1
|
Herrmann T, Karunakaran MM. Phosphoantigen recognition by Vγ9Vδ2 T cells. Eur J Immunol 2024; 54:e2451068. [PMID: 39148158 DOI: 10.1002/eji.202451068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Vγ9Vδ2 T cells comprise 1-10% of human peripheral blood T cells. As multifunctional T cells with a strong antimicrobial and antitumor potential, they are of strong interest for immunotherapeutic development. Their hallmark is the eponymous Vγ9Vδ2 T-cell antigen receptor (TCR), which mediates activation by so-called "phosphoantigens" (PAg). PAg are small pyrophosphorylated intermediates of isoprenoid synthesis of microbial or host origin, with the latter elevated in some tumors and after administration of aminobisphosphonates. This review summarizes the progress in understanding PAg-recognition, with emphasis on the interaction between butyrophilins (BTN) and PAg and insights gained by phylogenetic studies on BTNs and Vγ9Vδ2 T cells, especially the comparison of human and alpaca. It proposes a composite ligand model in which BTN3A1-A2/A3-heteromers and BTN2A1 homodimers form a Vγ9Vδ2 TCR activating complex. An initiating step is the binding of PAg to the intracellular BTN3A1-B30.2 domain and formation of a complex with the B30.2 domains of BTN2A1. On the extracellular surface this results in BTN2A1-IgV binding to Vγ9-TCR framework determinants and BTN3A-IgV to additional complementarity determining regions of both TCR chains. Unresolved questions of this model are discussed, as well as questions on the structural basis and the physiological consequences of PAg-recognition.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Dept of Medicine, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
2
|
Yuan M, Wang W, Hawes I, Han J, Yao Z, Bertaina A. Advancements in γδT cell engineering: paving the way for enhanced cancer immunotherapy. Front Immunol 2024; 15:1360237. [PMID: 38576617 PMCID: PMC10991697 DOI: 10.3389/fimmu.2024.1360237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αβT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.
Collapse
Affiliation(s)
| | - Wenjun Wang
- *Correspondence: Wenjun Wang, ; Alice Bertaina,
| | | | | | | | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Hsu H, Zanettini C, Coker M, Boudova S, Rach D, Mvula G, Divala TH, Mungwira RG, Boldrin F, Degiacomi G, Mazzabò LC, Manganelli R, Laufer MK, Zhang Y, Marchionni L, Cairo C. Concomitant assessment of PD-1 and CD56 expression identifies subsets of resting cord blood Vδ2 T cells with disparate cytotoxic potential. Cell Immunol 2024; 395-396:104797. [PMID: 38157646 DOI: 10.1016/j.cellimm.2023.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Vγ9Vδ2 T lymphocytes are programmed for broad antimicrobial responses with rapid production of Th1 cytokines even before birth, and thus thought to play key roles against pathogens in infants. The process regulating Vδ2 cell acquisition of cytotoxic potential shortly after birth remains understudied. We observed that perforin production in cord blood Vδ2 cells correlates with phenotypes defined by the concomitant assessment of PD-1 and CD56. Bulk RNA sequencing of sorted Vδ2 cell fractions indicated that transcripts related to cytotoxic activity and NK function are enriched in the subset with the highest proportion of perforin+ cells. Among differentially expressed transcripts, IRF8, previously linked to CD8 T cell effector differentiation and NK maturation, has the potential to mediate Vδ2 cell differentiation towards cytotoxic effectors. Our current and past results support the hypothesis that distinct mechanisms regulate Vδ2 cell cytotoxic function before and after birth, possibly linked to different levels of microbial exposure.
Collapse
Affiliation(s)
- Haoting Hsu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Claudio Zanettini
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Modupe Coker
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers State University of New Jersey, Newark, NJ, United States
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David Rach
- Molecular Microbiology and Immunology Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Godfrey Mvula
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Titus H Divala
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Randy G Mungwira
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giulia Degiacomi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenbaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Luigi Marchionni
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
4
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Nat Commun 2023; 14:7617. [PMID: 37993425 PMCID: PMC10665462 DOI: 10.1038/s41467-023-41938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/21/2023] [Indexed: 11/24/2023] Open
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Yiming Jin
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rohit Singh
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad, MIT World peace University, Pune, 411038, India
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Andrew J Wiemer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. Division of labor and cooperation between different butyrophilin proteins controls phosphoantigen-mediated activation of human γδ T cells. RESEARCH SQUARE 2023:rs.3.rs-2583246. [PMID: 36824912 PMCID: PMC9949253 DOI: 10.21203/rs.3.rs-2583246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control TCR-mediated activation of human Vγ9Vδ2 T-cells triggered by phosphoantigens (PAg) from microbes and tumors, but the molecular rules governing antigen sensing are unknown. Here we establish three mechanistic principles of PAg-action. Firstly, in humans, following PAg binding to the BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the V-domain of BTN3A2/BTN3A3. Moreover, PAg/B30.2 interaction, and the critical γδ-T-cell-activating V-domain, localize to different molecules. Secondly, this distinct topology as well as intracellular trafficking and conformation of BTN3A heteromers or ancestral-like BTN3A homomers are controlled by molecular interactions of the BTN3 juxtamembrane region. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and division of labor in BTN proteins deepens understanding of PAg sensing and elucidates a mode of action potentially applicable to other BTN/BTNL family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Rohit Singh
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Benjamin E Willcox
- 6Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Assi R, Salman H. Harnessing the Potential of Chimeric Antigen Receptor T-Cell Therapy for the Treatment of T-Cell Malignancies: A Dare or Double Dare? Cells 2022; 11:cells11243971. [PMID: 36552738 PMCID: PMC9776964 DOI: 10.3390/cells11243971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Historical standard of care treatments of T-cell malignancies generally entailed the use of cytotoxic and depleting approaches. These strategies are, however, poorly validated and record dismal long-term outcomes. More recently, the introduction and approval of chimeric antigen receptor (CAR)-T cell therapy has revolutionized the therapy of B-cell malignancies. Translating this success to the T-cell compartment has so far proven hazardous, entangled by risks of fratricide, T-cell aplasia, and product contamination by malignant cells. Several strategies have been utilized to overcome these challenges. These include the targeting of a selective cognate antigen exclusive to T-cells or a subset of T-cells, disruption of target antigen expression on CAR-T constructs, use of safety switches, non-viral transduction, and the introduction of allogeneic compounds and gene editing technologies. We herein overview these historical challenges and revisit the opportunities provided as potential solutions. An in-depth understanding of the tumor microenvironment is required to optimally harness the potential of the immune system to treat T-cell malignancies.
Collapse
Affiliation(s)
- Rita Assi
- Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Huda Salman
- Division of Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: Huda Salman, MD, PhD, MA Director, Brown Center for Immunotherapy, Don Brown Professor of Immunotherapy, Professor of Medicine, Program Leader–Leukemia, Indiana University School of Medicine;
| |
Collapse
|
7
|
Liou ML, Lahusen T, Li H, Xiao L, Pauza CD. Reducing farnesyl diphosphate synthase levels activates Vγ9Vδ2 T cells and improves tumor suppression in murine xenograft cancer models. Front Immunol 2022; 13:1012051. [PMID: 36275712 PMCID: PMC9581136 DOI: 10.3389/fimmu.2022.1012051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human Vγ9Vδ2 T cells are attractive candidates for cancer immunotherapy due to their potent capacity for tumor recognition and cytolysis of many tumor cell types. However, efforts to deploy clinical strategies for Vγ9Vδ2 T cell cancer therapy are hampered by insufficient potency. We are pursuing an alternate strategy of modifying tumors to increase the capacity for Vγ9Vδ2 T cell activation, as a means for strengthening the anti-tumor response by resident or ex vivo manufactured Vγ9Vδ2 T cells. Vγ9Vδ2 T cells are activated in vitro by non-peptidic antigens including isopentenyl pyrophosphate (IPP), a substrate of farnesyl diphosphate synthase (FDPS) in the pathway for biosynthesis of isoprenoids. In an effort to improve in vivo potency of Vγ9Vδ2 T cells, we reduced FDPS expression in tumor cells using a lentivirus vector encoding a short-hairpin RNA that targets FDPS mRNA (LV-shFDPS). Prostate (PC3) or hepatocellular carcinoma (Huh-7) cells transduced with LV-shFDPS induced Vγ9Vδ2 T cell stimulation in vitro, resulting in increased cytokine expression and tumor cell cytotoxicity. Immune deficient mice implanted with LV-shFDPS transduced tumor cells showed dramatic responses to intraperitoneal injection of Vγ9Vδ2 T cells with strong suppression of tumor growth. In vivo potency was increased by transducing tumor cells with a vector expressing both shFDPS and human IL-2. Tumor suppression by Vγ9Vδ2 T cells was dose-dependent with greater effects observed in mice injected with 100% LV-shFDPS transduced cells compared to mice injected with a mixture of 50% LV-shFDPS transduced cells and 50% control (no vector) tumor cells. Delivery of LV-shFDPS by intratumoral injection was insufficient to knockdown FDPS in the majority of tumor cells, resulting in insignificant tumor suppression by Vγ9Vδ2 T cells. Thus, Vγ9Vδ2 T cells efficiently targeted and suppressed tumors expressing shFDPS in mouse xenotransplant models. This proof-of-concept study demonstrates the potential for suppression of genetically modified tumors by human Vγ9Vδ2 T cells and indicates that co-expression of cytokines may boost the anti-tumor effect.
Collapse
Affiliation(s)
- Mei-Ling Liou
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Tyler Lahusen
- American Gene Technologies International Inc., Rockville, MD, United States
- *Correspondence: Tyler Lahusen,
| | - Haishan Li
- American Gene Technologies International Inc., Rockville, MD, United States
- Viriom Inc., Rockville, MD, United States
| | - Lingzhi Xiao
- American Gene Technologies International Inc., Rockville, MD, United States
| | - C. David Pauza
- American Gene Technologies International Inc., Rockville, MD, United States
- Viriom Inc., Rockville, MD, United States
| |
Collapse
|
8
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Ahmadi Najafabadi M, Yousefi F, Mirarefin SMJ, Rahbarizadeh F. Recent Advances in Solid Tumor CAR-T Cell Therapy: Driving Tumor Cells From Hero to Zero? Front Immunol 2022; 13:795164. [PMID: 35634281 PMCID: PMC9130586 DOI: 10.3389/fimmu.2022.795164] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor T-cells (CAR-Ts) are known as revolutionary living drugs that have turned the tables of conventional cancer treatments in certain hematologic malignancies such as B-cell acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) by achieving US Food and Drug Administration (FDA) approval based on their successful clinical outcomes. However, this type of therapy has not seen the light of victory in the fight against solid tumors because of various restricting caveats including heterogeneous tumor antigen expression and the immunosuppressive tumor microenvironments (TME) that negatively affect the tumor-site accessibility, infiltration, stimulation, activation, and persistence of CAR-Ts. In this review, we explore strategic twists including boosting vaccines and designing implementations that can support CAR-T expansion, proliferation, and tumoricidal capacity. We also step further by underscoring novel strategies for triggering endogenous antitumor responses and overcoming the limitation of poor CAR-T tumor-tissue infiltration and the lack of definitive tumor-specific antigens. Ultimately, we highlight how these approaches can address the mentioned arduous hurdles.
