1
|
Qi L, Gao T, Bai C, Guo Z, Zhou L, Yang X, Fan Z, Zhang G. AOC3 accelerates lung metastasis of osteosarcoma by recruiting tumor-associated neutrophils, neutrophil extracellular trap formation and tumor vascularization. Heliyon 2024; 10:e37070. [PMID: 39296147 PMCID: PMC11408840 DOI: 10.1016/j.heliyon.2024.e37070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Osteosarcoma (OS) has strong invasiveness, early metastasis, high drug resistance, and poor prognosis. At present, OS still lacks reliable biomarkers, which makes early diagnosis of OS more difficult. AOC3 is highly expressed in OS and highly correlated with lung metastasis. qRT-PCR could identify mRNA levels of genes. Immunohistochemistry and Western blot assays could detect protein levels. Immunofluorescence and ELISA assays were applied to evaluate the activation of neutrophils. Additionally, transwell and wound healing assays evaluated cell migration and invasion abilities. Tube formation and sphere-forming assays were applied to detect the angiogenesis. C57BL/6 mice were injected with OS cells to establish a xenograft tumor model to observe the lung metastasis of OS. Flow cytometry is used to evaluate the ability of tumor cells to recruit neutrophils. AOC3 was significantly overexpressed in OS, and down-regulation of AOC3 could inhibit OS migration, invasion, and angiogenesis. AOC3 could increase tumor development and lung metastasis of OS in vivo experiments. The promoting effect of AOC3 on tumor lung metastasis was achieved by recruiting tumor neutrophils. Activated NETs could up-regulate the metastatic ability of OS cells. Tumor neovascularization also played a role in metastasis, and AOC3 supported tumor neovascularization. AOC3 accelerates lung metastasis of OS by recruiting tumor-related neutrophils and utilizing NETs and tumor vascularization formation.
Collapse
Affiliation(s)
- Luxia Qi
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Tian Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Chujie Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhanfei Guo
- Department of Rheumatology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Linjing Zhou
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Xiaodong Yang
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Zhengfu Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Guifang Zhang
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| |
Collapse
|
2
|
Unzeta M, Hernàndez-Guillamon M, Sun P, Solé M. SSAO/VAP-1 in Cerebrovascular Disorders: A Potential Therapeutic Target for Stroke and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22073365. [PMID: 33805974 PMCID: PMC8036996 DOI: 10.3390/ijms22073365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
The semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1) or primary amine oxidase (PrAO), is a deaminating enzyme highly expressed in vessels that generates harmful products as a result of its enzymatic activity. As a multifunctional enzyme, it is also involved in inflammation through its ability to bind and promote the transmigration of circulating leukocytes into inflamed tissues. Inflammation is present in different systemic and cerebral diseases, including stroke and Alzheimer’s disease (AD). These pathologies show important affectations on cerebral vessels, together with increased SSAO levels. This review summarizes the main roles of SSAO/VAP-1 in human physiology and pathophysiology and discusses the mechanisms by which it can affect the onset and progression of both stroke and AD. As there is an evident interrelationship between stroke and AD, basically through the vascular system dysfunction, the possibility that SSAO/VAP-1 could be involved in the transition between these two pathologies is suggested. Hence, its inhibition is proposed to be an interesting therapeutical approach to the brain damage induced in these both cerebral pathologies.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Auònoma de Barcelona, 08193 Barcelona, Spain;
| | - Mar Hernàndez-Guillamon
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Correspondence: ; Tel.: +34-934-896-766
| | - Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| |
Collapse
|
3
|
Kinoshita T, Sayem MA, Yaguchi T, Kharma B, Morii K, Kato D, Ohta S, Mashima Y, Asamura H, Kawakami Y. Inhibition of vascular adhesion protein-1 enhances the anti-tumor effects of immune checkpoint inhibitors. Cancer Sci 2021; 112:1390-1401. [PMID: 33453147 PMCID: PMC8019209 DOI: 10.1111/cas.14812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Modulation of the immunosuppressive tumor microenvironment (TME) is essential for enhancing the anti‐tumor effects of immune checkpoint inhibitors (ICIs). Adhesion molecules and enzymes such as vascular adhesion protein‐1 (VAP‐1), which are expressed in some cancers and tumor vascular endothelial cells, may be involved in the generation of an immunosuppressive TME. In this study, the role of VAP‐1 in TME was investigated in 2 murine colon cancer models and human cancer cells. Intraperitoneal administration of the VAP‐1‐specific inhibitor U‐V296 inhibited murine tumor growth by enhancing IFN‐γ‐producing tumor antigen‐specific CD8+ T cells. U‐V296 exhibited significant synergistic anti‐tumor effects with ICIs. In the TME of mice treated with U‐V296, the expression of genes associated with M2‐like macrophages, Th2 cells (Il4, Retnla, and Irf4), angiogenesis (Pecam1), and fibrosis (Acta2, Loxl2) were significantly decreased, and the Th1/Th2 balance was increased. H2O2, an enzymatic product of VAP‐1, which promoted the production of IL‐4 by mouse Th2 and inhibited IFN‐γ by mouse Th1 and human tumor‐infiltrating lymphocytes, was decreased in tumors and CD31+ tumor vascular endothelial cells in the TMEs of mice treated with VAP‐1 inhibitor. TCGA database analysis showed that VAP‐1 expression was a negative prognostic factor in human cancers, exhibiting a significant positive correlation with IL‐4, IL4R, and IL‐13 expression and a negative correlation with IFN‐γ expression. These results indicated that VAP‐1 is involved in the immunosuppressive TMEs through H2O2‐associated Th2/M2 conditions and may be an attractive target for the development of combination cancer immunotherapy with ICIs.
