and wound healing were analyzed. Exposure to IFNα induced ErbB2 expression in the kidney of lupus prone mice. Lapatinib, administered before but not after renal disease onset, lowered autoantibody titers and lessened immune complex deposition in the kidney. However, lapatinib increased proteinuria, kidney fibrosis and mouse mortality. Lapatinib also inhibited an in vitro wound healing assay testing renal cells. Our results suggest that EGFR-ErbB2 dual kinase inhibitor lapatinib decreases autoimmunity but worsens renal disease in IFNα-accelerated lupus, by increasing fibrosis and inhibiting wound healing. Type I Interferons are highlighted as important regulators of HER2/ErbB2 expression in the kidney. Further studies are required to parse the beneficial aspects of EGFR inhibition on autoimmunity from its negative effects on wound healing in lupus nephritis.
Collapse
Affiliation(s)
- Paul M Gallo
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Robert W Chain
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jun Xu
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Leah M Whiteman
- Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Annette Palladino
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Roberto Caricchio
- Section of Rheumatology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Patricia Costa-Reis
- Division of Allergy Immunology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathleen E Sullivan
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA; Section of Rheumatology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Division of Allergy Immunology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
YY1 alleviates lupus nephritis-induced renal injury by reducing the Th17/Treg cell ratio via the IFN-γ/Fra2 axis. J Transl Med 2022; 102:872-884. [PMID: 35361881 DOI: 10.1038/s41374-022-00777-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lupus nephritis (LN) is associated with extensive injury and nephron loss in the afflicted kidney. Evidence has revealed the involvement of dysregulated Yin Yang 1 (YY1), a reported inflammatory modulator, in LN-induced kidney injury, and our microarray profile identified downregulated YY1 expression. Therefore, this study explored the functional relevance and mechanism of YY1 in LN-induced kidney injury. LN was modeled in mice by intraperitoneal injection of pristane, and Jurkat cells (CD41 human T lymphocytes) were activated with TNF-α to mimic the inflammatory environment found in LN. The expression patterns of YY1 and bioinformatics predictions of the downstream factor IFN-γ were confirmed in renal tissues from the mice with LN using qRT-PCR and Western blot analyses. The contents of proinflammatory cytokines in mouse serum samples and cell supernatants were determined using enzyme-linked immunosorbent assays (ELISAs). Ectopic expression and depletion approaches were subsequently used in vitro and in vivo to examine the effects of the YY1/IFN-γ/Fra2/PARP-1/FOXO1 axis on TNF-α-induced inflammation and LN-induced kidney injury. The results showed downregulated expression of YY1 and FOXO1 in the kidney tissues of the mice with LN. Increased proinflammatory factor production was observed in the mice with LN and TNF-α-treated Jurkat cell supernatant, accompanied by increased cell apoptosis and a high ratio of Th17/Treg cells, and these effects were reversed by YY1 restoration. YY1 was further shown to inhibit IFN-γ expression and thereby downregulate Fra2 expression. Fra2 depletion then inhibited PARP-1 expression and promoted FOXO1 expression to suppress cell apoptosis and the release of inflammatory factors. Collectively, our findings revealed that YY1 may alleviate LN-induced renal injury via the IFN-γ/Fra2/PARP-1/FOXO1 axis.
Collapse
|
3
|
Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int J Mol Sci 2022; 23:ijms23137292. [PMID: 35806303 PMCID: PMC9266317 DOI: 10.3390/ijms23137292] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Differential evolution of apoptosis, programmed necrosis, and autophagy, parthanatos is a form of cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1), which is caused by DNA damage. PARP1 hyper-activation stimulates apoptosis-inducing factor (AIF) nucleus translocation, and accelerates nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) depletion, leading to DNA fragmentation. The mechanisms of parthanatos mainly include DNA damage, PARP1 hyper-activation, PAR accumulation, NAD+ and ATP depletion, and AIF nucleus translocation. Now, it is reported that parthanatos widely exists in different diseases (tumors, retinal diseases, neurological diseases, diabetes, renal diseases, cardiovascular diseases, ischemia-reperfusion injury...). Excessive or defective parthanatos contributes to pathological cell damage; therefore, parthanatos is critical in the therapy and prevention of many diseases. In this work, the hallmarks and molecular mechanisms of parthanatos and its related disorders are summarized. The questions raised by the recent findings are also presented. Further understanding of parthanatos will provide a new treatment option for associated conditions.
Collapse
|
4
|
Effects of Poly (ADP-ribose) Polymerase Inhibition on DNA Integrity and Gene Expression in Ovarian Follicular Cells in Mice with Endotoxemia. IRANIAN BIOMEDICAL JOURNAL 2022; 26:44-52. [PMID: 34826885 PMCID: PMC8784896 DOI: 10.52547/ibj.26.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background A mouse model of lipopolysaccharide (LPS)-induced inflammation was used to investigate the effect of pharmacological inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2, and GREM1) associated with oocyte developmental competence was assessed. Methods Mice were treated with the PARP-1 inhibitor, 4-HQN, one hour before LPS administration. After 24 h, oocyte in vitro maturation was detected. Granulosa cell DNA damage was determined by the alkaline comet assay. Live, necrotic and apoptotic cells were identified using double vital staining by fluorescent dyes, Hoechst 33342 and propidium iodide. The expression levels of cumulus genes were assessed using reverse transcriptase PCR. Results The administration of 4-HQN to LPS-treated mice ameliorated oocyte meiotic maturation and exerted a significant cytoprotective effect. 4-HQN attenuated LPS-induced DNA damage and favored cell survival by decreasing necrosis and apoptosis in granulosa cells. Exposure to 4-HQN increased mRNA expression levels for HAS2, COX2, and GREM1 in cumulus cells. Conclusion The obtained results indicate the involvement of PARP-1 in the pathogenesis of ovarian dysfunction caused by LPS. We suppose that this enzyme can be an attractive target for the therapy of inflammatory disorders in ovary. The protective action of PARP-1 inhibition could at least partly be associated with the reduction of necrotic death of follicular cells and also in other cells. However, the detailed mechanisms of the favorable effect of PARP inhibitors on endotoxin-induced ovarian disorders need to be further explored.
Collapse
|
5
|
PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
|
6
|
Vallerini GP, Cheng YH, Chase KA, Sharma RP, Kusumo H, Khakhkhar S, Feinstein DL, Guizzetti M, Gavin DP. Modulation of Poly ADP Ribose Polymerase (PARP) Levels and Activity by Alcohol Binge-Like Drinking in Male Mice. Neuroscience 2020; 448:1-13. [PMID: 32920042 DOI: 10.1016/j.neuroscience.2020.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023]
Abstract
Binge drinking is a frequent pattern of ethanol consumption within Alcohol Use Disorders (AUDs). Binge-like ethanol exposure increases Poly(ADP-ribose) polymerase (PARP) expression and activity. PARP enzymes have been implicated in addiction and serve multiple roles in the cell, including gene expression regulation. In this study, we examined the effects of binge-like alcohol consumption in the prefrontal cortex (PFC) of adult C57BL/6J male mice via a 4-day Drinking-in-the-Dark (DID) paradigm. The role of PARP in associated gene expression and behavioral changes was assessed by administering the PARP inhibitor ABT-888 on the last DID day. We then conducted an RNA-seq analysis of the PFC gene expression changes associated with DID-consumed ethanol or ABT-888 treatment. A separate cohort of mice was inoculated with an HSV-PARP1 vector in the PFC and subject to a DID experiment to verify whether overexpressed PARP1 increased ethanol drinking. We confirmed that alcohol increases Parp1 gene expression and PARP activity in the PFC. RNA-seq showed significantly altered expression of 41 genes by DID-consumed ethanol, and of 48 genes by ABT-888. These results were confirmed by qPCR in 7 of the 10 genes validated, 4 of which have been previously associated with addiction. ABT-888 reduced, and overexpression of PFC PARP1 increased DID ethanol consumption. In our model, alcohol binge drinking induced specific alterations in the PFC expression of genes potentially involved in addiction. Pharmacological PARP inhibition proved effective in reversing these changes and preventing further alcohol consumption. Our results suggest an involvement of ethanol-induced PARP1 in reinforcing binge-like addictive behavior.
