1
|
Chuensirikulchai K, Pata S, Laopajon W, Takheaw N, Kotemul K, Jindaphun K, Khummuang S, Kasinrerk W. Identification of different functions of CD8 + T cell subpopulations by a novel monoclonal antibody. Immunology 2024; 173:321-338. [PMID: 38922845 DOI: 10.1111/imm.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The explicit identification of CD8+ T cell subpopulation is important for deciphering the role of CD8+ T cells for protecting our body against invading pathogens and cancer. Our generated monoclonal antibody (mAb), named FE-1H10, recognized two novel subpopulations of peripheral blood CD8+ T cells, FE-1H10+ and FE-1H10- CD8+ T cells. The molecule recognized by mAb FE-1H10 (FE-1H10 molecules) had a higher distribution on effector memory CD8+ T cell subsets. The functions of FE-1H10- and FE-1H10+ CD8+ T cells were investigated. T cell proliferation assays revealed that FE-1H10- CD8+ T cells exhibited a higher proliferation rate than FE-1H10+ CD8+ T cells, whereas FE-1H10+ CD8+ T cells produced higher levels of IFN-γ and TNF-α than FE-1H10- CD8+ T cells. In T cell cytotoxicity assays, FE-1H10+ CD8+ T cells were able to kill target cells better than FE-1H10- CD8+ T cells. RNA-sequencing analysis confirmed that these subpopulations were distinct: FE-1H10+ CD8+ T cells have higher expression of genes involved in effector functions (IFNG, TNF, GZMB, PRF1, GNLY, FASL, CX3CR1) while FE-1H10- CD8+ T cells have greater expression of genes related to memory CD8+ T cell populations (CCR7, SELL, TCF7, CD40LG). The results suggested that mAb FE-1H10 identifies two novel distinctive CD8+ T cell subpopulations. The FE-1H10+ CD8+ T cells carried a superior functionality in response to tumour cells. The uncover of these novel CD8+ T cell subpopulations may be the basis knowledge of an optional immunotherapy for the selection of potential CD8+ T cells in cancer treatment.
Collapse
Affiliation(s)
| | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kamonporn Kotemul
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kanyaruck Jindaphun
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Saichit Khummuang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Interleukin 23 receptor: Expression and regulation in immune cells. Eur J Immunol 2024; 54:e2250348. [PMID: 37837262 DOI: 10.1002/eji.202250348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The importance of IL-23 and its specific receptor, IL-23R, in the pathogenesis of several chronic inflammatory diseases has been established, but the underlying pathological mechanisms are not fully understood. This review focuses on IL-23R expression and regulation in immune cells.
Collapse
Affiliation(s)
| | | | - Lars Rogge
- Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
3
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
4
|
Gerhardt L, Hong MMY, Yousefi Y, Figueredo R, Maleki Vareki S. IL-12 and IL-27 Promote CD39 Expression on CD8+ T Cells and Differentially Regulate the CD39+CD8+ T Cell Phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1598-1606. [PMID: 37000461 PMCID: PMC10152038 DOI: 10.4049/jimmunol.2200897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Tumor-specific CD8+ T cells are critical components of antitumor immunity; however, factors that modulate their phenotype and function have not been completely elucidated. Cytokines IL-12 and IL-27 have recognized roles in promoting CD8+ T cells' effector function and mediated antitumor responses. Tumor-specific CD8+ tumor-infiltrating lymphocytes (TILs) can be identified based on surface expression of CD39, whereas bystander CD8+ TILs do not express this enzyme. It is currently unclear how and why tumor-specific CD8+ T cells uniquely express CD39. Given the important roles of IL-12 and IL-27 in promoting CD8+ T cell functionality, we investigated whether these cytokines could modulate CD39 expression on these cells. Using in vitro stimulation assays, we identified that murine splenic CD8+ T cells differentially upregulate CD39 in the presence of IL-12 and IL-27. Subsequently, we assessed the exhaustion profile of IL-12- and IL-27-induced CD39+CD8+ T cells. Despite the greatest frequency of exhausted CD39+CD8+ T cells after activation with IL-12, as demonstrated by the coexpression of TIM-3+PD-1+LAG-3+ and reduced degranulation capacity, these cells retained the ability to produce IFN-γ. IL-27-induced CD39+CD8+ T cells expressed PD-1 but did not exhibit a terminally exhausted phenotype. IL-27 was able to attenuate IL-12-mediated inhibitory receptor expression on CD39+CD8+ T cells but did not rescue degranulation ability. Using an immunogenic neuro-2a mouse model, inhibiting IL-12 activity reduced CD39+CD8+ TIL frequency compared with controls without changing the overall CD8+ TIL frequency. These results provide insight into immune regulators of CD39 expression on CD8+ T cells and further highlight the differential impact of CD39-inducing factors on the phenotype and effector functions of CD8+ T cells.
Collapse
Affiliation(s)
- Lara Gerhardt
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Megan M. Y. Hong
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Yeganeh Yousefi
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Rene Figueredo
- Department of Oncology, Western University, London, Ontario, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Katarzyna PB, Wiktor S, Ewa D, Piotr L. Current treatment of systemic lupus erythematosus: a clinician's perspective. Rheumatol Int 2023:10.1007/s00296-023-05306-5. [PMID: 37171669 DOI: 10.1007/s00296-023-05306-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/04/2023] [Indexed: 05/13/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Its variable course makes it difficult to standardize patient treatment. This article aims at a literature review on available drugs for treating SLE and on drugs that have shown therapeutic effects in this disease. The PubMed/MEDLINE electronic search engine was used to identify relevant studies. This review presents the current therapeutic options, new biological therapies, and combination therapies of biologics with standard immunosuppressive and immunomodulating drugs. We have also underlined the importance to implement the treat-to-target strategy aimed at reducing or discontinuing therapy with glucocorticosteroids (GCs). The awareness of the benefits and risks of using GCs helps in refining their dosage and thereby obtaining a better safety profile. The advent of biological targeted therapies, and more recently, low-molecular-weight compounds such as kinase inhibitors, initiated numerous clinical trials in SLE patients and led to the approval of two biological drugs, belimumab, and anifrolumab, for SLE treatment. Progress in the treatment of SLE was reflected in the 2019 and 2021 recommendations of the European Alliance of Associations for Rheumatology (EULAR). However, a mass of recent clinical research data requires continuous consolidation to optimize patient outcomes.
Collapse
Affiliation(s)
- Pawlak-Buś Katarzyna
- Department of Internal Medicine, Poznań University of Medical Sciences, Poznań, Poland.
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Struś Municipal Hospital, Poznań, Poland.
| | - Schmidt Wiktor
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Struś Municipal Hospital, Poznań, Poland
- Doctoral School, Poznań University of Medical Sciences, Poznań, Poland
| | - Dudziec Ewa
- Department of Internal Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Leszczyński Piotr
- Department of Internal Medicine, Poznań University of Medical Sciences, Poznań, Poland
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Struś Municipal Hospital, Poznań, Poland
| |
Collapse
|
6
|
GM-CSF+ Tc17 cells are required to bolster vaccine immunity against lethal fungal pneumonia without causing overt pathology. Cell Rep 2022; 41:111543. [PMID: 36288707 PMCID: PMC9641983 DOI: 10.1016/j.celrep.2022.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
GM-CSF co-expressing T17 cells instigate pathologic inflammation during autoimmune disorders, but their function in immunity to infections is unclear. Here, we demonstrate the role of GM-CSF+Tc17 cells for vaccine immunity against lethal fungal pneumonia and the cytokine requirements for their induction and memory homeostasis. Vaccine-induced GM-CSF+ Tc17 cells are necessary to bolster pulmonary fungal immunity without inflating pathology. Although GM-CSF expressing Tc17 cells preferentially elevate during the memory phase, their phenotypic attributes strongly suggest they are more like Tc17 cells than IFNγ-producing Tc1 cells. IL-1 and IL-23, but not GM-CSF, are necessary to elicit GM-CSF+Tc17 cells following vaccination. IL-23 is dispensable for memory Tc17 and GM-CSF+ Tc17 cell maintenance, but recall responses of effector or memory Tc17 cells in the lung require it. Our study reveals the beneficial, nonpathological role of GM-CSF+ Tc17 cells during fungal vaccine immunity. GM-CSF+ and IL-17A+ lineages of T cells are instrumental in controlling many fungal and bacterial infections and implicated in autoimmune pathology, host-microbial interactions at the mucosal surfaces, and neuro-immune nexus. Mudalagiriyappa et al. show that GM-CSF expressing Tc17 cells are necessary for mediating fungal vaccine immunity without augmenting pathology.
Collapse
|
7
|
Casalegno Garduño R, Däbritz J. New Insights on CD8 + T Cells in Inflammatory Bowel Disease and Therapeutic Approaches. Front Immunol 2021; 12:738762. [PMID: 34707610 PMCID: PMC8542854 DOI: 10.3389/fimmu.2021.738762] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
CD8+ T cells are involved in the pathogenesis of inflammatory bowel disease (IBD), a complex multifactorial chronic disease. Here, we present an overview of the current research with the controversial findings of CD8+ T cell subsets and discuss some possible perspectives on their therapeutic value in IBD. Studies on the role of CD8+ T cells in IBD have contradictory outcomes, which might be related to the heterogeneity of the cells. Recent data suggest that cytotoxic CD8+ T cells (Tc1) and interleukin (IL) 17-producing CD8+ (Tc17) cells contribute to the pathogenesis of IBD. Moreover, subsets of regulatory CD8+ T cells are abundant at sites of inflammation and can exhibit pro-inflammatory features. Some subsets of tissue resident memory CD8+ T cells (Trm) might be immunosuppressant, whereas others might be pro-inflammatory. Lastly, exhausted T cells might indicate a positive outcome for patients. The function and plasticity of different subsets of CD8+ T cells in health and IBD remain to be further investigated in a challenging field due to the limited availability of mucosal samples and adequate controls.
