1
|
Yamamoto Y, Yamaguchi T, Egashira K, Saiki S, Kimura M, Chikazawa T, Yamamoto Y, Kurita K. Dipotassium glycyrrhizate and hinokitiol enhance macrophage efferocytosis by regulating recognition, uptake, and metabolism of apoptotic cells in vitro. J Periodontal Res 2024; 59:542-551. [PMID: 38146226 DOI: 10.1111/jre.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Efferocytosis is a process whereby macrophages remove apoptotic cells, such as neutrophils, that have accumulated in tissues, which is required for resolution of inflammation. Efferocytosis is impaired in individuals with increasing age and in those with various systemic diseases. Recently, efferocytosis has been reported to be related to the pathogenesis and progression of periodontitis, and enhancement of efferocytosis, especially in the subjects with impaired efferocytosis, was suggested to lead to periodontitis prevention and care. Various anti-inflammatory ingredients are used in oral care products, but their effect on efferocytosis is unclear. Here, we aimed to identify ingredients contained in oral care products that are effective for efferocytosis regulation. METHODS The ability of dead cells to induce inflammation in human gingival fibroblast (HGF) cells were evaluated by measuring IL-6 secretion. Six ingredients in oral care products used as anti-inflammatory agents were evaluated for their effect on efferocytosis using flow cytometry. The expression of various efferocytosis-related molecules, such as MERTK and LRP1 involved in recognition, and LXRα and ABCA1 that function in metabolism, were measured in RAW264.7 cells with or without ingredient treatment. Rac1 activity, which is related to the uptake of dead cells, was measured using the G-LISA kit. RESULTS Dead cells elicited IL-6 secretion in HGF cells. Among the six ingredients, GK2 and hinokitiol enhanced efferocytosis activity. GK2 and hinokitiol significantly increased the expression of MERTK and LRP1, and also enhanced LXRα and ABCA1 expression after efferocytosis. Furthermore, they increased Rac1 activity in the presence of dead cells. CONCLUSION Among the six ingredients tested, GK2 and hinokitiol promoted efferocytosis by regulating apoptotic cell recognition, uptake, and metabolism-related molecules. Efferocytosis upregulation may be one of the mechanisms of GK2 and hinokitiol in the treatment of inflammatory diseases, such as periodontitis.
Collapse
Affiliation(s)
- Yu Yamamoto
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | | | | | - Shuhei Saiki
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | | | | | | | - Kei Kurita
- R&D Headquarters, LION Corporation, Tokyo, Japan
| |
Collapse
|
2
|
Nath M, Bhattacharjee K, Choudhury Y. The antidiabetic drug pioglitazone ameliorates betel-nut-induced carcinogenesis in mice by restoring normal lipid metabolism, reducing oxidative stress, and inducing apoptosis. J Cancer Res Ther 2023; 19:1967-1974. [PMID: 38376305 DOI: 10.4103/jcrt.jcrt_844_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 02/21/2024]
Abstract
CONTEXT Oral administration (2 mg mL-1) of aqueous extract of betel nut (AEBN) for 24 weeks induced oncogenic alterations in the liver of female Swiss Albino mice concomitant with aberrant lipid metabolism, overactivation of Akt/mTOR signaling, and loss of apoptosis. AIM This study was designed to investigate the potential of repurposing the antidiabetic drug pioglitazone for alleviating AEBN-induced carcinogenesis. METHODS Sera of animals were evaluated for lipid profile and free fatty acid levels. Liver tissues were investigated for oxidative stress, histopathology, and expression of proteins involved in lipid metabolism and oncogenesis by western blotting. Apoptosis was determined using TUNEL assay. RESULTS Coadministration of pioglitazone (10 mg kg-1 b.w) with AEBN for 8 weeks restored normal lipid profile and AMPK/ACC signaling, reduced FASN and HMGCR expressions and oxidative stress, and actively induced Akt/mTOR-mediated apoptosis in the liver. CONCLUSIONS Pioglitazone can effectively alleviate AEBN-induced carcinogenesis in mice.
Collapse
Affiliation(s)
- Moumita Nath
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | | | | |
Collapse
|
3
|
Psarras A, Clarke A. A cellular overview of immunometabolism in systemic lupus erythematosus. OXFORD OPEN IMMUNOLOGY 2023; 4:iqad005. [PMID: 37554724 PMCID: PMC10264559 DOI: 10.1093/oxfimm/iqad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 08/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by a breakdown of immune tolerance and the development of autoantibodies against nucleic self-antigens. Immunometabolism is a rapidly expanding scientific field investigating the metabolic programming of cells of the immune system. During the normal immune response, extensive reprogramming of cellular metabolism occurs, both to generate adenosine triphosphate and facilitate protein synthesis, and also to manage cellular stress. Major pathways upregulated include glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle and the pentose phosphate pathway, among others. Metabolic reprogramming also occurs to aid resolution of inflammation. Immune cells of both patients with SLE and lupus-prone mice are characterized by metabolic abnormalities resulting in an altered functional and inflammatory state. Recent studies have described how metabolic reprogramming occurs in many cell populations in SLE, particularly CD4+ T cells, e.g. favouring a glycolytic profile by overactivation of the mechanistic target of rapamycin pathway. These advances have led to an increased understanding of the metabolic changes affecting the inflammatory profile of T and B cells, monocytes, dendritic cells and neutrophils, and how they contribute to autoimmunity and SLE pathogenesis. In the current review, we aim to summarize recent advances in the field of immunometabolism involved in SLE and how these could potentially lead to new therapeutic strategies in the future.
Collapse
Affiliation(s)
- Antonios Psarras
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Alexander Clarke
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Saadh MJ, Kazemi K, Khorramdelazad H, Mousavi MJ, Noroozi N, Masoumi M, Karami J. Role of T cells in the pathogenesis of systemic lupus erythematous: Focus on immunometabolism dysfunctions. Int Immunopharmacol 2023; 119:110246. [PMID: 37148769 DOI: 10.1016/j.intimp.2023.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Evidence demonstrates that T cells are implicated in developing SLE, and each of them dominantly uses distinct metabolic pathways. Indeed, intracellular enzymes and availability of specific nutrients orchestrate fate of T cells and lead to differentiation of regulatory T cells (Treg), memory T cells, helper T cells, and effector T cells. The function of T cells in inflammatory and autoimmune responses is determined by metabolic processes and activity of their enzymes. Several studies were conducted to determine metabolic abnormalities in SLE patients and clarify how these modifications could control the functions of the involved T cells. Metabolic pathways such as glycolysis, mitochondrial pathways, oxidative stress, mTOR pathway, fatty acid and amino acid metabolisms are dysregulated in SLE T cells. Moreover, immunosuppressive drugs used in treating autoimmune diseases, including SLE, could affect immunometabolism. Developing drugs to regulate autoreactive T cell metabolism could be a promising therapeutic approach for SLE treatment. Accordingly, increased knowledge about metabolic processes paves the way to understanding SLE pathogenesis better and introduces novel therapeutic options for SLE treatment. Although monotherapy with metabolic pathways modulators might not be sufficient to prevent autoimmune disease, they may be an ideal adjuvant to reduce administration doses of immunosuppressive drugs, thus reducing drug-associated adverse effects. This review summarized emerging data about T cells that are involved in SLE pathogenesis, focusing on immunometabolism dysregulation and how these modifications could affect the disease development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Private University, Amman, Jordan
| | | | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negar Noroozi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran.
| | - Jafar Karami
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
5
|
Shi H, Goo B, Kim D, Kress TC, Ogbi M, Mintz J, Wu H, Belin de Chantemèle EJ, Stepp D, Long X, Guha A, Lee R, Carbone L, Annex BH, Hui DY, Kim HW, Weintraub NL. Perivascular adipose tissue promotes vascular dysfunction in murine lupus. Front Immunol 2023; 14:1095034. [PMID: 37006244 PMCID: PMC10062185 DOI: 10.3389/fimmu.2023.1095034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Patients with systemic lupus erythematosus (SLE) are at elevated risk for Q10 cardiovascular disease (CVD) due to accelerated atherosclerosis. Compared to heathy control subjects, lupus patients have higher volumes and densities of thoracic aortic perivascular adipose tissue (PVAT), which independently associates with vascular calcification, a marker of subclinical atherosclerosis. However, the biological and functional role of PVAT in SLE has not been directly investigated. Methods Using mouse models of lupus, we studied the phenotype and function of PVAT, and the mechanisms linking PVAT and vascular dysfunction in lupus disease. Results and discussion Lupus mice were hypermetabolic and exhibited partial lipodystrophy, with sparing of thoracic aortic PVAT. Using wire myography, we found that mice with active lupus exhibited impaired endothelium-dependent relaxation of thoracic aorta, which was further exacerbated in the presence of thoracic aortic PVAT. Interestingly, PVAT from lupus mice exhibited phenotypic switching, as evidenced by "whitening" and hypertrophy of perivascular adipocytes along with immune cell infiltration, in association with adventitial hyperplasia. In addition, expression of UCP1, a brown/beige adipose marker, was dramatically decreased, while CD45-positive leukocyte infiltration was increased, in PVAT from lupus mice. Furthermore, PVAT from lupus mice exhibited a marked decrease in adipogenic gene expression, concomitant with increased pro-inflammatory adipocytokine and leukocyte marker expression. Taken together, these results suggest that dysfunctional, inflamed PVAT may contribute to vascular disease in lupus.