Collapse
Affiliation(s)
- Gian Paolo Vallerini
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - You-Hong Cheng
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Kayla A Chase
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Rajiv P Sharma
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Handojo Kusumo
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Shivani Khakhkhar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Douglas L Feinstein
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States; Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; VA Portland Health Care System, Portland, OR 97239, United States.
| | - David P Gavin
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
7
|
Nocito C, Lubinsky C, Hand M, Khan S, Patel T, Seliga A, Winfield M, Zuluaga-Ramirez V, Fernandes N, Shi X, Unterwald EM, Persidsky Y, Sriram U. Centrally Acting Angiotensin-Converting Enzyme Inhibitor Suppresses Type I Interferon Responses and Decreases Inflammation in the Periphery and the CNS in Lupus-Prone Mice. Front Immunol 2020; 11:573677. [PMID: 33042154 PMCID: PMC7522287 DOI: 10.3389/fimmu.2020.573677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multi-organ damage. Neuropsychiatric lupus (NPSLE) is one of the most common manifestations of human SLE, often causing depression. Interferon-α (IFNα) is a central mediator in disease pathogenesis. Administration of IFNα to patients with chronic viral infections or cancers causes depressive symptoms. Angiotensin-converting enzyme (ACE) is part of the kallikrein-kinin/renin-angiotensin (KKS/RAS) system that regulates many physiological processes, including inflammation, and brain functions. It is known that ACE degrades bradykinin (BK) into inactive peptides. We have previously shown in an in vitro model of mouse bone-marrow-derived dendritic cells (BMDC) and human peripheral blood mononuclear cells that captopril (a centrally acting ACE inhibitor-ACEi) suppressed Type I IFN responsive gene (IRG) expression. In this report, we used the MRL/lpr lupus-prone mouse model, an established model to study NPSLE, to determine the in vivo effects of captopril on Type I IFN and associated immune responses in the periphery and brain and effects on behavior. Administering captopril to MRL/lpr mice decreased expression of IRGs in brain, spleen and kidney, decreased circulating and tissue IFNα levels, decreased microglial activation (IBA-1 expression) and reduced depressive-like behavior. Serotonin levels that are decreased in depression were increased by captopril treatment. Captopril also reduced autoantibody levels in plasma and immune complex deposition in kidney and brain. Thus, ACEi's may have potential for therapeutic use for systemic and NPSLE.
Collapse
Affiliation(s)
- Cassandra Nocito
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Cody Lubinsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Michelle Hand
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Sabeeya Khan
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Tulsi Patel
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Alecia Seliga
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Nicole Fernandes
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Xiangdang Shi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Kim MJ, Moon D, Jung S, Lee J, Kim J. Cisplatin nephrotoxicity is induced via poly(ADP-ribose) polymerase activation in adult zebrafish and mice. Am J Physiol Regul Integr Comp Physiol 2020; 318:R843-R854. [PMID: 32186196 DOI: 10.1152/ajpregu.00130.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cisplatin is a well-known chemotherapy medication used to treat numerous cancers. However, treatment with cisplatin in cancer therapy has major side effects, such as nephrotoxic acute kidney injury. Adult vertebrate kidneys are commonly used as models of cisplatin-induced nephrotoxic acute kidney injury. Embryonic zebrafish kidney is more simplified and is composed simply of two nephrons and thus is an excellent model for the investigation of cisplatin nephrotoxicity. Here, we developed a novel model to induce cisplatin nephrotoxicity in adult zebrafish and demonstrated that intraperitoneal injection of cisplatin caused a decline in kidney proximal tubular function based on fluorescein-labeled dextran uptake and alkaline phosphatase staining. We also showed that cisplatin induced histological injury of the kidney tubules, quantified by tubular injury scores on the periodic acid-Schiff-stained kidney sections. As shown in a mouse model of cisplatin-induced nephrotoxicity, the activation of poly(ADP-ribose) polymerase (PARP), an enzyme implicated in cisplatin-induced cell death, was markedly increased after cisplatin injection in adult zebrafish. Furthermore, pharmacological inhibition of PARP using a specific PARP inhibitor PJ 34 hydrochloride (PJ34) or 3-aminobenzamide ameliorated kidney proximal tubular functional and histological damages in cisplatin-injected adult zebrafish kidneys. Administration of a combination of PARP inhibitors PJ34 and 3-aminobenzamide additively protected renal function and histology in zebrafish and mouse models of cisplatin nephrotoxicity. In conclusion, these data suggest that adult zebrafish are not only suitable for drug screening and genetic manipulation but also useful as a simplified but powerful model to study the pathophysiology of cisplatin nephrotoxicity and establish new therapies for treating human kidney diseases.
Collapse
Affiliation(s)
- Myoung-Jin Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, Republic of Korea.,School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Daeun Moon
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, Republic of Korea
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea.,Department of Anatomy, Jeju National University School of Medicine, Jeju Self-Governing Province, Republic of Korea
| |
Collapse
|
9
|
Bohio AA, Sattout A, Wang R, Wang K, Sah RK, Guo X, Zeng X, Ke Y, Boldogh I, Ba X. c-Abl-Mediated Tyrosine Phosphorylation of PARP1 Is Crucial for Expression of Proinflammatory Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1521-1531. [PMID: 31399520 PMCID: PMC6731455 DOI: 10.4049/jimmunol.1801616] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribosyl)ation is a rapid and transient posttranslational protein modification mostly catalyzed by poly(ADP-ribose) polymerase-1 (PARP1). Fundamental roles of activated PARP1 in DNA damage repair and cellular response pathways are well established; however, the precise mechanisms by which PARP1 is activated independent of DNA damage, and thereby playing a role in expression of inflammatory genes, remain poorly understood. In this study, we show that, in response to LPS or TNF-α exposure, the nonreceptor tyrosine kinase c-Abl undergoes nuclear translocation and interacts with and phosphorylates PARP1 at the conserved Y829 site. Tyrosine-phosphorylated PARP1 is required for protein poly(ADP-ribosyl)ation of RelA/p65 and NF-κB-dependent expression of proinflammatory genes in murine RAW 264.7 macrophages, human monocytic THP1 cells, or mouse lungs. Furthermore, LPS-induced airway lung inflammation was reduced by inhibition of c-Abl activity. The present study elucidated a novel signaling pathway to activate PARP1 and regulate gene expression, suggesting that blocking the interaction of c-Abl with PARP1 or pharmaceutical inhibition of c-Abl may improve the outcomes of PARP1 activation-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Aman Sattout
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ruoxi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ke Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun 130024, China; and
| | - Xiaolan Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yueshuang Ke
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China;
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
10
|
Allocca M, Corrigan JJ, Mazumder A, Fake KR, Samson LD. Inflammation, necrosis, and the kinase RIP3 are key mediators of AAG-dependent alkylation-induced retinal degeneration. Sci Signal 2019; 12:12/568/eaau9216. [PMID: 30755477 DOI: 10.1126/scisignal.aau9216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA-alkylating agents are commonly used to kill cancer cells, but the base excision repair (BER) pathway they trigger can also produce toxic intermediates that cause tissue damage, such as retinal degeneration (RD). Apoptosis, a process of programmed cell death, is assumed to be the main mechanism of this alkylation-induced photoreceptor (PR) cell death in RD. Here, we studied the involvement of necroptosis (another programmed cell death process) and inflammation in alkylation-induced RD. Male mice exposed to a methylating agent exhibited a reduced number of PR cell rows, active gliosis, and cytokine induction and macrophage infiltration in the retina. Dying PRs exhibited a necrotic morphology, increased 8-hydroxyguanosine abundance (an oxidative damage marker), and overexpression of the necroptosis-associated genes Rip1 and Rip3 The activity of PARP1, which mediates BER, cell death, and inflammation, was increased in PR cells and associated with the release of proinflammatory chemokine HMGB1 from PR nuclei. Mice lacking the anti-inflammatory cytokine IL-10 exhibited more severe RD, whereas deficiency of RIP3 (also known as RIPK3) conferred partial protection. Female mice were partially protected from alkylation-induced RD, showing reduced necroptosis and inflammation compared to males. PRs in mice lacking the BER-initiating DNA glycosylase AAG did not exhibit alkylation-induced necroptosis or inflammation. Our findings show that AAG-initiated BER at alkylated DNA bases induces sex-dependent RD primarily by triggering necroptosis and activating an inflammatory response that amplifies the original damage and, furthermore, reveal new potential targets to prevent this side effect of chemotherapy.