Collapse
Affiliation(s)
- Rosaely Casalegno Garduño
- Mucosal Immunology Group, Department of Pediatrics, Rostock University Medical Center, Rostock, Germany
| | - Jan Däbritz
- Mucosal Immunology Group, Department of Pediatrics, Rostock University Medical Center, Rostock, Germany.,Center for Immunobiology, Blizard Institute, The Barts and the London School of Medicine and Dentistry, Queen Mary University, London, United Kingdom
| |
Collapse
|
8
|
Lack of Association between Serum Interleukin-23 and Interleukin-27 Levels and Disease Activity in Patients with Active Systemic Lupus Erythematosus. J Clin Med 2021; 10:jcm10204788. [PMID: 34682911 PMCID: PMC8537777 DOI: 10.3390/jcm10204788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by the production of multiple autoantibodies, resulting in tissue and organ damage. Recent studies have revealed that interleukin-23 (IL-23) and interleukin-27 (IL-27) may be therapeutically relevant in selected SLE manifestations. This study aimed to identify associations between serum IL-27 and IL-23 levels and disease activity in Polish patients with different manifestations of SLE: neuropsychiatric lupus (NPSLE), and lupus nephritis (LN). Associations between interleukin levels and oligo-specific antibodies against double-stranded DNA (dsDNA), dose of glucocorticoids, and type of treatment were also analyzed. An enzyme-linked immunosorbent assay was used to assess anti-dsDNA antibodies and analyze the serum concentration of IL-27 and IL-23 from 72 patients aged 19-74 years with confirmed active SLE. Disease activity was measured using the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI 2-K). No significant correlations between interleukin levels and SLEDAI score, anti-dsDNA, corticosteroid dose, or type of treatment were noted. Patients with NPSLE and LN presented the highest median scores of SLEDAI.
Collapse
|
9
|
Lv M, Chen M, Zhang R, Zhang W, Wang C, Zhang Y, Wei X, Guan Y, Liu J, Feng K, Jing M, Wang X, Liu YC, Mei Q, Han W, Jiang Z. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res 2020; 30:966-979. [PMID: 32839553 PMCID: PMC7785004 DOI: 10.1038/s41422-020-00395-4] [Citation(s) in RCA: 370] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
CD8+ T cell-mediated cancer clearance is often suppressed by the interaction between inhibitory molecules like PD-1 and PD-L1, an interaction acts like brakes to prevent T cell overreaction under normal conditions but is exploited by tumor cells to escape the immune surveillance. Immune checkpoint inhibitors have revolutionized cancer therapeutics by removing such brakes. Unfortunately, only a minority of cancer patients respond to immunotherapies presumably due to inadequate immunity. Antitumor immunity depends on the activation of the cGAS-STING pathway, as STING-deficient mice fail to stimulate tumor-infiltrating dendritic cells (DCs) to activate CD8+ T cells. STING agonists also enhance natural killer (NK) cells to mediate the clearance of CD8+ T cell-resistant tumors. Therefore STING agonists have been intensively sought after. We previously discovered that manganese (Mn) is indispensable for the host defense against cytosolic dsDNA by activating cGAS-STING. Here we report that Mn is also essential in innate immune sensing of tumors and enhances adaptive immune responses against tumors. Mn-insufficient mice had significantly enhanced tumor growth and metastasis, with greatly reduced tumor-infiltrating CD8+ T cells. Mechanically, Mn2+ promoted DC and macrophage maturation and tumor-specific antigen presentation, augmented CD8+ T cell differentiation, activation and NK cell activation, and increased memory CD8+ T cells. Combining Mn2+ with immune checkpoint inhibition synergistically boosted antitumor efficacies and reduced the anti-PD-1 antibody dosage required in mice. Importantly, a completed phase 1 clinical trial with the combined regimen of Mn2+ and anti-PD-1 antibody showed promising efficacy, exhibiting type I IFN induction, manageable safety and revived responses to immunotherapy in most patients with advanced metastatic solid tumors. We propose that this combination strategy warrants further clinical translation.
Collapse
Affiliation(s)
- Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Meixia Chen
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Wen Zhang
- Institute for Immunology, Peking-Tsinghua Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yan Zhang
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yukun Guan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiejie Liu
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kaichao Feng
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Miao Jing
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xurui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yun-Cai Liu
- Institute for Immunology, Peking-Tsinghua Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qian Mei
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Xu J, Li J, Hu Y, Dai K, Gan Y, Zhao J, Huang M, Zhang X. IL-23, but not IL-12, plays a critical role in inflammation-mediated bone disorders. Am J Cancer Res 2020; 10:3925-3938. [PMID: 32226529 PMCID: PMC7086346 DOI: 10.7150/thno.41378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/18/2020] [Indexed: 12/15/2022] Open
Abstract
Interleukin-12 (IL-12) and IL-23 are thought to have central roles in inflammation and are critical to pathologies associated with inflammation-induced bone disorders. The deletion of IL-12p40 (a common subunit of IL-12 and IL-23) can improve bone regeneration. However, the relative roles of IL-12 and IL-23 in bone disorders are largely unknown. Methods: Ectopic bone formation and skull defect models were established to evaluate the relative roles of IL-12 and IL-23 in inflammatory bone disorders. Differences in bone mass among WT, IL-12p35-/-, and IL-12p40-/- mice (young and elderly) were detected by micro-CT. Osteogenic and osteoclastic activities were explored using ELISA, qRT-PCR, and histological analysis. Moreover, the mechanisms by which IL-12 and IL-23 regulated the differentiation of BMMSCs and RAW264.7 cells were explored using Alizarin Red and tartrate-resistant acid phosphatase staining in vitro. Apilimod was used to inhibit IL-12 and IL-23 production in vivo. Results: Mice deficient in IL-12p40 promoted bone formation and protected against aging-related bone loss. By contrast, bone loss was aggravated in IL-12-/- mice, suggesting that IL-23 may play a dominant role in inflammation-related bone disorders. Mechanistically, IL-12 and IL-23 coupled osteogenesis and osteoclastic activities to regulate bone homeostasis and repair. IL-23 deficiency increased bone formation and inhibited bone resorption. Finally, apilimod treatment significantly improved bone regeneration and calvarial defect repair. Conclusion: These data collectively uncover a previously unrecognized role of IL-23 in skeletal tissue engineering. Thus, IL-23 can act as a biomarker to predict diseases and treatment efficacy, and apilimod can be used as an effective therapeutic drug to combat inflammatory bone disorders.
Collapse
|
11
|
Zhang H, Zhou X, Chen X, Lin Y, Qiu S, Zhao Y, Tang Q, Liang Y, Zhong X. Rapamycin attenuates Tc1 and Tc17 cell responses in cigarette smoke-induced emphysema in mice. Inflamm Res 2019; 68:957-968. [PMID: 31468083 DOI: 10.1007/s00011-019-01278-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE AND DESIGN Chronic exposure to cigarette smoke promotes airway inflammation and emphysema accompanied by enhanced CD8+ interferon (IFN)-γ+ T(Tc1) and CD8+ interleukin (IL)-17+ T(Tc17) cell responses. The mammalian target of rapamycin (mTOR) has been involved in the pathogenesis of emphysema. Inhibiting mTOR by rapamycin has been reported to alleviate emphysema, but the mechanism is not fully understood. We aimed to explore the effect of rapamycin on Tc1 and Tc17 cell responses induced by cigarette smoke exposure. MATERIALS Male C57BL/6 mice were exposed to cigarette smoke or room air for 24 weeks. Half of the smoke-exposed mice received rapamycin in the last 12 weeks. The severity of emphysema in those mice was evaluated by mean linear intercept (MLI), mean alveolar airspace area (MAA) and destructive index (DI). Bronchoalveolar lavage was collected and analyzed. Phosphorylated (p-) mTOR in CD8+ T cells, Tc1 and Tc17 cells were detected by flow cytometry. The relative expression of p-mTOR in lungs was determined by western blot analysis. IFN-γ and IL-17A levels were detected by enzyme-linked immunosorbent assays. IFN-γ, mTOR and RAR-related orphan receptor (ROR)γt mRNA levels were evaluated by the real-time polymerase chain reaction. RESULTS Elevated p-mTOR expression in CD8+ T cells and lung tissue was accompanied by the enhanced Tc1 and Tc17 cell responses in lungs of mice exposed to cigarette smoke. Rapamycin reduced inflammatory cells in BALF and decreased MLI, DI and MAA in lungs. Rapamycin decreased p-mTOR expression, and down-regulation of mTOR and RORγt mRNA levels along with the attenuation of Tc1 and Tc17 cell responses in mice with emphysema. CONCLUSIONS The mTOR was activated in CD8+ T cells accompanied by the enhanced Tc1 and Tc17 cell responses in cigarette smoke-related pulmonary inflammation. Rapamycin ameliorated emphysema and attenuated Tc1 and Tc17 cell responses probably caused by inhibiting mTOR in cigarette smoke-exposed mice.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xiu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yuanzhen Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Shilin Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Qiya Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yi Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China.