Collapse
Affiliation(s)
- Hong Shi
- Division of Rheumatology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Brandee Goo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mourad Ogbi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - James Mintz
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hanping Wu
- Department of Radiology and Imaging, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Eric J. Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Xiaochun Long
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Avirup Guha
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Richard Lee
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Laura Carbone
- Division of Rheumatology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Brian H. Annex
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David Y. Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ha Won Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
6
|
Hsu CY, Chiu WC, Huang YL, Su YJ. Identify differential inflammatory cellular and serology pathways between children and adult patients in the lupus registry. Medicine (Baltimore) 2022; 101:e29916. [PMID: 35960068 PMCID: PMC9371509 DOI: 10.1097/md.0000000000029916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Age variances in systemic lupus erythematosus (SLE) may reflect different patterns and consequences. Monocyte differentiation is critical, and cytokine and chemokine milieu may be associated with long term outcome and treatment responses. This study aims to evaluate the inflammatory cellular and serology pathways associated with age in our lupus registry. METHODS We included patients with SLE and divided them into 2 groups according to age, ≤18 or >18 years old. We performed flow cytometry analysis to define the peripheral blood monocyte differentiation pattern and phenotypes and used the multiplex method to detect cytokine and chemokine panels. The results were then compared between the 2 subgroups. RESULTS In total, 47 SLE patients were included in this study. Of those, 23 patients were 18 years old or younger, and 24 patients were over the age of 18 years old. An increased distribution of circulating Type 2b macrophage (M2b) subsets was found in patients over 18 years old (P < 0.01), and we found the Type 1 macrophage (M1) to demonstrate a marked increase in those patients ≤18 years old (P = .05). Eotaxin values were significantly higher in patients >18 years old (P = .03), and Macrophage Inflammatory Protein (MIP)-1alpha, MIP-1beta, Interleukine (IL)-1Ra, Interferon (IFN)-alpha2, IL-12, IL-13, IL-17A, IL-1beta, IL-2, IL-4, IL-5, IL-7, IL-9, Monocyte Chemoattractant Protein (MCP)-3, Transforming Growth Factor (TGF)-alpha, and Tumor necrosis factor (TNF)-beta were significantly higher in patients ≤18 years old (all P < .05). CONCLUSIONS We found significant M2b polarization in adult SLE patients, and several cytokines and chemokines were significantly higher in SLE patients ≤ 18 years old. Peripheral blood mononuclear cell differentiation and cytokine milieu could represent composite harm from both Type 2 helper T cells (Th2) and Type 17 helper T cells (Th17) pathways and may thus be a potential therapeutic target in younger SLE patients.
Collapse
Affiliation(s)
- Chung-Yuan Hsu
- Departments of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chan Chiu
- Departments of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Huang
- Departments of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Jih Su
- Departments of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Correspondence: Yu-Jih Su, Departments of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung City 833, Taiwan (e-mail: )
| |
Collapse
|
7
|
Hasni S, Temesgen-Oyelakin Y, Davis M, Chu J, Poncio E, Naqi M, Gupta S, Wang X, Oliveira C, Claybaugh D, Dey A, Lu S, Carlucci P, Purmalek M, Manna ZG, Shi Y, Ochoa-Navas I, Chen J, Mukherjee A, Han KL, Cheung F, Koroleva G, Belkaid Y, Tsang JS, Apps R, Thomas DE, Heller T, Gadina M, Playford MP, Li X, Mehta NN, Kaplan MJ. Peroxisome proliferator activated receptor-γ agonist pioglitazone improves vascular and metabolic dysfunction in systemic lupus erythematosus. Ann Rheum Dis 2022; 81:annrheumdis-2022-222658. [PMID: 35914929 PMCID: PMC9606512 DOI: 10.1136/ard-2022-222658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Premature cardiovascular events in systemic lupus erythematosus (SLE) contribute to morbidity and mortality, with no effective preventive strategies described to date. Immune dysregulation and metabolic disturbances appear to play prominent roles in the induction of vascular disease in SLE. The peroxisome proliferator activated receptor-gamma agonist pioglitazone (PGZ suppresses vascular damage and immune dysregulation in murine lupus and improves endothelial dysfunction in other inflammatory diseases. We hypothesised that PGZ could improve vascular dysfunction and cardiometabolic parameters in SLE. METHODS Eighty SLE subjects with mild to severe disease activity were randomised to a sequence of PGZ followed by placebo for 3 months, or vice versa, in a double-blind, cross-over design with a 2-month wash-out period. Primary endpoints were parameters of endothelial function and arterial inflammation, measured by multimodal assessments. Additional outcome measures of disease activity, neutrophil dysregulation, metabolic disturbances and gene expression studies were performed. RESULTS Seventy-two subjects completed the study. PGZ was associated with a significant reduction in Cardio-Ankle Vascular Index (a measure of arterial stiffness) compared with placebo. Various metabolic parameters improved with PGZ, including insulin resistance and lipoprotein profiles. Circulating neutrophil extracellular trap levels also significantly decreased with PGZ compared with placebo. Most adverse events experienced while on PGZ were mild and resolved with reduction in PGZ dose. CONCLUSION PGZ was well tolerated and induced significant improvement in vascular stiffness and cardiometabolic parameters in SLE. The results suggest that PGZ should be further explored as a modulator of cardiovascular disease risk in SLE. TRIAL REGISTRATION NUMBER NCT02338999.
Collapse
Affiliation(s)
- Sarfaraz Hasni
- Lupus Clinical Trials Unit, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yenealem Temesgen-Oyelakin
- Lupus Clinical Trials Unit, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Davis
- Lupus Clinical Trials Unit, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Chu
- Lupus Clinical Trials Unit, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine Poncio
- Lupus Clinical Trials Unit, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mohammad Naqi
- Lupus Clinical Trials Unit, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarthak Gupta
- Systemic Autoimmunity Branch/NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Xinghao Wang
- Systemic Autoimmunity Branch/NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Oliveira
- Systemic Autoimmunity Branch/NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Dillon Claybaugh
- Systemic Autoimmunity Branch/NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Amit Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Shajia Lu
- Translational Immunology Section, NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Philip Carlucci
- Systemic Autoimmunity Branch/NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Monica Purmalek
- Systemic Autoimmunity Branch/NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Zerai G Manna
- Lupus Clinical Trials Unit, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yinghui Shi
- Office of the Clinical Director, NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Isabel Ochoa-Navas
- Lupus Clinical Trials Unit, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinguo Chen
- National Institutes of Health, Bethesda, Maryland, USA
| | | | - Kyu Lee Han
- National Institutes of Health, Bethesda, Maryland, USA
| | - Foo Cheung
- National Institutes of Health, Bethesda, Maryland, USA
| | | | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland, USA
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard Apps
- National Institutes of Health, Bethesda, Maryland, USA
| | - Donald E Thomas
- Arthritis and Pain Associates of PG County, Greenbelt, Maryland, USA
| | - Theo Heller
- NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Massimo Gadina
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Xiaobai Li
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Nehal N Mehta
- National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch/NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Abstract
The daily removal of billions of apoptotic cells in the human body via the process of efferocytosis is essential for homeostasis. To allow for this continuous efferocytosis, rapid phenotypic changes occur in the phagocytes enabling them to engulf and digest the apoptotic cargo. In addition, efferocytosis is actively anti-inflammatory and promotes resolution. Owing to its ubiquitous nature and the sheer volume of cell turnover, efferocytosis is a point of vulnerability. Aberrations in efferocytosis are associated with numerous inflammatory pathologies, including atherosclerosis, cancer and infections. The recent exciting discoveries defining the molecular machinery involved in efferocytosis have opened many avenues for therapeutic intervention, with several agents now in clinical trials.
Collapse
Affiliation(s)
- Parul Mehrotra
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kodi S Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Zhao L, Hu X, Xiao F, Zhang X, Zhao L, Wang M. Mitochondrial impairment and repair in the pathogenesis of systemic lupus erythematosus. Front Immunol 2022; 13:929520. [PMID: 35958572 PMCID: PMC9358979 DOI: 10.3389/fimmu.2022.929520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid autoantibodies, increase type I interferon (IFN-α) levels, and immune cell hyperactivation are hallmarks of systemic lupus erythematosus (SLE). Notably, immune cell activation requires high level of cellular energy that is predominately generated by the mitochondria. Mitochondrial reactive oxygen species (mROS), the byproduct of mitochondrial energy generation, serves as an essential mediator to control the activation and differentiation of cells and regulate the antigenicity of oxidized nucleoids within the mitochondria. Recently, clinical trials on normalization of mitochondrial redox imbalance by mROS scavengers and those investigating the recovery of defective mitophagy have provided novel insights into SLE prophylaxis and therapy. However, the precise mechanism underlying the role of oxidative stress-related mitochondrial molecules in skewing the cell fate at the molecular level remains unclear. This review outlines distinctive mitochondrial functions and pathways that are involved in immune responses and systematically delineates how mitochondrial dysfunction contributes to SLE pathogenesis. In addition, we provide a comprehensive overview of damaged mitochondrial function and impaired metabolic pathways in adaptive and innate immune cells and lupus-induced organ tissues. Furthermore, we summarize the potential of current mitochondria-targeting drugs for SLE treatment. Developing novel therapeutic approaches to regulate mitochondrial oxidative stress is a promising endeavor in the search for effective treatments for systemic autoimmune diseases, particularly SLE.