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Dong R, Zhang Y, Xiao H, Zeng X. Engineering γδ T Cells: Recognizing and Activating on Their Own Way. Front Immunol 2022; 13:889051. [PMID: 35603176 PMCID: PMC9120431 DOI: 10.3389/fimmu.2022.889051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy for the treatment of malignant tumors. Among them, there is great interest in engineered γδ T cells for ACT. With both adaptive and innate immune characteristics, γδ T cells can be activated by γδ TCRs to recognize antigens in a MHC-independent manner, or by NK receptors to recognize stress-induced molecules. The dual recognition system enables γδ T cells with unique activation and cytotoxicity profiles, which should be considered for the design of engineered γδ T cells. However, the current designs of engineered γδ T cells mostly follow the strategies that used in αβ T cells, but not making good use of the specific characteristics of γδ T cells. Therefore, it is no surprising that current engineered γδ T cells in preclinical or clinical trials have limited efficacy. In this review, we summarized the patterns of antigen recognition of γδ T cells and the features of signaling pathways for the functions of γδ T cells. This review will additionally discuss current progress in engineered γδ T cells and provide insights in the design of engineered γδ T cells based on their specific characteristics.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol 2022; 43:78-92. [PMID: 34942082 PMCID: PMC8812650 DOI: 10.1016/j.it.2021.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
Cholesterol is a multifaceted metabolite that is known to modulate processes in cancer, atherosclerosis, and autoimmunity. A common denominator between these diseases appears to be the immune system, in which many cholesterol-associated metabolites impact both adaptive and innate immunity. Many cancers display altered cholesterol metabolism, and recent studies demonstrate that manipulating systemic cholesterol metabolism may be useful in improving immunotherapy responses. However, cholesterol can have both proinflammatory and anti-inflammatory roles in mammals, acting via multiple immune cell types, and depending on context. Gaining mechanistic insights into various cholesterol-related metabolites can improve our understanding of their functions and extensive effects on the immune system, and ideally will inform the design of future therapeutic strategies against cancer and/or other pathologies.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| |
Collapse
|
11
|
Activated naïve γδ T cells accelerate deep molecular response to BCR-ABL inhibitors in patients with chronic myeloid leukemia. Blood Cancer J 2021; 11:182. [PMID: 34785653 PMCID: PMC8595379 DOI: 10.1038/s41408-021-00572-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) that target BCR-ABL are the frontline treatments in chronic myeloid leukemia (CML). Growing evidence has shown that TKIs also enhance immunity. Since gamma-delta T (γδT) cells possess the potent anticancer capability, here we investigated the potential involvement of γδT cells in TKI treatments for CML. We characterized γδT cells isolated from chronic-phase CML patients before and during TKI treatments. γδT expression increased significantly in CML patients who achieved major molecular response (MMR) and deep molecular response (DMR). Their Vδ2 subset of γδT also expanded, and increased expression of activating molecules, namely IFN-γ, perforin, and CD107a, as well as γδT cytotoxicity. Mechanistically, TKIs augmented the efflux of isopentenyl pyrophosphate (IPP) from CML cells, which stimulated IFN-γ production and γδT expansion. Notably, the size of the IFN-γ+ naïve γδT population in TKI-treated CML patients was strongly correlated with their rates to reach DMR and with the duration on DMR. Statistical analysis suggests that a cutoff of 7.5% IFN-γ+ naïve subpopulation of γδT in CML patients could serve as a determinant for MR4.0 sustainability. Our results highlight γδT cells as a positive regulator for TKI responses in CML patients.
Collapse
|
12
|
Nada MH, Wang H, Hussein AJ, Tanaka Y, Morita CT. PD-1 checkpoint blockade enhances adoptive immunotherapy by human Vγ2Vδ2 T cells against human prostate cancer. Oncoimmunology 2021; 10:1989789. [PMID: 34712512 PMCID: PMC8547840 DOI: 10.1080/2162402x.2021.1989789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Vγ2Vδ2 (also termed Vγ9Vδ2) T cells play important roles in microbial and tumor immunity by monitoring foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis. Accumulation of isoprenoid metabolites after bisphosphonate treatment allows Vγ2Vδ2 T cells to recognize and kill tumors independently of their MHC expression or burden of non-synonymous mutations. Clinical trials with more than 400 patients show that adoptive immunotherapy with Vγ2Vδ2 T cells has few side effects but has resulted in only a few partial and complete remissions. Here, we have tested Vγ2Vδ2 T cells for expression of inhibitory receptors and determined whether adding PD-1 checkpoint blockade to adoptively transferred Vγ2Vδ2 T cells enhances immunity to human PC-3 prostate tumors in an NSG mouse model. We find that Vγ2Vδ2 T cells express PD-1, CTLA-4, LAG-3, and TIM-3 inhibitory receptors during the 14-day ex vivo expansion period, and PD-1, LAG-3, and TIM-3 upon subsequent stimulation by pamidronate-treated tumor cells. Expression of PD-L1 on PC-3 prostate cancer cells was increased by co-culture with activated Vγ2Vδ2 T cells. Importantly, anti-PD-1 mAb treatment enhanced Vγ2Vδ2 T cell immunity to PC-3 tumors in immunodeficient NSG mice, reducing tumor volume nearly to zero after 5 weeks. These results demonstrate that PD-1 checkpoint blockade can enhance the effectiveness of adoptive immunotherapy with human γδ T cells in treating prostate tumors in a preclinical model.
Collapse
Affiliation(s)
- Mohanad H Nada
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Pathology, College of Medicine, Tikrit University, Tikrit, Iraq.,Department of Medical and Health Sciences, The American University of Iraq, Sulaimani, Sulaymaniah, Iraq
| | - Hong Wang
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Auter J Hussein
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Salah Al-Din Directorate of Health, Ministry of Health, Iraq
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki Japan
| | - Craig T Morita
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology,University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
13
|
Corsale AM, Di Simone M, Lo Presti E, Picone C, Dieli F, Meraviglia S. Metabolic Changes in Tumor Microenvironment: How Could They Affect γδ T Cells Functions? Cells 2021; 10:2896. [PMID: 34831116 PMCID: PMC8616133 DOI: 10.3390/cells10112896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
The metabolic changes that occur in tumor microenvironment (TME) can influence not only the biological activity of tumor cells, which become more aggressive and auto sustained, but also the immune response against tumor cells, either producing ineffective responses or polarizing the response toward protumor activity. γδ T cells are a subset of T cells characterized by a plasticity that confers them the ability to differentiate towards different cell subsets according to the microenvironment conditions. On this basis, we here review the more recent studies focused on altered tumor metabolism and γδ T cells, considering their already known antitumor role and the possibility of manipulating their effector functions by in vitro and in vivo approaches. γδ T cells, thanks to their unique features, are themselves a valid alternative to overcome the limits associated with the use of conventional T cells, such as major histocompatibility complex (MHC) restriction, costimulatory signal and specific tumor-associated antigen recognition. Lipids, amino acids, hypoxia, prostaglandins and other metabolic changes inside the tumor microenvironment could reduce the efficacy of this important immune population and polarize γδ T cells toward IL17 producing cells that play a pro tumoral role. A deeper knowledge of this phenomenon could be helpful to formulate new immunotherapeutic approaches that target tumor metabolisms.
Collapse
Affiliation(s)
- Anna Maria Corsale
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| | - Marta Di Simone
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| | - Elena Lo Presti
- National Research Council (CNR), Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy;
| | - Carmela Picone
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| | - Serena Meraviglia
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
14
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR-T cell therapy in T-cell malignancies: Is success a low-hanging fruit? Stem Cell Res Ther 2021; 12:527. [DOI: https:/doi.org/10.1186/s13287-021-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/27/2021] [Indexed: 09/15/2023] Open
Abstract
AbstractChimeric antigen receptor T-cell (CAR-T) therapy has been prosperous in the treatment of patients with various types of relapsed/refractory (R/R) B-cell malignancies including diffuse large B-cell lymphoma (DLBCL), B-cell acute lymphoblastic leukemia (B-ALL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and multiple myeloma (MM). However, this type of therapy has faced serious hindrances in combating T-cell neoplasms. R/R T-cell malignancies are generally associated with poor clinical outcomes, and the available effective treatment approaches are very limited. CAR-T therapy of T-cell malignancies has unique impediments in comparison with that of B-cell malignancies. Fratricide, T-cell aplasia, and product contamination with malignant T cells when producing autologous CAR-Ts are the most important challenges of CAR-T therapy in T-cell malignancies necessitating in-depth investigations. Herein, we highlight the preclinical and clinical efforts made for addressing these drawbacks and also review additional potent stratagems that could improve CAR-T therapy in T-cell malignancies.
Collapse
|
15
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR-T cell therapy in T-cell malignancies: Is success a low-hanging fruit? Stem Cell Res Ther 2021; 12:527. [PMID: 34620233 PMCID: PMC8499460 DOI: 10.1186/s13287-021-02595-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has been prosperous in the treatment of patients with various types of relapsed/refractory (R/R) B-cell malignancies including diffuse large B-cell lymphoma (DLBCL), B-cell acute lymphoblastic leukemia (B-ALL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and multiple myeloma (MM). However, this type of therapy has faced serious hindrances in combating T-cell neoplasms. R/R T-cell malignancies are generally associated with poor clinical outcomes, and the available effective treatment approaches are very limited. CAR-T therapy of T-cell malignancies has unique impediments in comparison with that of B-cell malignancies. Fratricide, T-cell aplasia, and product contamination with malignant T cells when producing autologous CAR-Ts are the most important challenges of CAR-T therapy in T-cell malignancies necessitating in-depth investigations. Herein, we highlight the preclinical and clinical efforts made for addressing these drawbacks and also review additional potent stratagems that could improve CAR-T therapy in T-cell malignancies.
