1
|
Lombard-Vadnais F, Collin R, Daudelin JF, Chabot-Roy G, Labrecque N, Lesage S. The Idd2 Locus Confers Prominent Resistance to Autoimmune Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:898-909. [PMID: 35039332 DOI: 10.4049/jimmunol.2100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Type 1 diabetes is an autoimmune disease characterized by pancreatic β cell destruction. It is a complex genetic trait driven by >30 genetic loci with parallels between humans and mice. The NOD mouse spontaneously develops autoimmune diabetes and is widely used to identify insulin-dependent diabetes (Idd) genetic loci linked to diabetes susceptibility. Although many Idd loci have been extensively studied, the impact of the Idd2 locus on autoimmune diabetes susceptibility remains to be defined. To address this, we generated a NOD congenic mouse bearing B10 resistance alleles on chromosome 9 in a locus coinciding with part of the Idd2 locus and found that NOD.B10-Idd2 congenic mice are highly resistant to diabetes. Bone marrow chimera and adoptive transfer experiments showed that the B10 protective alleles provide resistance in an immune cell-intrinsic manner. Although no T cell-intrinsic differences between NOD and NOD.B10-Idd2 mice were observed, we found that the Idd2 resistance alleles limit the formation of spontaneous and induced germinal centers. Comparison of B cell and dendritic cell transcriptome profiles from NOD and NOD.B10-Idd2 mice reveal that resistance alleles at the Idd2 locus affect the expression of specific MHC molecules, a result confirmed by flow cytometry. Altogether, these data demonstrate that resistance alleles at the Idd2 locus impair germinal center formation and influence MHC expression, both of which likely contribute to reduced diabetes incidence.
Collapse
Affiliation(s)
- Félix Lombard-Vadnais
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Roxanne Collin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Jean-François Daudelin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Geneviève Chabot-Roy
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Evidence is mounting that disturbances in the gut microbiota play a role in the rising incidence of type 1 diabetes (T1D) and new technologies are expanding our ability to understand microbial function and host interactions. Longitudinal data from large cohorts of children at risk of T1D are nor solidifying our understanding of the function of the microbiota in this disease. RECENT FINDINGS Although taxonomic changes in the gut microbiota associated with T1D are relatively modest, a functional defect in production of short-chain fatty acids (SCFAs) remains as a unifying feature across multiple studies and populations. Dysbiosis of the microbiota in T1D has been linked to decreased gut barrier and exocrine pancreas function. We explore factors contributing to the disturbed microbiota in T1D such as infant diet, probiotic use and genetic risk linked to defective immune regulation. We also discuss the interplay between immunotherapy, the gut immune response and the microbiota. SUMMARY Functional alterations in the microbiota are linked to pathogenesis of T1D and these findings provide a rationale for future investigations aimed at establishing a healthy microbiota and promoting SCFA production and prevention of T1D.
Collapse
Affiliation(s)
- Patrick G Gavin
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | | |
Collapse
|
3
|
Creusot RJ, Postigo-Fernandez J, Teteloshvili N. Altered Function of Antigen-Presenting Cells in Type 1 Diabetes: A Challenge for Antigen-Specific Immunotherapy? Diabetes 2018; 67:1481-1494. [PMID: 30030289 PMCID: PMC6054431 DOI: 10.2337/db17-1564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) arises from a failure to maintain tolerance to specific β-cell antigens. Antigen-specific immunotherapy (ASIT) aims to reestablish immune tolerance through the supply of pertinent antigens to specific cell types or environments that are suitable for eliciting tolerogenic responses. However, antigen-presenting cells (APCs) in T1D patients and in animal models of T1D are affected by a number of alterations, some due to genetic polymorphism. Combination of these alterations, impacting the number, phenotype, and function of APC subsets, may account for both the underlying tolerance deficiency and for the limited efficacy of ASITs so far. In this comprehensive review, we examine different aspects of APC function that are pertinent to tolerance induction and summarize how they are altered in the context of T1D. We attempt to reconcile 25 years of studies on this topic, highlighting genetic, phenotypic, and functional features that are common or distinct between humans and animal models. Finally, we discuss the implications of these defects and the challenges they might pose for the use of ASITs to treat T1D. Better understanding of these APC alterations will help us design more efficient ways to induce tolerance.
Collapse
Affiliation(s)
- Rémi J Creusot
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| | - Jorge Postigo-Fernandez
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| | - Nato Teteloshvili
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
4
|
Huang W, Rainbow DB, Wu Y, Adams D, Shivakumar P, Kottyan L, Karns R, Aronow B, Bezerra J, Gershwin ME, Peterson LB, Wicker LS, Ridgway WM. A Novel Pkhd1 Mutation Interacts with the Nonobese Diabetic Genetic Background To Cause Autoimmune Cholangitis. THE JOURNAL OF IMMUNOLOGY 2017; 200:147-162. [PMID: 29158418 DOI: 10.4049/jimmunol.1701087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
We previously reported that NOD.c3c4 mice develop spontaneous autoimmune biliary disease (ABD) with anti-mitochondrial Abs, histopathological lesions, and autoimmune T lymphocytes similar to human primary biliary cholangitis. In this article, we demonstrate that ABD in NOD.c3c4 and related NOD ABD strains is caused by a chromosome 1 region that includes a novel mutation in polycystic kidney and hepatic disease 1 (Pkhd1). We show that a long terminal repeat element inserted into intron 35 exposes an alternative polyadenylation site, resulting in a truncated Pkhd1 transcript. A novel NOD congenic mouse expressing aberrant Pkhd1, but lacking the c3 and c4 chromosomal regions (NOD.Abd3), reproduces the immunopathological features of NOD ABD. RNA sequencing of NOD.Abd3 common bile duct early in disease demonstrates upregulation of genes involved in cholangiocyte injury/morphology and downregulation of immunoregulatory genes. Consistent with this, bone marrow chimera studies show that aberrant Pkhd1 must be expressed in the target tissue (cholangiocytes) and the immune system (bone marrow). Mutations of Pkhd1 produce biliary abnormalities in mice but have not been previously associated with autoimmunity. In this study, we eliminate clinical biliary disease by backcrossing this Pkhd1 mutation onto the C57BL/6 genetic background; thus, the NOD genetic background (which promotes autoimmunity) is essential for disease. We propose that loss of functional Pkhd1 on the NOD background produces early bile duct abnormalities, initiating a break in tolerance that leads to autoimmune cholangitis in NOD.Abd3 congenic mice. This model is important for understanding loss of tolerance to cholangiocytes and is relevant to the pathogenesis of several human cholangiopathies.