| |
Collapse
|
12
|
Song L, Ma S, Chen L, Miao L, Tao M, Liu H. Long-term prognostic significance of interleukin-17-producing T cells in patients with non-small cell lung cancer. Cancer Sci 2019; 110:2100-2109. [PMID: 31100180 PMCID: PMC6609818 DOI: 10.1111/cas.14068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
The presence of interleukin (IL)‐17‐producing T cells has recently been reported in non‐small cell lung cancer (NSCLC) patients. However, the long‐term prognostic significance of these populations in NSCLC patients remains unknown. In the present study, we collected peripheral blood from 82 NSCLC patients and 22 normal healthy donors (NC). Percentages of IL‐17‐producing CD4+T (Th17), CD8+T (Tc17) and γδT cells (γδT17) were measured to determine their association with clinical outcomes and overall survival (OS) in NSCLC. All NSCLC patients were followed up until July 2018. Median follow‐up time was 13.5 months (range 1‐87 months). The 3‐ and 5‐year survival rate was 27% and 19.6%, respectively. We found that Th17 cells and γδT17 cells were significantly increased, whereas Tc17 cells were markedly decreased in patients with NSCLC compared with those in NC. In addition, Th17 cells were significantly positively associated with T helper type 1 cells (Th1), whereas γδT17 cells were significantly negatively associated with γδT + interferon (IFN)‐γ+ cells. High percentages of peripheral Tc17 cells were significantly associated with favorable 5‐year OS (P = .025), especially in patients with early TNM stage (P = .016). Furthermore, high percentages of peripheral Th17 cells were positively associated with favorable 5‐year OS in patients with late TNM stage (P = .002). However, no significant association was observed between γδT17 cells and OS, regardless of the TNM stage. In conclusion, our findings suggest that enhanced Th17 and reduced Tc17 cells in the peripheral blood could be a significant predictor of a favorable prognosis for NSCLC patients.
Collapse
Affiliation(s)
- Li Song
- Department of Oncology, Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shoubao Ma
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Longpei Chen
- Department of Oncology, Shanghai Changhai Hospital, Shanghai, China
| | - Liyan Miao
- Department of Oncology, Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore
| |
Collapse
|
13
|
Liu X, Zawidzka EM, Li H, Lesch CA, Dunbar J, Bousley D, Zou W, Hu X, Carter LL. RORγ Agonists Enhance the Sustained Antitumor Activity through Intrinsic Tc17 Cytotoxicity and Tc1 Recruitment. Cancer Immunol Res 2019; 7:1054-1063. [PMID: 31064778 DOI: 10.1158/2326-6066.cir-18-0714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/06/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
Activation of RORγ with synthetic small-molecule agonists has been shown to enhance type 17 effector (CD4+ Th17 and CD8+ Tc17 cells) cell functions and decrease immunosuppressive mechanisms, leading to improved antitumor efficacy in adoptive cell transfer and syngeneic murine tumor models. However, whether Tc17 cells possess intrinsic cytotoxicity and the mechanism they use to lyse target cells is controversial. We report here that Tc17 cells were lytic effectors dependent on perforin and granzyme A. In contrast to Tc1 cells, Tc17 cells resisted activation-induced cell death and maintained granzyme A levels, which conferred the ability to lyse target cells in serial encounters. Thus, although the acute lytic capacity of Tc17 cells could be inferior to Tc1 cells, comparable lysis was achieved over time. In addition to direct lytic activity, Tc17 cells infiltrated early into the tumor mass, recruited other CD8+ T cells to the tumor, and enhanced the survival and lytic capability of these cells during repeated target encounters. Synthetic RORγ agonists further augmented Tc17 survival and lytic activity in vitro and in vivo, controlling tumor growth not only through direct cytotoxicity, but also through recruitment and improved function of other effector cells in the tumor microenvironment, which suggests complementary and cooperate activities for effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weiping Zou
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Xiao Hu
- Lycera Corp. Ann Arbor, Michigan
| | | |
Collapse
|
14
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
15
|
Kumar BV, Kratchmarov R, Miron M, Carpenter DJ, Senda T, Lerner H, Friedman A, Reiner SL, Farber DL. Functional heterogeneity of human tissue-resident memory T cells based on dye efflux capacities. JCI Insight 2018; 3:123568. [PMID: 30429372 DOI: 10.1172/jci.insight.123568] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident memory T cells (TRMs) accelerate pathogen clearance through rapid and enhanced functional responses in situ. TRMs are prevalent in diverse anatomic sites throughout the human lifespan, yet their phenotypic and functional diversity has not been fully described. Here, we identify subpopulations of human TRMs based on the ability to efflux fluorescent dyes [efflux(+) TRMs] located within mucosal and lymphoid sites with distinct transcriptional profiles, turnover, and functional capacities. Compared with efflux(-) TRMs, efflux(+) TRMs showed transcriptional and phenotypic features of quiescence including reduced turnover, decreased expression of exhaustion markers, and increased proliferative capacity and signaling in response to homeostatic cytokines. Moreover, upon activation, efflux(+) TRMs secreted lower levels of inflammatory cytokines such as IFN-γ and IL-2 and underwent reduced degranulation. Interestingly, analysis of TRM subsets following activation revealed that both efflux(+) and efflux(-) TRMs undergo extensive transcriptional changes following TCR ligation but retain core TRM transcriptional properties including retention markers, suggesting that TRMs carry out effector function in situ. Overall, our results suggest a model for tissue-resident immunity wherein heterogeneous subsets have differential capacities for longevity and effector function.
Collapse
Affiliation(s)
| | | | - Michelle Miron
- Columbia Center for Translational Immunology.,Department of Microbiology and Immunology, and
| | - Dustin J Carpenter
- Columbia Center for Translational Immunology.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | | | | | | | - Steven L Reiner
- Department of Microbiology and Immunology, and.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology.,Department of Microbiology and Immunology, and.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
16
|
Zhang GL, Zhang T, Zhao QY, Xie C, Lin CS, Gao ZL. Increased IL-17-producing CD8 + T cell frequency predicts short-term mortality in patients with hepatitis B virus-related acute-on-chronic liver failure. Ther Clin Risk Manag 2018; 14:2127-2136. [PMID: 30464485 PMCID: PMC6214596 DOI: 10.2147/tcrm.s184809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background IL-17-producing CD8+ T (Tc17) cells promote inflammation and have been identified in chronic hepatitis. However, the role of Tc17 cells in patients with hepatitis B virus (HBV)-related acute-on-chronic liver failure (HBV-ACLF) remains unclear. Methods The frequency of Tc17 cells in blood samples from 66 patients with HBV-ACLF was determined by flow cytometry. The levels of Tc17 cell-related cytokines were measured by FlowCytomix assays. The prognostic prediction accuracy was evaluated by the receiver operating characteristic (ROC) curve analysis. Survival was analyzed using Kaplan-Meier curves. Mortality predictors were determined by the Cox regression analysis. Results The frequency of Tc17 cells was markedly higher in patients with HBV-ACLF than in those with chronic hepatitis B and normal control subjects. Increased frequencies of Tc17 cells may indicate liver injury and were positively correlated with disease severity. The Tc17 cell frequency was significantly higher in non-surviving patients with HBV-ACLF than in surviving patients. The ROC curve analysis showed that Tc17 cell frequency accurately predicted 90-day survival in patients with HBV-ACLF, with an accuracy equivalent to those of the Model for End-Stage Liver Disease (MELD), MELD-Na, and Chronic Liver Failure Consortium ACLF scores. Kaplan-Meier analysis showed an association between the increase in circulating Tc17 cells and poor overall survival in patients with HBV-ACLF. Moreover, the multivariate Cox regression analysis showed that Tc17 cell frequency was an independent predictor of overall survival in patients with HBV-ACLF. Conclusion Tc17 cells may play a proinflammatory role in HBV-ACLF pathogenesis. Furthermore, the increased frequency of circulating Tc17 cells could be an independent prognostic biomarker in patients with HBV-ACLF.
Collapse
Affiliation(s)
- Geng-Lin Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, .,Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Ting Zhang
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi-Yi Zhao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, .,Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, .,Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Chao-Shuang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, .,Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Zhi-Liang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, .,Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, .,Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China,
| |
Collapse
|
17
|
Cheon SY, Kim JM, Kim EJ, Kim SY, Kam EH, Ho CC, Lee SK, Koo BN. Intranuclear delivery of synthetic nuclear factor-kappa B p65 reduces inflammasomes after surgery. Biochem Pharmacol 2018; 158:141-152. [PMID: 30096289 DOI: 10.1016/j.bcp.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Patients undergoing surgery can suffer from various complications, including post-operative bleeding, local or systematic infection, and neurologic disorders. Major surgery can initiate innate immune responses and trigger overproduction of inflammatory mediators, which can contribute to organ dysfunction. Inflammasomes are innate immune complexes, which are connected to the pathogenesis of various diseases, including atherosclerosis, hemorrhagic brain injury, and Alzheimer's disease. In the present study, we hypothesized that nucleotide-binding oligomerization domain-containing-like receptor protein (NLRP) inflammasomes may have a role in the pathological effects of surgery. Therefore, we designed a protein inhibitor of nuclear factor kappa B (NF-κB) p65 transcripts, called nt-p65-TMD (nuclear transducible (nt) transcription modulated domain (TMD) of RelA (p65)), that can penetrate the nucleus, and evaluated its therapeutic efficacy for dampening surgery-induced inflammasome activation. It was found that the nt-p65-TMD significantly reduced the NLRP1 inflammasome complex components (NLRP1, ASC, and Caspase-1) and interleukin (IL)-1β and IL-18 productions in the spleen after surgery. In the spleen, specific cell population and selective mediators were altered after surgery with/without nt-p65-TMD treatment. Also, we found that treatment of nt-p65-TMD decreased cell death in the spleen after surgery. Therefore, nt-p65-TMD is a potential novel strategy for reducing surgery-induced NLRP1 inflammasome and complications.