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Cano CE, Pasero C, De Gassart A, Kerneur C, Gabriac M, Fullana M, Granarolo E, Hoet R, Scotet E, Rafia C, Herrmann T, Imbert C, Gorvel L, Vey N, Briantais A, le Floch AC, Olive D. BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cell Rep 2021; 36:109359. [PMID: 34260935 DOI: 10.1016/j.celrep.2021.109359] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 06/17/2021] [Indexed: 01/20/2023] Open
Abstract
The anti-tumor response of Vγ9Vδ2 T cells requires the sensing of accumulated phosphoantigens (pAgs) bound intracellularly to butyrophilin 3A1 (BTN3A1). In this study, we show that butyrophilin 2A1 (BTN2A1) is required for BTN3A-mediated Vγ9Vδ2 T cell cytotoxicity against cancer cells, and that expression of the BTN2A1/BTN3A1 complex is sufficient to trigger Vγ9Vδ2 TCR activation. Also, BTN2A1 interacts with all isoforms of BTN3A (BTN3A1, BTN3A2, BTN3A3), which appears to be a rate-limiting factor to BTN2A1 export to the plasma membrane. BTN2A1/BTN3A1 interaction is enhanced by pAgs and, strikingly, B30.2 domains of both proteins are required for pAg responsiveness. BTN2A1 expression in cancer cells correlates with bisphosphonate-induced Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cell killing of cancer cells is modulated by anti-BTN2A1 monoclonal antibodies (mAbs), whose action relies on the inhibition of BTN2A1 binding to the Vγ9Vδ2TCR. This demonstrates the potential of BTN2A1 as a therapeutic target and adds to the emerging butyrophilin-family cooperation pathway in γδ T cell activation.
Collapse
Affiliation(s)
- Carla E Cano
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France.
| | - Christine Pasero
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Aude De Gassart
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Clement Kerneur
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Mélanie Gabriac
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Marie Fullana
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Emilie Granarolo
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - René Hoet
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Emmanuel Scotet
- Université de Nantes, INSERM, CNRS, CRCINA, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes 44000, France
| | - Chirine Rafia
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France; Université de Nantes, INSERM, CNRS, CRCINA, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes 44000, France
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Caroline Imbert
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Laurent Gorvel
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Norbert Vey
- Institut Paoli-Calmettes, 13009 Marseille, France
| | - Antoine Briantais
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Anne Charlotte le Floch
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France; Institut Paoli-Calmettes, 13009 Marseille, France; Aix-Marseille Université UM105, CNRS UMR 7258, 13009 Marseille, France.
| |
Collapse
|
17
|
Eberl M, Oldfield E, Herrmann T. Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. IMMUNOTHERAPY ADVANCES 2021; 1:ltab005. [PMID: 35919736 PMCID: PMC9327107 DOI: 10.1093/immadv/ltab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Human Vγ9/Vδ2 T cells, mucosal-associated invariant T (MAIT) cells, and other unconventional T cells are specialised in detecting microbial metabolic pathway intermediates that are absent in humans. The recognition by such semi-invariant innate-like T cells of compounds like (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), the penultimate metabolite in the MEP isoprenoid biosynthesis pathway, and intermediates of the riboflavin biosynthesis pathway and their metabolites allows the immune system to rapidly sense pathogen-associated molecular patterns that are shared by a wide range of micro-organisms. Given the essential nature of these metabolic pathways for microbial viability, they have emerged as promising targets for the development of novel antibiotics. Here, we review recent findings that link enzymatic inhibition of microbial metabolism with alterations in the levels of unconventional T cell ligands produced by treated micro-organisms that have given rise to the concept of 'immuno-antibiotics': combining direct antimicrobial activity with an immunotherapeutic effect via modulation of unconventional T cell responses.
Collapse
Affiliation(s)
- Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK,Systems Immunity Research Institute, Cardiff University, Cardiff, UK,Correspondence: Matthias Eberl, Division of Infection and Immunity, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK. Tel: +44-29206-87011;
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Park J, Pandya VR, Ezekiel SJ, Berghuis AM. Phosphonate and Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthases: A Structure-Guided Perspective. Front Chem 2021; 8:612728. [PMID: 33490038 PMCID: PMC7815940 DOI: 10.3389/fchem.2020.612728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphonates and bisphosphonates have proven their pharmacological utility as inhibitors of enzymes that metabolize phosphate and pyrophosphate substrates. The blockbuster class of drugs nitrogen-containing bisphosphonates represent one of the best-known examples. Widely used to treat bone-resorption disorders, these drugs work by inhibiting the enzyme farnesyl pyrophosphate synthase. Playing a key role in the isoprenoid biosynthetic pathway, this enzyme is also a potential anticancer target. Here, we provide a comprehensive overview of the research efforts to identify new inhibitors of farnesyl pyrophosphate synthase for various therapeutic applications. While the majority of these efforts have been directed against the human enzyme, some have been targeted on its homologs from other organisms, such as protozoan parasites and insects. Our particular focus is on the structures of the target enzymes and how the structural information has guided the drug discovery efforts.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Vishal R Pandya
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sean J Ezekiel
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
19
|
Perez C, Gruber I, Arber C. Off-the-Shelf Allogeneic T Cell Therapies for Cancer: Opportunities and Challenges Using Naturally Occurring "Universal" Donor T Cells. Front Immunol 2020; 11:583716. [PMID: 33262761 PMCID: PMC7685996 DOI: 10.3389/fimmu.2020.583716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineered T cell therapies individually prepared for each patient with autologous T cells have recently changed clinical practice in the management of B cell malignancies. Even though CARs used to redirect polyclonal T cells to the tumor are not HLA restricted, CAR T cells are also characterized by their endogenous T cell receptor (TCR) repertoire. Tumor-antigen targeted TCR-based T cell therapies in clinical trials are thus far using “conventional” αβ-TCRs that recognize antigens presented as peptides in the context of the major histocompatibility complex. Thus, both CAR- and TCR-based adoptive T cell therapies (ACTs) are dictated by compatibility of the highly polymorphic HLA molecules between donors and recipients in order to avoid graft-versus-host disease and rejection. The development of third-party healthy donor derived well-characterized off-the-shelf cell therapy products that are readily available and broadly applicable is an intensive area of research. While genome engineering provides the tools to generate “universal” donor cells that can be redirected to cancers, we will focus our attention on third-party off-the-shelf strategies with T cells that are characterized by unique natural features and do not require genome editing for safe administration. Specifically, we will discuss the use of virus-specific T cells, lipid-restricted (CD1) T cells, MR1-restricted T cells, and γδ-TCR T cells. CD1- and MR1-restricted T cells are not HLA-restricted and have the potential to serve as a unique source of universal TCR sequences to be broadly applicable in TCR-based ACT as their targets are presented by the monomorphic CD1 or MR1 molecules on a wide variety of tumor types. For each cell type, we will summarize the stage of preclinical and clinical development and discuss opportunities and challenges to deliver off-the-shelf targeted cellular therapies against cancer.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Gruber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. Immunol Rev 2020; 298:218-236. [PMID: 32981055 DOI: 10.1111/imr.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023]
Abstract
Both, jawless and jawed vertebrates possess three lymphocyte lineages defined by highly diverse antigen receptors: Two T-cell- and one B-cell-like lineage. In both phylogenetic groups, the theoretically possible number of individual antigen receptor specificities can even outnumber that of lymphocytes of a whole organism. Despite fundamental differences in structure and genetics of these antigen receptors, convergent evolution led to functional similarities between the lineages. Jawed vertebrates possess αβ and γδ T-cells defined by eponymous αβ and γδ T-cell antigen receptors (TCRs). "Conventional" αβ T-cells recognize complexes of Major Histocompatibility Complex (MHC) class I and II molecules and peptides. Non-conventional T-cells, which can be αβ or γδ T-cells, recognize a large variety of ligands and differ strongly in phenotype and function between species and within an organism. This review describes similarities and differences of non-conventional T-cells of various species and discusses ligands and functions of their TCRs. A special focus is laid on Vγ9Vδ2 T-cells whose TCRs act as sensors for phosphorylated isoprenoid metabolites, so-called phosphoantigens (PAg), associated with microbial infections or altered host metabolism in cancer or after drug treatment. We discuss the role of butyrophilin (BTN)3A and BTN2A1 in PAg-sensing and how species comparison can help in a better understanding of this human Vγ9Vδ2 T-cell subset.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
21
|
Abstract
Phosphoantigens (pAgs) are small phosphorus-containing molecules that stimulate Vγ9Vδ2 T cells with sub-nanomolar cellular potency. Recent work has revealed that these compounds work through binding to the transmembrane immunoglobulin butyrophilin 3A1 (BTN3A1) within its intracellular B30.2 domain. Engagement of BTN3A1 is critical to the formation of an immune synapse between cells that contain pAgs and the Vγ9Vδ2 T cells. This minireview summarizes the structure-activity relationships of pAgs and their implications to the mechanisms of butyrophilin 3 activation leading to Vγ9Vδ2 T cell response.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences and Institute for Systems Genomics, University of Connecticut, 69N. Eagleville Road, Storrs, CT, 06269, USA
| |
Collapse
|
22
|
An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Cells 2020; 9:cells9061433. [PMID: 32527033 PMCID: PMC7348870 DOI: 10.3390/cells9061433] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/29/2023] Open
Abstract
About 1-5% of human blood T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains contain a rearrangement of Vγ9 with JP (TRGV9JP or Vγ2Jγ1.2) and are paired with Vδ2 (TRDV2)-containing δ-chains. These TCRs respond to phosphoantigens (PAg) such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is found in many pathogens, and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. Until recently, these cells were believed to be restricted to primates, while no such cells are found in rodents. The identification of three genes pivotal for PAg recognition encoding for Vγ9, Vδ2, and butyrophilin (BTN) 3 in various non-primate species identified candidate species possessing PAg-reactive Vγ9Vδ2 T cells. Here, we review the current knowledge of the molecular basis of PAg recognition. This not only includes human Vγ9Vδ2 T cells and the recent discovery of BTN2A1 as Vγ9-binding protein mandatory for the PAg response but also insights gained from the identification of functional PAg-reactive Vγ9Vδ2 T cells and BTN3 in the alpaca and phylogenetic comparisons. Finally, we discuss models of the molecular basis of PAg recognition and implications for the development of transgenic mouse models for PAg-reactive Vγ9Vδ2 T cells.