Collapse
Affiliation(s)
- Tomonari Kinoshita
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of General Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Mohammad Abu Sayem
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Budiman Kharma
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Morii
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Daiki Kato
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeki Ohta
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yukihiko Mashima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hisao Asamura
- Division of General Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
4
|
Nardelli-Haefliger D, Romero P, Jichlinski P. What is the influence of vaccination's routes on the regression of tumors located at mucosal sites? Oncoimmunology 2021; 1:242-243. [PMID: 22720257 PMCID: PMC3376991 DOI: 10.4161/onci.1.2.18204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tumor-regressions following tumor-associated-antigen vaccination in animal models contrast with the limited clinical outcomes in cancer patients. Most animal studies however used subcutaneous-tumor-models and questions arise as whether these are relevant for tumors growing in mucosae; whether specific mucosal-homing instructions are required; and how this may be influenced by the tumor.
Collapse
|
5
|
Chang SJ, Tu HP, Lai YCC, Luo CW, Nejo T, Tanaka S, Chai CY, Kwan AL. Increased Vascular Adhesion Protein 1 (VAP-1) Levels are Associated with Alternative M2 Macrophage Activation and Poor Prognosis for Human Gliomas. Diagnostics (Basel) 2020; 10:diagnostics10050256. [PMID: 32349342 PMCID: PMC7278017 DOI: 10.3390/diagnostics10050256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Glioma is characterized by a high heterogeneity in the brain tumor. Abundant tumor-associated macrophages (TAMs) exist as neoplastic tissues, implicating tumor plasticity and thus leading to therapeutic challenges. Vascular adhesion protein (VAP-1) potentially serves as a mediator for TAM immunity in tumor milieu. We previously demonstrated that VAP-1 could contribute to tumor malignancy, but its characteristics in TAM immunity of glioma progression are still unclear. This study explored the association of VAP-1 expression with TAM distribution as well as the resulting clinical significance and prognostic value in human gliomas. An in-depth analysis of AOC3 (VAP-1) gene expression was performed using 695 glioma samples derived from the cancer genome atlas (TCGA)-lower grade glioma and glioblastoma (GBMLGG) cohort. Bioinformatic analysis confirmed that VAP-1 expression is associated with poor prognosis of glioma patients (p = 0.0283). VAP-1 and TAM biomarkers (CD68, iNOS, and CD163) were evaluated by immunohistochemistry in 108 gliomas from Kaohsiung Medical University Hospital. VAP-1+ was expressed in 56 (51.85%) cases and this phenotype revealed a significant association with overall survival in Kaplan–Meier analysis (p < 0.0001). Immunohistochemical double staining showed that VAP-1 immunoreactivity was present around CD163+ M2 infiltration location, including aggressive lesions and neighboring neovasculature. We demonstrated that high VAP-1 expression levels positively correlated with CD163+ M2 activation and coexpression of these two proteins was associated with worse survival in gliomas (p < 0.0001). Multivariate analysis indicated that VAP-1 alone and co-expressed with CD163 were the significantly independent indicators (both p < 0.0001). Furthermore, VAP-1/CD163 coexpression exhibited excellent diagnostic accuracy in gliomas (AUC = 0.8008). In conclusion, VAP-1 and TAM CD163 M2 coexpression was found in glioma tissues belonging to a highly malignant subgroup that was associated with poor prognosis. These results implied VAP-1 abundance is closely linked to alternative M2 activation during glioma progression. From the aforementioned data, a reasonable inference is that VAP-1 combined with targeting M2 immunity might be an effective therapeutic target for human gliomas.