Collapse
Affiliation(s)
- Wenting Huang
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Pranavkumar Shivakumar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Leah Kottyan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Rebekah Karns
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jorge Bezerra
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616; and
| | | | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267;
| |
Collapse
|
5
|
Reeves PLS, Rudraraju R, Wong FS, Hamilton-Williams EE, Steptoe RJ. Antigen presenting cell-targeted proinsulin expression converts insulin-specific CD8 + T-cell priming to tolerance in autoimmune-prone NOD mice. Eur J Immunol 2017; 47:1550-1561. [PMID: 28665492 DOI: 10.1002/eji.201747089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 11/07/2022]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing pancreatic β cells. Therapies need to incorporate strategies to overcome the genetic defects that impair induction or maintenance of peripheral T-cell tolerance and contribute to disease development. We tested whether the enforced expression of an islet autoantigen in antigen-presenting cells (APC) counteracted peripheral T-cell tolerance defects in autoimmune-prone NOD mice. We observed that insulin-specific CD8+ T cells transferred to mice in which proinsulin was transgenically expressed in APCs underwent several rounds of division and the majority were deleted. Residual insulin-specific CD8+ T cells were rendered unresponsive and this was associated with TCR downregulation, loss of tetramer binding and expression of a range of co-inhibitory molecules. Notably, accumulation and effector differentiation of insulin-specific CD8+ T cells in pancreatic lymph nodes was prominent in non-transgenic recipients but blocked by transgenic proinsulin expression. This shift from T-cell priming to T-cell tolerance exemplifies the tolerogenic capacity of autoantigen expression by APC and the capacity to overcome genetic tolerance defects.
Collapse
Affiliation(s)
- Peta L S Reeves
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Rajeev Rudraraju
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Reeves PL, Rudraraju R, Liu X, Wong FS, Hamilton-Williams EE, Steptoe RJ. APC-targeted proinsulin expression inactivates insulin-specific memory CD8 + T cells in NOD mice. Immunol Cell Biol 2017; 95:765-774. [PMID: 28611473 DOI: 10.1038/icb.2017.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) results from T-cell-mediated autoimmune destruction of pancreatic β cells. Effector T-cell responses emerge early in disease development and expand as disease progresses. Following β-cell destruction, a long-lived T-cell memory is generated that represents a barrier to islet transplantation and other cellular insulin-replacement therapies. Development of effective immunotherapies that control or ablate β-cell destructive effector and memory T-cell responses has the potential to prevent disease progression and recurrence. Targeting antigen expression to antigen-presenting cells inactivates cognate CD8+ effector and memory T-cell responses and has therapeutic potential. Here we investigated this in the context of insulin-specific responses in the non-obese diabetic mouse where genetic immune tolerance defects could impact on therapeutic tolerance induction. Insulin-specific CD8+ memory T cells transferred to mice expressing proinsulin in antigen-presenting cells proliferated in response to transgenically expressed proinsulin and the majority were rapidly deleted. A small proportion of transferred insulin-specific Tmem remained undeleted and these were antigen-unresponsive, exhibited reduced T cell receptor (TCR) expression and H-2Kd/insB15-23 tetramer binding and expressed co-inhibitory molecules. Expression of proinsulin in antigen-presenting cells also abolished the diabetogenic capacity of CD8+ effector T cells. Therefore, destructive insulin-specific CD8+ T cells are effectively inactivated by enforced proinsulin expression despite tolerance defects that exist in diabetes-prone NOD mice. These findings have important implications in developing immunotherapeutic approaches to T1D and other T-cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Peta Ls Reeves
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Rajeev Rudraraju
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Xiao Liu
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - F Susan Wong
- Institute of Molecular &Experimental Medicine, Cardiff University School of Medicine, Cardiff, Wales
| | | | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Reduced interleukin-2 responsiveness impairs the ability of Treg cells to compete for IL-2 in nonobese diabetic mice. Immunol Cell Biol 2016; 94:509-19. [PMID: 26763864 DOI: 10.1038/icb.2016.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/06/2016] [Accepted: 01/10/2015] [Indexed: 12/11/2022]
Abstract
Enhancement of regulatory T cell (Treg cell) frequency and function is the goal of many therapeutic strategies aimed at treating type 1 diabetes (T1D). The interleukin-2 (IL-2) pathway, which has been strongly implicated in T1D susceptibility in both humans and mice, is a master regulator of Treg cell homeostasis and function. We investigated how IL-2 pathway defects impact Treg cells in T1D-susceptible nonobese diabetic (NOD) mice in comparison with protected C57BL/6 and NOD congenic mice. NOD Treg cells were reduced in frequency specifically in the lymph nodes and expressed lower levels of CD25 and CD39/CD73 immunosuppressive molecules. In the spleen and blood, Treg cell frequency was preserved through expansion of CD25(low), effector phenotype Treg cells. Reduced CD25 expression led to decreased IL-2 signaling in NOD Treg cells. In vivo, treatment with IL-2-anti-IL-2 antibody complexes led to effective upregulation of suppressive molecules on NOD Treg cells in the spleen and blood, but had reduced efficacy on lymph node Treg cells. In contrast, NOD CD8(+) and CD4(+) effector T cells were not impaired in their response to IL-2 therapy. We conclude that NOD Treg cells have an impaired responsiveness to IL-2 that reduces their ability to compete for a limited supply of IL-2.
Collapse
|
8
|
Price JD, Tarbell KV. The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases. Front Immunol 2015; 6:288. [PMID: 26124756 PMCID: PMC4466467 DOI: 10.3389/fimmu.2015.00288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are four main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.