Collapse
Affiliation(s)
- Like Zhao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianda Hu
- Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| |
Collapse
|
10
|
Liu Y, Yu X, Zhang W, Zhang X, Wang M, Ji F. Mechanistic insight into premature atherosclerosis and cardiovascular complications in systemic lupus erythematosus. J Autoimmun 2022; 132:102863. [PMID: 35853760 DOI: 10.1016/j.jaut.2022.102863] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with a significant risk of cardiovascular disease (CVD), which substantially increases disease mortality and morbidity. The overall mechanisms associated with the development of premature atherosclerosis and CVD in SLE remain unclear, but has been considered as a result of an intricate interplay between the profound immune dysregulation and traditional CVD risk factors. Aberrant systemic inflammation in SLE may lead to an abnormal lipid profile and dysfunction, which can further fuel the pro-atherosclerotic environment. The existence of a strong imbalance between endothelial damage and vascular repair/angiogenesis promotes vascular injury, which is the early step in the progression of atherosclerotic CVD. Profound innate and adaptive immune dysregulation, characterized by excessive type I interferon burden, aberrant macrophage, platelet and complements activation, neutrophil dysregulation and neutrophil extracellular traps formation, uncontrolled T cell activation, and excessive autoantibody production and immune complex formation, have been proposed to promote accelerated CVD in SLE. While designing targeted therapies to correct the dysregulated immune activation may be beneficial in the treatment of SLE-related CVD, much additional work is needed to determine how to translate these findings into clinical practice. Additionally, a number of biomarkers display diagnostic potentials in improving CVD risk stratification in SLE, further prospective studies will help understand which biomarker(s) will be the most impactful one(s) in assessing SLE-linked CVD. Continued efforts to identify novel mechanisms and to establish criteria for assessing CVD risk as well as predicting CVD progression are in great need to improve CVD outcomes in SLE.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Wenduo Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Fusui Ji
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
11
|
Oliveira CB, Kaplan MJ. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2022; 44:309-324. [PMID: 35355124 PMCID: PMC9064999 DOI: 10.1007/s00281-022-00922-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) often features extensive cardiovascular (CV) comorbidity and patients with SLE are at significantly increased risk of CV event occurrence and CV-related mortality. While the specific mechanisms leading to this increased cardiovascular disease (CVD) risk remain to be fully characterized, this heightened risk cannot be fully explained by traditional CV risk factors and is likely driven by immunologic and inflammatory features of SLE. Widespread innate and adaptive immune dysregulation characterize SLE, and factors including excessive type I interferon burden, inappropriate formation and ineffective clearance of neutrophil extracellular traps, and autoantibody formation have been linked to clinical and metabolic features impacting CV risk in SLE and may represent pathogenic drivers of SLE-related CVD. Indeed, functional and phenotypic aberrations in almost every immune cell type are present in SLE and may impact CVD progression. As understanding of the contribution of SLE-specific factors to CVD in SLE improves, improved screening and monitoring of CV risk alongside development of therapeutic treatments aimed at prevention of CVD in SLE patients are required and remain the focus of several ongoing studies and lines of inquiry.
Collapse
Affiliation(s)
- Christopher B Oliveira
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Oliveira CB, Kaplan MJ. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2022. [PMID: 35355124 DOI: 10.1007/s00281-02200922-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Systemic lupus erythematosus (SLE) often features extensive cardiovascular (CV) comorbidity and patients with SLE are at significantly increased risk of CV event occurrence and CV-related mortality. While the specific mechanisms leading to this increased cardiovascular disease (CVD) risk remain to be fully characterized, this heightened risk cannot be fully explained by traditional CV risk factors and is likely driven by immunologic and inflammatory features of SLE. Widespread innate and adaptive immune dysregulation characterize SLE, and factors including excessive type I interferon burden, inappropriate formation and ineffective clearance of neutrophil extracellular traps, and autoantibody formation have been linked to clinical and metabolic features impacting CV risk in SLE and may represent pathogenic drivers of SLE-related CVD. Indeed, functional and phenotypic aberrations in almost every immune cell type are present in SLE and may impact CVD progression. As understanding of the contribution of SLE-specific factors to CVD in SLE improves, improved screening and monitoring of CV risk alongside development of therapeutic treatments aimed at prevention of CVD in SLE patients are required and remain the focus of several ongoing studies and lines of inquiry.
Collapse
Affiliation(s)
- Christopher B Oliveira
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Ryan H, Morel L, Moore E. Vascular Inflammation in Mouse Models of Systemic Lupus Erythematosus. Front Cardiovasc Med 2022; 9:767450. [PMID: 35419427 PMCID: PMC8996195 DOI: 10.3389/fcvm.2022.767450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Vascular inflammation mediated by overly activated immune cells is a significant cause of morbidity and mortality in systemic lupus erythematosus (SLE). Several mouse models to study the pathogenesis of SLE are currently in use, many of which have different mechanisms of pathogenesis. The diversity of these models allows interrogation of different aspects of the disease pathogenesis. To better determine the mechanisms by which vascular inflammation occurs in SLE, and to assist future researchers in choosing the most appropriate mouse models to study cardiovascular complications in SLE, we suggest that direct comparisons of vascular inflammation should be conducted among different murine SLE models. We also propose the use of in vitro vascular assays to further investigate vascular inflammation processes prevalent among different murine SLE models.
Collapse
Affiliation(s)
- Holly Ryan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Erika Moore
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Lee Y, Kim BR, Kang GH, Lee GJ, Park YJ, Kim H, Jang HC, Choi SH. The Effects of PPAR Agonists on Atherosclerosis and Nonalcoholic Fatty Liver Disease in ApoE-/-FXR-/- Mice. Endocrinol Metab (Seoul) 2021; 36:1243-1253. [PMID: 34986301 PMCID: PMC8743579 DOI: 10.3803/enm.2021.1100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Farnesoid X receptor (FXR), a bile acid-activated nuclear receptor, is a potent regulator of glucose and lipid metabolism as well as of bile acid metabolism. Previous studies have demonstrated that FXR deficiency is associated with metabolic derangements, including atherosclerosis and nonalcoholic fatty liver disease (NAFLD), but its mechanism remains unclear. In this study, we investigated the role of FXR in atherosclerosis and NAFLD and the effect of peroxisome proliferator-activated receptor (PPAR) agonists in mouse models with FXR deficiency. METHODS En face lipid accumulation analysis, liver histology, serum levels of glucose and lipids, and mRNA expression of genes related to lipid metabolism were compared between apolipoprotein E (ApoE)-/- and ApoE-/-FXR-/- mice. The effects of PPARα and PPARγ agonists were also compared in both groups of mice. RESULTS Compared with ApoE-/- mice, ApoE-/-FXR-/- mice showed more severe atherosclerosis, hepatic steatosis, and higher levels of serum cholesterol, low-density lipoprotein cholesterol, and triglycerides, accompanied by increased mRNA expression of FAS, ApoC2, TNFα, IL-6 (liver), ATGL, TGH, HSL, and MGL (adipocytes), and decreased mRNA expressions of CPT2 (liver) and Tfam (skeletal muscle). Treatment with a PPARα agonist, but not with a PPARγ agonist, partly reversed atherosclerosis and hepatic steatosis, and decreased plasma triglyceride levels in the ApoE-/-FXR-/- mice, in association with increased mRNA expression of CD36 and FATP and decreased expression of ApoC2 and ApoC3 (liver). CONCLUSION Loss of FXR is associated with aggravation of atherosclerosis and hepatic steatosis in ApoE-deficient mice, which could be reversed by a PPARα agonist through induction of fatty acid uptake, β-oxidation, and triglyceride hydrolysis.
Collapse
Affiliation(s)
- Yenna Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Bo-Rahm Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Geun-Hyung Kang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Gwan Jae Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Corresponding author: Sung Hee Choi Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea Tel: +82-31-787-7029, Fax: +82-31-787-4052, E-mail:
| |
Collapse
|
15
|
Koopmans SJ, van Beusekom HMM, van der Staay FJ, Binnendijk G, Hulst M, Mroz Z, Ackermans MT, Benthem L. Beneficial effects of a plant-fish oil, slow carbohydrate diet on cardio-metabolic health exceed the correcting effects of metformin-pioglitazone in diabetic pigs fed a fast-food diet. PLoS One 2021; 16:e0257299. [PMID: 34669714 PMCID: PMC8528510 DOI: 10.1371/journal.pone.0257299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Lifestyle influences endocrine, metabolic and cardiovascular homeostasis. This study investigated the impact of diet and oral anti-diabetic medication on cardio-metabolic health in human-sized diabetic pigs. Methods After a growing pre-phase from ~30 to ~69 kg during which domestic pigs were fed either a low fat, low sucrose diet (group A) or a fast food-type diet elevated in lard (15%) and sucrose (40%) (group B), the pigs were subdivided in 5 groups (n = 7–8 pigs per group). Group 1, normal pigs from group A on a low fat, low sugar (L) pig diet and group 2, normal pigs from group B on a high lard (25%), sucrose-fructose (40%), cholesterol (1%) fast food-type (F) diet. Diabetes (D) was induced in group B pigs by streptozotocin and group 3 received the F diet (DF), group 4 received the F diet with Anti-diabetic medication metformin (2 g.day-1)-pioglitazone (40 mg.day-1) (DFA) and group 5 switched to a Plant-Fish oil (25%), Slowly digestible starch (40%) diet (DPFS). The F and PFS diets were identical for fat, carbohydrate and protein content but only differed in fat and carbohydrate composition. The 5 pig groups were followed up for 7 weeks until reaching ~120 kg. Results In normal pigs, the F diet predisposed to several abnormalities related to metabolic syndrome. Diabetes amplified the inflammatory and cardiometabolic abnormalities of the F diet, but both oral FA medication and the PFS diet partially corrected these abnormalities (mean±SEM) as follows: Fasting plasma TNF-ɑ (pg.ml-1) and NEFA (mmol.l-1) concentrations were high (p<0.02) in DF (193±55 and 0.79±0.16), intermediate in DFA (136±40 and 0.57±012) and low in DPFS pigs (107±31 and 0.48±0.19). Meal intolerance (response over fasting) for glucose and triglycerides (area under the curve, mmol.h-1) and for lactate (3-h postprandial, mmol.l-1) was high (p<0.03) in DF (489±131, 8.6±4.8 and 2.2±0.6), intermediate in DFA (276±145, 1.4±1.1 and 1.6±0.4) and low in DPFS (184±62, 0.7±1.8 and 0.1±0.1). Insulin-mediated glucose disposal (mg.kg-1.min-1) showed a numerical trend (p = NS): low in DF (6.9±2.2), intermediate in DFA (8.2±1.3) and high in DPFS pigs (10.4±2.7). Liver weight (g.kg-1 body weight) and liver triglyceride concentration (g.kg-1 liver) were high (p<0.001) in DF (23.8±2.0 and 69±14), intermediate in DFA (21.1±2.0 and 49±15) and low in DPFS pigs (16.4±0.7 and 13±2.0). Aorta fatty streaks were high (p<0.01) in DF (16.4±5.7%), intermediate in DFA (7.4±4.5%) and low in DPFS pigs (0.05±0.02%). Conclusion This translational study using pigs with induced type 2 diabetes provides evidence that a change in nutritional life style from fast food to a plant-fish oil, slowly digestible starch diet can be more effective than sole anti-diabetic medication.