Collapse
Affiliation(s)
- So Yeong Cheon
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kam
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chun-Chang Ho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Bon-Nyeo Koo
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Devalraju KP, Neela VSK, Ramaseri SS, Chaudhury A, Van A, Krovvidi SS, Vankayalapati R, Valluri VL. IL-17 and IL-22 production in HIV+ individuals with latent and active tuberculosis. BMC Infect Dis 2018; 18:321. [PMID: 29996789 PMCID: PMC6042451 DOI: 10.1186/s12879-018-3236-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 07/04/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND IL-17 and IL-22 cytokines play an important role in protective immune responses against Mycobacterium tuberculosis (Mtb) infection. Information on the production of these cytokines and the factors that regulate their production in the context of human immunodeficiency virus (HIV) and latent tuberculosis infection (LTBI) or active tuberculosis disease (ATB) is limited. In the current study, we compared the production of these two cytokines by PBMC of HIV-LTBI+ and HIV + LTBI+ individuals in response to Mtb antigens CFP-10 (culture filtrate protein) and ESAT-6 (Early Secretory Antigenic Target). We also determined the mechanisms involved in their production. METHODS We cultured Peripheral Blood Mononuclear Cells (PBMCs) from HIV- individuals and HIV+ patients with latent tuberculosis and active disease with CFP-10 and ESAT-6. Production of IL-17, IL-22 and PD1 (Programmed Death 1), ICOS (Inducible T-cell Costimulator), IL-23R and FoxP3 (Forkhead box P3) expression on CD4+ T cells was measured. RESULTS In response to Mtb antigens CFP-10 and ESAT-6, freshly isolated PBMCs from HIV+ LTBI+ and HIV+ active TB patients produced less IL-17 and IL-22 and more IL-10, expressed less IL-23R, and more PD1 and expanded to more FoxP3+ cells. Active TB infection in HIV+ individuals further inhibited antigen specific IL-17 and IL-22 production compared to those with LTBI. Neutralization of PD1 restored IL-23R expression, IL-17 and IL-22 levels and lowered IL-10 production and reduced expansion of FoxP3 T cells. CONCLUSIONS In the current study we found that increased PD1 expression in HIV + LTBI+ and HIV+ active TB patients inhibits IL-17, IL-22 production and IL-23R expression in response to Mtb antigens CFP-10 and ESAT-6.
Collapse
Affiliation(s)
- Kamakshi Prudhula Devalraju
- Immunology & Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, A. C. Guards, Hyderabad, TS 500004 India
| | - Venkata Sanjeev Kumar Neela
- Immunology & Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, A. C. Guards, Hyderabad, TS 500004 India
| | - Sharadambal Sunder Ramaseri
- Immunology & Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, A. C. Guards, Hyderabad, TS 500004 India
| | - Arunabala Chaudhury
- Clinical Division, Cheyutha, LEPRA Society, Cherlapally, Hyderabad, 501301 India
| | - Abhinav Van
- Department of Pulmonary Immunology, Centre for Biomedical Research, University of Texas Health Centre, 11937 US Highway 271, Tyler, TX 75708 USA
| | - Siva Sai Krovvidi
- Department of Biotechnology, Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar, Hyderabad, Telangana-501301 India
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Centre for Biomedical Research, University of Texas Health Centre, 11937 US Highway 271, Tyler, TX 75708 USA
| | - Vijaya Lakshmi Valluri
- Immunology & Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, A. C. Guards, Hyderabad, TS 500004 India
| |
Collapse
|
19
|
Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance. J Virol 2016; 91:JVI.01529-16. [PMID: 27795421 PMCID: PMC5165211 DOI: 10.1128/jvi.01529-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023] Open
Abstract
CD8+ T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8+ T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a-/-) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8+ T cells isolated from Il17a-/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8+ T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. IMPORTANCE Interleukin-17A (IL-17A) and CD8+ T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8+ T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8+ T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8+ T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8+ T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8+ T cell functions are crucial.
Collapse
|
20
|
Bai H, Gao X, Zhao L, Peng Y, Yang J, Qiao S, Zhao H, Wang S, Fan Y, Joyee AG, Yao Z, Yang X. Respective IL-17A production by γδ T and Th17 cells and its implication in host defense against chlamydial lung infection. Cell Mol Immunol 2016; 14:850-861. [PMID: 27796286 DOI: 10.1038/cmi.2016.53] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
The role of IL-17A is important in protection against lung infection with Chlamydiae, an obligate intracellular bacterial pathogen. In this study, we explored the producers of IL-17A in chlamydial lung infection and specifically tested the role of major IL-17A producers in protective immunity. We found that γδT cells and Th17 cells are the major producers of IL-17A at the early and later stages of chlamydial infection, respectively. Depletion of γδT cells in vivo at the early postinfection (p.i.) stage, when most γδT cells produce IL-17A, failed to alter Th1 responses and bacterial clearance. In contrast, the blockade of IL-17A at the time when IL-17A was mainly produced by Th17 (day 7 p.i.) markedly reduced the Th1 response and increased chlamydial growth. The data suggest that the γδ T cell is the highest producer of IL-17A in the very early stages of infection, but the protection conferred by IL-17A is mainly mediated by Th17 cells. In addition, we found that depletion of γδ T cells reduced IL-1α production by dendritic cells, which was associated with a reduced Th17 response. This finding is helpful to understand the variable role of IL-17A in different infections and to develop preventive and therapeutic approaches against infectious diseases by targeting IL-17A.
Collapse
Affiliation(s)
- Hong Bai
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Xiaoling Gao
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Lei Zhao
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Ying Peng
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Jie Yang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Sai Qiao
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Huili Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Shuhe Wang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - YiJun Fan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Antony George Joyee
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Zhi Yao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Xi Yang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| |
Collapse
|
21
|
IL-17+ CD8+ T cells: Differentiation, phenotype and role in inflammatory disease. Immunol Lett 2016; 178:20-6. [PMID: 27173097 PMCID: PMC5046976 DOI: 10.1016/j.imlet.2016.05.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/06/2016] [Indexed: 01/01/2023]
Abstract
IL-17A (IL-17) is produced by multiple cell subsets, including CD8+ T cells. The presence of IL-17+ CD8+ T cells in human inflammatory diseases suggests these cells may contribute to immunopathology. Increased knowledge of human IL-17+ CD8+ T cells will enhance our overall understanding of their role in human disease.
The pro-inflammatory cytokine interleukin-17A (IL-17) has been the subject of research by many groups worldwide. IL-17 expression is often associated with a specific subset of CD4+ T cells (the so-called Th17 cells); however various other immune cell subsets can also synthesise and express IL-17, including CD8+ T cells. Here we review recent data regarding the presence of IL-17+ CD8+ T cells (also known as Tc17 cells) in human inflammatory disease, discuss current knowledge regarding the culture conditions required for the differentiation of these cells in humans and mice, and describe key phenotypic and functional features. Collectively, this information may shed light on the potential pathogenic role that IL-17+ CD8+ T cells may play in human inflammatory disease.
Collapse
|
22
|
Skepner J, Trocha M, Ramesh R, Qu XA, Schmidt D, Baloglu E, Lobera M, Davis S, Nolan MA, Carlson TJ, Hill J, Ghosh S, Sundrud MS, Yang J. In vivo regulation of gene expression and T helper type 17 differentiation by RORγt inverse agonists. Immunology 2015; 145:347-56. [PMID: 25604624 DOI: 10.1111/imm.12444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/21/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022] Open
Abstract
The orphan nuclear receptor, retinoic acid receptor-related orphan nuclear receptor γt (RORγt), is required for the development and pathogenic function of interleukin-17A-secreting CD4(+) T helper type 17 (Th17) cells. Whereas small molecule RORγt antagonists impair Th17 cell development and attenuate autoimmune inflammation in vivo, the broader effects of these inhibitors on RORγt-dependent gene expression in vivo has yet to be characterized. We show that the RORγt inverse agonist TMP778 acts potently and selectively to block mouse Th17 cell differentiation in vitro and to impair Th17 cell development in vivo upon immunization with the myelin antigen MOG35-55 plus complete Freund's adjuvant. Importantly, we show that TMP778 acts in vivo to repress the expression of more than 150 genes, most of which fall outside the canonical Th17 transcriptional signature and are linked to a variety of inflammatory pathologies in humans. Interestingly, more than 30 genes are related with SMAD3, a transcription factor involved in the Th17 cell differentiation. These results reveal novel disease-associated genes regulated by RORγt during inflammation in vivo, and provide an early read on potential disease indications and safety concerns associated with pharmacological targeting of RORγt.