Collapse
Affiliation(s)
- Jeffrey D Price
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Kristin V Tarbell
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
9
|
Wakeland EK. Hunting Autoimmune Disease Genes in NOD: Early Steps on a Long Road to Somewhere Important (Hopefully). THE JOURNAL OF IMMUNOLOGY 2014; 193:3-6. [DOI: 10.4049/jimmunol.1401200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Kochupurakkal NM, Kruger AJ, Tripathi S, Zhu B, Adams LT, Rainbow DB, Rossini A, Greiner DL, Sayegh MH, Wicker LS, Guleria I. Blockade of the programmed death-1 (PD1) pathway undermines potent genetic protection from type 1 diabetes. PLoS One 2014; 9:e89561. [PMID: 24586872 PMCID: PMC3938467 DOI: 10.1371/journal.pone.0089561] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/22/2014] [Indexed: 01/07/2023] Open
Abstract
Aims/Hypothesis Inhibition of PD1-PDL1 signaling in NOD mice accelerates onset of type 1 diabetes implicating this pathway in suppressing the emergence of pancreatic beta cell reactive T-cells. However, the molecular mechanism by which PD1 signaling protects from type 1 diabetes is not clear. We hypothesized that differential susceptibility of Idd mouse strains to type 1 diabetes when challenged with anti PDL1 will identify genomic loci that collaborate with PD1 signaling in suppressing type 1 diabetes. Methods Anti PDL1 was administered to NOD and various Idd mouse strains at 10 weeks of age and onset of disease was monitored by measuring blood glucose levels. Additionally, histological evaluation of the pancreas was performed to determine degree of insulitis. Statistical analysis of the data was performed using Log-Rank and Student's t-test. Results Blockade of PDL1 rapidly precipitated type 1 diabetes in nearly all NOD Idd congenic strains tested, despite the fact that all are moderately (Idd5, Idd3 and Idd10/18) or highly (Idd3/10/18 and Idd9) protected from spontaneous type 1 diabetes by virtue of their protective Idd genes. Only the Idd3/5 strain, which is nearly 100% protected from spontaneous disease, remained normoglycemic following PDL1 blockade. Conclusions These results indicate that multiple Idd loci collaborate with PD1 signaling. Anti PDL1 treatment undermines a large portion of the genetic protection mediated by Idd genes in the NOD model of type 1 diabetes. Basal insulitis correlated with higher susceptibility to type 1 diabetes. These findings have important implications since the PD1 pathway is a target for immunotherapy.
Collapse
Affiliation(s)
- Nora M. Kochupurakkal
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Annie J. Kruger
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sudipta Tripathi
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Bing Zhu
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - La Tonya Adams
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Daniel B. Rainbow
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Aldo Rossini
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mohamed H. Sayegh
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Linda S. Wicker
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Indira Guleria
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hopp AK, Rupp A, Lukacs-Kornek V. Self-antigen presentation by dendritic cells in autoimmunity. Front Immunol 2014; 5:55. [PMID: 24592266 PMCID: PMC3923158 DOI: 10.3389/fimmu.2014.00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies.
Collapse
Affiliation(s)
- Ann-Katrin Hopp
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Anne Rupp
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | | |
Collapse
|
12
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
13
|
Gardner JM, Metzger TC, McMahon EJ, Au-Yeung BB, Krawisz AK, Lu W, Price JD, Johannes KP, Satpathy AT, Murphy KM, Tarbell KV, Weiss A, Anderson MS. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4⁺ T cells. Immunity 2013; 39:560-72. [PMID: 23993652 PMCID: PMC3804105 DOI: 10.1016/j.immuni.2013.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/18/2013] [Indexed: 01/04/2023]
Abstract
The autoimmune regulator (Aire) is essential for prevention of autoimmunity; its role is best understood in the thymus, where it promotes self-tolerance through tissue-specific antigen (TSA) expression. Recently, extrathymic Aire-expressing cells (eTACs) have been described in murine secondary lymphoid organs, but the identity of such cells and their role in immune tolerance remains unclear. Here we have shown that eTACs are a discrete major histocompatibility complex class II (MHC II)(hi), CD80(lo), CD86(lo), epithelial cell adhesion molecule (EpCAM)(hi), CD45(lo) bone marrow-derived peripheral antigen-presenting cell (APC) population. We also have demonstrated that eTACs can functionally inactivate CD4⁺ T cells through a mechanism that does not require regulatory T cells (Treg) and is resistant to innate inflammatory stimuli. Together, these findings further define eTACs as a distinct tolerogenic cell population in secondary lymphoid organs.
Collapse
Affiliation(s)
- James M Gardner
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0540, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143-0540, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hamilton-Williams EE, Rainbow DB, Cheung J, Christensen M, Lyons PA, Peterson LB, Steward CA, Sherman LA, Wicker LS. Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity. Mamm Genome 2013; 24:358-75. [PMID: 23934554 PMCID: PMC3824839 DOI: 10.1007/s00335-013-9466-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/02/2013] [Indexed: 12/01/2022]
Abstract
Nonobese diabetic (NOD) mice congenic for C57BL/10 (B10)-derived genes in the Idd9 region of chromosome 4 are highly protected from type 1 diabetes (T1D). Idd9 has been divided into three protective subregions (Idd9.1, 9.2, and 9.3), each of which partially prevents disease. In this study we have fine-mapped the Idd9.1 and Idd9.2 regions, revealing further genetic complexity with at least two additional subregions contributing to protection from T1D. Using the NOD sequence from bacterial artificial chromosome clones of the Idd9.1 and Idd9.2 regions as well as whole-genome sequence data recently made available, sequence polymorphisms within the regions highlight a high degree of polymorphism between the NOD and B10 strains in the Idd9 regions. Among numerous candidate genes are several with immunological importance. The Idd9.1 region has been separated into Idd9.1 and Idd9.4, with Lck remaining a candidate gene within Idd9.1. One of the Idd9.2 regions contains the candidate genes Masp2 (encoding mannan-binding lectin serine peptidase 2) and Mtor (encoding mammalian target of rapamycin). From mRNA expression analyses, we have also identified several other differentially expressed candidate genes within the Idd9.1 and Idd9.2 regions. These findings highlight that multiple, relatively small genetic effects combine and interact to produce significant changes in immune tolerance and diabetes onset.