Collapse
Affiliation(s)
- Sietse J Koopmans
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | | | - F Josef van der Staay
- Department of Farm Animal Health, Veterinary Faculty, Utrecht University, Utrecht, The Netherlands
| | - Gisabeth Binnendijk
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcel Hulst
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Zlaw Mroz
- Department of Animal Science and Bioeconomy, University of Life Sciences, Lublin, Poland
| | - Mariette T Ackermans
- Endocrine Laboratory, Clinical Chemistry, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Olson WJ, Jakic B, Hermann‐Kleiter N. Regulation of the germinal center response by nuclear receptors and implications for autoimmune diseases. FEBS J 2020; 287:2866-2890. [PMID: 32246891 PMCID: PMC7497069 DOI: 10.1111/febs.15312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
The immune system plays an essential role in protecting the host from infectious diseases and cancer. Notably, B and T lymphocytes from the adaptive arm of the immune system can co-operate to form long-lived antibody responses and are therefore the main target in vaccination approaches. Nevertheless, protective immune responses must be tightly regulated to avoid hyper-responsiveness and responses against self that can result in autoimmunity. Nuclear receptors (NRs) are perfectly adapted to rapidly alter transcriptional cellular responses to altered environmental settings. Their functional role is associated with both immune deficiencies and autoimmunity. Despite extensive linking of nuclear receptor function with specific CD4 T helper subsets, research on the functional roles and mechanisms of specific NRs in CD4 follicular T helper cells (Tfh) and germinal center (GC) B cells during the germinal center reaction is just emerging. We review recent advances in our understanding of NR regulation in specific cell types of the GC response and discuss their implications for autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| | - Bojana Jakic
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Natascha Hermann‐Kleiter
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| |
Collapse
|
17
|
T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol 2020; 16:100-112. [PMID: 31949287 DOI: 10.1038/s41584-019-0356-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
T cell subsets are critically involved in the development of systemic autoimmunity and organ inflammation in systemic lupus erythematosus (SLE). Each T cell subset function (such as effector, helper, memory or regulatory function) is dictated by distinct metabolic pathways requiring the availability of specific nutrients and intracellular enzymes. The activity of these enzymes or nutrient transporters influences the differentiation and function of T cells in autoimmune responses. Data are increasingly emerging on how metabolic processes control the function of various T cell subsets and how these metabolic processes are altered in SLE. Specifically, aberrant glycolysis, glutaminolysis, fatty acid and glycosphingolipid metabolism, mitochondrial hyperpolarization, oxidative stress and mTOR signalling underwrite the known function of T cell subsets in patients with SLE. A number of medications that are used in the care of patients with SLE affect cell metabolism, and the development of novel therapeutic approaches to control the activity of metabolic enzymes in T cell subsets represents a promising endeavour in the search for effective treatment of systemic autoimmune diseases.
Collapse
|
18
|
Bećarević MB, Nikolić BS, Ignjatović SD. Adiponectin: a therapeutic target in the antiphospholipid syndrome? Rheumatol Int 2019; 39:1519-1525. [DOI: 10.1007/s00296-019-04349-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/13/2019] [Indexed: 11/28/2022]
|
19
|
Abstract
PURPOSE OF REVIEW Upon antigen exposure, immune cells rely on cell-specific metabolic pathways to mount an efficient immune response. In autoimmunity, failure in critical metabolic checkpoints may lead to immune cell hyperactivation and tissue damage. Oxidative stress in autoimmune patients can also contribute to immune dysregulation and injury to the host. Recent insights into the immune cell metabolism signatures, specifically associated with systemic lupus erythematosus (SLE) and the consequences of heightened oxidative stress in patients, are discussed herein. RECENT FINDINGS Glucose metabolism inhibitors, mechanistic target of rapamycin pathway modulators, and peroxisome proliferator-activated receptor gamma-activating compounds demonstrate therapeutic benefit in experimental models of lupus. Mitochondrial-derived reactive oxygen species (ROS) and molecular modifications induced by oxidative stress appear to be detrimental in lupus. Effective therapies tailored toward the reconfiguration of metabolic imbalances in lupus immune cells and the reduction of mitochondrial ROS production/availability are currently being tested. SUMMARY A paucity of knowledge exists regarding the metabolic needs of a number of immune cells involved in the pathogenesis of SLE, including myeloid cells and B cells. Nonetheless, SLE-specific metabolic signatures have been identified and their specific targeting, along with mitochondrial ROS inhibitors/scavengers, could show therapeutic advantage in lupus patients.
Collapse
Affiliation(s)
- Yaima L Lightfoot
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
20
|
|
21
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by pathogenic autoantibodies directed against nucleoprotein complexes. Beyond the activation of autoreactive B cells, this process involves dysregulation in many other types of immune cells, including CD4+ T cells, dendritic cells, macrophages and neutrophils. Metabolic substrate utilization and integration of cues from energy sensors are critical checkpoints of effector functions in the immune system, with common as well as cell-specific programmes. Patients with SLE and lupus-prone mice present with activated metabolism of CD4+ T cells, and the use of metabolic inhibitors to normalize these features is associated with therapeutic effects. Far less is known about the metabolic requirements of B cells and myeloid cells in SLE. This article reviews current knowledge of the alterations in metabolism of immune cells in patients with SLE and mouse models of lupus in the context of what is known about the metabolic regulation of these cells during normal immune responses. How these alterations might contribute to lupus pathogenesis and how they can be targeted therapeutically are also discussed.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
22
|
Toffoli B, Gilardi F, Winkler C, Soderberg M, Kowalczuk L, Arsenijevic Y, Bamberg K, Bonny O, Desvergne B. Nephropathy in Pparg-null mice highlights PPARγ systemic activities in metabolism and in the immune system. PLoS One 2017; 12:e0171474. [PMID: 28182703 PMCID: PMC5300244 DOI: 10.1371/journal.pone.0171474] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/20/2017] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor involved in many aspects of metabolism, immune response, and development. Total-body deletion of the two Pparg alleles provoked generalized lipoatrophy along with severe type 2 diabetes. Herein, we explore the appearance and development of structural and functional alterations of the kidney, comparing Pparg null-mice to their littermate controls (carrying Pparg floxed alleles). We show that renal hypertrophy and functional alterations with increased glucosuria and albuminuria are already present in 3 weeks-old Pparg null-mice. Renal insufficiency with decreased creatinine clearance progress at 7 weeks of age, with the advance of the type 2 diabetes. At 52 weeks of age, these alterations are accompanied by signs of fibrosis and mesangial expansion. More intriguingly, aged Pparg null-mice concomitantly present an anti-phospholipid syndrome (APS), characterized by the late appearance of microthrombi and a mesangioproliferative pattern of glomerular injury, associated with significant plasmatic levels of anti-β2- glycoprotein1 antibodies and renal deposition of IgG, IgM, and C3. Thus, in line with the role of PPARγ in metabolic homeostasis, Pparg null-mice first represent a potent model for studying the initiation and the development of diabetic nephropathy. Second, and in relation with the important PPARγ activity in inflammation and in immune system, these mice also highlight a new role for PPARγ signaling in the promotion of APS, a syndrome whose pathogenesis is poorly known and whose current treatment is limited to prevention of thrombosis events.
Collapse
Affiliation(s)
- Barbara Toffoli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carine Winkler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Laura Kowalczuk
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Department of Ophthalmology, Fondation Asile des Aveugles, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Department of Ophthalmology, Fondation Asile des Aveugles, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Olivier Bonny
- Service of Nephrology, Lausanne University Hospital and Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Béatrice Desvergne
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Huang W, Wu J, Yang H, Xiong Y, Jiang R, Cui T, Ye D. Milk fat globule-EGF factor 8 suppresses the aberrant immune response of systemic lupus erythematosus-derived neutrophils and associated tissue damage. Cell Death Differ 2016; 24:263-275. [PMID: 27768123 PMCID: PMC5299708 DOI: 10.1038/cdd.2016.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/27/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Abnormal features of the systemic lupus erythematosus (SLE)-derived neutrophils, promoted aberrant immune response, have inspired new studies of the induction of autoimmunity and the development of organ damage in SLE. In this study, we explore the effect of milk fat globule-EGF factor 8 (MFG-E8) on the aberrant nitrification features in pristane-induced lupus. SLE patients and mice with pristane-induced lupus develop autoantibodies associated with MFG-E8 overproduction. However, the deletion of MFG-E8 leads to uncontrolled early pulmonary and peritoneal inflammation and tissue damage in mice with pristane-induced lupus. Consistent with these findings, MFG-E8-deficient mice that are exposed to pristane show enhanced neutrophil accumulation and increased neutrophil death, including apoptosis, necrosis and NETosis, as well as impaired phagocytosis of macrophages. The consequences are the expansion of diffuse pulmonary hemorrhage, increased anti-nuclear antibody, anti-dsDNA antibody and anti-neutrophil cytoplasmic antibody levels, and enhanced immune complexes deposition and neutrophil extracellular traps (NETs) formation in the lung and kidney tissues of MFG-E8-deficient mice exposed to pristane. In patients with SLE and mice with pristane-induced lupus, neutrophil accumulation is elevated, which depends on higher expression of the surface receptor CXCR2. After pretreatment with recombinant MFG-E8, the surface expression of CXCR2 on neutrophil is downregulated, and the MFG-E8 deletion increase CXCR2 expression by ~40%. These studies indicate that MFG-E8 reduces neutrophil migration and NETosis via downregulating surface CXCR2 expression in parallel with its role in the phagocytosis of apoptotic neutrophils, suggesting that MFG-E8 may serve as a therapeutic agent for attenuating the early inflammatory responses of SLE and protect patients from lupus-related damage.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiyuan Wu
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqin Yang
- Department of Rheumatology and Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Xiong
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Jiang
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianpen Cui
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duyun Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE) and cannot be fully explained by traditional cardiovascular risk factors. Recent immunologic discoveries have outlined putative pathways in SLE that may also accelerate the development of atherosclerosis. RECENT FINDINGS Aberrant innate and adaptive immune responses implicated in lupus pathogenesis may also contribute to the development of accelerated atherosclerosis in these patients. Defective apoptosis, abnormal lipoprotein function, autoantibodies, aberrant neutrophil responses, and a dysregulated type I interferon pathway likely contribute to endothelial dysfunction. SLE macrophages have an inflammatory phenotype that may drive progression of plaque. SUMMARY Recent discoveries have placed increased emphasis on the immunology of atherosclerotic cardiovascular disease. Understanding the factors that drive the increased risk for cardiovascular disease in SLE patients may provide selective therapeutic targets for reducing inflammation and improving outcomes in atherosclerosis.