Collapse
Affiliation(s)
- Mariacarmela Allocca
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Aprotim Mazumder
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kimberly R Fake
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
12
|
Contribution of poly(ADP-ribose)polymerase-1 activation and apoptosis in trichloroethene-mediated autoimmunity. Toxicol Appl Pharmacol 2018; 362:28-34. [PMID: 30315841 DOI: 10.1016/j.taap.2018.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Trichloroethene (TCE), a common environmental toxicant and widely used industrial solvent, has been implicated in the development of various autoimmune diseases (ADs). Although oxidative stress has been involved in TCE-mediated autoimmunity, the molecular mechanisms remain to be fully elucidated. These studies were, therefore, aimed to further explore the contribution of oxidative stress to TCE-mediated autoimmune response by specifically assessing the role of oxidative DNA damage, its repair enzyme poly(ADP-ribose)polymerase-1 (PARP-1) and apoptosis. To achieve this, groups of female MRL +/+ mice were treated with TCE, TCE plus N-acetylcysteine (NAC) or NAC alone (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day in drinking water) for 6 weeks. TCE treatment led to significantly higher levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the livers compared to controls, suggesting increased oxidative DNA damage. TCE-induced DNA damage was associated with significant activation of PARP-1 and increases in caspase-3, cleaved caspase-8 and -9, and alterations in Bcl-2 and Bax in the livers. Moreover, the TCE-mediated alterations corresponded with remarkable increases in the serum anti-ssDNA antibodies. Interestingly, NAC supplementation not only attenuated elevated 8-OHdG, PARP-1, caspase-3, cleaved caspase-9, and Bax, but also the TCE-mediated autoimmune response supported by significantly reduced serum anti-ssDNA antibodies. These results suggest that TCE-induced activation of PARP-1 followed by increased apoptosis presents a novel mechanism in TCE-associated autoimmune response and could potentially lead to development of targeted preventive and/or therapeutic strategies.
Collapse
|
13
|
Kers J, Leemans JC, Linkermann A. An Overview of Pathways of Regulated Necrosis in Acute Kidney Injury. Semin Nephrol 2018; 36:139-52. [PMID: 27339380 DOI: 10.1016/j.semnephrol.2016.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Necrosis is the predominant form of regulated cell death in acute kidney injury (AKI) and represents results in the formation of casts that appear in the urine sedimentation, referred to as muddy brown casts, which are part of the diagnosis of AKI. Pathologists referred to this typical feature as acute tubular necrosis. We are only beginning to understand the dynamics and the molecular pathways that underlie such typical necrotic morphology. In this review, we provide an overview of candidate pathways and summarize the emerging evidence for the relative contribution of these pathways of regulated necrosis, such as necroptosis, ferroptosis, mitochondrial permeability transition-mediated regulated necrosis, parthanatos, and pyroptosis. Inhibitors of each of these pathways are available, and clinical trials may be started after the detection of the most promising drug targets, which will be discussed here. With the global burden of AKI in mind, inhibitiors of regulated necrosis represent promising means to prevent this disease.
Collapse
Affiliation(s)
- Jesper Kers
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jaklien C Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
14
|
Corradetti C, Jog NR, Cesaroni M, Madaio M, Caricchio R. Estrogen Receptor α Signaling Exacerbates Immune-Mediated Nephropathies through Alteration of Metabolic Activity. THE JOURNAL OF IMMUNOLOGY 2017; 200:512-522. [PMID: 29237779 DOI: 10.4049/jimmunol.1700770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
Abstract
Glomerulonephritis is one of the most serious manifestations of systemic lupus erythematous (SLE). Because SLE is ≥10 times more common in women, a role for estrogens in disease pathogenesis has long been suspected. Estrogen receptor α (ERα) is highly expressed in renal tissue. We asked whether ERα expression contributes to the development of immune-mediated nephropathies like in lupus nephritis. We tested the overall effects of estrogen receptors on the immune response by immunization with OVA and induction of chronic graft-versus-host disease in female ERα-knockout mice. We used nephrotoxic serum nephritis as a model of immune-mediated nephropathy. We investigated the influence of ERα on molecular pathways during nephritis by microarray analysis of glomerular extract gene expression. We performed RNA sequencing of lupus patient whole blood to determine common pathways in murine and human nephritis. Absence of ERα protects female mice from developing nephritis, despite the presence of immune complexes and the production of proinflammatory cytokines in the kidneys and normal humoral responses to immunization. Time-course microarray analysis of glomeruli during nephrotoxic serum nephritis revealed significant upregulation of genes related to PPAR-mediated lipid metabolism and downregulation of genes in the retinol metabolism in wild-type females compared with ERα-knockout females. Similarly, RNA sequencing of lupus patient blood revealed similar expression patterns of these same pathways. During nephritis, the altered activity of metabolic pathways, such as retinol metabolism, occurs downstream of ERα activation and is essential for the progression to end-stage renal failure.
Collapse
Affiliation(s)
- Chelsea Corradetti
- Rheumatology Section, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Neelakshi R Jog
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Matteo Cesaroni
- Janssen Research and Development, LLC, Spring House, PA 19477; and
| | - Michael Madaio
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Roberto Caricchio
- Rheumatology Section, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140;
| |
Collapse
|
15
|
El-Sheikh MM, El-Hazek RM, El-Khatib AS, El-Ghazaly MA. Anti-apoptotic effect of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, against multiple organ damage induced by gamma irradiation in rats. Int J Radiat Biol 2017; 94:45-53. [DOI: 10.1080/09553002.2018.1408977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marwa M. El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Rania M. El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Aiman S. El-Khatib
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Kasr El-Aieny, Giza, Egypt
| | - Mona A. El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|
16
|
Adachi K, Miyajima SI, Nakamura N, Miyabe M, Kobayashi Y, Nishikawa T, Suzuki Y, Kikuchi T, Kobayashi S, Saiki T, Mizutani M, Ohno N, Noguchi T, Mitani A, Matsubara T, Naruse K. Role of poly(ADP-ribose) polymerase activation in the pathogenesis of periodontitis in diabetes. J Clin Periodontol 2017; 44:971-980. [PMID: 28570002 DOI: 10.1111/jcpe.12758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2017] [Indexed: 11/29/2022]
Abstract
AIM The aetiology of progressive periodontitis in diabetes has not yet been elucidated. We previously demonstrated that nitrosative stress is increased in diabetic rats with periodontitis. Nitrosative stress induces poly(ADP-ribose) polymerase (PARP) activation. Here, we demonstrated the involvement of PARP activation in diabetic periodontitis and detailed the therapeutic effects of PARP inhibitor. MATERIALS AND METHODS Experimental periodontitis was induced by placing a nylon thread ligature. Half of the normal and diabetic rats received the PARP inhibitor, 1,5-isoquinolinediol, for 2 weeks. Gingival PARP activation was detected by immunostaining for poly(ADP-ribose). Periodontitis was evaluated by gingival inflammatory cell infiltration, inflammatory gene expressions and micro-CT analyses. RESULTS Although both periodontitis and the presence of diabetes increased PARP activation in the gingiva, diabetic rats with periodontitis had the highest activation of PARP. Diabetic rats with periodontitis also showed significant increases in monocyte/macrophage invasion into the gingiva, inflammatory gene expressions, nitrotyrosine-positive cells in the gingiva and alveolar bone loss, all of which were suppressed by treatment with the PARP inhibitor. CONCLUSIONS These results indicate the involvement of PARP activation in the pathogenesis and aggravation of periodontal disease in diabetes and suggest the therapeutic potential of PARP inhibition for treating periodontal disease, especially in patients with diabetes.