Collapse
Affiliation(s)
- Emma E Hamilton-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin X, Hamilton-Williams EE, Rainbow DB, Hunter KM, Dai YD, Cheung J, Peterson LB, Wicker LS, Sherman LA. Genetic interactions among Idd3, Idd5.1, Idd5.2, and Idd5.3 protective loci in the nonobese diabetic mouse model of type 1 diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3109-20. [PMID: 23427248 PMCID: PMC3608810 DOI: 10.4049/jimmunol.1203422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the NOD mouse model of type 1 diabetes, insulin-dependent diabetes (Idd) loci control the development of insulitis and diabetes. Independently, protective alleles of Idd3/Il2 or Idd5 are able to partially protect congenic NOD mice from insulitis and diabetes, and to partially tolerize islet-specific CD8(+) T cells. However, when the two regions are combined, mice are almost completely protected, strongly suggesting the existence of genetic interactions between the two loci. Idd5 contains at least three protective subregions/causative gene candidates, Idd5.1/Ctla4, Idd5.2/Slc11a1, and Idd5.3/Acadl, yet it is unknown which of them interacts with Idd3/Il2. Through the use of a series of novel congenic strains containing the Idd3/Il2 region and different combinations of Idd5 subregion(s), we defined these genetic interactions. The combination of Idd3/Il2 and Idd5.3/Acadl was able to provide nearly complete protection from type 1 diabetes, but all three Idd5 subregions were required to protect from insulitis and fully restore self-tolerance. By backcrossing a Slc11a1 knockout allele onto the NOD genetic background, we have demonstrated that Slc11a1 is responsible for the diabetes protection resulting from Idd5.2. We also used Slc11a1 knockout-SCID and Idd5.2-SCID mice to show that both loss-of-function alleles provide protection from insulitis when expressed on the SCID host alone. These results lend further support to the hypothesis that Slc11a1 is Idd5.2.
Collapse
Affiliation(s)
- Xiaotian Lin
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Emma E. Hamilton-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Daniel B Rainbow
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Kara M. Hunter
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Yang D. Dai
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, CA 92037
| | - Jocelyn Cheung
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | | | - Linda S. Wicker
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Linda A. Sherman
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
16
|
Al-Adra DP, Pawlick R, Shapiro AMJ, Anderson CC. Targeting cells causing split tolerance allows fully allogeneic islet survival with minimal conditioning in NOD mixed chimeras. Am J Transplant 2012; 12:3235-45. [PMID: 22974315 DOI: 10.1111/j.1600-6143.2012.04260.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Donor-specific tolerance induced by mixed chimerism is one approach that may eliminate the need for long-term immunosuppressive therapy, while preventing chronic rejection of an islet transplant. However, even in the presence of chimerism it is possible for certain donor tissues or cells to be rejected whereas others from the same donor are accepted (split tolerance). We previously developed a nonmyeloablative protocol that generated mixed chimerism across full major histocompatability complex plus minor mismatches in NOD (nonobese diabetic) mice, however, these chimeras demonstrated split tolerance. In this study, we used radiation chimeras and found that the radiosensitive component of NOD has a greater role in the split tolerance NOD mice develop. We then show that split tolerance is mediated primarily by preexisting NOD lymphocytes and have identified T cells, but not NK cells or B cells, as cells that both resist chimerism induction and mediate split tolerance. Finally, after recognizing the barrier that preexisting T cells impose on the generation of fully tolerant chimeras, the chimerism induction protocol was refined to include nonmyeloablative recipient NOD T cell depletion which generated long-term mixed chimerism across fully allogeneic barriers. Furthermore, these chimeric NOD mice are immunocompetent, diabetes free and accept donor islet allografts.
Collapse
Affiliation(s)
- D P Al-Adra
- Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
17
|
Zanoni I, Granucci F. Regulation and dysregulation of innate immunity by NFAT signaling downstream of pattern recognition receptors (PRRs). Eur J Immunol 2012; 42:1924-31. [PMID: 22706795 DOI: 10.1002/eji.201242580] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Innate immunity is the most ancient form of response to pathogens and it relies on evolutionary conserved signaling pathways, i.e. those involving the NF-κB pathway. Nevertheless, increasing evidence suggests that factors that have appeared more recently in evolution, such as the nuclear factor of activated T-cell transcription factor family (NFATc), also contribute to innate immune-response regulation in vertebrates. Exposure to inflammatory stimuli induces the activation of NFATc factors in innate immune cells, including conventional dendritic cells (DCs), granulocytes, mast cells and under pathological circumstances, also macrophages. While the evolutionary conserved functions of innate immunity, such as direct microbial killing and interferon production, are expected to be NFATc independent, other aspects of innate immunity, including collaboration with adaptive immunity and mechanisms to limit the tissue damage generated by the inflammatory process, are presumably controlled by NFATc members in collaboration with other transcription factors. In this article, we discuss the recent advances regarding the role of the NFATc signaling pathway in regulating DC, neutrophil and macrophage responses to specific inflammatory stimuli, including lipopolysaccharide and β-glucan-bearing microorganisms. We also discuss how NFATc signaling influences the interactions of myeloid cells with lymphocytes.
Collapse
Affiliation(s)
- Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
18
|
Kachapati K, Adams DE, Wu Y, Steward CA, Rainbow DB, Wicker LS, Mittler RS, Ridgway WM. The B10 Idd9.3 locus mediates accumulation of functionally superior CD137(+) regulatory T cells in the nonobese diabetic type 1 diabetes model. THE JOURNAL OF IMMUNOLOGY 2012; 189:5001-15. [PMID: 23066155 DOI: 10.4049/jimmunol.1101013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD137 is a T cell costimulatory molecule encoded by the prime candidate gene (designated Tnfrsf9) in NOD.B10 Idd9.3 congenic mice protected from type 1 diabetes (T1D). NOD T cells show decreased CD137-mediated T cell signaling compared with NOD.B10 Idd9.3 T cells, but it has been unclear how this decreased CD137 T cell signaling could mediate susceptibility to T1D. We and others have shown that a subset of regulatory T cells (Tregs) constitutively expresses CD137 (whereas effector T cells do not, and only express CD137 briefly after activation). In this study, we show that the B10 Idd9.3 region intrinsically contributes to accumulation of CD137(+) Tregs with age. NOD.B10 Idd9.3 mice showed significantly increased percentages and numbers of CD137(+) peripheral Tregs compared with NOD mice. Moreover, Tregs expressing the B10 Idd9.3 region preferentially accumulated in mixed bone marrow chimeric mice reconstituted with allotypically marked NOD and NOD.B10 Idd9.3 bone marrow. We demonstrate a possible significance of increased numbers of CD137(+) Tregs by showing functional superiority of FACS-purified CD137(+) Tregs in vitro compared with CD137(-) Tregs in T cell-suppression assays. Increased functional suppression was also associated with increased production of the alternatively spliced CD137 isoform, soluble CD137, which has been shown to suppress T cell proliferation. We show for the first time, to our knowledge, that CD137(+) Tregs are the primary cellular source of soluble CD137. NOD.B10 Idd9.3 mice showed significantly increased serum soluble CD137 compared with NOD mice with age, consistent with their increased numbers of CD137(+) Tregs with age. These studies demonstrate the importance of CD137(+) Tregs in T1D and offer a new hypothesis for how the NOD Idd9.3 region could act to increase T1D susceptibility.