Collapse
Affiliation(s)
- Laura B. Lewandowski
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
25
|
Why are kids with lupus at an increased risk of cardiovascular disease? Pediatr Nephrol 2016; 31:861-83. [PMID: 26399239 DOI: 10.1007/s00467-015-3202-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023]
Abstract
Juvenile-onset systemic lupus erythematosus (SLE) is an aggressive multisystem autoimmune disease. Despite improvements in outcomes for adult patients, children with SLE continue to have a lower life expectancy than adults with SLE, with more aggressive disease, a higher incidence of lupus nephritis and there is an emerging awareness of their increased risk of cardiovascular disease (CVD). In this review, we discuss the evidence for an increased risk of CVD in SLE, its pathogenesis, and the clinical approach to its management.
Collapse
|
26
|
Clark KL, Reed TJ, Wolf SJ, Lowe L, Hodgin JB, Kahlenberg JM. Epidermal injury promotes nephritis flare in lupus-prone mice. J Autoimmun 2015; 65:38-48. [PMID: 26305061 DOI: 10.1016/j.jaut.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus is clinically characterized by episodes of flare and remission. In patients, cutaneous exposure to ultraviolet light has been proposed as a flare trigger. However, induction of flare secondary to cutaneous exposure has been difficult to emulate in many murine lupus models. Here, we describe a system in which epidermal injury is able to trigger the development of a lupus nephritis flare in New Zealand Mixed (NZM) 2328 mice. 20-week old NZM2328 female mice underwent removal of the stratum corneum via duct tape, which resulted in rapid onset of proteinuria and death when compared to sham-stripped littermate control NZM2328 mice. This was coupled with a drop in serum C3 concentrations and dsDNA antibody levels and enhanced immune complex deposition in the glomeruli. Recruitment of CD11b(+)CD11c(+)F4/80(high) macrophages and CD11b(+)CD11c(+)F4/80(low) dendritic cells was noted prior to the onset of proteinuria in injured mice. Transcriptional changes within the kidney suggest a burst of type I IFN-mediated and inflammatory signaling which is followed by upregulation of CXCL13 following epidermal injury. Thus, we propose that tape stripping of lupus-prone NZM2328 mice is a novel model of lupus flare induction that will allow for the study of the role of cutaneous inflammation in lupus development and how crosstalk between dermal and systemic immune systems can lead to lupus flare.
Collapse
Affiliation(s)
- Kaitlyn L Clark
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tamra J Reed
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sonya J Wolf
- University of Michigan Program in Biomedical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Lori Lowe
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Zizzo G, Cohen PL. The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-γ in human macrophage polarization. JOURNAL OF INFLAMMATION-LONDON 2015; 12:36. [PMID: 25972766 PMCID: PMC4429687 DOI: 10.1186/s12950-015-0081-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/24/2015] [Indexed: 11/10/2022]
Abstract
Background The nuclear receptors PPAR-γ and LXRs regulate macrophage lipid metabolism and macrophage mediated inflammation. We examined the influence of these molecules on macrophage alternative activation, with particular focus on differentiation of “M2c” anti-inflammatory cells. Methods We cultured human monocytes in M0, M1, M2a or M2c macrophage differentiating conditions, in the presence or absence of PPAR-γ and LXR ligands. Flow cytometry was used to analyze membrane expression of phenotypic markers. Basal and LPS-stimulated production of soluble mediators was measured by ELISA. Efferocytosis assays were performed by coincubating monocytes/macrophages with apoptotic neutrophils. Results We found that PPAR-γ inhibition, using the PPAR-γ antagonist GW9662, elicits differentiation of M2c-like (CD206+ CD163+ CD16+) cells and upregulation of the MerTK/Gas6 axis. Exposure of differentiating macrophages to IFN-γ, GM-CSF or LPS (M1 conditions), however, hampers GW9662 induction of MerTK and Gas6. When macrophages are differentiated with IL-4 (M2a conditions), addition of GW9662 results into an M2a (CD206+ CD209+ CD163− MerTK−) to M2c (CD206high CD209− CD163+ MerTK+) polarization shift. Conversely, in the presence of dexamethasone (M2c conditions), the PPAR-γ agonist rosiglitazone attenuates CD163 and MerTK upregulation. The LXR agonist T0901317 induces MerTK independently of M2c polarization; indeed, CD206, CD163 and CD16 are downregulated. GW9662-differentiated M2c-like cells secrete high levels of Gas6 and low amounts of TNF-α and IL-10, mimicking dexamethasone effects in vitro. However, unlike conventional M2c cells, GW9662-differentiated cells do not show enhanced efferocytic ability. Conclusions Our results provide new insights into the role of PPAR-γ and LXR receptors in human macrophage activation and reveal the existence of different patterns regulating MerTK expression. Unexpectedly, PPAR-γ appears to negatively control the expansion of a discrete subset of M2c-like anti-inflammatory macrophages.
Collapse
Affiliation(s)
- Gaetano Zizzo
- Temple Autoimmunity Center, Temple University, 3500 N. Broad Street, 19140 Philadelphia, PA USA ; Department of Medicine, Section of Rheumatology, Temple University, 3322 N. Broad Street, 19140 Philadelphia, PA USA
| | - Philip L Cohen
- Temple Autoimmunity Center, Temple University, 3500 N. Broad Street, 19140 Philadelphia, PA USA ; Department of Medicine, Section of Rheumatology, Temple University, 3322 N. Broad Street, 19140 Philadelphia, PA USA
| |
Collapse
|
28
|
Fernandez-Boyanapalli RF, Frasch SC, Thomas SM, Malcolm KC, Nicks M, Harbeck RJ, Jakubzick CV, Nemenoff R, Henson PM, Holland SM, Bratton DL. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease. J Allergy Clin Immunol 2014; 135:517-527.e12. [PMID: 25498313 DOI: 10.1016/j.jaci.2014.10.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/30/2014] [Accepted: 10/28/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Deficient production of reactive oxygen species (ROS) by the phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase in patients with chronic granulomatous disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. Peroxisome proliferator-activated receptor (PPAR) γ agonists, including pioglitazone, approved for type 2 diabetes therapy alter cellular metabolism and can heighten ROS production. It was hypothesized that pioglitazone treatment of gp91(phox-/-) mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of Staphylococcus aureus, a significant pathogen in patients with this disorder. OBJECTIVES We sought to determine whether pioglitazone treatment of gp91(phox-/-) mice enhanced phagocyte oxidant production and host defense. METHODS Wild-type and gp91(phox-/-) mice were treated with the PPARγ agonist pioglitazone, and phagocyte ROS and killing of S aureus were investigated. RESULTS As demonstrated by 3 different ROS-sensing probes, short-term treatment of gp91(phox-/-) mice with pioglitazone enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS. Findings were replicated in human monocytes from patients with CGD after ex vivo pioglitazone treatment. Importantly, although mitochondrial (mt)ROS were deficient in gp91(phox-/-) phagocytes, their restoration with treatment significantly enabled killing of S aureus both ex vivo and in vivo. CONCLUSIONS Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD.
Collapse
Affiliation(s)
| | | | - Stacey M Thomas
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Michael Nicks
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Ronald J Harbeck
- Department of Pediatrics, National Jewish Health, Denver, Colo; Department of Medicine, National Jewish Health, Denver, Colo; Department of Immunology, National Jewish Health, Denver, Colo
| | | | - Raphael Nemenoff
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Denver, Denver, Colo
| | - Peter M Henson
- Department of Pediatrics, National Jewish Health, Denver, Colo; Department of Medicine, National Jewish Health, Denver, Colo; Department of Immunology, National Jewish Health, Denver, Colo
| | - Steven M Holland
- Laboratories of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colo.
| |
Collapse
|
29
|
Aprahamian TR, Bonegio RG, Weitzner Z, Gharakhanian R, Rifkin IR. Peroxisome proliferator-activated receptor gamma agonists in the prevention and treatment of murine systemic lupus erythematosus. Immunology 2014; 142:363-73. [PMID: 24456224 DOI: 10.1111/imm.12256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/30/2013] [Accepted: 01/16/2014] [Indexed: 02/04/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are known to have many immunomodulatory effects. We have previously shown that the PPARγ agonist rosiglitazone is beneficial when used early in prevention of disease in murine models of systemic lupus erythematosus (SLE) and SLE-related atherosclerosis. In this report, we demonstrate that another PPARγ agonist, pioglitazone is also beneficial as a treatment for early murine lupus, indicating that this is a class effect and not agent-specific. We further attempt to define the ability of PPARγ agonists to ameliorate established or severe autoimmune disease using two mouse models: the MRL.lpr SLE model and the gld.apoE(-/-) model of accelerated atherosclerosis and SLE. We demonstrate that, in contrast to the marked amelioration of disease seen when PPARγ agonist treatment was started before disease onset, treatment with rosiglitazone after disease onset in MRL.lpr or gld.apoE(-/-) mice had minimal beneficial effect on the development of the autoimmune phenotype; however, rosiglitazone treatment remained highly effective at reducing lupus-associated atherosclerosis in gld.apoE(-/-) mice after disease onset or when mice were maintained on a high cholesterol Western diet. These results suggest that beneficial effects of PPARγ agonists on the development of autoimmunity might be limited to the early stages of disease, but that atherosclerosis, a major cause of death in SLE patients, may be ameliorated even in established or severe disease.