Collapse
Affiliation(s)
- Kei Adachi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Shin-Ichi Miyajima
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yasuko Kobayashi
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Toru Nishikawa
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yuki Suzuki
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Shuichiro Kobayashi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tomokazu Saiki
- Department of Pharmacy, Aichi Gakuin University Dental Hospital, Nagoya, Japan
| | - Makoto Mizutani
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Norikazu Ohno
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Toshihide Noguchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
17
|
PARP inhibitors protect against sex- and AAG-dependent alkylation-induced neural degeneration. Oncotarget 2017; 8:68707-68720. [PMID: 28978150 PMCID: PMC5620290 DOI: 10.18632/oncotarget.19844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/08/2017] [Indexed: 11/25/2022] Open
Abstract
Alkylating agents are commonly used to treat cancer. Although base excision repair (BER) is a major pathway for repairing DNA alkylation damage, under certain conditions, the initiation of BER produces toxic repair intermediates that damage healthy tissues. The initiation of BER by the alkyladenine DNA glycosylase (AAG, a.k.a. MPG) can mediate alkylation-induced cytotoxicity in specific cells in the retina and cerebellum of male mice. Cytotoxicity in both wild-type and Aag-transgenic (AagTg) mice is abrogated in the absence of Poly(ADP-ribose) polymerase-1 (PARP1). Here, we tested whether PARP inhibitors can also prevent alkylation-induced retinal and cerebellar degeneration in male and female WT and AagTg mice. Importantly, we found that WT mice display sex-dependent alkylation-induced retinal damage (but not cerebellar damage), with WT males being more sensitive than females. Accordingly, estradiol treatment protects males against alkylation-induced retinal degeneration. In AagTg male and female mice, the alkylation-induced tissue damage in both the retina and cerebellum is exacerbated and the sex difference in the retina is abolished. PARP inhibitors, much like Parp1 gene deletion, protect against alkylation-induced AAG-dependent neuronal degeneration in WT and AagTg mice, regardless of the gender, but their efficacy in preventing alkylation-induced neuronal degeneration depends on PARP inhibitor characteristics and doses. The recent surge in the use of PARP inhibitors in combination with cancer chemotherapeutic alkylating agents might represent a powerful tool for obtaining increased therapeutic efficacy while avoiding the collateral effects of alkylating agents in healthy tissues.
Collapse
|
18
|
Jordan JJ, Chhim S, Margulies CM, Allocca M, Bronson RT, Klungland A, Samson LD, Fu D. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage. Cell Death Dis 2017; 8:e2947. [PMID: 28726787 PMCID: PMC5550884 DOI: 10.1038/cddis.2017.343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022]
Abstract
Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents.
Collapse
Affiliation(s)
- Jennifer J Jordan
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophea Chhim
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Carrie M Margulies
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mariacarmela Allocca
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Arne Klungland
- Department of Molecular Microbiology A3.3021, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Leona D Samson
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dragony Fu
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, Curtin NJ, Cuzzocrea S, Dawson TM, Dawson VL, Haskó G, Liaudet L, Moroni F, Pacher P, Radermacher P, Salzman AL, Snyder SH, Soriano FG, Strosznajder RP, Sümegi B, Swanson RA, Szabo C. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 2017; 175:192-222. [PMID: 28213892 DOI: 10.1111/bph.13748] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
The recent clinical availability of the PARP inhibitor olaparib (Lynparza) opens the door for potential therapeutic repurposing for non-oncological indications. Considering (a) the preclinical efficacy data with PARP inhibitors in non-oncological diseases and (b) the risk-benefit ratio of treating patients with a compound that inhibits an enzyme that has physiological roles in the regulation of DNA repair, we have selected indications, where (a) the severity of the disease is high, (b) the available therapeutic options are limited, and (c) the duration of PARP inhibitor administration could be short, to provide first-line options for therapeutic repurposing. These indications are as follows: acute ischaemic stroke; traumatic brain injury; septic shock; acute pancreatitis; and severe asthma and severe acute lung injury. In addition, chronic, devastating diseases, where alternative therapeutic options cannot halt disease development (e.g. Parkinson's disease, progressive multiple sclerosis or severe fibrotic diseases), should also be considered. We present a preclinical and clinical action plan for the repurposing of PARP inhibitors. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Nathan A Berger
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Valerie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Constance, Germany
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center - University Hospital, University of Florence, Florence, Italy
| | - Robert S Clark
- Department of Critical Care Medicine and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicola J Curtin
- Newcastle University, Northern Institute for Cancer Research, Medical School, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK
| | | | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Pharmacology and Molecular Sciences and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, University Hospital Medical Center, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Flavio Moroni
- Department of Neuroscience, Università degli Studi di Firenze, Florence, Italy
| | - Pál Pacher
- Laboratory of Physiologic Studies, Section on Oxidative Stress Tissue Injury, NIAAA, NIH, Bethesda, USA
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | | | - Solomon H Snyder
- Department of Neurology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francisco Garcia Soriano
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Balázs Sümegi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
| | - Raymond A Swanson
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
20
|
Grushka NG. [THE EFFECT OF OF POLY(ADP-RIBOSE) POLYMERASE INHIBITOR 4-HYDROXY-QUINAZOLINE ON DEATH OF IMMUNE CELLS UNDER IMMUNE COMPLEX-MEDIATED INJURY IN MICE]. ACTA ACUST UNITED AC 2017; 63:43-50. [PMID: 29975827 DOI: 10.15407/fz63.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The influence of poly(ADP-ribose) polymerase (PARP) in- hibitor 4-hydroxyquinazoline (4-HQ) on the level of DNA damage and on the death of thymic and lymph node cells in mouse model of immune complex injury was investigated to reveal its possible cytoprotective effect. As shown by comet assay, DNA damage index of immune cells was increased 4,0 times in mice with immune complex-mediated pathology induced by a long-term immunization of CBA mice with bovine serum albumin (BSA), P<0,001. The percentage of thymic cells with strong DNA damage was increased to 77% under immunization (compared to 1,5% in control mice) and the percentage of such cells from lymph nodes was increased to 80% (compared to 0% in control), in both cases P< 0,001. Genotoxic stress was reduced by treatment of immunized mice with 4-HQ: the percentage of lymphocytes with strong DNA damage was significantly decreased that promoted increase in the amount of cells having intact DNA. PARP inhibition exerted a strong cytoprotective effect: viability of thymus and lymph node cells was increased mainly due to reduced level of necrosis. So, our results suggest that PARP may be involved in thymic and lymph node cell damage in immune complex mediated pathology and give evidence that inhibition of this enzyme may constitute a perspective target in immune complex diseases prevention and therapy.