Collapse
Affiliation(s)
- Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Stolp J, Chen YG, Cox SL, Henck V, Zhang W, Tsaih SW, Chapman H, Stearns T, Serreze DV, Silveira PA. Subcongenic analyses reveal complex interactions between distal chromosome 4 genes controlling diabetogenic B cells and CD4 T cells in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:1406-17. [PMID: 22732593 DOI: 10.4049/jimmunol.1200120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Autoimmune type 1 diabetes (T1D) in humans and NOD mice results from interactions between multiple susceptibility genes (termed Idd) located within and outside the MHC. Despite sharing ∼88% of their genome with NOD mice, including the H2(g7) MHC haplotype and other important Idd genes, the closely related nonobese resistant (NOR) strain fails to develop T1D because of resistance alleles in residual genomic regions derived from C57BLKS mice mapping to chromosomes (Chr.) 1, 2, and 4. We previously produced a NOD background strain with a greatly decreased incidence of T1D as the result of a NOR-derived 44.31-Mb congenic region on distal Chr. 4 containing disease-resistance alleles that decrease the pathogenic activity of autoreactive B and CD4 T cells. In this study, a series of subcongenic strains for the NOR-derived Chr. 4 region was used to significantly refine genetic loci regulating diabetogenic B and CD4 T cell activity. Analyses of these subcongenic strains revealed the presence of at least two NOR-origin T1D resistance genes within this region. A 6.22-Mb region between rs13477999 and D4Mit32, not previously known to contain a locus affecting T1D susceptibility and now designated Idd25, was found to contain the main NOR gene(s) dampening diabetogenic B cell activity, with Ephb2 and/or Padi2 being strong candidates as the causal variants. Penetrance of this Idd25 effect was influenced by genes in surrounding regions controlling B cell responsiveness and anergy induction. Conversely, the gene(s) controlling pathogenic CD4 T cell activity was mapped to a more proximal 24.26-Mb region between the rs3674285 and D4Mit203 markers.
Collapse
Affiliation(s)
- Jessica Stolp
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hamilton-Williams EE, Cheung J, Rainbow DB, Hunter KM, Wicker LS, Sherman LA. Cellular mechanisms of restored β-cell tolerance mediated by protective alleles of Idd3 and Idd5. Diabetes 2012; 61:166-74. [PMID: 22106155 PMCID: PMC3237671 DOI: 10.2337/db11-0790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes genes within the interleukin (IL)-2, cytotoxic T-lymphocyte--associated protein 4 (CTLA-4), and natural resistance-associated macrophage protein (NRAMP1) pathways influence development of autoimmune diabetes in humans and NOD mice. In NOD mice, when present together, protective alleles encoding IL-2, Idd3 candidate gene, CTLA-4, NRAMP1, and acetyl-coenzyme A dehydrogenase, long-chain (ACADL) (candidate genes for the Idd5.1, Idd5.2, and Idd5.3 subregions) provide nearly complete diabetes protection. To define where the protective alleles of Idd3 and the Idd5 subregions must be present to protect from diabetes and tolerize islet-specific CD8(+) T cells, SCID mice were reconstituted so that the host and lymphocytes expressed various combinations of protective and susceptibility alleles at Idd3 and Idd5. Although protective Idd3 alleles in the lymphocytes and protective Idd5 alleles in the SCID host contributed most significantly to CD8 tolerance, both were required together in both lymphocyte and nonlymphocyte cells to recapitulate the potent diabetes protection observed in intact Idd3/5 mice. We conclude that genetic regions involved in autoimmune disease are not restricted in their influence to individual cell types. Even a single protective gene product, such as IL-2, must be expressed in both the lymphocytes and dendritic cells to exert its full extent of disease protection. These studies highlight the pleiotropic effects of genes that determine autoimmune disease susceptibility.
Collapse
Affiliation(s)
- Emma E. Hamilton-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California
| | - Jocelyn Cheung
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California
| | - Daniel B. Rainbow
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Kara M. Hunter
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Linda S. Wicker
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Linda A. Sherman
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California
- Corresponding author: Linda A. Sherman,
| |
Collapse
|
21
|
Mohammed JP, Fusakio ME, Rainbow DB, Moule C, Fraser HI, Clark J, Todd JA, Peterson LB, Savage PB, Wills-Karp M, Ridgway WM, Wicker LS, Mattner J. Identification of Cd101 as a susceptibility gene for Novosphingobium aromaticivorans-induced liver autoimmunity. THE JOURNAL OF IMMUNOLOGY 2011; 187:337-49. [PMID: 21613619 DOI: 10.4049/jimmunol.1003525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Environmental and genetic factors define the susceptibility of an individual to autoimmune disease. Although common genetic pathways affect general immunological tolerance mechanisms in autoimmunity, the effects of such genes could vary under distinct immune challenges within different tissues. In this study, we demonstrate this by observing that autoimmune type 1 diabetes-protective haplotypes at the insulin-dependent diabetes susceptibility region 10 (Idd10) introgressed from chromosome 3 of C57BL/6 (B6) and A/J mice onto the NOD background increase the severity of autoimmune primary biliary cirrhosis induced by infection with Novosphingobium aromaticivorans, a ubiquitous alphaproteobacterium, when compared with mice having the NOD and NOD.CAST Idd10 type 1 diabetes-susceptible haplotypes. Substantially increased liver pathology in mice having the B6 and A/J Idd10 haplotypes correlates with reduced expression of CD101 on dendritic cells, macrophages, and granulocytes following infection, delayed clearance of N. aromaticivorans, and the promotion of overzealous IFN-γ- and IL-17-dominated T cell responses essential for the adoptive transfer of liver lesions. CD101-knockout mice generated on the B6 background also exhibit substantially more severe N. aromaticivorans-induced liver disease correlating with increased IFN-γ and IL-17 responses compared with wild-type mice. These data strongly support the hypothesis that allelic variation of the Cd101 gene, located in the Idd10 region, alters the severity of liver autoimmunity induced by N. aromaticivorans.