Collapse
Affiliation(s)
- Tamar R Aprahamian
- Department of Medicine - Renal Section, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
30
|
Kahlenberg JM, Yalavarthi S, Zhao W, Hodgin JB, Reed TJ, Tsuji NM, Kaplan MJ. An essential role of caspase 1 in the induction of murine lupus and its associated vascular damage. Arthritis Rheumatol 2014; 66:152-62. [PMID: 24449582 DOI: 10.1002/art.38225] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/03/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a systemic autoimmune syndrome associated with organ damage and an elevated risk of cardiovascular disease resulting from activation of both innate and adaptive immune pathways. Recently, increased activation of the inflammasome machinery in SLE has been described. Using the mouse model of pristane-induced lupus, we undertook this study to explore whether caspase 1, the central enzyme of the inflammasome, plays a role in the development of SLE and its associated vascular dysfunction. METHODS Eight-week-old wild-type (WT) or caspase 1(-/-) mice were injected intraperitoneally with phosphate buffered saline or pristane. Six months after injection, mice were euthanized, and the development of a lupus phenotype and vascular dysfunction was assessed. RESULTS While WT mice exposed to pristane developed autoantibodies and a strong type I interferon response, mice lacking caspase 1 were significantly protected against these features as well as against pristane-induced vascular dysfunction. Further, the development of immune complex glomerulonephritis, which was prominent after pristane exposure in WT mice, was significantly abrogated in caspase 1(-/-) mice. CONCLUSION These results indicate that caspase 1 is an essential component in the development of lupus and its associated vascular dysfunction and that it may play an important role in the cross-talk between environmental exposures and autoimmunity development, thus identifying a novel pathway for therapeutic targeting.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW With improved management of the classical disease manifestations of systemic lupus erythematosus (SLE), cardiovascular disease (CVD) has emerged as one of the most important causes of morbidity and mortality. This review in particular focuses on progress over the past year in clinical and basic aspects of SLE-driven accelerated atherosclerosis. RECENT FINDINGS Both subclinical CVD and CV events continue to be recognized at increased frequency in previously unstudied lupus cohorts and populations. Novel associations have been identified between lupus CVD and cognitive impairment, depression, and low-income status. In terms of pathogenesis, there is an ever-increasing focus on the innate immune system and, in particular, type I interferons (IFNs). Recent studies have drawn connections in both human and murine models between neutrophils, plasmacytoid dendritic cells, type I IFNs, and endothelial dysfunction. Whether treatments such as mycophenolate mofetil or statins have a role in prevention of lupus CVD is an area of intensive study. SUMMARY CVD is a major complication of lupus and is now a leading cause of death among people living with this disease. As such, additional studies are needed in order to identify the most effective preventive strategies and most predictive vascular risk biomarkers. Type I IFNs may play a critical role in lupus CVD pathogenesis, and it is recommended that vascular outcomes be included in ongoing trials testing the efficacy of anti-IFN biologics.
Collapse
|
32
|
Schmuth M, Moosbrugger-Martinz V, Blunder S, Dubrac S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:463-73. [PMID: 24315978 DOI: 10.1016/j.bbalip.2013.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/19/2022]
Abstract
Epidermal lipid synthesis and metabolism are regulated by nuclear hormone receptors (NHR) and in turn epidermal lipid metabolites can serve as ligands to NHR. NHR form a large superfamily of receptors modulating gene transcription through DNA binding. A subgroup of these receptors is ligand-activated and heterodimerizes with the retinoid X receptor including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR) and pregnane X receptor (PXR). Several isotypes of these receptors exist, all of which are expressed in skin. In keratinocytes, ligand activation of PPARs and LXRs stimulates differentiation, induces lipid accumulation, and accelerates epidermal barrier regeneration. In the cutaneous immune system, ligand activation of all three receptors, PPAR, LXR, and PXR, has inhibitory properties, partially mediated by downregulation of the NF-kappaB pathway. PXR also has antifibrotic effects in the skin correlating with TGF-beta inhibition. In summary, ligands of PPAR, LXR and PXR exert beneficial therapeutic effects in skin disease and represent promising targets for future therapeutic approaches in dermatology. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | - Stefan Blunder
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
33
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
34
|
Zhao W, Berthier CC, Lewis EE, McCune WJ, Kretzler M, Kaplan MJ. The peroxisome-proliferator activated receptor-γ agonist pioglitazone modulates aberrant T cell responses in systemic lupus erythematosus. Clin Immunol 2013; 149:119-32. [PMID: 23962407 PMCID: PMC4184099 DOI: 10.1016/j.clim.2013.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 12/17/2022]
Abstract
PPAR-γ agonists can suppress autoimmune responses and renal inflammation in murine lupus but the mechanisms implicated in this process remain unclear. We tested the effect of the PPAR-γ agonist pioglitazone in human lupus and control PBMCs with regard to gene regulation and various functional assays. By Affymetrix microarray analysis, several T cell-related pathways were significantly highlighted in pathway analysis in lupus PBMCs. Transcriptional network analysis showed IFN-γ as an important regulatory node, with pioglitazone treatment inducing transcriptional repression of various genes implicated in T cell responses. Confirmation of these suppressive effects was observed specifically in purified CD4+ T cells. Pioglitazone downregulated lupus CD4+ T cell effector proliferation and activation, while it significantly increased proliferation and function of lupus T regulatory cells. We conclude that PPAR-γ agonists selectively modulate CD4+ T cell function in SLE supporting the concept that pioglitazone and related,-agents should be explored as potential therapies in this disease.
Collapse
Affiliation(s)
- Wenpu Zhao
- Division of Rheumatology, Department of Internal Medicine
| | | | - Emily E. Lewis
- Division of Rheumatology, Department of Internal Medicine
| | | | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine
- Department of Computational Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | | |
Collapse
|
35
|
Bartoloni E, Alunno A, Bistoni O, Gerli R. Cardiovascular risk in rheumatoid arthritis and systemic autoimmune rheumatic disorders: a suggested model of preventive strategy. Clin Rev Allergy Immunol 2013; 44:14-22. [PMID: 21240669 DOI: 10.1007/s12016-010-8251-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pathogenesis of accelerated cardiovascular damage commonly characterizing patients affected by systemic chronic inflammatory and autoimmune rheumatic disorders is quite complex and still not fully clarified. However, it is well accepted that a strong relationship between multiple factors, including both traditional cardiovascular risk factors and disease-related inflammatory and autoimmune mechanisms, may in part explain the precocious atherosclerotic vessel damage and the increased incidence of cardiovascular events. Nevertheless, although several recent studies focused their attention on the investigation of these complex mechanisms, data regarding possible preventive strategies aimed to reduce long-term cardiovascular risk in these subjects are still lacking and not conclusive. In this setting, the early introduction of evidence-based preventive measures for the correct management of patients with systemic autoimmune disorders would be of extreme importance to reduce subclinical atherosclerosis incidence and possible major cardiovascular events.
Collapse
Affiliation(s)
- Elena Bartoloni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Perugia, Via Enrico Dal Pozzo, 06122 Perugia, Italy
| | | | | | | |
Collapse
|
36
|
Knight JS, Zhao W, Luo W, Subramanian V, O'Dell AA, Yalavarthi S, Hodgin JB, Eitzman DT, Thompson PR, Kaplan MJ. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest 2013; 123:2981-93. [PMID: 23722903 DOI: 10.1172/jci67390] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/05/2013] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that enhanced neutrophil extracellular trap (NET) formation activates plasmacytoid dendritic cells and serves as a source of autoantigens in SLE. We propose that aberrant NET formation is also linked to organ damage and to the premature vascular disease characteristic of human SLE. Here, we demonstrate enhanced NET formation in the New Zealand mixed 2328 (NZM) model of murine lupus. NZM mice also developed autoantibodies to NETs as well as the ortholog of human cathelicidin/LL37 (CRAMP), a molecule externalized in the NETs. NZM mice were treated with Cl-amidine, an inhibitor of peptidylarginine deiminases (PAD), to block NET formation and were evaluated for lupus-like disease activity, endothelial function, and prothrombotic phenotype. Cl-amidine treatment inhibited NZM NET formation in vivo and significantly altered circulating autoantibody profiles and complement levels while reducing glomerular IgG deposition. Further, Cl-amidine increased the differentiation capacity of bone marrow endothelial progenitor cells, improved endothelium-dependent vasorelaxation, and markedly delayed time to arterial thrombosis induced by photochemical injury. Overall, these findings suggest that PAD inhibition can modulate phenotypes crucial for lupus pathogenesis and disease activity and may represent an important strategy for mitigating cardiovascular risk in lupus patients.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-5680, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thacker SG, Zhao W, Smith CK, Luo W, Wang H, Vivekanandan-Giri A, Rabquer BJ, Koch AE, Pennathur S, Davidson A, Eitzman DT, Kaplan MJ. Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis. ACTA ACUST UNITED AC 2012; 64:2975-85. [PMID: 22549550 DOI: 10.1002/art.34504] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) have a notable increase in atherothrombotic cardiovascular disease (CVD) which is not explained by the Framingham risk equation. In vitro studies indicate that type I interferons (IFNs) may play prominent roles in increased CV risk in SLE. However, the in vivo relevance of these findings, with regard to the development of CVD, has not been characterized. This study was undertaken to examine the role of type I IFNs in endothelial dysfunction, aberrant vascular repair, and atherothrombosis in murine models of lupus and atherosclerosis. METHODS Lupus-prone New Zealand mixed 2328 (NZM) mice and atherosclerosis-prone apolipoprotein E- knockout (apoE(-/-) ) mice were compared to mice lacking type I IFN receptor (INZM and apoE(-/-) IFNAR(-/-) mice, respectively) with regard to endothelial vasodilatory function, endothelial progenitor cell (EPC) function, in vivo neoangiogenesis, plaque development, and occlusive thrombosis. Similar experiments were performed using NZM and apoE(-/-) mice exposed to an IFNα-containing or empty adenovirus. RESULTS Loss of type I IFN receptor signaling improved endothelium-dependent vasorelaxation, lipoprotein parameters, EPC numbers and function, and neoangiogenesis in lupus-prone mice, independent of disease activity or sex. Further, acute exposure to IFNα impaired endothelial vasorelaxation and EPC function in lupus-prone and non-lupus-prone mice. Decreased atherosclerosis severity and arterial inflammatory infiltrates and increased neoangiogenesis were observed in apoE(-/-) IFNAR(-/-) mice, compared to apoE(-/-) mice, while NZM and apoE(-/-) mice exposed to IFNα developed accelerated thrombosis and platelet activation. CONCLUSION These results support the hypothesis that type I IFNs play key roles in the development of premature CVD in SLE and, potentially, in the general population, through pleiotropic deleterious effects on the vasculature.