Collapse
|
23
|
Peters C, Kouakanou L, Kabelitz D. A comparative view on vitamin C effects on αβ- versus γδ T-cell activation and differentiation. J Leukoc Biol 2020; 107:1009-1022. [PMID: 32034803 DOI: 10.1002/jlb.1mr1219-245r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Vitamin C (VitC) is an essential vitamin that needs to be provided through exogenous sources. It is a potent anti-oxidant, and an essential cofactor for many enzymes including a group of enzymes that modulate epigenetic regulation of gene expression. Moreover, VitC has a significant influence on T-cell differentiation, and can directly interfere with T-cell signaling. Conventional CD4 and CD8 T cells express the αβ TCR and recognize peptide antigens in the context of MHC presentation. The numerically small population of γδ T cells recognizes antigens in an MHC-independent manner. γδ T cells kill a broad variety of malignant cells, and because of their unique features, are interesting candidates for cancer immunotherapy. In this review, we summarize what is known about the influence of VitC on T-cell activation and differentiation with a special focus on γδ T cells. The known mechanisms of action of VitC on αβ T cells are discussed and extrapolated to the effects observed on γδ T-cell activation and differentiation. Overall, VitC enhances proliferation and effector functions of γδ T cells and thus may help to increase the efficacy of γδ T cells applied as cancer immunotherapy in adoptive cell transfer.
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
24
|
Fleischer LC, Spencer HT, Raikar SS. Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. J Hematol Oncol 2019; 12:141. [PMID: 31884955 PMCID: PMC6936092 DOI: 10.1186/s13045-019-0801-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/23/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has been successful in treating B cell malignancies in clinical trials; however, fewer studies have evaluated CAR T cell therapy for the treatment of T cell malignancies. There are many challenges in translating this therapy for T cell disease, including fratricide, T cell aplasia, and product contamination. To the best of our knowledge, no tumor-specific antigen has been identified with universal expression on cancerous T cells, hindering CAR T cell therapy for these malignancies. Numerous approaches have been assessed to address each of these challenges, such as (i) disrupting target antigen expression on CAR-modified T cells, (ii) targeting antigens with limited expression on T cells, and (iii) using third party donor cells that are either non-alloreactive or have been genome edited at the T cell receptor α constant (TRAC) locus. In this review, we discuss CAR approaches that have been explored both in preclinical and clinical studies targeting T cell antigens, as well as examine other potential strategies that can be used to successfully translate this therapy for T cell disease.
Collapse
Affiliation(s)
- Lauren C Fleischer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - H Trent Spencer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
25
|
Raverdeau M, Cunningham SP, Harmon C, Lynch L. γδ T cells in cancer: a small population of lymphocytes with big implications. Clin Transl Immunology 2019; 8:e01080. [PMID: 31624593 PMCID: PMC6787154 DOI: 10.1002/cti2.1080] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are a small population of mostly tissue-resident lymphocytes, with both innate and adaptive properties. These unique features make them particularly attractive candidates for the development of new cellular therapy targeted against tumor development. Nevertheless, γδ T cells may play dual roles in cancer, promoting cancer development on the one hand, while participating in antitumor immunity on the other hand. In mice, γδ T-cell subsets preferentially produce IL-17 or IFN-γ. While antitumor functions of murine γδ T cells can be attributed to IFN-γ+ γδ T cells, recent studies have implicated IL-17+ γδ T cells in tumor growth and metastasis. However, in humans, IL-17-producing γδ T cells are rare and most studies have attributed a protective role to γδ T cells against cancer. In this review, we will present the current knowledge and most recent findings on γδ T-cell functions in mouse models of tumor development and human cancers. We will also discuss their potential as cellular immunotherapy against cancer.
Collapse
Affiliation(s)
- Mathilde Raverdeau
- School of Biochemistry and ImmunologyTrinity College DublinDublinIreland
| | | | - Cathal Harmon
- Harvard Medical SchoolBostonMAUSA
- Brigham and Women's HospitalBostonMAUSA
| | - Lydia Lynch
- School of Biochemistry and ImmunologyTrinity College DublinDublinIreland
- Harvard Medical SchoolBostonMAUSA
- Brigham and Women's HospitalBostonMAUSA
| |
Collapse
|
26
|
Lo Presti E, Corsale AM, Dieli F, Meraviglia S. γδ cell-based immunotherapy for cancer. Expert Opin Biol Ther 2019; 19:887-895. [PMID: 31220420 DOI: 10.1080/14712598.2019.1634050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Cancer immunotherapy relies on the development of an efficient and long-lasting anti-tumor response, generally mediated by cytotoxic T cells. γδ T cells possess distinctive features that justify their use in cancer immunotherapy. Areas covered: Here we will review our current knowledge on the functions of human γδ T cells that may be relevant in tumor immunity and the most recent advances in our understanding of how these functions are regulated in the tumor microenvironment. We will also discuss the major achievements and limitations of γδ T cell-based immunotherapy of cancer. Expert opinion: Several small-scale clinical trials have been conducted in cancer patients using either in vivo activation of γδ T cells or adoptive transfer of ex vivo-expanded γδ T cells. Both strategies are safe and give some clinical benefit to patients, thus providing a proof of principle for their utilization in addition to conventional therapies. However, low objective response rates have been obtained in both settings and therefore larger and well-controlled trials are needed. Discovering the factors which influence the success of γδ T cell-based immunotherapy will lead to a better understanding of their mechanism of action and to harness these cells for effective and durable anti-tumor responses.
Collapse
Affiliation(s)
- Elena Lo Presti
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| | - Anna Maria Corsale
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| | - Francesco Dieli
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| | - Serena Meraviglia
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| |
Collapse
|
27
|
Wang H, Nada MH, Tanaka Y, Sakuraba S, Morita CT. Critical Roles for Coiled-Coil Dimers of Butyrophilin 3A1 in the Sensing of Prenyl Pyrophosphates by Human Vγ2Vδ2 T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:607-626. [PMID: 31227581 DOI: 10.4049/jimmunol.1801252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Vγ2Vδ2 T cells play important roles in human immunity to pathogens and tumors. Their TCRs respond to the sensing of isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate, by butyrophilin (BTN) 3A1. BTN3A1 is an Ig superfamily protein with extracellular IgV/IgC domains and intracellular B30.2 domains that bind prenyl pyrophosphates. We have proposed that intracellular α helices form a coiled-coil dimer that functions as a spacer for the B30.2 domains. To test this, five pairs of anchor residues were mutated to glycine to destabilize the coiled-coil dimer. Despite maintaining surface expression, BTN3A1 mutagenesis either abrogated or decreased stimulation by (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate. BTN3A2 and BTN3A3 proteins and orthologs in alpacas and dolphins are also predicted to have similar coiled-coil dimers. A second short coiled-coil region dimerizes the B30.2 domains. Molecular dynamics simulations predict that mutation of a conserved tryptophan residue in this region will destabilize the dimer, explaining the loss of stimulation by BTN3A1 proteins with this mutation. The juxtamembrane regions of other BTN/BTN-like proteins with B30.2 domains are similarly predicted to assume α helices, with many predicted to form coiled-coil dimers. An exon at the end of this region and the exon encoding the dimerization region for B30.2 domains are highly conserved. We propose that coiled-coil dimers function as rod-like helical molecular spacers to position B30.2 domains, as interaction sites for other proteins, and as dimerization regions to allow sensing by B30.2 domains. In these ways, the coiled-coil domains of BTN3A1 play critical roles for its function.
Collapse
Affiliation(s)
- Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246.,College of Medicine, Tikrit University, Tiktit, 34001, Iraq
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.,Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shun Sakuraba
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; and
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; .,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
28
|
Vitamin C promotes the proliferation and effector functions of human γδ T cells. Cell Mol Immunol 2019; 17:462-473. [PMID: 31171862 PMCID: PMC7192840 DOI: 10.1038/s41423-019-0247-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/18/2019] [Indexed: 12/20/2022] Open
Abstract
γδ T cells are of interest as effector cells for cellular immunotherapy due to their HLA-non-restricted lysis of many different tumor cell types. Potential applications include the adoptive transfer of in vitro-expanded γδ T cells. Therefore, it is important to optimize the culture conditions to enable maximal proliferative and functional activity. Vitamin C (L-ascorbic acid) is an essential vitamin with multiple effects on immune cells. It is a cofactor for several enzymes, has antioxidant activity, and is an epigenetic modifier. Here, we investigated the effects of vitamin C (VC) and its more stable derivative, L-ascorbic acid 2-phosphate (pVC), on the proliferation and effector function of human γδ T cells stimulated with zoledronate (ZOL) or synthetic phosphoantigens (pAgs). VC and pVC did not increase γδ T-cell expansion within ZOL- or pAg-stimulated PBMCs, but increased the proliferation of purified γδ T cells and 14-day-expanded γδ T-cell lines in response to γδ T-cell-specific pAgs. VC reduced the apoptosis of γδ T cells during primary stimulation. While pVC did not prevent activation-induced death of pAg-restimulated γδ T cells, it enhanced the cell cycle progression and cellular expansion. Furthermore, VC and pVC enhanced cytokine production during primary activation, as well as upon pAg restimulation of 14-day-expanded γδ T cells. VC and pVC also increased the oxidative respiration and glycolysis of γδ T cells, but stimulus-dependent differences were observed. The modulatory activity of VC and pVC might help to increase the efficacy of γδ T-cell expansion for adoptive immunotherapy.
Collapse
|
29
|
Di Francesco S, Robuffo I, Caruso M, Giambuzzi G, Ferri D, Militello A, Toniato E. Metabolic Alterations, Aggressive Hormone-Naïve Prostate Cancer and Cardiovascular Disease: A Complex Relationship. ACTA ACUST UNITED AC 2019; 55:medicina55030062. [PMID: 30866568 PMCID: PMC6473682 DOI: 10.3390/medicina55030062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/30/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Background: Epidemiological studies suggest a possible relationship between metabolic alterations, cardiovascular disease and aggressive prostate cancer, however, no clear consensus has been reached. Objective: The aim of the study was to analyze the recent literature and summarize our experience on the association between metabolic disorders, aggressive hormone-naïve prostate cancer and cardiovascular disease. Method: We identified relevant papers by searching in electronic databases such as Scopus, Life Science Journals, and Index Medicus/Medline. Moreover, we showed our experience on the reciprocal relationship between metabolic alterations and aggressive prostate cancer, without the influence of hormone therapy, as well the role of coronary and carotid vasculopathy in advanced prostate carcinoma. Results: Prostate cancer cells have an altered metabolic homeostatic control linked to an increased aggressivity and cancer mortality. The absence of discrimination of risk factors as obesity, systemic arterial hypertension, diabetes mellitus, dyslipidemia and inaccurate selection of vascular diseases as coronary and carotid damage at initial diagnosis of prostate cancer could explain the opposite results in the literature. Systemic inflammation and oxidative stress associated with metabolic alterations and cardiovascular disease can also contribute to prostate cancer progression and increased tumor aggressivity. Conclusions: Metabolic alterations and cardiovascular disease influence aggressive and metastatic prostate cancer. Therefore, a careful evaluation of obesity, diabetes mellitus, dyslipidemia, systemic arterial hypertension, together with a careful evaluation of cardiovascular status, in particular coronary and carotid vascular disease, should be carried out after an initial diagnosis of prostatic carcinoma.