Collapse
Affiliation(s)
- Javid P Mohammed
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Goudy KS, Johnson MC, Garland A, Li C, Samulski RJ, Wang B, Tisch R. Reduced IL-2 expression in NOD mice leads to a temporal increase in CD62Llo FoxP3+ CD4+ T cells with limited suppressor activity. Eur J Immunol 2011; 41:1480-1490. [PMID: 21469091 PMCID: PMC3805504 DOI: 10.1002/eji.201040890] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 01/14/2011] [Accepted: 02/11/2011] [Indexed: 12/18/2022]
Abstract
IL-2 plays a critical role in the induction and maintenance of FoxP3-expressing regulatory T cells (FoxP3(+) Tregs). Reduced expression of IL-2 is linked to T-cell-mediated autoimmune diseases such as type 1 diabetes (T1D), in which an imbalance between FoxP3(+) Tregs and pathogenic T effectors exists. We investigated the contribution of IL-2 to dysregulation of FoxP3(+) Tregs by comparing wildtype NOD mice with animals congenic for a C57BL/6-derived disease-resistant Il2 allele and in which T-cell secretion of IL-2 is increased (NOD.B6Idd3). Although NOD mice exhibited a progressive decline in the frequency of CD62L(hi) FoxP3(+) Tregs due to an increase in CD62L(lo) FoxP3(+) Tregs, CD62L(hi) FoxP3(+) Tregs were maintained in the pancreatic lymph nodes and islets of NOD.B6Idd3 mice. Notably, the frequency of proliferating CD62L(hi) FoxP3(+) Tregs was elevated in the islets of NOD.B6Idd3 versus NOD mice. Increasing levels of IL-2 in vivo also resulted in larger numbers of CD62L(hi) FoxP3(+) Tregs in NOD mice. These results demonstrate that IL-2 influences the suppressor activity of the FoxP3(+) Tregs pool by regulating the balance between CD62L(lo) and CD62L(hi) FoxP3(+) Tregs. In NOD mice, reduced IL-2 expression leads to an increase in nonsuppressive CD62L(lo) FoxP3(+) Tregs, which in turn correlates with a pool of CD62L(hi) FoxP3(+) Tregs with limited proliferation.
Collapse
Affiliation(s)
- Kevin S Goudy
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Mark C Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Alaina Garland
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Richard J Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Racine J, Wang M, Zhang C, Lin CL, Liu H, Todorov I, Atkinson M, Zeng D. Induction of mixed chimerism with MHC-mismatched but not matched bone marrow transplants results in thymic deletion of host-type autoreactive T-cells in NOD mice. Diabetes 2011; 60:555-64. [PMID: 21270266 PMCID: PMC3028355 DOI: 10.2337/db10-0827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Induction of mixed or complete chimerism via hematopoietic cell transplantation (HCT) from nonautoimmune donors could prevent or reverse type 1 diabetes (T1D). In clinical settings, HLA-matched HCT is preferred to facilitate engraftment and reduce the risk for graft versus host disease (GVHD). Yet autoimmune T1D susceptibility is associated with certain HLA types. Therefore, we tested whether induction of mixed chimerism with major histocompatibility complex (MHC)-matched donors could reverse autoimmunity in the NOD mouse model of T1D. RESEARCH DESIGN AND METHODS Prediabetic wild-type or transgenic BDC2.5 NOD mice were conditioned with a radiation-free GVHD preventative anti-CD3/CD8 conditioning regimen and transplanted with bone marrow (BM) from MHC-matched or mismatched donors to induce mixed or complete chimerism. T1D development and thymic deletion of host-type autoreactive T-cells in the chimeric recipients were evaluated. RESULTS Induction of mixed chimerism with MHC-matched nonautoimmune donor BM transplants did not prevent T1D in wild-type NOD mice, although induction of complete chimerism did prevent the disease. However, induction of either mixed or complete chimerism with MHC-mismatched BM transplants prevented T1D in such mice. Furthermore, induction of mixed chimerism in transgenic BDC2.5-NOD mice with MHC-matched or -mismatched MHC II(-/-) BM transplants failed to induce thymic deletion of de novo developed host-type autoreactive T-cells, whereas induction of mixed chimerism with mismatched BM transplants did. CONCLUSIONS Induction of mixed chimerism with MHC-mismatched, but not matched, donor BM transplants re-establishes thymic deletion of host-type autoreactive T-cells and prevents T1D, with donor antigen-presenting cell expression of mismatched MHC II molecules being required.
Collapse
Affiliation(s)
- Jeremy Racine
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Miao Wang
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Chunyan Zhang
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Chia-Lei Lin
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Hongjun Liu
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Ivan Todorov
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
| | - Mark Atkinson
- Department of Pathology, University of Florida, Gainesville, Florida
| | - Defu Zeng
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
- Corresponding author: Defu Zeng,
| |
Collapse
|
24
|
Interleukin-2 inhibits FMS-like tyrosine kinase 3 receptor ligand (flt3L)-dependent development and function of conventional and plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 2011; 108:2408-13. [PMID: 21262836 DOI: 10.1073/pnas.1009738108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Steady-state development of plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs) requires the ligand for FMS-like tyrosine kinase 3 receptor (flt3L), but little is known about how other cytokines may also control this process. In this study, we show that IL-2 inhibits the development of both pDCs and cDCs from bone marrow cells under flt3L stimulation, by acting on lineage(-) flt3(+) precursors. This inhibition of DC development by IL-2 requires IL-2Rα and IL2Rβ. IL-2Rα is specifically expressed in one stage of the DC precursor: the monocyte and DC progenitors (MDPs). Furthermore, more MDPs are found in flt3L-stimulated bone marrow cultures when IL-2 is present, suggesting that IL-2 may be inhibiting DC development at the MDP stage. Consistent with our in vitro findings, we observe that nonobese diabetic (NOD) mice, which express less IL-2 compared with diabetes-resistant NOD.Idd3/5 mice, have more splenic pDCs. Additionally, DCs developed in vitro in the presence of flt3L and IL-2 display reduced ability to stimulate T-cell proliferation compared with DCs developed in the presence of flt3L alone. Although the addition of IL-2 does not increase the apoptosis of DCs during their development, DCs developed in the presence of IL-2 are more prone to apoptosis upon interaction with T cells. Together our data show that IL-2 can inhibit both the development and the function of DCs. This pathway may have implications for the loss of immune tolerance: Reduced IL-2 signaling may lead to increased DC number and T-cell stimulatory capacity.