Collapse
Affiliation(s)
- Seth G Thacker
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Reddy AT, Lakshmi SP, Kleinhenz JM, Sutliff RL, Hart CM, Reddy RC. Endothelial cell peroxisome proliferator-activated receptor γ reduces endotoxemic pulmonary inflammation and injury. THE JOURNAL OF IMMUNOLOGY 2012; 189:5411-20. [PMID: 23105142 DOI: 10.4049/jimmunol.1201487] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bacterial endotoxin (LPS)-mediated sepsis involves severe, dysregulated inflammation that injures the lungs and other organs, often fatally. Vascular endothelial cells are both key mediators and targets of LPS-induced inflammatory responses. The nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) exerts anti-inflammatory actions in various cells, but it is unknown whether it modulates inflammation through actions within endothelial cells. To determine whether PPARγ acts within endothelial cells to diminish endotoxemic lung inflammation and injury, we measured inflammatory responses and mediators in mice with endothelial-targeted deletion of PPARγ. Endothelial cell PPARγ (ePPARγ) knockout exacerbated LPS-induced pulmonary inflammation and injury as shown by several measures, including infiltration of inflammatory cells, edema, and production of reactive oxygen species and proinflammatory cytokines, along with upregulation of the LPS receptor TLR4 in lung tissue and increased activation of its downstream signaling pathways. In isolated LPS-stimulated endothelial cells in vitro, absence of PPARγ enhanced the production of numerous inflammatory markers. We hypothesized that the observed in vivo activity of the ligand-activated ePPARγ may arise, in part, from nitrated fatty acids (NFAs), a novel class of endogenous PPARγ ligands. Supporting this idea, we found that treating isolated endothelial cells with physiologically relevant concentrations of the endogenous NFA 10-nitro-oleate reduced LPS-induced expression of a wide range of inflammatory markers in the presence of PPARγ, but not in its absence, and also inhibited neutrophil mobility in a PPARγ-dependent manner. Our results demonstrate a key protective role of ePPARγ against endotoxemic injury and a potential ePPARγ-mediated anti-inflammatory role for NFAs.
Collapse
Affiliation(s)
- Aravind T Reddy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University and Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | | | | | | | | | | |
Collapse
|
39
|
Majer O, Bourgeois C, Zwolanek F, Lassnig C, Kerjaschki D, Mack M, Müller M, Kuchler K. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog 2012; 8:e1002811. [PMID: 22911155 PMCID: PMC3406095 DOI: 10.1371/journal.ppat.1002811] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/05/2012] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal infections by Candida albicans (Ca) are a frequent cause of lethal sepsis in intensive care unit patients. While a contribution of type I interferons (IFNs-I) in fungal sepsis remains unknown, these immunostimulatory cytokines mediate the lethal effects of endotoxemia and bacterial sepsis. Using a mouse model lacking a functional IFN-I receptor (Ifnar1−/−), we demonstrate a remarkable protection against invasive Ca infections. We discover a mechanism whereby IFN-I signaling controls the recruitment of inflammatory myeloid cells, including Ly6Chi monocytes and neutrophils, to infected kidneys by driving expression of the chemokines CCL2 and KC. Within kidneys, monocytes differentiate into inflammatory DCs but fail to functionally mature in Ifnar1−/− mice, as demonstrated by the impaired upregulation of the key activation markers PDCA1 and iNOS. The increased activity of inflammatory monocytes and neutrophils results in hyper-inflammation and lethal kidney pathology. Pharmacological diminution of monocytes and neutrophils by treating mice with pioglitazone, a synthetic agonist of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ), strongly reduces renal immunopathology during Ca infection and improves mouse survival. Taken together, our data connect for the first time the sepsis-promoting functions of IFNs-I to the CCL2-mediated recruitment and the activation of inflammatory monocytes/DCs with high host-destructing potency. Moreover, our data demonstrate a therapeutic relevance of PPAR-γ agonists for microbial infectious diseases where inflammatory myeloid cells may contribute to fatal tissue damage. Inflammation constitutes a major host response in many microbial infections. Innate immune cells orchestrate the inflammatory response to kill pathogens and clear infections. However, invasive infections by pathogenic microbes including the fungus Candida albicans, can result in an uncontrolled hyper-inflammatory response, leading to severe host damage and sepsis. Type I interferons constitute a hallmark of protective innate immunity in viral and bacterial infections, but at the same time have been notoriously known for their sepsis-promoting effects in numerous experimental inflammation models. Here, we show that type I interferon-signaling mediates the lethal hyper-inflammatory response during systemic mouse infections with C. albicans. Following fungal infections, type I interferons promote the recruitment and activation of inflammatory monocytes and neutrophils to infected organs. The high abundance and activity of inflammatory phagocytes lead to fatal tissue damage. Remarkably, we show that the pharmacological suppression of these inflammatory cells with the drug pioglitazone reduces immunopathology and sepsis-related lethality, suggesting a novel therapeutic option to combat fungal sepsis. In conclusion, our data couple the sepsis-promoting role of type I interferons to the host-destructive activity of inflammatory monocytes and neutrophils. We propose that therapeutic approaches dampening hyper-inflammation might be of general importance in microbial diseases where deleterious immunopathology occurs.
Collapse
Affiliation(s)
- Olivia Majer
- Medical University Vienna-Max F. Perutz Laboratories, Christian Doppler Laboratory for Infection Biology, Campus Vienna Biocenter, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Berthier CC, Bethunaickan R, Gonzalez-Rivera T, Nair V, Ramanujam M, Zhang W, Bottinger EP, Segerer S, Lindenmeyer M, Cohen CD, Davidson A, Kretzler M. Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis. THE JOURNAL OF IMMUNOLOGY 2012; 189:988-1001. [PMID: 22723521 DOI: 10.4049/jimmunol.1103031] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lupus nephritis (LN) is a serious manifestation of systemic lupus erythematosus. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these preclinical models. In this study, we used an unbiased transcriptional network approach to define, in molecular terms, similarities and differences among three lupus models and human LN. Genome-wide gene-expression networks were generated using natural language processing and automated promoter analysis and compared across species via suboptimal graph matching. The three murine models and human LN share both common and unique features. The 20 commonly shared network nodes reflect the key pathologic processes of immune cell infiltration/activation, endothelial cell activation/injury, and tissue remodeling/fibrosis, with macrophage/dendritic cell activation as a dominant cross-species shared transcriptional pathway. The unique nodes reflect differences in numbers and types of infiltrating cells and degree of remodeling among the three mouse strains. To define mononuclear phagocyte-derived pathways in human LN, gene sets activated in isolated NZB/W renal mononuclear cells were compared with human LN kidney profiles. A tissue compartment-specific macrophage-activation pattern was seen, with NF-κB1 and PPARγ as major regulatory nodes in the tubulointerstitial and glomerular networks, respectively. Our study defines which pathologic processes in murine models of LN recapitulate the key transcriptional processes active in human LN and suggests that there are functional differences between mononuclear phagocytes infiltrating different renal microenvironments.
Collapse
Affiliation(s)
- Celine C Berthier
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Andrade D, Redecha PB, Vukelic M, Qing X, Perino G, Salmon JE, Koo GC. Engraftment of peripheral blood mononuclear cells from systemic lupus erythematosus and antiphospholipid syndrome patient donors into BALB-RAG-2-/- IL-2Rγ-/- mice: a promising model for studying human disease. ACTA ACUST UNITED AC 2011; 63:2764-73. [PMID: 21560114 DOI: 10.1002/art.30424] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To construct a humanized mouse model of systemic lupus erythematosus (SLE) that resembles the human disease in order to define the pathophysiology and targets for treatments. METHODS We infused peripheral blood mononuclear cells (PBMCs) from SLE patients into BALB- RAG-2-/- IL-2Rγ-/- double-knockout (DKO) mice, which lack T cells, B cells, and natural killer cells. PBMCs from 5 SLE patients and 4 normal donors were infused intravenously/intraperitoneally at a density of 3-5×10(6) cells per animal into nonirradiated 4-5-week-old mice. We evaluated the engraftment of human CD45+ cells and monitored the plasma levels of human IgG, anti-double-stranded DNA (anti-dsDNA) antibody, and anticardiolipin antibody (aCL), as well as proteinuria and kidney histology. RESULTS There was 100% successful engraftment in 40 DKO mice infused with human PBMCs. In the PBMC fraction from SLE PBMC-infused DKO (SLE-DKO) mice and normal donor PBMC-infused DKO (ND-DKO) mice, an average of 41% and 53% human CD45+ cells, respectively, were observed at 4 weeks postengraftment, with 70-90% CD3+ cells. There were fewer CD3+CD4+ cells (mean±SEM 5.5±2.1%) and more CD3+CD8+ cells (79.4±3.6%) in the SLE-DKO mice as in the SLE patients from which the PBMCs were derived. CD19+ B cells and CD11c+ monocytic cells were found in the spleen, lung, liver, and bone marrow. There was no significant difference in plasma levels of human IgG and anti-dsDNA antibodies between SLE-DKO and ND-DKO mice. Levels of aCL were significantly higher in all SLE-DKO mice infused with PBMCs from an SLE patient who had high titers of aCL. SLE-DKO mice had proteinuria, human IgG deposits in the kidneys, and a shorter life span. In SLE-DKO mice engrafted with PBMCs from the aCL-positive patient, we found microthrombi and infiltration of CD3+, CD8+, and CD19+ cells in the glomeruli, recapitulating the human antiphospholipid syndrome in these mice. CONCLUSION We established a novel humanized SLE-DKO mouse exhibiting many of the immunologic and clinical features of human SLE.