Collapse
Affiliation(s)
- Simona Di Francesco
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
- Department of Urological, Biomedical and Translational Sciences, Federiciana University, 87100 Cosenza, Italy.
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, 66100 Chieti, Italy.
| | - Marika Caruso
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
- Department of Urological, Biomedical and Translational Sciences, Federiciana University, 87100 Cosenza, Italy.
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Deborah Ferri
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Andrea Militello
- Department of Urological, Biomedical and Translational Sciences, Federiciana University, 87100 Cosenza, Italy.
- Urology and Andrology Section, Villa Immacolata Hospital, 01100 Viterbo, Italy.
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
30
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
31
|
Novel Immunotherapeutic Approaches for Neuroblastoma and Malignant Melanoma. J Immunol Res 2018; 2018:8097398. [PMID: 30510968 PMCID: PMC6232800 DOI: 10.1155/2018/8097398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023] Open
Abstract
Neuroblastoma (NB) and malignant melanoma (MM), tumors of pediatric age and adulthood, respectively, share a common origin, both of them deriving from the neural crest cells. Although NB and MM have a different behavior, in respect to age of onset, primary tissue involvement and metastatic spread, the prognosis for high stage-affected patients is still poor, in spite of aggressive treatment strategies and the huge amount of new discovered biological knowledge. For these reasons researchers are continuously attempting to find out new treatment options, which in a near future could be translated to the clinical practice. In the last two decades, a strong effort has been spent in the field of translational research of immunotherapy which led to satisfactory results. Indeed, several immunotherapeutic clinical trials have been performed and some of them also resulted beneficial. Here, we summarize preclinical studies based on immunotherapeutic approaches applied in models of both NB and MM.
Collapse
|
32
|
Riganti C, Castella B, Massaia M. ABCA1, apoA-I, and BTN3A1: A Legitimate Ménage à Trois in Dendritic Cells. Front Immunol 2018; 9:1246. [PMID: 29937767 PMCID: PMC6002486 DOI: 10.3389/fimmu.2018.01246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Human Vγ9Vδ2 T cells have the capacity to detect supra-physiological concentrations of phosphoantigens (pAgs) generated by the mevalonate (Mev) pathway of mammalian cells under specific circumstances. Isopentenyl pyrophosphate (IPP) is the prototypic pAg recognized by Vγ9Vδ2 T cells. B-cell derived tumor cells (i.e., lymphoma and myeloma cells) and dendritic cells (DCs) are privileged targets of Vγ9Vδ2 T cells because they generate significant amounts of IPP which can be boosted with zoledronic acid (ZA). ZA is the most potent aminobisphosphonate (NBP) clinically available to inhibit osteoclast activation and a very potent inhibitor of farnesyl pyrophosphate synthase in the Mev pathway. ZA-treated DCs generate and release in the supernatants picomolar IPP concentrations which are sufficient to induce the activation of Vγ9Vδ2 T cells. We have recently shown that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in the extracellular release of IPP from ZA-treated DCs. This novel ABCA1 function is fine-tuned by physical interactions with IPP, apolipoprotein A-I (apoA-I), and butyrophilin-3A1 (BTN3A1). The mechanisms by which soluble IPP induces Vγ9Vδ2 T-cell activation remain to be elucidated. It is possible that soluble IPP binds to BTN3A1, apoA-I, or other unknown molecules on the cell surface of bystander cells like monocytes, NK cells, Vγ9Vδ2 T cells, or any other cell locally present. Investigating this scenario may represent a unique opportunity to further characterize the role of BTN3A1 and other molecules in the recognition of soluble IPP by Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S. Croce e Carle, Cuneo, Italy
| |
Collapse
|
33
|
Pauza CD, Liou ML, Lahusen T, Xiao L, Lapidus RG, Cairo C, Li H. Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Front Immunol 2018; 9:1305. [PMID: 29937769 PMCID: PMC6003257 DOI: 10.3389/fimmu.2018.01305] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/28/2022] Open
Abstract
Human gamma delta T cells have extraordinary properties including the capacity for tumor cell killing. The major gamma delta T cell subset in human beings is designated Vγ9Vδ2 and is activated by intermediates of isoprenoid biosynthesis or aminobisphosphonate inhibitors of farnesyldiphosphate synthase. Activated cells are potent for killing a broad range of tumor cells and demonstrated the capacity for tumor reduction in murine xenotransplant tumor models. Translating these findings to the clinic produced promising initial results but greater potency is needed. Here, we review the literature on gamma delta T cells in cancer therapy with emphasis on the Vγ9Vδ2 T cell subset. Our goal was to examine obstacles preventing effective Vγ9Vδ2 T cell therapy and strategies for overcoming them. We focus on the potential for local activation of Vγ9Vδ2 T cells within the tumor environment to increase potency and achieve objective responses during cancer therapy. The gamma delta T cells and especially the Vγ9Vδ2 T cell subset, have the potential to overcome many problems in cancer therapy especially for tumors with no known treatment, lacking tumor-specific antigens for targeting by antibodies and CAR-T, or unresponsive to immune checkpoint inhibitors. Translation of amazing work from many laboratories studying gamma delta T cells is needed to fulfill the promise of effective and safe cancer immunotherapy.
Collapse
Affiliation(s)
- C David Pauza
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Mei-Ling Liou
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Tyler Lahusen
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Lingzhi Xiao
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Rena G Lapidus
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cristiana Cairo
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haishan Li
- American Gene Technologies International Inc., Rockville, MD, United States
| |
Collapse
|
34
|
Bratt JM, Chang KY, Rabowsky M, Franzi LM, Ott SP, Filosto S, Goldkorn T, Arif M, Last JA, Kenyon NJ, Zeki AA. Farnesyltransferase Inhibition Exacerbates Eosinophilic Inflammation and Airway Hyperreactivity in Mice with Experimental Asthma: The Complex Roles of Ras GTPase and Farnesylpyrophosphate in Type 2 Allergic Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3840-3856. [PMID: 29703864 PMCID: PMC5964018 DOI: 10.4049/jimmunol.1601317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Ras, a small GTPase protein, is thought to mediate Th2-dependent eosinophilic inflammation in asthma. Ras requires cell membrane association for its biological activity, and this requires the posttranslational modification of Ras with an isoprenyl group by farnesyltransferase (FTase) or geranylgeranyltransferase (GGTase). We hypothesized that inhibition of FTase using FTase inhibitor (FTI)-277 would attenuate allergic asthma by depleting membrane-associated Ras. We used the OVA mouse model of allergic inflammation and human airway epithelial (HBE1) cells to determine the role of FTase in inflammatory cell recruitment. BALB/c mice were first sensitized then exposed to 1% OVA aerosol or filtered air, and half were injected daily with FTI-277 (20 mg/kg per day). Treatment of mice with FTI-277 had no significant effect on lung membrane-anchored Ras, Ras protein levels, or Ras GTPase activity. In OVA-exposed mice, FTI-277 treatment increased eosinophilic inflammation, goblet cell hyperplasia, and airway hyperreactivity. Human bronchial epithelial (HBE1) cells were pretreated with 5, 10, or 20 μM FTI-277 prior to and during 12 h IL-13 (20 ng/ml) stimulation. In HBE1 cells, FTase inhibition with FTI-277 had no significant effect on IL-13-induced STAT6 phosphorylation, eotaxin-3 peptide secretion, or Ras translocation. However, addition of exogenous FPP unexpectedly augmented IL-13-induced STAT6 phosphorylation and eotaxin-3 secretion from HBE1 cells without affecting Ras translocation. Pharmacological inhibition of FTase exacerbates allergic asthma, suggesting a protective role for FTase or possibly Ras farnesylation. FPP synergistically augments epithelial eotaxin-3 secretion, indicating a novel Ras-independent farnesylation mechanism or direct FPP effect that promotes epithelial eotaxin-3 production in allergic asthma.
Collapse
Affiliation(s)
- Jennifer M Bratt
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Kevin Y Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
| | - Michelle Rabowsky
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
| | - Lisa M Franzi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Sean P Ott
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Simone Filosto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
- Department of Internal Medicine, Respiratory Signal Transduction, Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA 95616
| | - Tzipora Goldkorn
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
- Department of Internal Medicine, Respiratory Signal Transduction, Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA 95616
| | - Muhammad Arif
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Jerold A Last
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817;
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| |
Collapse
|
35
|
Pistoia V, Tumino N, Vacca P, Veneziani I, Moretta A, Locatelli F, Moretta L. Human γδ T-Cells: From Surface Receptors to the Therapy of High-Risk Leukemias. Front Immunol 2018; 9:984. [PMID: 29867961 PMCID: PMC5949323 DOI: 10.3389/fimmu.2018.00984] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/20/2018] [Indexed: 01/13/2023] Open
Abstract
γδ T lymphocytes are potent effector cells, capable of efficiently killing tumor and leukemia cells. Their activation is mediated by γδ T-cell receptor (TCR) and by activating receptors shared with NK cells (e.g., NKG2D and DNAM-1). γδ T-cell triggering occurs upon interaction with specific ligands, including phosphoantigens (for Vγ9Vδ2 TCR), MICA-B and UL16 binding protein (for NKG2D), and PVR and Nectin-2 (for DNAM-1). They also respond to cytokines undergoing proliferation and release of cytokines/chemokines. Although at the genomic level γδ T-cells have the potential of an extraordinary TCR diversification, in tissues they display a restricted repertoire. Recent studies have identified various γδ TCR rearrangements following either hematopoietic stem cell transplantation (HSCT) or cytomegalovirus infection, accounting for their “adaptive” potential. In humans, peripheral blood γδ T-cells are primarily composed of Vγ9Vδ2 chains, while a minor proportion express Vδ1. They do not recognize antigens in the context of MHC molecules, thus bypassing tumor escape based on MHC class I downregulation. In view of their potent antileukemia activity and absence of any relevant graft-versus-host disease-inducing effect, γδ T-cells may play an important role in the successful clinical outcome of patients undergoing HLA-haploidentical HSCT depleted of TCR αβ T/CD19+ B lymphocytes to cure high-risk acute leukemias. In this setting, high numbers of both γδ T-cells (Vδ1 and Vδ2) and NK cells are infused together with CD34+ HSC and may contribute to rapid control of infections and leukemia relapse. Notably, zoledronic acid potentiates the cytolytic activity of γδ T-cells in vitro and its infusion in patients strongly promotes γδ T-cell differentiation and cytolytic activity; thus, treatment with this agent may contribute to further improve the patient clinical outcome after HLA-haploidentical HSCT depleted of TCR αβ T/CD19+ B lymphocytes.