Collapse
Affiliation(s)
- Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yen-Chang Clark Lai
- Department of Pathology, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan;
| | - Chi-Wen Luo
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan;
- Department of Surgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; (T.N.); (S.T.)
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; (T.N.); (S.T.)
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (C.-Y.C.); (A.-L.K.); Tel.: +88-6-7312-1101 (ext. 7081) (C.-Y.C.); +88-6-7312-1101 (ext. 5880) (A.-L.K.); Fax: +88-6-7313-6681 (C.-Y.C.); +88-6-7321-5039 (A.-L.K.)
| | - Aij-Lie Kwan
- Department of Neurosurgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-Y.C.); (A.-L.K.); Tel.: +88-6-7312-1101 (ext. 7081) (C.-Y.C.); +88-6-7312-1101 (ext. 5880) (A.-L.K.); Fax: +88-6-7313-6681 (C.-Y.C.); +88-6-7321-5039 (A.-L.K.)
| |
Collapse
|
6
|
Amine oxidase 3 is a novel pro-inflammatory marker of oxidative stress in peritoneal endometriosis lesions. Sci Rep 2020; 10:1495. [PMID: 32001775 PMCID: PMC6992811 DOI: 10.1038/s41598-020-58362-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/06/2020] [Indexed: 11/08/2022] Open
Abstract
Endometriosis is a common gynaecological disease of women in reproductive age, and is thought to arise from retrograde menstruation and implantation of endometrial tissue, mostly into the peritoneal cavity. The condition is characterized by a chronic, unresolved inflammatory process thereby contributing to pain as cardinal symptom in endometriosis. Elevated reactive oxygen species (ROS) and oxidative stress have been postulated as factors in endometriosis pathogenesis. We here set out for a systematic study to identify novel mechanisms and pathways relating to oxidative stress in ectopic peritoneal lesions. Using combined proteomic and transcriptomic approaches, we identified novel targets including upregulated pro-oxidative enzymes, such as amine oxidase 3/vascular adhesion protein 1 (AOC3/VAP1) as well as downregulated protective factors, in particular alkenal reductase PTGR1 and methionine sulfoxide reductase. Consistent with an altered ROS landscape, we observed hemoglobin / iron overload, ROS production and lipid peroxidation in ectopic lesions. ROS-derived 4-hydroxy-2-nonenal induced interleukin IL-8 release from monocytes. Notably, AOC3 inhibitors provoked analgesic effects in inflammatory pain models in vivo, suggesting potential translational applicability.
Collapse
|
7
|
Abstract
Significance: Vascular adhesion protein-1 (VAP-1) is an ectoenzyme that oxidates primary amines in a reaction producing also hydrogen peroxide. VAP-1 on the blood vessel endothelium regulates leukocyte extravasation from the blood into tissues under physiological and pathological conditions. Recent Advances: Inhibition of VAP-1 by neutralizing antibodies and by several novel small-molecule enzyme inhibitors interferes with leukocyte trafficking and alleviates inflammation in many experimental models. Targeting of VAP-1 also shows beneficial effects in several other diseases, such as ischemia/reperfusion, fibrosis, and cancer. Moreover, soluble VAP-1 levels may serve as a new prognostic biomarker in selected diseases. Critical Issues: Understanding the contribution of the enzyme activity-independent and enzyme activity-dependent functions, which often appear to be mediated by the hydrogen peroxide production, in the VAP-1 biology will be crucial. Similarly, there is a pressing need to understand which of the VAP-1 functions are regulated through the modulation of leukocyte trafficking, and what is the role of VAP-1 synthesized in adipose and smooth muscle cells. Future Directions: The specificity and selectivity of new VAP-1 inhibitors, and their value in animal models under therapeutic settings need to be addressed. Results from several programs studying the therapeutic potential of VAP-1 inhibition, which now are in clinical trials, will reveal the relevance of this amine oxidase in humans.