Collapse
Affiliation(s)
- Jill Skepner
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Mark Trocha
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Radha Ramesh
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Xiaoyan A Qu
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, RTP, NC, USA
| | - Darby Schmidt
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Erkan Baloglu
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Mercedes Lobera
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Scott Davis
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Michael A Nolan
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | | | - Jonathan Hill
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Shomir Ghosh
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Mark S Sundrud
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA.,Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, USA
| | - Jianfei Yang
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| |
Collapse
|
23
|
Billingsley JM, Rajakumar PA, Connole MA, Salisch NC, Adnan S, Kuzmichev YV, Hong HS, Reeves RK, Kang HJ, Li W, Li Q, Haase AT, Johnson RP. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling. PLoS Pathog 2015; 11:e1004740. [PMID: 25768938 PMCID: PMC4358830 DOI: 10.1371/journal.ppat.1004740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/10/2015] [Indexed: 01/03/2023] Open
Abstract
The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states. The live attenuated vaccine SIVΔnef can induce robust CD8+ T cell- mediated protection against infection with pathogenic SIV in macaques. Thus, there is substantial interest in characterizing these immune responses to inform HIV vaccine design. Animals challenged at 15–20 weeks post vaccination exhibit robust protection, whereas animals challenged at 5 weeks post-vaccination manifest little protection. Since the frequency of SIV-specific T cells decreases from week 5 to week 20, it is likely that the quality of the response to challenge changes as virus-specific cells differentiate. We applied a novel approach of transcription factor expression profiling to characterize the differences in SIV-specific cell function and phenotype at more protected and less protected time points. Using unsupervised clustering methods informed by expression profiles assessed in purified CD8+ T cell subsets, we show that SIV-specific cells display expression profiles different than any purified CD8+ T cell subset, and intermediate to sorted effector memory and central memory subsets. SIV-specific cells overall appear more effector memory-like at week 5 post-vaccination, and more central memory-like at week 20 post-vaccination. Distinct profiles of CD8+ T cells specific for different SIV epitopes having different immune escape kinetics suggests maturation is regulated by ongoing low-level replication of vaccine virus.
Collapse
Affiliation(s)
- James M. Billingsley
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Premeela A. Rajakumar
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michelle A. Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Nadine C. Salisch
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Crucell Holland BV, Leiden, The Netherlands
| | - Sama Adnan
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yury V. Kuzmichev
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Henoch S. Hong
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hyung-joo Kang
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley T. Haase
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Liang Y, Pan HF, Ye DQ. IL-17A-producing CD8(+)T cells as therapeutic targets in autoimmunity. Expert Opin Ther Targets 2015; 19:651-61. [PMID: 25611933 DOI: 10.1517/14728222.2014.997710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The involvement of IL-17-producing CD8(+)T cells (TC17) in various conditions, such as infection, cancer and autoimmune inflammation, has been documented in both humans and mice; however, TC17 cells have received only marginal attention. AREAS COVERED Here, we provide an overview of the cytokines, chemokines, and cytokine and chemokine receptors that characterize the murine and human TC17 cell phenotype. We also discuss signaling pathways, molecular interactions, and transcriptional and epigenetic events that contribute to TC17 differentiation and acquisition of effector functions. Heterogeneity and inherent phenotypic instability of TC17 cells were shown both in humans and murine models. Aberrant expression of TC17 cells was observed in many autoimmune conditions. Moreover, functional analysis demonstrated in vivo plasticity of TC17 cells may be a key feature of TC17 cell biology in autoimmune diseases. EXPERT OPINION Due to its important roles in inflammation and autoimmunity, TC17 cell pathway may have promise as a potential therapeutic target for autoimmune diseases. The strategies include the suppression of TC17 cell generation and migration and the blockade of TC17 cell instability and heterogeneity. TMP778 may open an avenue to novel therapeutic strategies.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , 81 Meishan Road, Hefei, Anhui, 230032 , PR China . +86 551 65167726 ; +86 551 65161171 ;
| | | | | |
Collapse
|
25
|
Abstract
Tc17 cells-a subset of CD8(+)T cells-have recently been identified that are characterized by the production of interleukin (IL)-17. Cytokines IL-6 and transforming growth factor-beta 1 (TGF-β1) and transcription factors signaling transducers and activators of transcription (STAT)3, retinoic acid receptor-related orphan nuclear receptor gamma (RORγt), and interferon regulatory factor (IRF)4 are necessary for differentiation of Tc17 cells, controlling expression of molecules essential for Tc17 cell trafficking and function. Current human researches have determined the significance of CD161 expression as either a marker of Tc17 cells or as an effector and regulator of Tc17 cell function. Noncytotoxic Tc17 cells possess a high plasticity to convert into IFN-γ producing cells, which exhibit strong cytotoxic activity. The importance of in vivo plasticity of Tc17 cells for the induction of autoimmune diseases has been demonstrated and Tc17 cells potentially represent novel therapeutic targets in autoimmune diseases. The involvement of interleukin (IL)-17-producing CD8(+)T cells (Tc17) in various conditions, such as infection, cancer, and autoimmune inflammation, has been documented in both humans and mice; however, Tc17 cells have received only marginal attention. Here, we provide an overview of the cytokines and chemokines that characterize the murine and human Tc17 cells. Moreover, we discuss signaling pathways, molecular interactions, and transcriptional events that contribute to Tc17 differentiation and acquisition of effector functions. Also considered is the basis of Tc17 cell plasticity toward the Tc1 lineage, and we suggest that in vivo plasticity of Tc17 cells may be a key feature of Tc17 cell biology in autoimmune diseases. Furthermore, current human researches have revealed that Tc17 cells are different than that in mice because all of them express CD161 and exclusively originate from CD161 precursors present in umbilical cord blood. Finally, we focus on the recent evidence for long-lived Tc17 memory cell populations in mouse models and humans, and their functional roles in mediating disease memory. Hopefully, the information obtained will benefit for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University , Hefei, Anhui , China
| | | | | |
Collapse
|
26
|
Pick J, Arra A, Lingel H, Hegel JK, Huber M, Nishanth G, Jorch G, Fischer KD, Schlüter D, Tedford K, Brunner-Weinzierl MC. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol 2014; 44:2139-52. [PMID: 24723371 DOI: 10.1002/eji.201343497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 02/21/2014] [Accepted: 03/28/2014] [Indexed: 01/24/2023]
Abstract
Although CD8(+) T cells that produce IL-17 (Tc17 cells) have been linked to host defense, Tc17 cells show reduced cytotoxic activity, which is the characteristic function of CD8(+) T cells. Here, we show that CTLA-4 enhances the frequency of IL-17 in CD8(+) T cells, indicating that CTLA-4 (CD152) specifically promotes Tc17 differentiation. Simultaneous stimulation of CTLA-4(+/+) and CTLA-4(-/-) T cells in cocultures and agonistic CTLA-4 stimulation unambiguously revealed a cell-intrinsic mechanism for IL-17 control by CTLA-4. The quality of CTLA-4-induced Tc17 cells was tested in vivo, utilizing infection with the facultative intracellular bacterium Listeria monocytogenes (LM). Unlike CTLA-4(+/+) Tc17 cells, CTLA-4(-/-) were nearly as efficient as Tc1 CTLA-4(+/+) cells in LM clearance. Additionally, adoptively transferred CTLA-4(-/-) Tc17 cells expressed granzyme B after rechallenge, and produced Tc1 cytokines such as IFN-γ and TNF-α, which strongly correlate with bacterial clearance. CTLA-4(+/+) Tc17 cells demonstrated a high-quality Tc17 differentiation program ex vivo, which was also evident in isolated IL-17-secreting Tc17 cells, with CTLA-4-mediated enhanced upregulation of Tc17-related molecules such as IL-17A, RORγt, and IRF-4. Our results show that CTLA-4 promotes Tc17 differentiation that results in robust Tc17 responses. Its inactivation might therefore represent a central therapeutic target to enhance clearance of infection.
Collapse
Affiliation(s)
- Jonas Pick
- Department of Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Effect of chronic morphine administration on circulating T cell population dynamics in rhesus macaques. J Neuroimmunol 2013; 265:43-50. [PMID: 24090653 DOI: 10.1016/j.jneuroim.2013.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 01/10/2023]
Abstract
Opioid receptor agonists modulate both innate and adaptive immune responses. In this study, we examined the impact of long-term chronic morphine administration on the circulating T cell population dynamics in rhesus macaques. We found that the numbers of circulating Treg cells, and the functional activity of Th17 cells, were significantly increased with chronic morphine exposure. Our results also show that T cell populations with surface markers characteristic of gut-homing (CD161 and CCR6) and HIV-1 susceptibility (CCR5 and β7 integrin) were increased. These results represent the first detailed report of the impact of chronic morphine administration on circulating T cell dynamics.