Collapse
Affiliation(s)
- Vito Pistoia
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Nicola Tumino
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Paola Vacca
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Irene Veneziani
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genoa, Italy
| | - Franco Locatelli
- Department of Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy.,Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Lorenzo Moretta
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| |
Collapse
|
36
|
Li C, Yan Q, Tang S, Xiao W, Tan Z. L-Theanine Protects H9C2 Cells from Hydrogen Peroxide-Induced Apoptosis by Enhancing Antioxidant Capability. Med Sci Monit 2018; 24:2109-2118. [PMID: 29629712 PMCID: PMC5907829 DOI: 10.12659/msm.907660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND L-theanine is a non-protein amino acid in green tea, and its hepatoprotection and neuroprotection have been verified. However, whether L-theanine can prevent cardiomyocytes from apoptosis is unclear yet. This study evaluated the protective effects of L-theanine on H2O2-induced heart injury in vitro. MATERIAL AND METHODS The certified H9C2 cells were pretreated with L-theanine (0 mM, 4 mM, 8 mM, and 16 mM) for 24 h, followed by 160 µM H2O2 solution for 4 h. The cell viability and antioxidant indices were assayed. Quantitative evaluation of apoptosis was performed by flow cytometric analysis. Nuclear morphology of the cells was monitored by 4',6-diamidino-2-phenylindole staining. Expression of Caspase-3, poly ADP-ribose polymerase (PARP), c-Jun N-terminal kinase (JNK), and mitogen-activated protein kinase p38 was assayed by Western blot. RESULTS Compared to the H2O2 treatment, all doses of L-theanine treatments increased the cell viability, glutathione level, and the activities of glutathione peroxidase and superoxide dismutase (P<0.001). The contents of reactive oxygen species, nitric oxide, and oxidized glutathione were decreased by L-theanine treatments (P<0.001). Meanwhile, L-theanine treatments decreased the apoptosis ratio of H2O2-induced H9C2 cells (P<0.001). Pro-Caspase-3 expression was upregulated and cleavaged-PARP expression was inhibited by L-theanine (P<0.001). However, the phosphorylation of JNK and p38 was not affected by L-theanine treatments (P>0.05). CONCLUSIONS These data indicate that L-theanine pretreatment prevents H2O2-induced apoptosis in H9C2 cells, probably via antioxidant capacity improvement. Therefore, it might be a promising potential drug candidate for prophylaxis of ischemia/reperfusion-induced heart diseases.
Collapse
Affiliation(s)
- Chengjian Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Scienc, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China (mainland).,College of Pharmaceutical Sciences, Xiangnan University, Chenzhou, Hunan, China (mainland).,Department of Pharmacy, Yongzhou Vocational Technical College, Yongzhou, Hunan, China (mainland)
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Scienc, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China (mainland).,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients from Botanicals, Provincial Co-Innovation Center for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha, Hunan, China (mainland)
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Scienc, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China (mainland).,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China (mainland)
| | - Wenjun Xiao
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients from Botanicals, Provincial Co-Innovation Center for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha, Hunan, China (mainland)
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Scienc, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China (mainland).,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China (mainland)
| |
Collapse
|
37
|
Alteration of Mevalonate Pathway in Rat Splenic Lymphocytes: Possible Role in Cytokines Secretion Regulated by L-Theanine. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1497097. [PMID: 29568741 PMCID: PMC5820649 DOI: 10.1155/2018/1497097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 11/17/2022]
Abstract
L-Theanine is a nonprotein amino acid in tea, and its immunomodulatory function has been confirmed. This study aimed to investigate the effect of L-theanine addition on cytokines secretion in rat splenic lymphocytes and explore its potential immunomodulatory effects on the mevalonate biosynthetic pathway. Our results showed that L-theanine treatment did not influence the proliferation and division indexes of the splenic lymphocytes subsets. Interestingly, L-theanine treatment had regulated the contents of IFN-γ, IL-2, IL-4, IL-10, IL-12, and TNF-α (P < 0.001) except IL-6 and upregulated the mRNA and protein expression of Ras-related protein Rap-1A (Rap1A), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), and farnesyl diphosphate synthase (FDPs) (P < 0.001). Additionally, there was a positive correlation between Rap1A and HMGCR proteins expression and IFN-γ, IL-4, and IL-6 levels. In conclusion, L-theanine regulated the secretion of cytokines probably by activating expression of Rap1A and HMGCR proteins involved in the mevalonate biosynthetic pathway in rat splenic lymphocytes. Therefore, L-theanine might be a promising potential drug candidate as immunopotentiator.
Collapse
|
38
|
Wang S, Li H, Ye C, Lin P, Li B, Zhang W, Sun L, Wang Z, Xue D, Teng W, Zhou X, Lin N, Ye Z. Valproic Acid Combined with Zoledronate Enhance γδ T Cell-Mediated Cytotoxicity against Osteosarcoma Cells via the Accumulation of Mevalonate Pathway Intermediates. Front Immunol 2018. [PMID: 29535738 PMCID: PMC5835048 DOI: 10.3389/fimmu.2018.00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The long-term survival of osteosarcoma has remained unchanged in the last several decades. Immunotherapy is proved to be a promising therapeutic strategy against osteosarcoma, especially for those with metastasis. Our previous study explored the sensibilization of zoledronate (ZOL) in γδ T cell-mediated cytotoxicity against osteosarcoma, but we have not yet elucidated the specific mechanism. Besides, high concentration is required to achieve these effects, whereas plasma ZOL concentration declines rapidly in the circulation. Valproic acid (VPA), a histone deacetylase inhibitor commonly used as the antiepileptic drug, has attracted much attention due to its synergistic antitumor efficacy with chemotherapy or immunotherapy. Here, we demonstrated that VPA combined with ZOL revealed the synergistic effect in enhancing antitumor efficacy of γδ T cells against osteosarcoma cells. This enhancement was mainly TCR-mediated and largely dependent on granule exocytose pathway. Of note, our findings indicated that ZOL sensitized osteosarcoma cells to γδ T cells by increasing the accumulation of the mevalonate pathway intermediates, which could be facilitated by VPA. We also found that this combination had similar effects on primary osteosarcoma cells. All the results suggested that VPA combined with ZOL could reduce the dose required to achieve a significant antitumor effect of γδ T cells, promoting it to be a novel therapy against osteosarcoma.
Collapse
Affiliation(s)
- Shengdong Wang
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Hengyuan Li
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Peng Lin
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Binghao Li
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Wei Zhang
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Wangsiyuan Teng
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Xingzhi Zhou
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Nong Lin
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Allele-specific recognition by LILRB3 and LILRA6 of a cytokeratin 8-associated ligand on necrotic glandular epithelial cells. Oncotarget 2017; 7:15618-31. [PMID: 26769854 PMCID: PMC4941265 DOI: 10.18632/oncotarget.6905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/06/2016] [Indexed: 12/22/2022] Open
Abstract
The LILRs are a family of receptors that regulate the activities of myelomonocytic cells. We found that specific allelic variants of two related members of the LILR family, LILRB3 and LILRA6, interact with a ligand exposed on necrotic glandular epithelial cells. The extracellular domains of LILRB3 and LILRA6 are very similar and their genes are highly polymorphic. A commonly occurring allele, LILRB3*12, displayed particularly strong binding of these necrotic cells and further screening of the products of LILRB3 alleles identified motifs that correlated with binding. Immunoprecipitation of the ligand from epithelial cell lysates using recombinant LILRB3*12, identified cytokeratins 8, 18 and 19. Purified proteins obtained from epithelial cell lysates, using anti-cytokeratin 8 antibodies, were able to activate LILRB3*12 reporter cells. Knock-down of cytokeratin 8 in epithelial cells abrogated expression of the LILRB3 ligand, while staining with recombinant LILRB3*12 showed co-localisation with cytokeratin 8 and 18 in permeabilised breast cancer cells. Necrosis is a common feature of tumours. The finding of a necrosis-associated ligand for these two receptors raises the possibility of a novel interaction that alters immune responses within the tumour microenvironment. Since LILRB3 and LILRA6 genes are highly polymorphic the interaction may influence an individual's immune response to tumours.