Collapse
|
25
|
Sgouroudis E, Kornete M, Piccirillo CA. IL-2 production by dendritic cells promotes Foxp3(+) regulatory T-cell expansion in autoimmune-resistant NOD congenic mice. Autoimmunity 2011; 44:406-14. [PMID: 21244339 DOI: 10.3109/08916934.2010.536795] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Il2 allelic variation in non-obese diabetic mice imparts marked resistance to type 1 diabetes. IL-2 is pivotal for the fitness and homeostasis of Foxp3(+) regulatory T (T(reg)) cells, and the Idd3(B6) locus augments IL-2 production by effector T cells, which in turn enhances the potency of T(reg) cell functions. Given the important role dendritic cells (DCs) play in T(reg) cell-mediated tolerance induction, we hypothesized that DCs from Idd3(B6) congenic mice contribute to increased T(reg) cell activity. Here, we observed that CD11c(+) DCs, harboring protective Idd3(B6) genes, are endowed with the capacity to secrete IL-2, enabling them to preferentially promote T(reg) cell functions in vitro and in vivo. Our results show that Il2 gene variation may imprint DCs to favor T-cell regulation of autoimmunity.
Collapse
Affiliation(s)
- Evridiki Sgouroudis
- Departments of Microbiology & Immunology and Medicine, FOCIS Center of Excellence, McGill University and Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | | | | |
Collapse
|
26
|
Lukacs-Kornek V, Turley SJ. Self-antigen presentation by dendritic cells and lymphoid stroma and its implications for autoimmunity. Curr Opin Immunol 2010; 23:138-45. [PMID: 21168318 DOI: 10.1016/j.coi.2010.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/10/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022]
Abstract
The induction and maintenance of T cell tolerance is essential to prevent autoimmunity. A combination of central and peripheral mechanisms acts to control autoreactive T cells. In secondary lymphoid organs, dendritic cells (DCs) presenting self-antigen were thought to play a major role in the induction of peripheral T cell tolerance. Multiple recent studies have demonstrated that DCs are not absolutely essential to induce and maintain tolerance. Furthermore, it has also been recently shown that non-hematopoietic stromal cells expressing peripheral tissue-restricted antigens can induce T cell tolerance, independently of DCs. Together these studies imply that peripheral tolerance is more complex than previously thought and a consequence of the tolerogenic functions of the hematopoietic and non-hematopoietic compartments within secondary lymphoid organs.
Collapse
|
27
|
Zanoni I, Granucci F. The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity 2010; 44:23-32. [PMID: 20670116 DOI: 10.3109/08916931003782148] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The induction and maintenance of T-cell tolerance to tissue antigens is essential to prevent autoimmunity. Combinations of central and peripheral mechanisms act in parallel to inactivated, eliminated or control autoreactive T cells. Both centrally and peripherally, a key requirement for self-tolerance is the presentation of self-antigens in a correct context. There is now evidence to suggest that dendritic cells (DCs) play a fundamental role in the development of central and peripheral tolerance. In this review, we summarize recent progress toward the definition of the multiple roles of DCs in these processes. We will also discuss the association between defects in the DC compartment and the development of autoimmune responses, with particular reference to DC deregulation in the context of type I diabetes.
Collapse
Affiliation(s)
- Ivan Zanoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | |
Collapse
|
28
|
Abstract
Cross-priming is an important mechanism to activate cytotoxic T lymphocytes (CTLs) for immune defence against viruses and tumours. Although it was discovered more than 25 years ago, we have only recently gained insight into the underlying cellular and molecular mechanisms, and we are just beginning to understand its physiological importance in health and disease. Here we summarize current concepts on the cross-talk between the immune cells involved in CTL cross-priming and on its role in antimicrobial and antitumour defence, as well as in immune-mediated diseases.
Collapse
|
29
|
Hamilton-Williams EE, Wong SJ, Martinez X, Rainbow DB, Hunter KM, Wicker LS, Sherman LA. Idd9.2 and Idd9.3 protective alleles function in CD4+ T-cells and nonlymphoid cells to prevent expansion of pathogenic islet-specific CD8+ T-cells. Diabetes 2010; 59:1478-86. [PMID: 20299469 PMCID: PMC2874709 DOI: 10.2337/db09-1801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Multiple type 1 diabetes susceptibility genes have now been identified in both humans and mice, yet mechanistic understanding of how they impact disease pathogenesis is still minimal. We have sought to dissect the cellular basis for how the highly protective mouse Idd9 region limits the expansion of autoreactive CD8(+) T-cells, a key cell type in destruction of the islets. RESEARCH DESIGN AND METHODS We assess the endogenous CD8(+) T-cell repertoire for reactivity to the islet antigen glucose-6-phosphatase-related protein (IGRP). Through the use of adoptively transferred T-cells, bone marrow chimeras, and reconstituted severe combined immunodeficient mice, we identify the protective cell types involved. RESULTS IGRP-specific CD8(+) T-cells are present at low frequency in the insulitic lesions of Idd9 mice and could not be recalled in the periphery by viral expansion. We show that Idd9 genes act extrinsically to the CD8(+) T-cell to prevent the massive expansion of pathogenic effectors near the time of disease onset that occurs in NOD mice. The subregions Idd9.2 and Idd9.3 mediated this effect. Interestingly, the Idd9.1 region, which provides significant protection from disease, did not prevent the expansion of autoreactive CD8(+) T-cells. Expression of Idd9 genes was required by both CD4(+) T-cells and a nonlymphoid cell to induce optimal tolerance. CONCLUSIONS Idd9 protective alleles are associated with reduced expansion of IGRP-specific CD8(+) T-cells. Intrinsic expression of protective Idd9 alleles in CD4(+) T-cells and nonlymphoid cells is required to achieve an optimal level of tolerance. Protective alleles in the Idd9.2 congenic subregion are required for the maximal reduction of islet-specific CD8(+) T-cells.