Collapse
|
42
|
Juárez-Rojas JG, Medina-Urrutia AX, Jorge-Galarza E, Caracas-Portilla NA, Posadas-Sánchez R, Cardoso-Saldaña GC, Goycochea-Robles MV, Silveira LH, Lino-Pérez L, Mas-Oliva J, Pérez-Méndez O, Posadas-Romero C. Pioglitazone improves the cardiovascular profile in patients with uncomplicated systemic lupus erythematosus: a double-blind randomized clinical trial. Lupus 2011; 21:27-35. [PMID: 21993383 DOI: 10.1177/0961203311422096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We studied the effect of pioglitazone on insulin levels, inflammation markers, high-density lipoprotein (HDL) composition and subclasses distribution, in young women with uncomplicated systemic lupus erythematosus (SLE). METHODS This double-blind trial included 30 premenopausal women (30 ±8 years old) with SLE, who were randomized to pioglitazone (30 mg/day) or placebo treatment for 3 months. Plasma and HDL lipids were determined by colorimetric enzymatic assays, insulin by radioimmunometric assay, inflammation by immunonephelometry and HDL size and subclasses distribution by a native 4-30% polyacrylamide gradient gel electrophoresis. RESULTS Compared with placebo, pioglitazone significantly increased HDL-cholesterol plasma levels (14.2%), reduced fasting insulin plasma levels (23.6%) and the homeostasis model assessment-insulin resistance (31.7%). C-reactive protein (70.9%) and serum amyloid A (34.9%) were also significantly reduced with the pioglitazone use, whereas the HDL particle size was increased (8.80 nm vs. 8.95 nm; p = 0.044) by changes in the distribution of HDL(2b), HDL(3b), and HDL(3c) subclasses. The change in HDL size correlated with a rise in free and cholesterol-ester content in the HDL particles. CONCLUSION Pioglitazone significantly enhanced insulin sensitivity, reduced inflammation, and modified HDL characteristics, suggesting a potential beneficial effect of this drug in patients with SLE with a risk to develop cardiovascular disease. TRIAL REGISTRATION This trial is registered at ClinicalTrials.gov Protocol Registration System, with the number NCT01322308.
Collapse
Affiliation(s)
- J G Juárez-Rojas
- Endocrinology Department, National Institute of Cardiology "Ignacio Chávez", Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oxer DS, Godoy LC, Borba E, Lima-Salgado T, Passos LA, Laurindo I, Kubo S, Barbeiro DF, Fernandes D, Laurindo FR, Velasco IT, Curi R, Bonfa E, Souza HP. PPARγ expression is increased in systemic lupus erythematosus patients and represses CD40/CD40L signaling pathway. Lupus 2011; 20:575-87. [PMID: 21415255 DOI: 10.1177/0961203310392419] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease involving several immune cell types and pro-inflammatory signals, including the one triggered by binding of CD40L to the receptor CD40. Peroxisome-proliferator activated receptor gamma (PPARγ) is a transcription factor with anti-inflammatory properties. Here we investigated whether CD40 and PPARγ could exert opposite effects in the immune response and the possible implications for SLE. Increased PPARγ mRNA levels were detected by real-time PCR in patients with active SLE, compared to patients with inactive SLE PPARγ/GAPDH mRNA = 2.21 ± 0.49 vs. 0.57 ± 0.14, respectively (p < 0.05) or patients with infectious diseases and healthy subjects (p < 0.05). This finding was independent of the corticosteroid therapy. We further explored these observations in human THP1 and in SLE patient-derived macrophages, where activation of CD40 by CD40L promoted augmented PPARγ gene transcription compared to non-stimulated cells (PPARγ/GAPDH mRNA = 1.14 ± 0.38 vs. 0.14 ± 0.01, respectively; p < 0.05). This phenomenon occurred specifically upon CD40 activation, since lipopolysaccharide treatment did not induce a similar response. In addition, increased activity of PPARγ was also detected after CD40 activation, since higher PPARγ-dependent transcription of CD36 transcription was observed. Furthermore, CD40L-stimulated transcription of CD80 gene was elevated in cells treated with PPARγ-specific small interfering RNA (small interfering RNA, siRNA) compared to cells treated with CD40L alone (CD80/GAPDH mRNA = 0.11 ± 0.04 vs. 0.05 ± 0.02, respectively; p < 0.05), suggesting a regulatory role for PPARγ on the CD40/CD40L pathway. Altogether, our findings outline a novel mechanism through which PPARγ regulates the inflammatory signal initiated by activation of CD40, with important implications for the understanding of immunological mechanisms underlying SLE and the development of new treatment strategies.
Collapse
Affiliation(s)
- D S Oxer
- Faculdade de Medicina da Universidade de São Paulo, Emergency Medicine Division, LIM 51, Av. Dr. Arnaldo, 455 sala 3189. 01246-903 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhao W, Wang L, Zhang M, Wang P, Zhang L, Yuan C, Qi J, Qiao Y, Kuo PC, Gao C. Peroxisome proliferator-activated receptor gamma negatively regulates IFN-beta production in Toll-like receptor (TLR) 3- and TLR4-stimulated macrophages by preventing interferon regulatory factor 3 binding to the IFN-beta promoter. J Biol Chem 2010; 286:5519-28. [PMID: 21148557 DOI: 10.1074/jbc.m110.149823] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors 3 and 4 utilize adaptor TRIF to activate interferon regulatory factor 3 (IRF3), resulting in IFN-β production to mediate anti-viral and bacterial infection. Peroxisome proliferator-activated receptor (PPAR)-γ is a ligand-activated transcription factor expressed in various immune cells and acts as a transcriptional repressor to inhibit the transcription of many proinflammatory cytokines. But, the function of PPAR-γ in TLR3- and -4-mediated IFN-β production is not well elucidated. Here, we have analyzed the effect of the PPAR-γ agonists on IFN-β production in peritoneal primary macrophages in response to LPS and poly(I:C). PPAR-γ agonists inhibited LPS and poly(I:C)-induced IFN-β transcription and secretion. siRNA knockdown of PPAR-γ expression and transfection of PPAR-γ expression plasmid demonstrated that PPAR-γ agonist inhibits IFN-β production in a PPAR-γ-dependent manner. The ability of the PPAR-γ agonist to inhibit IFN-β production was confirmed in vivo as mice treated with troglitazone exhibited decreased levels of IFN-β upon LPS and poly(I:C) challenge. Chromatin immunoprecipitation (CHIP) assay and electrophoretic mobility shift assay (EMSA) demonstrated that troglitazone treatment impaired IRF3 binding to the IFN-β promoter. Furthermore, troglitazone could inhibit LPS and poly(I:C)-induced STAT1 phosphorylation and subsequent ISRE activation. These results demonstrate that PPAR-γ negatively regulates IFN-β production in TLR3- and 4-stimulated macrophages by preventing IRF3 binding to the IFN-β promoter.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Immunology, Shandong University Medical School, Jinan, Shandong 250012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Over the past few decades, inflammation has been recognized as a major risk factor for various human diseases. Acute inflammation is short-term, self-limiting and it's easy for host defenses to return the body to homeostasis. Chronic inflammatory responses are predispose to a pathological progression of chronic illnesses characterized by infiltration of inflammatory cells, excessive production of cytokines, dysregulation of cellular signaling and loss of barrier function. Targeting reduction of chronic inflammation is a beneficial strategy to combat several human diseases. Flavonoids are widely present in the average diet in such foods as fruits and vegetables, and have been demonstrated to exhibit a broad spectrum of biological activities for human health including an anti-inflammatory property. Numerous studies have proposed that flavonoids act through a variety mechanisms to prevent and attenuate inflammatory responses and serve as possible cardioprotective, neuroprotective and chemopreventive agents. In this review, we summarize current knowledge and underlying mechanisms on anti-inflammatory activities of flavonoids and their implicated effects in the development of various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, No.142, Haijhuan Rd., Nanzih District, Kaohsiung, 81143, Taiwan.
| | | | | |
Collapse
|
46
|
Abstract
Inflammation involving the innate and adaptive immune systems is a normal response to infection. However, when allowed to continue unchecked, inflammation may result in autoimmune or autoinflammatory disorders, neurodegenerative disease, or cancer. A variety of safe and effective anti-inflammatory agents are available, including aspirin and other nonsteroidal anti-inflammatories, with many more drugs under development. In particular, the new era of anti-inflammatory agents includes "biologicals" such as anticytokine therapies and small molecules that block the activity of kinases. Other anti-inflammatories currently in use or under development include statins, histone deacetylase inhibitors, PPAR agonists, and small RNAs. This Review discusses the current status of anti-inflammatory drug research and the development of new anti-inflammatory therapeutics.
Collapse
|
47
|
Kaplan MJ. Premature vascular damage in systemic lupus erythematosus: an imbalance of damage and repair? Transl Res 2009; 154:61-9. [PMID: 19595437 DOI: 10.1016/j.trsl.2009.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/18/2009] [Accepted: 05/23/2009] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with an increase in the risk of premature cardiovascular complications caused by accelerated atherosclerosis, which significantly contributes to morbidity and mortality. Standard Framingham risk factors seem to be less important predictors of cardiovascular events than the presence of active SLE, and the immune dysregulation characteristic of lupus seems to play a dominant role in atherogenesis. Although both SLE-specific and nonspecific mechanisms have been proposed to play a prominent role in the induction of premature vascular damage in this disease, the exact etiology remains unclear. This review summarizes some of the proposed mechanisms that may promote accelerated vascular damage in lupus and explores potential targets for cardiovascular risk prevention in this patient population.
Collapse
Affiliation(s)
- Mariana J Kaplan
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, University of Michigan Health System, Ann Arbor 48109-5680, USA.
| |
Collapse
|