Collapse
|
40
|
Lo Presti E, Pizzolato G, Gulotta E, Cocorullo G, Gulotta G, Dieli F, Meraviglia S. Current Advances in γδ T Cell-Based Tumor Immunotherapy. Front Immunol 2017; 8:1401. [PMID: 29163482 PMCID: PMC5663908 DOI: 10.3389/fimmu.2017.01401] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/10/2017] [Indexed: 01/12/2023] Open
Abstract
γδ T cells are a minor population (~5%) of CD3 T cells in the peripheral blood, but abound in other anatomic sites such as the intestine or the skin. There are two major subsets of γδ T cells: those that express Vδ1 gene, paired with different Vγ elements, abound in the intestine and the skin, and recognize the major histocompatibility complex (MHC) class I-related molecules such as MHC class I-related molecule A, MHC class I-related molecule B, and UL16-binding protein expressed on many stressed and tumor cells. Conversely, γδ T cells expressing the Vδ2 gene paired with the Vγ9 chain are the predominant (50-90%) γδ T cell population in the peripheral blood and recognize phosphoantigens (PAgs) derived from the mevalonate pathway of mammalian cells, which is highly active upon infection or tumor transformation. Aminobisphosphonates (n-BPs), which inhibit farnesyl pyrophosphate synthase, a downstream enzyme of the mevalonate pathway, cause accumulation of upstream PAgs and therefore promote γδ T cell activation. γδ T cells have distinctive features that justify their utilization in antitumor immunotherapy: they do not require MHC restriction and are less dependent that αβ T cells on co-stimulatory signals, produce cytokines with known antitumor effects as interferon-γ and tumor necrosis factor-α and display cytotoxic and antitumor activities in vitro and in mouse models in vivo. Thus, there is interest in the potential application of γδ T cells in tumor immunotherapy, and several small-sized clinical trials have been conducted of γδ T cell-based immunotherapy in different types of cancer after the application of PAgs or n-BPs plus interleukin-2 in vivo or after adoptive transfer of ex vivo-expanded γδ T cells, particularly the Vγ9Vδ2 subset. Results from clinical trials testing the efficacy of any of these two strategies have shown that γδ T cell-based therapy is safe, but long-term clinical results to date are inconsistent. In this review, we will discuss the major achievements and pitfalls of the γδ T cell-based immunotherapy of cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Gabriele Pizzolato
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Humanitas University, Rozzano-Milano, Italy
| | - Eliana Gulotta
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Gianfranco Cocorullo
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Gaspare Gulotta
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| |
Collapse
|
41
|
Benyamine A, Loncle C, Foucher E, Blazquez JL, Castanier C, Chrétien AS, Modesti M, Secq V, Chouaib S, Gironella M, Vila-Navarro E, Montalto G, Dagorn JC, Dusetti N, Iovanna J, Olive D. BTN3A is a prognosis marker and a promising target for Vγ9Vδ2 T cells based-immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Oncoimmunology 2017; 7:e1372080. [PMID: 29296524 DOI: 10.1080/2162402x.2017.1372080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Vγ9Vδ2 T cells are anti-tumor immune effectors of growing interest in cancer including Pancreatic Ductal Adenocarcinoma (PDAC), an especially aggressive cancer characterized by a hypoxic and nutrient-starved immunosuppressive microenvironment. Since Butyrophilin 3 A (BTN3A) isoforms are critical activating molecules of Vγ9Vδ2 T cells, we set out to study BTN3A expression under both basal and stress conditions in PDAC primary tumors, and in novel patient-derived xenograft and PDAC-derived cell lines. BTN3A2 was shown to be the most abundant isoform in PDAC and was stress-regulated. Vγ9Vδ2 T cells cytolytic functions against PDAC required BTN3A and this activity was strongly enhanced by the agonist anti-BTN3A 20.1 mAb even under conditions of hypoxia. In PDAC primary tumors, we established that BTN3A expression and high plasma levels of soluble BTN3A were strongly associated with a decreased survival. These findings may have important implications in the design of new immunotherapeutic strategies that target BTN3A for treating PDAC.
Collapse
Affiliation(s)
- Audrey Benyamine
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Marseille, France
| | - Céline Loncle
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Cellular Stress, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Parc Scientifique et Technologique de Luminy, Marseille, France.,Dynabio, Luminy Biotech Entreprises, Marseille, France
| | - Etienne Foucher
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Marseille, France
| | - Juan-Luis Blazquez
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Marseille, France
| | - Céline Castanier
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Marseille, France
| | - Anne-Sophie Chrétien
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Marseille, France
| | - Mauro Modesti
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Homologous Recombination, NHEJ and Maintenance of Genomic Integrity; Aix-Marseille Université UM 105; CNRS UMR 7258, Marseille, France
| | - Véronique Secq
- Department of Pathology, Hôpital Nord / Aix-Marseille Université, Marseille, France
| | - Salem Chouaib
- INSERM UMR1186, Laboratory «Integrative Tumor Immunology and Genetic Oncology»; INSERM, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay Villejuif, Villejuif, France
| | - Meritxell Gironella
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)/Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Elena Vila-Navarro
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)/Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | | | - Nelson Dusetti
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Cellular Stress, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Cellular Stress, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Daniel Olive
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Marseille, France.,Immunomonitoring Platform Aix-Marseille Université, Marseille, France.,Immunomonitoring Platform Institut Paoli-Calmettes, 232 Bd Sainte Marguerite, Marseille, France
| |
Collapse
|
42
|
Mattarei A, Enzinger M, Gu S, Karunakaran MM, Kimmel B, Berner N, Adams EJ, Herrmann T, Amslinger S. A Photo-Crosslinkable Biotin Derivative of the Phosphoantigen (E)-4-Hydroxy-3-Methylbut-2-Enyl Diphosphate (HMBPP) Activates Vγ9Vδ2 T Cells and Binds to the HMBPP Site of BTN3A1. Chemistry 2017. [PMID: 28631855 DOI: 10.1002/chem.201702650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vγ9Vδ2 T cells play an important role in the cross talk of the innate and adaptive immune system. For their activation by phosphoantigens (PAgs), both cell surface receptors, the eponymous Vγ9Vδ2 T cell antigen receptors (Vγ9Vδ2 TCRs) on Vγ9Vδ2 T cells and butyrophilin 3A1 (BTN3A1) on the phosphoantigen-"presenting" cell, are mandatory. To find yet undetected but further contributing proteins, a biotinylated, photo-crosslinkable benzophenone probe BioBP-HMBPP (2) was synthesized from a known allyl alcohol in nine steps and overall 16 % yield. 2 is based on the picomolar PAg (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP, 1). Laser irradiation of 2 at 308 nm initiated the photo-crosslinking reaction with proteins. When the B30.2 domain of BTN3A1, which contains a positively charged PAg-binding pocket, was exposed to increasing amounts of HMBPP (1), labeling by BioBP-HMBPP (2) was reduced significantly. Because BSA labeling was not impaired, 2 clearly binds to the same site as natural ligand 1. Thus, BioBP-HMBPP (2) is a suitable tool to identify co-ligands or receptors involved in PAg-mediated T cell activation.
Collapse
Affiliation(s)
- Andrea Mattarei
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.,Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Monika Enzinger
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Siyi Gu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Mohindar Murugesh Karunakaran
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Brigitte Kimmel
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Nicole Berner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Sabine Amslinger
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
43
|
Chen HC, Joalland N, Bridgeman JS, Alchami FS, Jarry U, Khan MWA, Piggott L, Shanneik Y, Li J, Herold MJ, Herrmann T, Price DA, Gallimore AM, Clarkson RW, Scotet E, Moser B, Eberl M. Synergistic targeting of breast cancer stem-like cells by human γδ T cells and CD8 + T cells. Immunol Cell Biol 2017; 95:620-629. [PMID: 28356569 PMCID: PMC5550559 DOI: 10.1038/icb.2017.21] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
Abstract
The inherent resistance of cancer stem cells (CSCs) to existing therapies has largely hampered the development of effective treatments for advanced malignancy. To help develop novel immunotherapy approaches that efficiently target CSCs, an experimental model allowing reliable distinction of CSCs and non-CSCs was set up to study their interaction with non-MHC-restricted γδ T cells and antigen-specific CD8+ T cells. Stable lines with characteristics of breast CSC-like cells were generated from ras-transformed human mammary epithelial (HMLER) cells as confirmed by their CD44hi CD24lo GD2+ phenotype, their mesenchymal morphology in culture and their capacity to form mammospheres under non-adherent conditions, as well as their potent tumorigenicity, self-renewal and differentiation in xenografted mice. The resistance of CSC-like cells to γδ T cells could be overcome by inhibition of farnesyl pyrophosphate synthase (FPPS) through pretreatment with zoledronate or with FPPS-targeting short hairpin RNA. γδ T cells induced upregulation of MHC class I and CD54/ICAM-1 on CSC-like cells and thereby increased the susceptibility to antigen-specific killing by CD8+ T cells. Alternatively, γδ T-cell responses could be specifically directed against CSC-like cells using the humanised anti-GD2 monoclonal antibody hu14.18K322A. Our findings identify a powerful synergism between MHC-restricted and non-MHC-restricted T cells in the eradication of cancer cells including breast CSCs. Our research suggests that novel immunotherapies may benefit from a two-pronged approach combining γδ T-cell and CD8+ T-cell targeting strategies that triggers effective innate-like and tumour-specific adaptive responses.