Collapse
|
21
|
Yoon SP, Kim J. Poly(ADP-ribose) polymerase 1 contributes to oxidative stress through downregulation of sirtuin 3 during cisplatin nephrotoxicity. Anat Cell Biol 2016; 49:165-176. [PMID: 27722009 PMCID: PMC5052225 DOI: 10.5115/acb.2016.49.3.165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022] Open
Abstract
Enhanced oxidative stress is a hallmark of cisplatin nephrotoxicity, and inhibition of poly(ADP-ribose) polymerase 1 (PARP1) attenuates oxidative stress during cisplatin nephrotoxicity; however, the precise mechanisms behind its action remain elusive. Here, using an in vitro model of cisplatin-induced injury to human kidney proximal tubular cells, we demonstrated that the protective effect of PARP1 inhibition on oxidative stress is associated with sirtuin 3 (SIRT3) activation. Exposure to 400 µM cisplatin for 8 hours in cells decreased activity and expression of manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase (GPX), and SIRT3, while it increased their lysine acetylation. However, treatment with 1 µM PJ34 hydrochloride, a potent PARP1 inhibitor, restored activity and/or expression in those antioxidant enzymes, decreased lysine acetylation of those enzymes, and improved SIRT3 expression and activity in the cisplatin-injured cells. Using transfection with SIRT3 double nickase plasmids, SIRT3-deficient cells given cisplatin did not show the ameliorable effect of PARP1 inhibition on lysine acetylation and activity of antioxidant enzymes, including MnSOD, catalase and GPX. Furthermore, SIRT3 deficiency in cisplatin-injured cells prevented PARP1 inhibition-induced increase in forkhead box O3a transcriptional activity, and upregulation of MnSOD and catalase. Finally, loss of SIRT3 in cisplatin-exposed cells removed the protective effect of PARP1 inhibition against oxidative stress, represented by the concentration of lipid hydroperoxide and 8-hydroxy-2'-deoxyguanosine; and necrotic cell death represented by a percentage of propidium iodide–positively stained cells. Taken together, these results indicate that PARP1 inhibition protects kidney proximal tubular cells against oxidative stress through SIRT3 activation during cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea.; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| |
Collapse
|
22
|
Corradetti C, Jog NR, Gallucci S, Madaio M, Balachandran S, Caricchio R. Immune-Mediated Nephropathy and Systemic Autoimmunity in Mice Does Not Require Receptor Interacting Protein Kinase 3 (RIPK3). PLoS One 2016; 11:e0163611. [PMID: 27669412 PMCID: PMC5036882 DOI: 10.1371/journal.pone.0163611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
Immune mediated nephropathy is one of the most serious manifestations of lupus and is characterized by severe inflammation and necrosis that, if untreated, eventually leads to renal failure. Although lupus has a higher incidence in women, both sexes can develop lupus glomerulonephritis; nephritis in men develops earlier and is more severe than in women. It is therefore important to understand the cellular and molecular mechanisms mediating nephritis in each sex. Previous work by our lab found that the absence or pharmacological inhibition of Poly [ADP-ribose] polymerase 1 (PARP-1), an enzyme involved in DNA repair and necrotic cell death, affects only male mice and results in milder nephritis, with less in situ inflammation, and diminished incidence of necrotic lesions, allowing for higher survival rates. A second pathway mediating necrosis involves Receptor-Interacting Serine-Threonine Kinase 3 (RIPK3); in this study we sought to investigate the impact of RIPK3 on the development of lupus and nephritis in both sexes. To this end, we used two inducible murine models of lupus: chronic graft versus host disease (cGvHD) and pristane-induced lupus; and nephrotoxic serum (NTS)-induced nephritis as a model of immune mediated nephropathy. We found that the absence of RIPK3 has neither positive nor negative impact on the disease development or progression of lupus and nephritis in all three models, and in both male and female mice. We conclude that RIPK3 is dispensable for the pathogenesis of lupus and immune mediated nephropathy as to accelerate, worsen or ameliorate the disease.
Collapse
Affiliation(s)
- Chelsea Corradetti
- Department of Medicine/Rheumatology Section, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, United States of America
| | - Neelakshi R. Jog
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Stefania Gallucci
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, United States of America
| | - Michael Madaio
- Department of Medicine, Medical College of Georgia, Georgia Regents University, 1120 15 Street, Augusta, GA, 30912, United States of America
| | - Siddharth Balachandran
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, United States of America
| | - Roberto Caricchio
- Department of Medicine/Rheumatology Section, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, United States of America
- * E-mail:
| |
Collapse
|
23
|
Hareendran S, Ramakrishna B, Jayandharan GR. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy. Eur J Immunol 2015; 46:154-66. [PMID: 26443873 DOI: 10.1002/eji.201545867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/04/2015] [Accepted: 09/30/2015] [Indexed: 02/02/2023]
Abstract
Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Sangeetha Hareendran
- Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India
| | - Banumathi Ramakrishna
- Department of General Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Giridhara R Jayandharan
- Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India.,Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| |
Collapse
|
24
|
Kang JW, Kim SJ, Cho HI, Lee SM. DAMPs activating innate immune responses in sepsis. Ageing Res Rev 2015; 24:54-65. [PMID: 25816752 DOI: 10.1016/j.arr.2015.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Sepsis refers to the deleterious and non-resolving systemic inflammatory response of the host to microbial infection and is the leading cause of death in intensive care units. The pathogenesis of sepsis is highly complex. It is principally attributable to dysregulation of the innate immune system. Damage-associated molecular patterns (DAMPs) are actively secreted by innate immune cells and/or released passively by injured or damaged cells in response to infection or injury. In the present review, we highlight emerging evidence that supports the notion that extracellular DAMPs act as crucial proinflammatory danger signals. Furthermore, we discuss the potential of a wide array of DAMPs as therapeutic targets in sepsis.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea
| | - So-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea
| | - Hong-Ik Cho
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea.
| |
Collapse
|
25
|
Jog NR, Caricchio R. 17β estradiol regulates adhesion molecule expression in mesangial cells during glomerulonephritis. Clin Immunol 2015; 159:13-22. [PMID: 25926428 DOI: 10.1016/j.clim.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 12/01/2022]
Abstract
We showed previously that 17β estradiol (E2) led to improved survival in nephrotoxic serum induced nephritis (NTN) in male mice. In this study we determined whether E2 regulates vascular cell adhesion molecule (VCAM)-1, an adhesion molecule that is upregulated in kidney during autoimmune nephritis, in mesangial cells (MC). We show that E2 inhibited VCAM-1 up-regulation in kidneys in vivo during NTN, and in MCs upon TNFα stimulation. VCAM-1 up-regulation in MCs was controlled by the transcription factor NFκB. E2 inhibited RNA polymerase II recruitment to the VCAM-1 promoter, but not p65 recruitment. Interestingly E2 inhibited TNFα stimulated interaction between poly (ADP-ribose) polymerase-1 (PARP-1) and p65. As PARP-1 is required for VCAM-1 upregulation in MCs, our data suggest that E2 may inhibit pre-initiation complex formation at VCAM-1 promoter by inhibiting PARP-1 recruitment to p65. We propose that E2 plays an important role in regulating renal inflammation locally.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Rheumatology Section, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Roberto Caricchio
- Rheumatology Section, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
27
|
Association of three SNPs in the PARP-1 gene with Hashimoto's thyroiditis. Hum Genome Var 2014; 1:14016. [PMID: 27081507 PMCID: PMC4785522 DOI: 10.1038/hgv.2014.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/12/2014] [Accepted: 08/23/2014] [Indexed: 12/20/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) has a vital role in the progression of the inflammatory response, and its inhibition confers protection in various models of inflammatory disorders. Therefore, we investigated the effect of promoter and exon variations of the PARP-1 gene on the risk for the inflammatory disease Hashimoto's thyroiditis (HT). This case-control association study was comprised of 141 HT patients and 150 controls from a group of women in a Turkish population. Two polymorphisms in the promoter region of the PARP-1 gene, rs2793378 and rs7527192, were analyzed using the PCR-RFLP method. In addition, single nucleotide polymorphism (SNP) rs1136410, which is located at codon 762, was analyzed using bidirectional sequencing. The combined genotype and haplotype analyses of these polymorphisms were performed using SPSS 18 and Haploview 4.2. The results were statistically analyzed by calculating the odds ratios and 95% confidence interval using Pearson's χ (2)-test and Fisher's exact test (two-sided). Although we had a number of significant results, the associations became nonsignificant following a Bonferroni correction for multiple comparisons. Nonetheless, a protective factor against HT was still observed for the heterozygous genotype (TC) of SNP rs1136410 (P=0.001), even following Bonferroni correction, and according to the rs2793378-rs7527192 combined analysis, the occurrence of the TT/GA combined genotype was significantly higher in the controls (P=0.007). These results prove that the heterozygosity of SNP rs1136410 provides a protective effect against HT disease in a group of women in a Turkish population.