Collapse
Affiliation(s)
- Emma E. Hamilton-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California; and
| | - S.B. Justin Wong
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California; and
| | - Xavier Martinez
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California; and
| | - Daniel B. Rainbow
- Juveniles Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Kara M. Hunter
- Juveniles Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Linda S. Wicker
- Juveniles Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Linda A. Sherman
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California; and
- Corresponding author: Linda A. Sherman,
| |
Collapse
|
30
|
Karumuthil-Melethil S, Perez N, Li R, Prabhakar BS, Holterman MJ, Vasu C. Dendritic cell-directed CTLA-4 engagement during pancreatic beta cell antigen presentation delays type 1 diabetes. THE JOURNAL OF IMMUNOLOGY 2010; 184:6695-708. [PMID: 20483724 DOI: 10.4049/jimmunol.0903130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The levels of expression of alternatively spliced variants of CTLA-4 and insufficient CTLA-4 signaling have been implicated in type 1 diabetes. Hence, we hypothesized that increasing CTLA-4-specific ligand strength on autoantigen-presenting dendritic cells (DCs) can enhance ligation of CTLA-4 on T cells and lead to modulation of autoreactive T cell response. In this study, we show that DC-directed enhanced CTLA-4 engagement upon pancreatic beta cell Ag presentation results in the suppression of autoreactive T cell response in NOD mice. The T cells from prediabetic NOD mice treated with an agonistic anti-CTLA-4 Ab-coated DC (anti-CTLA-4-Ab DC) showed significantly less proliferative response and enhanced IL-10 and TGF-beta1 production upon exposure to beta cell Ags. Furthermore, these mice showed increased frequency of Foxp3+ and IL-10+ T cells, less severe insulitis, and a significant delay in the onset of hyperglycemia compared with mice treated with control Ab-coated DCs. Further analyses showed that diabetogenic T cell function was modulated primarily through the induction of Foxp3 and IL-10 expression upon Ag presentation by anti-CTLA-4-Ab DCs. The induction of Foxp3 and IL-10 expression appeared to be a consequence of increased TGF-beta1 production by T cells activated using anti-CTLA-4-Ab DCs, and this effect could be enhanced by the addition of exogenous IL-2 or TGF-beta1. Collectively, this study demonstrates the potential of a DC-directed CTLA-4 engagement approach not only in treating autoimmunity in type 1 diabetes, but also in altering diabetogenic T cell function ex vivo for therapy.
Collapse
Affiliation(s)
- Subha Karumuthil-Melethil
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
31
|
Mukherjee G, Dilorenzo TP. The immunotherapeutic potential of dendritic cells in type 1 diabetes. Clin Exp Immunol 2010; 161:197-207. [PMID: 20491789 DOI: 10.1111/j.1365-2249.2010.04157.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease characterized by destruction of the pancreatic islet beta cells that is mediated primarily by T cells specific for beta cell antigens. Insulin administration prolongs the life of affected individuals, but often fails to prevent the serious complications that decrease quality of life and result in significant morbidity and mortality. Thus, new strategies for the prevention and treatment of this disease are warranted. Given the important role of dendritic cells (DCs) in the establishment of peripheral T cell tolerance, DC-based strategies are a rational and exciting avenue of exploration. DCs employ a diverse arsenal to maintain tolerance, including the induction of T cell deletion or anergy and the generation and expansion of regulatory T cell populations. Here we review DC-based immunotherapeutic approaches to type 1 diabetes, most of which have been employed in non-obese diabetic (NOD) mice or other murine models of the disease. These strategies include administration of in vitro-generated DCs, deliberate exposure of DCs to antigens before transfer and the targeting of antigens to DCs in vivo. Although remarkable results have often been obtained in these model systems, the challenge now is to translate DC-based immunotherapeutic strategies to humans, while at the same time minimizing the potential for global immunosuppression or exacerbation of autoimmune responses. In this review, we have devoted considerable attention to antigen-specific DC-based approaches, as results from murine models suggest that they have the potential to result in regulatory T cell populations capable of both preventing and reversing type 1 diabetes.
Collapse
Affiliation(s)
- G Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
32
|
Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 2010; 33:67-87. [DOI: 10.1007/s00281-010-0204-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 01/12/2023]
|
33
|
Fraser HI, Dendrou CA, Healy B, Rainbow DB, Howlett S, Smink LJ, Gregory S, Steward CA, Todd JA, Peterson LB, Wicker LS. Nonobese diabetic congenic strain analysis of autoimmune diabetes reveals genetic complexity of the Idd18 locus and identifies Vav3 as a candidate gene. THE JOURNAL OF IMMUNOLOGY 2010; 184:5075-84. [PMID: 20363978 DOI: 10.4049/jimmunol.0903734] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have used the public sequencing and annotation of the mouse genome to delimit the previously resolved type 1 diabetes (T1D) insulin-dependent diabetes (Idd)18 interval to a region on chromosome 3 that includes the immunologically relevant candidate gene, Vav3. To test the candidacy of Vav3, we developed a novel congenic strain that enabled the resolution of Idd18 to a 604-kb interval, designated Idd18.1, which contains only two annotated genes: the complete sequence of Vav3 and the last exon of the gene encoding NETRIN G1, Ntng1. Targeted sequencing of Idd18.1 in the NOD mouse strain revealed that allelic variation between NOD and C57BL/6J (B6) occurs in noncoding regions with 138 single nucleotide polymorphisms concentrated in the introns between exons 20 and 27 and immediately after the 3' untranslated region. We observed differential expression of VAV3 RNA transcripts in thymocytes when comparing congenic mouse strains with B6 or NOD alleles at Idd18.1. The T1D protection associated with B6 alleles of Idd18.1/Vav3 requires the presence of B6 protective alleles at Idd3, which are correlated with increased IL-2 production and regulatory T cell function. In the absence of B6 protective alleles at Idd3, we detected a second T1D protective B6 locus, Idd18.3, which is closely linked to, but distinct from, Idd18.1. Therefore, genetic mapping, sequencing, and gene expression evidence indicate that alteration of VAV3 expression is an etiological factor in the development of autoimmune beta-cell destruction in NOD mice. This study also demonstrates that a congenic strain mapping approach can isolate closely linked susceptibility genes.
Collapse
Affiliation(s)
- Heather I Fraser
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|