Collapse
|
28
|
Rubino SJ, Geddes K, Magalhaes JG, Streutker C, Philpott DJ, Girardin SE. Constitutive induction of intestinal Tc17 cells in the absence of hematopoietic cell-specific MHC class II expression. Eur J Immunol 2013; 43:2896-906. [PMID: 23881368 DOI: 10.1002/eji.201243028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 06/13/2013] [Accepted: 07/19/2013] [Indexed: 12/30/2022]
Abstract
The enteric pathogen Citrobacter rodentium induces a mucosal IL-17 response in CD4(+) T helper (Th17) cells that is dependent on the Nod-like receptors Nod1 and Nod2. Here, we sought to determine whether this early Th17 response required antigen presentation by major histocompatibility complex class II (MHCII) for full induction. At early phases of C. rodentium infection, we observed that the intestinal mucosal Th17 response was fully blunted in irradiated mice reconstituted with MHCII-deficient (MHCII(-/-) →WT) hematopoietic cells. Surprisingly, we also observed a substantial increase in the relative frequency of IL-17(+) CD8(+) CD4(-) TCR-β(+) cells (Tc17 cells) and FOXP3(+) CD8(+) CD4(-) TCR-β(+) cells in the lamina propria and intraepithelial lymphocyte compartment of MHCII(-/-) →WT mice compared with that in WT→WT counterparts. Moreover, MHCII(-/-) →WT mice displayed increased susceptibility, increased bacterial translocation to deeper organs, and more severe colonic histopathology after infection with C. rodentium. Finally, a similar phenotype was observed in mice deficient for CIITA, a transcriptional regulator of MHCII expression. Together, these results indicate that MHCII is required to mount early mucosal Th17 responses to an enteric pathogen, and that MHCII regulates the induction of atypical CD8(+) T-cell subsets, such as Tc17 cells and FOXP3(+) CD8(+) cells, in vivo.
Collapse
Affiliation(s)
- Stephen J Rubino
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Interleukin-23 (IL-23) deficiency disrupts Th17 and Th1-related defenses against Streptococcus pneumoniae infection. Cytokine 2013; 64:375-81. [PMID: 23752068 DOI: 10.1016/j.cyto.2013.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/11/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022]
Abstract
Resolution of acute of infection caused by capsular Streptococcus pneumoniae infection in the absence of effective antibiotic therapy requires tight regulation of immune and inflammatory responses. To provide new mechanistic insight of the requirements needed for innate host defenses against acute S. pneumoniae infection, we examined how IL-23 deficiency mediated acute pulmonary resistance. We found that IL-23 deficient mice were more susceptible to bacterial colonization in the lungs corresponding with greater bacterial dissemination. The lack of IL-23 was found to decrease IL-6 and IL-12p70 cytokine levels in bronchiolar lavage within the initial day after infection. Pulmonary leukocytes isolated from infected IL-23 deficient mice demonstrated a dramatic decrease in IL-17A and IFN-γ in response to heat-killed organisms. These findings corresponded with significant abrogation of neutrophilic infiltrate in the lungs compared to IL-23 competent mice. Whereas previous studies have shown opposing influences of IL-12/IL-23 regulation, our findings suggest a concordant dependency of IL-23 expression on Th1 and Th17-related responses.
Collapse
|
30
|
Wang S, Xu X, Xie A, Li J, Ye P, Liu Z, Wu J, Rui L, Xia J. Anti-interleukin-12/23p40 antibody attenuates chronic rejection of cardiac allografts partly via inhibition γδT cells. Clin Exp Immunol 2012; 169:320-9. [PMID: 22861372 DOI: 10.1111/j.1365-2249.2012.04612.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In our previous study, we showed that treatment with an anti-interleukin (IL)-12/23p40 antibody inhibits acute cardiac allograft rejection via inhibiting production of interferon (IFN)-γ and IL-17a. However, the impact of this antagonistic anti-p40 antibody on chronic cardiac rejection was unclear. Hearts of B6.C-H2bm12/KhEg mice were transplanted into major histocompatibility complex (MHC) class II-mismatched C57Bl/6J mice (wild-type, γδTCR (-/-) and IL-17(-/-) ), which is an established murine model of chronic allograft rejection without immunosuppression. The mice were treated with control immunoglobulin (Ig)G or 200 µg anti-p40 monoclonal antibody on post-operative days, respectively. Abdominal palpation and echocardiography were used to monitor graft survival. The mice administered with anti-p40 antibody showed a significant promotion in graft survival (median survival time >100 days), and histological analyses revealed that cardiac allograft rejection was attenuated. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence analyses demonstrated that anti-p40 antibody down-regulated the level of ingraft cytokine and chemokine expression (IL-6, IFN-γ, IL-17a, CCL2 and CCL20). Flow cytometry analyses showed that γδ T cells are an important ingraft source of IFN-γ and IL-17a and inhibit the production of inflammation cytokine by anti-p40 antibody. Compared with the wild-type group, the graft survival time in the γδ T cell receptor(-/-) and IL-17(-/-) mice was prolonged significantly. Therefore we propose that, in the chronic allograft rejection model, treatment with anti-p40 antibody prolongs graft survival possibly by reducing the amount of reactive inflammatory cells, especially γδ T cells.
Collapse
Affiliation(s)
- S Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Institute of Cardiovascular Surgery, Xijing Hospital, The 4th Military Medical University, Xi'an, Shaanxi Province Department of Cardiovascular Surgery, Fu Wai Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Saxena A, Desbois S, Carrié N, Lawand M, Mars LT, Liblau RS. Tc17 CD8+ T Cells Potentiate Th1-Mediated Autoimmune Diabetes in a Mouse Model. THE JOURNAL OF IMMUNOLOGY 2012; 189:3140-9. [DOI: 10.4049/jimmunol.1103111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Tsai JP, Lee MH, Hsu SC, Chen MY, Liu SJ, Chang JT, Liao CT, Cheng AJ, Chong P, Chu CL, Shen CR, Chen HW. CD4+ T cells disarm or delete cytotoxic T lymphocytes under IL-17-polarizing conditions. THE JOURNAL OF IMMUNOLOGY 2012; 189:1671-9. [PMID: 22798680 DOI: 10.4049/jimmunol.1103447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous studies have shown that TGF-β acts cooperatively with IL-6 to elicit a high frequency of IL-17-secreting CD4(+) T cells (termed Th17) and an elevated CD8(+)IL-17(+) T cell population (termed Tc17). These CD8(+) cells fail to behave like most cytotoxic T lymphocytes that express IFN-γ and granzyme B, but they exhibit a noncytotoxic phenotype. Although a significant increase in the number of these Tc17 cells was found in tumors, their role and interaction with other cell types remain unclear. In this study, we demonstrate that the presence of CD4(+)CD25(-) T cells, but not the CD4(+)CD25(+) (regulatory T [Treg]) cell population, significantly reduced the elicitation of Tc17 cells, possibly as a result of the induction of apoptotic signals. Importantly, these signals may be derived from soluble mediators, and the addition of anti-IL-2 restored the reduction of Tc17 cells in the presence of CD4(+)CD25(-) T cells. Finally, the elicited Tc17 and Treg cells exhibited a close association in patients with head and neck cancer, indicating that the surrounding Treg cells might maintain the survival of the Tc17 cells. Taken together, these results reveal an intriguing mechanism in which Tc17 cells are controlled by a finely tuned collaboration between the different types of CD4(+) T cells in distinct tumor microenvironments.
Collapse
Affiliation(s)
- Jy-Ping Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Franceschini D, Del Porto P, Piconese S, Trella E, Accapezzato D, Paroli M, Morrone S, Piccolella E, Spada E, Mele A, Sidney J, Sette A, Barnaba V. Polyfunctional type-1, -2, and -17 CD8⁺ T cell responses to apoptotic self-antigens correlate with the chronic evolution of hepatitis C virus infection. PLoS Pathog 2012; 8:e1002759. [PMID: 22737070 PMCID: PMC3380931 DOI: 10.1371/journal.ppat.1002759] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 05/03/2012] [Indexed: 12/17/2022] Open
Abstract
Caspase-dependent cleavage of antigens associated with apoptotic cells plays a prominent role in the generation of CD8⁺ T cell responses in various infectious diseases. We found that the emergence of a large population of autoreactive CD8⁺ T effector cells specific for apoptotic T cell-associated self-epitopes exceeds the antiviral responses in patients with acute hepatitis C virus infection. Importantly, they endow mixed polyfunctional type-1, type-2 and type-17 responses and correlate with the chronic progression of infection. This evolution is related to the selection of autoreactive CD8⁺ T cells with higher T cell receptor avidity, whereas those with lower avidity undergo prompt contraction in patients who clear infection. These findings demonstrate a previously undescribed strict link between the emergence of high frequencies of mixed autoreactive CD8⁺ T cells producing a broad array of cytokines (IFN-γ, IL-17, IL-4, IL-2…) and the progression toward chronic disease in a human model of acute infection.
Collapse
Affiliation(s)
- Debora Franceschini
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Paola Del Porto
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Emanuele Trella
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Daniele Accapezzato
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Marino Paroli
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, Rome, Italy
| | - Stefania Morrone
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Enza Piccolella
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Enea Spada
- National Centre of Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Alfonso Mele
- National Centre of Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, San Diego, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, California, United States of America
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
- Fondazione Andrea Cesalpino, Rome, Italy
- * E-mail:
| |
Collapse
|
34
|
Nikolich-Žugich J, Li G, Uhrlaub JL, Renkema KR, Smithey MJ. Age-related changes in CD8 T cell homeostasis and immunity to infection. Semin Immunol 2012; 24:356-64. [PMID: 22554418 DOI: 10.1016/j.smim.2012.04.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 01/10/2023]
Abstract
Studies of CD8 T cell responses to vaccination or infection with various pathogens in both animal models and human subjects have revealed a markedly consistent array of age-related defects. In general, recent work shows that aged CD8 T cell responses are decreased in magnitude, and show poor differentiation into effector cells, with a reduced arsenal of effector functions. Here we review potential mechanisms underlying these defects. We specifically address phenotypic and numeric changes to the naïve CD8 T cell precursor pool, the impact of persistent viral infection(s) and inflammation, and contributions of the aging environment in which these cells are activated.