Collapse
|
28
|
Fan H, Liu F, Dong G, Ren D, Xu Y, Dou J, Wang T, Sun L, Hou Y. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus. Cell Death Dis 2014; 5:e1416. [PMID: 25210799 PMCID: PMC4225223 DOI: 10.1038/cddis.2014.375] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023]
Abstract
B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19(+)CD27(-) and CD19(+)IgM(+) B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19(+) B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients.
Collapse
Affiliation(s)
- H Fan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - F Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - G Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - D Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Y Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - J Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - T Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - L Sun
- Department of Immunology and Rheumatology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Y Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
29
|
Jog NR, Caricchio R. The role of necrotic cell death in the pathogenesis of immune mediated nephropathies. Clin Immunol 2014; 153:243-53. [PMID: 24845790 DOI: 10.1016/j.clim.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 02/08/2023]
Abstract
Necrosis, an inflammatory form of cell death, has been considered to be an accidental death and/or cell death due to injury. However, the literature in the last decade has established that necrosis is a regulated form of cell death, and that inhibition of specific molecular pathways leading to necrosis can block it and reduce inflammation. Since necrotic lesions are observed in several immune mediated human pathologies, in this review we will discuss the impact that this form of programmed cellular demise has in the pathology of immune mediated nephropathies.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Rheumatology Section, Department of Medicine, Temple Autoimmunity Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Roberto Caricchio
- Rheumatology Section, Department of Medicine, Temple Autoimmunity Center, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Li HY, Pan L, Ke YS, Batnasan E, Jin XQ, Liu ZY, Ba XQ. Daidzein suppresses pro-inflammatory chemokine Cxcl2 transcription in TNF-α-stimulated murine lung epithelial cells via depressing PARP-1 activity. Acta Pharmacol Sin 2014; 35:496-503. [PMID: 24632845 DOI: 10.1038/aps.2013.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022] Open
Abstract
AIM Daidzein (4',7-dihydroxyisoflavone) is an isoflavone exiting in many herbs that has shown anti-inflammation activity. The aim of this study was to investigate the mechanism underlying its anti-inflammatory action in murine lung epithelial cells. METHODS C57BL/6 mice were intranasally exposed to TNF-α to induce lung inflammation. The mice were injected with daidzein (400 mg/kg, ip) before TNF-α challenge, and sacrificed 12 h after TNF-α challenge, and lung tissues were collected for analyisis. In in vitro studies, murine MLE-12 epithelial cells were treated with TNF-α (20 ng/mL). The expression of pro-inflammatory chemokine Cxcl2 mRNA and NF-κB transcriptional activity were examined using real-time PCR and a dual reporter assay. Protein poly-adenosine diphosphate-ribosylation (PARylation) was detecyed using Western blotting and immunoprecipitation assays. RESULTS Pretreatment of the mice with daidzein markedly attenuated TNF-α-induced lung inflammation, and inhibited Cxcl2 expression in lung tissues. Furthermore, daidzein (10 μmol/L) prevented TNF-α-induced increases in Cxcl2 expression and activity and NF-κB transcriptional activity, and markedly inhibited TNF-α-induced protein PARylation in MLE-12 cells in vitro. In MLE-12 cells co-transfected with the PARP-1 expression plasmid and NF-κB-luc (or Cxcl2-luc) reporter plasmid, TNF-α markedly increased NF-κB (or Cxcl2) activation, which were significantly attenuated in the presence of daidzein (or the protein PARylation inhibitor PJ 34). PARP-1 activity assay showed that daidzein (10 μmol/L) reduced the activity of PARP-1 by ∼75%. CONCLUSION The anti-inflammatory action of daidzein in murine lung epithelial cells seems to be mediated via a direct interaction with PARP-1, which inhibits RelA/p65 protein PARylation required for the transcriptional modulation of pro-inflammatory chemokines such as Cxcl2.
Collapse
|
31
|
Zhou TB, Jiang ZP. Role of poly (ADP-ribose)-polymerase and its signaling pathway with renin-angiotensin aldosterone system in renal diseases. J Recept Signal Transduct Res 2013; 34:143-8. [PMID: 24303937 DOI: 10.3109/10799893.2013.865748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP), a ubiquitous, chromatin-bound enzyme, plays a crucial role in many processes, including DNA repair, cell death, metabolism, and inflammatory responses, by activating DNA repair pathways responsible for cellular survival. Renin-angiotensin-aldosterone system (RAAS) genes encode renin, angiotensinogen, angiotensin-converting enzyme, angiotensin type-1 receptor and aldosterone synthase gene. RAAS is a hormone system which acts on multiple physiologic pathways primarily by regulating blood pressure, electrolyte and fluid homeostasis in mammals, but also by local autocrine and paracrine actions. The current status quo of scientific evidence shows that there might be a signaling pathway between PARP and RAAS. Herein, we review the role of PARP and its signaling pathways with RAAS in renal diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | |
Collapse
|
32
|
Jog NR, Caricchio R. Differential regulation of cell death programs in males and females by Poly (ADP-Ribose) Polymerase-1 and 17β estradiol. Cell Death Dis 2013; 4:e758. [PMID: 23928697 PMCID: PMC3763428 DOI: 10.1038/cddis.2013.251] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 05/02/2013] [Accepted: 06/06/2013] [Indexed: 01/02/2023]
Abstract
Cell death can be divided into the anti-inflammatory process of apoptosis and the
pro-inflammatory process of necrosis. Necrosis, as apoptosis, is a regulated form of cell
death, and Poly-(ADP-Ribose) Polymerase-1 (PARP-1) and Receptor-Interacting Protein (RIP)
1/3 are major mediators. We previously showed that absence or inhibition of PARP-1
protects mice from nephritis, however only the male mice. We therefore hypothesized that
there is an inherent difference in the cell death program between the sexes. We show here
that in an immune-mediated nephritis model, female mice show increased apoptosis compared
to male mice. Treatment of the male mice with estrogens induced apoptosis to levels
similar to that in female mice and inhibited necrosis. Although PARP-1 was activated in
both male and female mice, PARP-1 inhibition reduced necrosis only in the male mice. We
also show that deletion of RIP-3 did not have a sex bias. We demonstrate here that male
and female mice are prone to different types of cell death. Our data also suggest that
estrogens and PARP-1 are two of the mediators of the sex-bias in cell death. We therefore
propose that targeting cell death based on sex will lead to tailored and better treatments
for each gender.