Collapse
Affiliation(s)
- Hung-Chang Chen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Noémie Joalland
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, Institut de Recherche en Santé de l’Université de Nantes, Nantes, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France
| | - John S Bridgeman
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Fouad S Alchami
- Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Ulrich Jarry
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, Institut de Recherche en Santé de l’Université de Nantes, Nantes, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France
| | - Mohd Wajid A Khan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Luke Piggott
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Yasmin Shanneik
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Jianqiang Li
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Marco J Herold
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Richard W Clarkson
- School of Biosciences, Cardiff University, Cardiff, UK
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| | - Emmanuel Scotet
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, Institut de Recherche en Santé de l’Université de Nantes, Nantes, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France
| | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
44
|
Starick L, Riano F, Karunakaran MM, Kunzmann V, Li J, Kreiss M, Amslinger S, Scotet E, Olive D, De Libero G, Herrmann T. Butyrophilin 3A (BTN3A, CD277)-specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. Eur J Immunol 2017; 47:982-992. [DOI: 10.1002/eji.201646818] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Lisa Starick
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Felipe Riano
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | | | - Volker Kunzmann
- Medical Clinic and Policlinic II; University of Würzburg; Würzburg Germany
| | - Jianqiang Li
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Matthias Kreiss
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry; University of Regensburg; Regensburg Germany
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS; Université d'Angers; Université de Nantes; Nantes France
- Labex IGO “Immunotherapy, Graft, Oncology”; Nantes France
| | - Daniel Olive
- Centre de recherche en Cancérologie de Marseille; Inserm U1068 / CNRS U7258; Aix Marseille Université
- Institut Paoli-Calmettes; Marseille France
| | | | - Thomas Herrmann
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| |
Collapse
|
45
|
Human γδ T cells: From a neglected lymphocyte population to cellular immunotherapy: A personal reflection of 30years of γδ T cell research. Clin Immunol 2016; 172:90-97. [DOI: 10.1016/j.clim.2016.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/10/2016] [Indexed: 01/06/2023]
|
46
|
Nerdal PT, Peters C, Oberg HH, Zlatev H, Lettau M, Quabius ES, Sousa S, Gonnermann D, Auriola S, Olive D, Määttä J, Janssen O, Kabelitz D. Butyrophilin 3A/CD277-Dependent Activation of Human γδ T Cells: Accessory Cell Capacity of Distinct Leukocyte Populations. THE JOURNAL OF IMMUNOLOGY 2016; 197:3059-3068. [PMID: 27619996 DOI: 10.4049/jimmunol.1600913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/18/2016] [Indexed: 01/07/2023]
Abstract
Human Vγ9Vδ2 T cells recognize in a butyrophilin 3A/CD277-dependent way microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) or endogenous pyrophosphates (isopentenyl pyrophosphate [IPP]). Nitrogen-bisphosphonates such as zoledronic acid (ZOL) trigger selective γδ T cell activation because they stimulate IPP production in monocytes by inhibiting the mevalonate pathway downstream of IPP synthesis. We performed a comparative analysis of the capacity of purified monocytes, neutrophils, and CD4 T cells to serve as accessory cells for Vγ9Vδ2 T cell activation in response to three selective but mechanistically distinct stimuli (ZOL, HMBPP, agonistic anti-CD277 mAb). Only monocytes supported γδ T cell expansion in response to all three stimuli, whereas both neutrophils and CD4 T cells presented HMBPP but failed to induce γδ T cell expansion in the presence of ZOL or anti-CD277 mAb. Preincubation of accessory cells with the respective stimuli revealed potent γδ T cell-stimulating activity of ZOL- or anti-CD277 mAb-pretreated monocytes, but not neutrophils. In comparison with monocytes, ZOL-pretreated neutrophils produced little, if any, IPP and expressed much lower levels of farnesyl pyrophosphate synthase. Exogenous IL-18 enhanced the γδ T cell expansion with all three stimuli, remarkably also in response to CD4 T cells and neutrophils preincubated with anti-CD277 mAb or HMBPP. Our study uncovers unexpected differences between monocytes and neutrophils in their accessory function for human γδ T cells and underscores the important role of IL-18 in driving γδ T cell expansion. These results may have implications for the design of γδ T cell-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- Patrik Theodor Nerdal
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hristo Zlatev
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcus Lettau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Sofia Sousa
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Gonnermann
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Olive
- Laboratoire d'Immunologie des Tumeurs, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM, U1068, F-13009 Marseille, France.,CNRS, UMR7258, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille University, UM 105, F-13284 Marseille, France; and
| | - Jorma Määttä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.,Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany;
| |
Collapse
|
47
|
Benyamine A, Le Roy A, Mamessier E, Gertner-Dardenne J, Castanier C, Orlanducci F, Pouyet L, Goubard A, Collette Y, Vey N, Scotet E, Castellano R, Olive D. BTN3A molecules considerably improve Vγ9Vδ2T cells-based immunotherapy in acute myeloid leukemia. Oncoimmunology 2016; 5:e1146843. [PMID: 27853633 DOI: 10.1080/2162402x.2016.1146843] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Given their recognized ability to kill acute myeloid leukemia (AML) blasts both in vitro and in vivo, Vγ9Vδ2 T cells are of growing interest in the design of new strategies of immunotherapy. We show that the Butyrophilin3A (BTN3A, CD277) subfamily is a critical determinant of Vγ9Vδ2 TCR-mediated recognition of human primary AML blasts ex vivo. Moreover, anti-BTN3A 20.1 agonist monoclonal antibodies (mAbs) can trigger BTN3A on AML blasts leading to further enhanced Vγ9Vδ2 T cell-mediated killing, but this mAb had no enhancing effect upon NK cell-mediated killing. We show that monocytic differentiation of primary AML blasts accounts for their AminoBisphosphonate (N-BP)-mediated sensitization to Vγ9Vδ2 T cells. In addition, anti-BTN3A 20.1 mAbs could specifically sensitize resistant blasts to Vγ9Vδ2 T cells lysis and overcome the poor effect of N-BP treatment on those blasts. We confirmed the enhancement of Vγ9Vδ2 T cells activity by anti-BTN3A 20.1 mAb using a human AML xenotransplantation mouse model. We showed that anti-BTN3A 20.1 mAb combined with Vγ9Vδ2 T cells immunotherapy could increase animal survival and decrease the leukemic burden in blood and bone marrow. These findings could be of great interest in the design of new immunotherapeutic strategies for treating AML.
Collapse
Affiliation(s)
- Audrey Benyamine
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Aude Le Roy
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Emilie Mamessier
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), molecular Oncology, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Julie Gertner-Dardenne
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Céline Castanier
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Florence Orlanducci
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Laurent Pouyet
- Inserm, U1068, CRCM, TrGET Plateforme d'Essais Précliniques, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Armelle Goubard
- Inserm, U1068, CRCM, TrGET Plateforme d'Essais Précliniques, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Yves Collette
- Inserm, U1068, CRCM, TrGET Plateforme d'Essais Précliniques, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Norbert Vey
- Aix-Marseille Univ, Marseilles, France; Institut Paoli Calmettes, Marseilles, France
| | | | - Remy Castellano
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Daniel Olive
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105, CNRS UMR 7258, Marseilles, France; Inserm, U1068, CRCM, TrGET Plateforme d'Essais Précliniques, Institut Paoli-Calmettes, Aix-Marseille Université UM 105, CNRS UMR 7258, Marseilles, France; Aix-Marseille Univ, Marseilles, France
| |
Collapse
|
48
|
Sugai S, Yoshikawa T, Iwama T, Tsuchiya N, Ueda N, Fujinami N, Shimomura M, Zhang R, Kaneko S, Uemura Y, Nakatsura T. Hepatocellular carcinoma cell sensitivity to Vγ9Vδ2 T lymphocyte-mediated killing is increased by zoledronate. Int J Oncol 2016; 48:1794-804. [PMID: 26936487 PMCID: PMC4809658 DOI: 10.3892/ijo.2016.3403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023] Open
Abstract
The limited efficacy of vaccines in hepatocellular carcinoma (HCC), due to the low frequency of tumor-infiltrating cytotoxic T lymphocytes (CTLs), indicates the importance of innate immune surveillance, which assists acquired immunity by directly recognizing and eliminating HCC. Innate Vγ9Vδ2 T cells have major histocompatibility complex-unrestricted antitumor activity and are activated by phosphoantigens, which are upregulated in cancer cells by the nitrogen-containing bisphosphonate, zoledronate (Zol). A better understanding of HCC susceptibility to Zol and downstream γδ T cell-mediated killing is essential to optimize γδ T cell-mediated immunotherapy. This study systematically examined the interactions between γδ T cells and Zol-treated HCC cell lines (HepG2, HLE, HLF, HuH-1, JHH5, JHH7, and Li-7) in vitro. All HCC cell lines expressed the DNAX accessory molecule-1 ligands, poliovirus receptor, and Nectin-2, and γδ T cell-mediated killing of these cells was significantly enhanced by Zol. Small interfering RNA-mediated knockdown of these ligands did not affect the susceptibility to γδ T cell lysis. This killing activity was partly inhibited by mevastatin, an inhibitor of the mevalonate pathway, and markedly reduced by a monoclonal antibody to γ- and δ-chain T cell receptor, indicating that this is crucial for Zol-induced HCC killing. In addition, Zol-treated HCC cell lines triggered γδ T cell proliferation and induced production of Th1 and Th2, but not Th17, cytokines. The Zol concentration that enhanced HCC cell susceptibility to γδ T cell killing was lower than that required to directly inhibit HCC proliferation. Thus, γδ T cells may be important effector cells in the presence of Zol, especially where there are insufficient number of cancer antigen-specific CTLs to eliminate HCC. Our in vitro data support the proposal that Zol-treatment, combined with adaptive γδ T cell immunotherapy, may provide a feasible and effective approach for treatment of HCC.
Collapse
Affiliation(s)
- Shiori Sugai
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Tatsuaki Iwama
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Nobuhiro Tsuchiya
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Norihiro Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Norihiro Fujinami
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| |
Collapse
|
49
|
Santori FR. The immune system as a self-centered network of lymphocytes. Immunol Lett 2015; 166:109-16. [PMID: 26092524 DOI: 10.1016/j.imlet.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022]
Abstract
This essay makes a brief historical and comparative review of selective and network theories of the immune system which is presented as a chemical sensory system with immune and non-immune functions. The ontogeny of immune networks is the result of both positive and negative selection of lymphocytes to self-epitopes that serve as a "template" for the recognition of foreign antigens. The development of immune networks progresses from single individual clones in early ontogeny into complex "information processing networks" in which lymphocytes are linked to inhibitory and stimulatory immune cells. The results of these regulatory interactions modulate immune responses and tolerance.
Collapse
Affiliation(s)
- Fabio R Santori
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
50
|
Gu S, Nawrocka W, Adams EJ. Sensing of Pyrophosphate Metabolites by Vγ9Vδ2 T Cells. Front Immunol 2015; 5:688. [PMID: 25657647 PMCID: PMC4303140 DOI: 10.3389/fimmu.2014.00688] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023] Open
Abstract
The predominant population of γδ T cells in human blood express a T cell receptor (TCR) composed of a Vγ9 (Vγ2 in an alternate nomenclature) and Vδ2 domains. These cells came into the limelight when it was discovered they can respond to certain microbial infections and tumorigenic cells through the detection of small, pyrophosphate containing organic molecules collectively called “phosphoantigens” or “pAgs.” These molecules are intermediates in both eukaryotic and prokaryotic metabolic pathways. Chemical variants of these intermediates have been used in the clinic to treat a range of different cancers, however, directed optimization of these molecules requires a full understanding of their mechanism of action on target cells. We and others have identified a subclass of butyrophilin-related molecules (BTN3A1-3) that are directly involved in pAg sensing in the target cell, leading to engagement and activation of the T cell through the TCR. Our data and that of others support the pAg binding site to be the intracellular B30.2 domain of BTN3A1, which is the only isoform capable of mediating pAg-dependent stimulation of Vγ9Vδ2 T cells. Here, we review the data demonstrating pAg binding to the B30.2 domain and our studies of the structural conformations of the BTN3A extracellular domains. Finally, we synthesize a model linking binding of pAg to the intracellular domain with T cell detection via the extracellular domains in an “inside-out” signaling mechanism of the type characterized first for integrin molecule signaling. We also explore the role of Vγ9Vδ2 TCR variability in the CDR3 γ and δ loops and how this may modulate Vγ9Vδ2 cells as a population in surveillance of human health and disease.
Collapse
Affiliation(s)
- Siyi Gu
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, IL , USA
| | - Wioletta Nawrocka
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, IL , USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, IL , USA ; Committee on Immunology, University of Chicago , Chicago, IL , USA ; Committee on Cancer Biology, University of Chicago , Chicago, IL , USA
| |
Collapse
|