Collapse
Affiliation(s)
- Janko Nikolich-Žugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724, United States.
| | | | | | | | | |
Collapse
|
35
|
Zou Q, Hu Y, Xue J, Fan X, Jin Y, Shi X, Meng D, Wang X, Feng C, Xie X, Zhang Y, Kang Y, Liang X, Wu B, Wang M, Wang B. Use of praziquantel as an adjuvant enhances protection and Tc-17 responses to killed H5N1 virus vaccine in mice. PLoS One 2012; 7:e34865. [PMID: 22529945 PMCID: PMC3329547 DOI: 10.1371/journal.pone.0034865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/06/2012] [Indexed: 11/23/2022] Open
Abstract
Background H5N1 is a highly pathogenic influenza A virus, which can cause severe illness or even death in humans. Although the widely used killed vaccines are able to provide some protection against infection via neutralizing antibodies, cytotoxic T-lymphocyte responses that are thought to eradicate viral infections are lacking. Methodology/Principal Findings Aiming to promote cytotoxic responses against H5N1 infection, we extended our previous finding that praziquantel (PZQ) can act as an adjuvant to induce IL-17-producing CD8+ T cells (Tc17). We found that a single immunization of 57BL/6 mice with killed viral vaccine plus PZQ induced antigen-specific Tc17 cells, some of which also secreted IFN-γ. The induced Tc17 had cytolytic activities. Induction of these cells was impaired in CD8 knockout (KO) or IFN-γ KO mice, and was even lower in IL-17 KO mice. Importantly, the inoculation of killed vaccine with PZQ significantly reduced virus loads in the lung tissues and prolonged survival. Protection against H5N1 virus infection was obtained by adoptively transferring PZQ-primed wild type CD8+ T cells and this was more effective than transfer of activated IFN-γ KO or IL-17 KO CD8+ T cells. Conclusions/Significance Our results demonstrated that adding PZQ to killed H5N1 vaccine could promote broad Tc17-mediated cytotoxic T lymphocyte activity, resulting in improved control of highly pathogenic avian influenza virus infection.
Collapse
Affiliation(s)
- Qiang Zou
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, China
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia Xue
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoxu Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Jin
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianghua Shi
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Di Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianzheng Wang
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, China
| | - Congcong Feng
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiaoping Xie
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yizhi Zhang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Youmin Kang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiaoxuan Liang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Bing Wu
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Ming Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, China
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Benson JM, Sachs CW, Treacy G, Zhou H, Pendley CE, Brodmerkel CM, Shankar G, Mascelli MA. Therapeutic targeting of the IL-12/23 pathways: generation and characterization of ustekinumab. Nat Biotechnol 2012; 29:615-24. [PMID: 21747388 DOI: 10.1038/nbt.1903] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical and clinical studies conducted in the mid-1990s reported strong association and causality between the T-cell helper (T(H)) 1 inductor cytokine interleukin (IL)-12 and numerous immune-mediated disorders, which spurred the development of therapeutic agents targeting IL-12 function. One of the first to enter the clinic, ustekinumab, is a human monoclonal antibody (mAb) that binds to the p40 subunit of IL-12. Subsequent to the generation of ustekinumab, it was discovered that IL-23 also contains the p40 subunit. Thus, although ustekinumab was designed to target IL-12, it also modulates IL-23, a cytokine important to the development and/or maintenance of T(H)17 cells. Clinical observations established that IL-12/23p40 is integral to the pathologies of psoriasis, psoriatic arthritis and Crohn's disease. The molecular and cellular evaluations conducted in ustekinumab clinical programs have provided numerous insights into the pathologic processes of these disorders, illustrating how a novel molecular entity can contribute to our understanding of disease. The individual contributions of these cytokines to specific pathologies require investigation and clinical evaluation of the role of IL-12- and IL-23-specific inhibitors.
Collapse
Affiliation(s)
- Jacqueline M Benson
- Centocor Research & Development, Inc., Division of Johnson & Johnson Pharmaceutical Research & Development, LLC, Malvern, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang L, Xiong Y, Bosselut R. Maintaining CD4-CD8 lineage integrity in T cells: where plasticity serves versatility. Semin Immunol 2011; 23:360-7. [PMID: 21963088 PMCID: PMC3740965 DOI: 10.1016/j.smim.2011.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/19/2011] [Indexed: 01/10/2023]
Abstract
The divergence of the two αβ T cell subsets defined by the mutually exclusive expression of CD4 and CD8 glycoproteins is an important event during the intrathymic differentiation of T lymphocytes. This reviews briefly summarizes the mechanisms that promote commitment to the CD4 or CD8 lineage in the thymus, and discusses the transcription factor circuits and epigenetic mechanisms that concur to maintain lineage integrity in post-thymic cells and yet allow effector cell differentiation.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Immune Cell Biology, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD 20892-4259, USA
| | | | | |
Collapse
|
38
|
Sarin R, Wu X, Abraham C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc Natl Acad Sci U S A 2011; 108:9560-5. [PMID: 21606346 PMCID: PMC3111257 DOI: 10.1073/pnas.1017854108] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The SNP (c.1142G > A;p.R381Q) in the IL-23 receptor (IL23R) confers protection from multiple inflammatory diseases, representing one of the most significant human genetic polymorphisms in autoimmunity. We, therefore, sought to define the functional consequences of this clinically significant variant. We find that CD4+CD45RO+ and CD8+ T cells from healthy R381Q IL23R carriers show decreased IL-23-dependent IL-17 and IL-22 production relative to WT IL23R individuals. This was associated with a lower percentage of circulating Th17 and Tc17 cells. Furthermore, CD8+ T cells from R381Q IL23R individuals showed decreased IL-23-dependent expansion and signal transducer and activator of transcription 3 (STAT3) activation compared with WT CD8+ T cells. Importantly, cells transfected with the IL23R glutamine variant show decreased IL-23-mediated signaling compared with the IL23R arginine allele. Our results show that the R381Q IL23R variant leads to selective, potentially desirable, loss of function alterations in primary human CD4+ and CD8+ T cells, resulting in highly significant protection against autoimmunity.
Collapse
Affiliation(s)
- Ritu Sarin
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520
| | - Xingxin Wu
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520
| | - Clara Abraham
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520
| |
Collapse
|
39
|
Park KT, Allen AJ, Bannantine JP, Seo KS, Hamilton MJ, Abdellrazeq GS, Rihan HM, Grimm A, Davis WC. Evaluation of two mutants of Mycobacterium avium subsp. paratuberculosis as candidates for a live attenuated vaccine for Johne's disease. Vaccine 2011; 29:4709-19. [PMID: 21565243 DOI: 10.1016/j.vaccine.2011.04.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 02/07/2023]
Abstract
Control of Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis, has been difficult because of a lack of an effective vaccine. To address this problem we used targeted gene disruption to develop candidate mutants with impaired capacity to survive ex vivo and in vivo to test as a vaccine. We selected relA and pknG, genes known to be important virulence factors in Mycobacterium tuberculosis and Mycobacterium bovis, for initial studies. Deletion mutants were made in a wild type Map (K10) and its recombinant strain expressing the green fluorescent protein (K10-GFP). Comparison of survival in an ex vivo assay revealed deletion of either gene attenuated survival in monocyte-derived macrophages compared to survival of wild-type K10. In contrast, study in calves revealed survival in vivo was mainly affected by deletion of relA. Bacteria were detected in tissues from wild-type and the pknG mutant infected calves by bacterial culture and PCR at three months post infection. No bacteria were detected in tissues from calves infected with the relA mutant (P<0.05). Flow cytometric analysis of the immune response to the wild-type K10-GFP and the mutant strains showed deletion of either gene did not affect their capacity to elicit a strong proliferative response to soluble antigen extract or live Map. Quantitative RT-PCR revealed genes encoding IFN-γ, IL-17, IL-22, T-bet, RORC, and granulysin were up-regulated in PBMC stimulated with live Map three months post infection compared to the response of PBMC pre-infection. A challenge study in kid goats showed deletion of pknG did not interfere with establishment of an infection. As in calves, deletion of relA attenuated survival in vivo. The mutant also elicited an immune response that limited colonization by challenge wild type Map. The findings show the relA mutant is a good candidate for development of a live attenuated vaccine for Johne's disease.
Collapse
Affiliation(s)
- Kun Taek Park
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Miller SA, Weinmann AS. Molecular mechanisms by which T-bet regulates T-helper cell commitment. Immunol Rev 2011; 238:233-46. [PMID: 20969596 DOI: 10.1111/j.1600-065x.2010.00952.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Current research suggests that a number of newly identified T-helper cell subsets retain a degree of context-dependent plasticity in their signature cytokine expression patterns. To understand this process, a major challenge is to determine the molecular mechanisms by which lineage-defining transcription factors regulate gene expression profiles in T-helper cells. This mechanistic information will aid in our interpretation of whether a T-helper cell state that expresses or retains the capacity to re-express a combination of lineage-defining transcription factors will have a stable or more flexible gene expression profile. Studies examining the developmental T-box transcription factor T-bet demonstrate the powerful information that is gained from combining in vivo analysis with basic biochemical and molecular mechanism approaches. Significantly, T-bet's ability to physically recruit epigenetic modifying complexes, in particular a Jmjd3 H3K27-demethylase and a Set7/9 H3K4-methyltransferase complex, to its target genes allows T-bet to effectively reverse and establish new epigenetic states. This observation suggests that until T-bet is permanently extinguished, T-helper cells will retain some plasticity toward a T-helper 1-like program. Therefore, insight into the complexity of T-helper cell commitment decisions will be aided by determining the molecular mechanisms for lineage-defining transcription factors.