Collapse
Affiliation(s)
- N R Jog
- Rheumatology Section, Department of Medicine, Temple Autoimmunity Center, Temple University School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
33
|
Masszi G, Horvath EM, Tarszabo R, Benko R, Novak A, Buday A, Tokes AM, Nadasy GL, Hamar P, Benyó Z, Varbiro S. Reduced estradiol-induced vasodilation and poly-(ADP-ribose) polymerase (PARP) activity in the aortas of rats with experimental polycystic ovary syndrome (PCOS). PLoS One 2013; 8:e55589. [PMID: 23555555 PMCID: PMC3608629 DOI: 10.1371/journal.pone.0055589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/27/2012] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder characterized by hyperandrogenism and insulin resistance, both of which have been connected to atherosclerosis. Indeed, an increased risk of clinical manifestations of arterial vascular diseases has been described in PCOS. On the other hand endothelial dysfunction can be detected early on, before atherosclerosis develops. Thus we assumed that vascular dysfunction is also related directly to the hormonal imbalance rather than to its metabolic consequences. To detect early functional changes, we applied a novel rodent model of PCOS: rats were either sham operated or hyperandrogenism was achieved by implanting subcutaneous pellets of dihydrotestosterone (DHT). After ten weeks, myograph measurements were performed on isolated aortic rings. Previously we described an increased contractility to norepinephrine (NE). Here we found a reduced immediate relaxation to estradiol treatment in pre-contracted aortic rings from hyperandrogenic rats. Although the administration of vitamin D3 along with DHT reduced responsiveness to NE, it did not restore relaxation to estradiol. Poly-(ADP-ribose) polymerase (PARP) activity was assessed by poly-ADP-ribose immunostaining. Increased PAR staining in ovaries and circulating leukocytes from DHT rats showed enhanced DNA damage, which was reduced by concomitant vitamin D3 treatment. Surprisingly, PAR staining was reduced in both the endothelium and vascular smooth muscle cells of the aorta rings from hyperandrogenic rats. Thus in the early phase of PCOS, vascular tone is already shifted towards vasoconstriction, characterized by reduced vasorelaxation and vascular dysfunction is concomitant with altered PARP activity. Based on our findings, PARP inhibitors might have a future perspective in restoring metabolic disorders in PCOS.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/pathology
- Aorta/physiopathology
- Cholecalciferol/pharmacology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Estradiol/pharmacology
- Estrogens/pharmacology
- Female
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Poly Adenosine Diphosphate Ribose/metabolism
- Poly(ADP-ribose) Polymerases/metabolism
- Polycystic Ovary Syndrome/chemically induced
- Polycystic Ovary Syndrome/metabolism
- Polycystic Ovary Syndrome/pathology
- Polycystic Ovary Syndrome/physiopathology
- Rats
- Rats, Wistar
- Vasoconstriction/drug effects
- Vasodilation/drug effects
- Vitamins/pharmacology
Collapse
Affiliation(s)
- Gabriella Masszi
- Cardiology Unit, Bajcsy-Zsilinszky Hospital, Budapest, Hungary
- * E-mail: (GM); (SV)
| | - Eszter Maria Horvath
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Robert Tarszabo
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Rita Benko
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Agnes Novak
- Cardiology Unit, Bajcsy-Zsilinszky Hospital, Budapest, Hungary
| | - Anna Buday
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Anna-Maria Tokes
- Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Gyorgy L. Nadasy
- 2 Department Obstetrical Gynecology Semmelweis University, Budapest, Hungary
| | - Peter Hamar
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Szabolcs Varbiro
- 2 Department Obstetrical Gynecology Semmelweis University, Budapest, Hungary
- * E-mail: (GM); (SV)
| |
Collapse
|
34
|
Sriram U, Varghese L, Bennett HL, Jog NR, Shivers DK, Ning Y, Behrens EM, Caricchio R, Gallucci S. Myeloid dendritic cells from B6.NZM Sle1/Sle2/Sle3 lupus-prone mice express an IFN signature that precedes disease onset. THE JOURNAL OF IMMUNOLOGY 2012; 189:80-91. [PMID: 22661089 DOI: 10.4049/jimmunol.1101686] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Patients with systemic lupus erythematosus show an overexpression of type I IFN-responsive genes that is referred to as "IFN signature." We found that B6.NZMSle1/Sle2/Sle3 (Sle1,2,3) lupus-prone mice also express an IFN signature compared with non-autoimmune C57BL/6 mice. In vitro, myeloid dendritic cells (mDCs) (GM-CSF bone marrow-derived dendritic cells; BMDCs) from Sle1,2,3 mice constitutively overexpressed IFN-responsive genes such as IFN-β, Oas-3, Mx-1, ISG-15, and CXCL10 and members of the IFN signaling pathway STAT1, STAT2, and IRF7. The IFN signature was similar in Sle1,2,3 BMDCs from young, pre-autoimmune mice and from mice with high titers of autoantibodies, suggesting that the IFN signature in mDCs precedes disease onset and is independent from the autoantibodies. Sle1,2,3 BMDCs hyperresponded to stimulation with IFN-α and the TLR7 and TLR9 agonists R848 and CpGs. We propose that this hyperresponse is induced by the IFN signature and only partially contributes to the signature, as oligonucleotides inhibitory for TLR7 and TLR9 only partially suppressed the constitutive IFN signature, and pre-exposure to IFN-α induced the same hyperresponse in wild-type BMDCs as in Sle1,2,3 BMDCs. In vivo, mDCs and to a lesser extent T and B cells from young prediseased Sle1,2,3 mice also expressed the IFN signature, although they lacked the strength that BMDCs showed in vitro. Sle1,2,3 plasmacytoid DCs expressed the IFN signature in vitro but not in vivo, suggesting that mDCs may be more relevant before disease onset. We propose that Sle1,2,3 mice are useful tools to study the role of the IFN signature in lupus pathogenesis.
Collapse
Affiliation(s)
- Uma Sriram
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lipopolysaccharide activates ERK-PARP-1-RelA pathway and promotes nuclear factor-κB transcription in murine macrophages. Hum Immunol 2012; 73:439-47. [PMID: 22391342 DOI: 10.1016/j.humimm.2012.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/18/2012] [Accepted: 02/01/2012] [Indexed: 01/19/2023]
Abstract
Poly(ADP-ribosyl)ation, like acetylation, methylation and phosphorylation, is one of the essential post-translational protein modifications. Poly(ADP-ribose) polymerase 1 (PARP-1), the best characterized member of the PARP family, catalyzes PAR formation, and has been implemented in the in vivo and in vitro inflammatory disease models. However, the exact signaling pathways leading to PARP-1 activation and the molecular mechanisms of activated PARP-1 signaling of inflammatory genes' expression remains to be further elucidated. In the present study, murine macrophages, in vitro stimulated with lipopolysaccharide (LPS), showed a profound activation of PARP-1, and PARP-1-dependent expression of mRNA for interleukin (IL)-1β and IL-18 inflammatory cytokines. Immunoprecipitation assays showed that LPS stimulation enhanced the binding of PARP-1 with p65 (RelA) and poly(ADP-ribosyl)ation of p65, which might account for the upregulated transcription activity of nuclear factor (NF)-κB and the increased expression of proinflammatory genes. The application of various signal pathway inhibitors revealed that besides the canonical ROS-DNA damage signal, ERK pathway modulated the activation of PARP-1. ERK inhibitor blocked the interaction of PARP-1 with ERK1/2, phosphorylation of PARP-1, and poly(ADP-ribosyl)ation of p65, suggesting that ERK-dependent phosphorylation of PARP-1 regulates PARP-1 activity and NF-κB activation. Taken together, our results suggest that an ERK-PARP-1-RelA pathway in macrophages promote inflammatory progression in septic diseases.
Collapse
|
36
|
Jog NR, Frisoni L, Shi Q, Monestier M, Hernandez S, Craft J, Prak ETL, Caricchio R. Caspase-activated DNase is required for maintenance of tolerance to lupus nuclear autoantigens. ACTA ACUST UNITED AC 2011; 64:1247-56. [PMID: 22127758 DOI: 10.1002/art.33448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Caspase-activated DNase (CAD) is an endonuclease that is activated by active caspase 3 during apoptosis and is responsible for degradation of chromatin into nucleosomal units. These nucleosomal units are then included in apoptotic bodies. The presence of apoptotic bodies is considered important for the generation of autoantigen in autoimmune diseases, such as systemic lupus erythematosus (SLE), that are characterized by the presence of antinuclear antibodies. The present study was carried out to determine the role of CAD in SLE and to investigate the ability of lupus autoantibodies to bind to CAD-deficient or CAD-sufficient apoptotic cells. METHODS The Sle1, Sle123, and 3H9 mouse models of SLE, in which autoimmunity is genetically predetermined, were used. To determine the role of chromatin fragmentation in SLE, CAD deficiency was introduced in these mouse models. RESULTS Deficiency of CAD resulted in increased anti-double-stranded DNA antibody titers in lupus-prone mice. Surprisingly, the absence of CAD exacerbated only genetically predetermined autoimmune responses. To further determine whether nuclear modifications are needed in order to maintain tolerance to nuclear autoantigens, we used the 3H9 mouse, an anti-DNA heavy chain knockin; in this model, the autoreactive B cells are tolerized by anergy. In accordance with findings in the CAD-mutant Sle1 and Sle123 mice, CAD-deficient 3H9 mice spontaneously generated anti-DNA antibodies. Finally, we showed that autoantibodies with specificities toward histone-DNA complexes bind more to CAD-deficient apoptotic cells than to CAD-sufficient apoptotic cells. CONCLUSION We propose that in mice that are genetically predisposed to lupus development, nuclear apoptotic modifications are needed to maintain tolerance. In the absence of these modifications, apoptotic chromatin is abnormally exposed, facilitating the autoimmune response.