Collapse
Affiliation(s)
- Sara A Miller
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
41
|
Histamine receptor H1 signaling on dendritic cells plays a key role in the IFN-γ/IL-17 balance in T cell–mediated skin inflammation. J Allergy Clin Immunol 2011; 127:943-53.e1-10. [DOI: 10.1016/j.jaci.2010.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/18/2010] [Accepted: 12/01/2010] [Indexed: 11/23/2022]
|
42
|
Winter S, Loddenkemper C, Aebischer A, Räbel K, Hoffmann K, Meyer TF, Lipp M, Höpken UE. The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation. J Mol Med (Berl) 2010; 88:1169-80. [PMID: 20798913 PMCID: PMC2956061 DOI: 10.1007/s00109-010-0658-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/15/2010] [Accepted: 07/15/2010] [Indexed: 01/06/2023]
Abstract
Ectopic lymphoid follicles are a key feature of chronic inflammatory autoimmune and infectious diseases, such as rheumatoid arthritis, Sjögren's syndrome, and Helicobacter pylori-induced gastritis. Homeostatic chemokines are considered to be involved in the formation of such tertiary lymphoid tissue. High expression of CXCL13 and its receptor, CXCR5, has been associated with the formation of ectopic lymphoid follicles in chronic infectious diseases. Here, we defined the role of CXCR5 in the development of mucosal tertiary lymphoid tissue and gastric inflammation in a mouse model of chronic H. pylori infection. CXCR5-deficient mice failed to develop organized gastric lymphoid follicles despite similar bacterial colonization density as infected wild-type mice. CXCR5 deficiency altered Th17 responses but not Th1-type cellular immune responses to H. pylori infection. Furthermore, CXCR5-deficient mice exhibited lower H. pylori-specific serum IgG and IgA levels and an overall decrease in chronic gastric immune responses. In conclusion, the development of mucosal tertiary ectopic follicles during chronic H. pylori infection is strongly dependent on the CXCL13/CXCR5 signaling axis, and lack of de novo lymphoid tissue formation attenuates chronic immune responses.
Collapse
Affiliation(s)
- Susann Winter
- Department of Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine (MDC), Berlin, 13125, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yeh N, Glosson NL, Wang N, Guindon L, McKinley C, Hamada H, Li Q, Dutton RW, Shrikant P, Zhou B, Brutkiewicz RR, Blum JS, Kaplan MH. Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype. THE JOURNAL OF IMMUNOLOGY 2010; 185:2089-98. [PMID: 20624947 DOI: 10.4049/jimmunol.1000818] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CD8 T cells can acquire cytokine-secreting phenotypes paralleling cytokine production from Th cells. IL-17-secreting CD8 T cells, termed Tc17 cells, were shown to promote inflammation and mediate immunity to influenza. However, most reports observed a lack of cytotoxic activity by Tc17 cells. In this study, we explored the anti-viral activity of Tc17 cells using a vaccinia virus (VV) infection model. Tc17 cells expanded during VV infection, and TCR transgenic Tc17 cells were capable of clearing recombinant VV infection. In vivo, adoptively transferred Tc17 cells lost the IL-17-secreting phenotype, even in the absence of stimulation, but they did not acquire IFN-gamma-secreting potential unless stimulated with a virus-encoded Ag. However, examination of cells following infection demonstrated that these cells acquired cytotoxic potential in vivo, even in the absence of IFN-gamma. Cytotoxic potential correlated with Fasl expression, and the cytotoxic activity of postinfection Tc17 cells was partially blocked by the addition of anti-FasL. Thus, Tc17 cells mediate VV clearance through expression of specific molecules associated with cytotoxicity but independent of an acquired Tc1 phenotype.
Collapse
Affiliation(s)
- Norman Yeh
- Department of Microbiology and Immunology, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Solano-Parada J, Gonzalez-Gonzalez G, Torró LMDP, dos Santos MFB, Espino AM, Burgos M, Osuna A. Effectiveness of intranasal vaccination against Angiostrongylus costaricensis using a serine/threonine phosphatase 2 A synthetic peptide and recombinant antigens. Vaccine 2010; 28:5185-96. [PMID: 20558243 DOI: 10.1016/j.vaccine.2010.05.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/20/2010] [Accepted: 05/28/2010] [Indexed: 01/26/2023]
Abstract
Intranasal immunization was assayed in C57BL/6 mice against Angiostrongylus costaricensis using a synthetic and a recombinant peptide belonging to the catalytic region of the serine/threonine phosphatase 2 A (PP2A) of the parasite. Immunization was carried out with the synthetic peptide (SP) polymerized either with itself or with the beta fraction of the cholera toxin (CTB) and then enclosed in nanocapsules of phosphatidyl choline, cholesterol and Quil A (ISCOM). Another group of mice was immunized with recombinant peptide. Immunization consisted of two intranasal inoculations at two-week intervals, and the challenge with L3 larvae was made one month after the last vaccination. The effectiveness of immunization was evaluated 30 days after infection by analysis of the number of parasites in the arteries of the immunized mice, as well as by measuring spleen sizes in the experimental groups. The response induced was determined by identifying the isotypes of IgG as well as the IgE and IgA specific antigen response. The interleukins produced by the splenocyte culture of the different groups were assessed after exposing them to the peptide used in the immunization. From our results, 60%, 80%, and 100% protection against the A. costaricensis challenge was achieved in mice immunized with polymerized synthetic peptide in ISCOM, synthetic peptide polymerized with the CTB in ISCOM and inclusion bodies respectively. Splenomegaly was found to be less evident in the immunized mice than in the controls. A significant increase in IFN gamma and IL-17 levels was observed in the group with 100% protection. The results showed that vaccination through the nasal mucosa may constitute a useful method of immunization and result in a protective immune response against A. costaricensis.
Collapse
Affiliation(s)
- J Solano-Parada
- Institute of Biotechnology, Biochemistry and Molecular Parasitology Group, University of Granada, Edif Mecenas, Campus Fuentenueva, 18071 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Meeks KD, Sieve AN, Kolls JK, Ghilardi N, Berg RE. IL-23 is required for protection against systemic infection with Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2010; 183:8026-34. [PMID: 19923464 DOI: 10.4049/jimmunol.0901588] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Listeria monocytogenes (LM) is a Gram-positive, intracellular bacterium that can induce spontaneous abortion, septicemia, and meningitis. Although it is known that neutrophils are required for elimination of the bacteria and for survival of the host, the mechanisms governing the recruitment of neutrophils to LM-infected tissues are not fully understood. We demonstrate here that IL-23 and the IL-17 receptor A (IL-17RA), which mediates both IL-17A and IL-17F signaling, are necessary for resistance against systemic LM infection. LM-infected IL-23p19 knockout (KO) mice have decreased production of IL-17A and IL-17F, while IFN-gamma production is not altered by the lack of IL-23. LM induces the production of IL-17A from gammadelta T cells, but not CD4, CD8, or NK cells. Furthermore, a lack of efficient neutrophil recruitment to the liver is evident in both IL-23p19 KO and IL-17RA KO mice during LM infection. Immunocytochemical analysis of infected livers revealed that neutrophils were able to localize with LM in IL-23p19 KO and IL-17RA KO mice, indicating that IL-23 and IL-17RA do not regulate the precise localization of neutrophils with LM. The importance of IL-23-induced IL-17A was demonstrated by injecting IL-23p19 KO mice with recombinant IL-17A. These mice had reduced LM bacterial burdens compared with IL-23p19 KO mice that did not receive IL-17A. These results indicate that during LM infection, IL-23 regulates the production of IL-17A and IL-17F from gammadelta T cells, resulting in optimal liver neutrophil recruitment and enhanced bacterial clearance.
Collapse
Affiliation(s)
- Karen D Meeks
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
46
|
Yen HR, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, Liang KL, Bruno TC, Pyle KJ, Chan SL, Anders RA, Trimble CL, Adler AJ, Lin TY, Pardoll DM, Huang CT, Drake CG. Tc17 CD8 T cells: functional plasticity and subset diversity. THE JOURNAL OF IMMUNOLOGY 2009; 183:7161-8. [PMID: 19917680 DOI: 10.4049/jimmunol.0900368] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IL-17-secreting CD8 T cells (Tc17) have been described in several settings, but little is known regarding their functional characteristics. While Tc1 cells produced IFN-gamma and efficiently killed targets, Tc17 cells lacked lytic function in vitro. Interestingly, the small numbers of IFN-gamma-positive or IL-17/IFN-gamma-double-positive cells generated under Tc17 conditions also lacked lytic activity and expressed a similar pattern of cell surface proteins to IL-17-producing cells. As is the case for Th17 (CD4) cells, STAT3 is important for Tc17 polarization, both in vitro and in vivo. Adoptive transfer of highly purified, Ag-specific IL-17-secreting Tc17 cells into Ag-bearing hosts resulted in near complete conversion to an IFN-gamma-secreting phenotype and substantial pulmonary pathology, demonstrating functional plasticity. Tc17 also accumulated to a greater extent than did Tc1 cells, suggesting that adoptive transfer of CD8 T cells cultured in Tc17 conditions may have therapeutic potential for diseases in which IFN-gamma-producing cells are desired.
Collapse
Affiliation(s)
- Hung-Rong Yen
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|