Collapse
|
37
|
Ba X, Garg NJ. Signaling mechanism of poly(ADP-ribose) polymerase-1 (PARP-1) in inflammatory diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:946-55. [PMID: 21356345 DOI: 10.1016/j.ajpath.2010.12.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 11/06/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Poly(ADP-ribosyl)ation, attaching the ADP-ribose polymer chain to the receptor protein, is a unique posttranslational modification. Poly(ADP-ribose) polymerase-1 (PARP-1) is a well-characterized member of the PARP family. In this review, we provide a general update on molecular structure and structure-based activity of this enzyme. However, we mainly focus on the roles of PARP-1 in inflammatory diseases. Specifically, we discuss the signaling pathway context that PARP-1 is involved in to regulate the pathogenesis of inflammation. PARP-1 facilitates diverse inflammatory responses by promoting inflammation-relevant gene expression, such as cytokines, oxidation-reduction-related enzymes, and adhesion molecules. Excessive activation of PARP-1 induces mitochondria-associated cell death in injured tissues and constitutes another mechanism for exacerbating inflammation.
Collapse
Affiliation(s)
- Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA.
| | | |
Collapse
|
38
|
Poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, protects against experimental immune ovarian failure in mice. Reprod Biol 2011; 10:215-26. [PMID: 21113202 DOI: 10.1016/s1642-431x(12)60041-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) may play an important role in numerous pathological conditions. The aim of the present study was to clarify the role of PARP in the pathogenesis of immune ovarian failure in mice and to examine the possible protective action of PARP inhibitor, 3-aminobenzamide (3-ABA). An experimental ovarian injury induced in mice by immunization with allogenic ovarian extract impaired the meiotic maturation of oocytes and increased apoptosis and necrosis of follicular cells and cells isolated from the spleen, lymph nodes and thymus. The immunization affected blood leukogram indicating the presence of an inflammatory response. Treatment with 3-ABA (1 h before antigen administrations, 0.02 mg/g intraperitoneally, twice a week during the three-week experiment) was effective to prevent meiotic maturation impairment, cell death and inflammation. The decrease in the necrosis of follicular and immune cells after 3-ABA treatment was more pronounced than that in apoptosis. It is concluded that PARP may contribute to immune-mediated ovary injury and PARP inhibitor, 3-ABA, protects against experimental immune ovarian failure, partially via a decrease in necrotic cell death.
Collapse
|
39
|
Paromov V, Brannon M, Kumari S, Samala M, Qui M, Smith M, Stone WL. Sodium Pyruvate Modulates Cell Death Pathways in HaCaT Keratinocytes Exposed to Half-Mustard Gas. Int J Toxicol 2011; 30:197-206. [DOI: 10.1177/1091581810390824] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Chloroethyl ethyl sulfide (CEES) or half-mustard gas, a sulfur mustard (HD) analog, is a genotoxic agent that causes oxidative stress and induces both apoptotic and necrotic cell death. Sodium pyruvate induced a necrosis-to-apoptosis shift in HaCaT cells exposed to CEES levels ≤ 1.5 mmol/L and lowered markers of DNA damage, oxidative stress, and inflammation. This study provides a rationale for the future development of multicomponent therapies for HD toxicity in the skin. We hypothesize that a combination of pyruvates with scavengers/antioxidants encapsulated in liposomes for optimal local delivery should be therapeutically beneficial against HD-induced skin injury. However, the latter suggestion should be verified in animal models exposed to HD.
Collapse
Affiliation(s)
- Victor Paromov
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Marianne Brannon
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Sudha Kumari
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mallikarjun Samala
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Min Qui
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - William L. Stone
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
40
|
Abstract
Niacin (vitamin B(3)) is required to form nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which are involved in scores of anabolic and catabolic redox reactions throughout metabolism. It is now understood that NAD(+) is also a substrate for several families of ADP-ribosylation reactions, which control processes like DNA repair, replication and transcription, the activity of G-proteins, chromatin structure and intracellular calcium signalling. Poly(ADP-ribose)polymerase-1 (PARP-1) is the most active of the PARP enzymes, and it has been implicated in both prevention and aggravation of disease processes. Inhibition of poly-ADP-ribose formation will tend to cause genomic instability and tumorigenesis in chronic models of DNA damage, but the same inhibition can prevent many acute disease processes, such as stroke, myocardial infarction and septic shock. In models of acute stress, PARP-1 inhibition may protect cellular NAD pools and prevent nuclear factor-kappaB-dependent inflammatory signalling, while long-term protective roles for PARP-1 include DNA repair and regulation of chromatin structure. Promising new PARP-1 inhibitors may display interactions with dietary niacin status and may have long-term deleterious effects on genomic stability, but may be extremely valuable for the treatment of acute inflammatory conditions.
Collapse
Affiliation(s)
- James B Kirkland
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
41
|
Nasta F, Laudisi F, Sambucci M, Rosado MM, Pioli C. Increased Foxp3+ regulatory T cells in poly(ADP-Ribose) polymerase-1 deficiency. THE JOURNAL OF IMMUNOLOGY 2010; 184:3470-7. [PMID: 20208002 DOI: 10.4049/jimmunol.0901568] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Growing evidence is unveiling a role for poly(ADP-ribose) polymerase (PARP)-1 in the regulation of inflammatory/immune responses. In the current study, we investigated the effects of PARP-1 deficiency on regulatory T cell differentiation. Increased numbers of regulatory CD4(+)CD25(+)/Foxp3(+) T cells were found in thymus, spleen, and lymph nodes of PARP-1 knockout (KO) mice compared with wild-type (WT) controls. The increased frequency of regulatory T cells in the periphery resulted in impaired CD4 cell proliferation and IL-2 production, which could be restored by CD25(+) cell depletion. Phenotype and inhibitory functions of PARP-1 KO regulatory T cells were similar to WT cells, indicating that PARP-1 affects regulatory T cell differentiation rather than function. Purified naive CD4 cells from PARP-1 KO mice stimulated in vitro expressed forkhead box p3 mRNA at higher levels and generated a greater number of Foxp3(+) cells (inducible regulatory T [iTreg] cells) than the WT counterpart. This finding was due to a higher rate of naive CD4 cell to Foxp3(+) iTreg cell conversion rather than to higher resistance to apoptosis induction. Interestingly, PARP-1 deficiency did not affect retinoid-related orphan receptor-gammat mRNA expression and differentiation of purified naive CD4 cells to Th17 cells. PARP-1 KO iTreg cells showed features similar to WT regulatory T cells, suggesting that modulation of PARP-1 during the immune response might be used to induce greater numbers of functional regulatory T cells. In conclusion, our findings represent the first evidence that PARP-1 can affect regulatory T cell differentiation and open new perspectives on potential targets for modulating immune responses.
Collapse
Affiliation(s)
- Francesca Nasta
- Section of Toxicology and Biomedicine, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Santa Maria di Galeria, 00123 Rome, Italy
| | | | | | | | | |
Collapse
|