Collapse
Affiliation(s)
- Marko Salmi
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
8
|
de Zeeuw D, Renfurm RW, Bakris G, Rossing P, Perkovic V, Hou FF, Nangaku M, Sharma K, Heerspink HJL, Garcia-Hernandez A, Larsson TE. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol 2018; 6:925-933. [PMID: 30413396 DOI: 10.1016/s2213-8587(18)30289-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Many patients with diabetic kidney disease have residual albuminuria and are at risk of disease progression. The ALBUM trial investigated the efficacy of a novel, orally active inhibitor of vascular adhesion protein-1, ASP8232, compared with placebo for reducing albuminuria in individuals with type 2 diabetes and chronic kidney disease. METHODS In this randomised, double-blind, placebo-controlled phase 2 trial, we randomly assigned individuals (aged 18-85 years) from 64 clinical sites in nine European countries to receive ASP8232 40 mg or placebo orally once daily for 12 weeks using a web-based randomisation schedule (block size 4), stratified by country. Eligible patients had a urinary albumin-to-creatinine ratio (UACR) of 200-3000 mg/g, an estimated glomerular filtration rate of at least 25 mL/min per 1·73 m2 but lower than 75 mL/min per 1·73 m2, HbA1c less than 11·0% (97 mmol/mol), and stable treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers and antidiabetic medication for 3 months or more. The primary endpoint was mean change from baseline to week 12 in log-transformed first morning void UACR, which was assessed in all patients who received at least one dose of study drug and had at least one post-baseline UACR measurement (full analysis set). Safety was assessed in all patients who received at least one dose of study drug. Participants and investigators were masked to treatment allocation. This trial is registered with ClinicalTrials.gov, number NCT02358096. FINDINGS 125 participants were randomly assigned to receive ASP8232 (n=64) or placebo (n=61), of whom 120 (60 in each group) were included in the full analysis set; all participants were assessed for safety endpoints. At 12 weeks, UACR decreased by 17·7% (95% CI 5·0 to 28·6) in the ASP8232 group and increased by 2·3% (-11·4 to 18·1) in the placebo group; the placebo-adjusted difference between groups was -19·5% (95% CI -34·0 to -1·8; p=0·033). 39 (61%) patients in the ASP8232 group and 34 (56%) patients in the placebo group had a treatment-emergent adverse event, of which 16 in the ASP8232 group and four in the placebo group were drug-related. The most frequently reported adverse events that were possibly drug-related in the ASP8232 group were renal impairment (five patients) and decreased eGFR (three patients); in the placebo group, no single drug-related treatment-emergent adverse event was reported by more than one participant. INTERPRETATION ASP8232 is effective in reducing albuminuria in patients with diabetic kidney disease and is safe and well tolerated. These findings warrant further research to ascertain the effect of ASP8232 on delaying progression of diabetic kidney disease. FUNDING Astellas.
Collapse
Affiliation(s)
- Dick de Zeeuw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Ronny W Renfurm
- Astellas Pharma Global Development, Astellas Pharma Europe BV, Leiden, Netherlands
| | - George Bakris
- American Society of Hypertension Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA
| | - Peter Rossing
- Steno Diabetes Center and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vlado Perkovic
- The George Institute for Global Health, University of New South Wales Sydney, Newtown, NSW, Australia
| | - Fan Fan Hou
- Department of Internal Medicine, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; National Clinical Research Center for Kidney Disease, Guangzhou, China
| | | | - Kumar Sharma
- Department of Medicine, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - Tobias E Larsson
- Astellas Pharma Global Development, Astellas Pharma Europe BV, Leiden, Netherlands
| |
Collapse
|
9
|
Semicarbazide-sensitive amine oxidase activity levels in patients with acute lymphoblastic leukemia after cytotoxic chemotherapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Lai YCC, Chang SJ, Kostoro J, Kwan AL, Chai CY. Vascular adhesion protein-1 as indicator of breast cancer tumor aggressiveness and invasiveness. APMIS 2018; 126:755-761. [PMID: 30160019 DOI: 10.1111/apm.12885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/05/2018] [Indexed: 11/27/2022]
Abstract
Recent studies suggest that vascular adhesion protein-1 (VAP-1), a 180-KDa homodimeric glycoprotein, may be associated with cancer-related events including tumor cell migration, motility, invasion, or metastasis. Therefore, this study applies VAP-1 immunohistochemical staining to demonstrate the invasiveness component of the breast cancer. The VAP-1 staining results were compared in 148 breast cancer cases to identify possible correlations with clinical status, including age, tumor size, tumor grade, TNM stage, lymphatic invasion, metastasis, recurrence, and survival rate. Immunohistochemical staining results showed VAP-1 negative or weak staining in normal ducts and ductal carcinoma in situ (DCIS), but these phenotypes were positively associated with a stiffened VAP-1 that presented at the invasive front of the lesion. Our data demonstrated that VAP-1 expression was positively associated with lymphatic invasion, distant metastasis, and patient survival in breast carcinoma. Notably, VAP-1 expression was found to be significantly correlated with the overall survival (p < 0.0001). Multivariate Cox analysis indicated that VAP-1 expression was a significant independent prognostic indicator of overall survival in breast carcinoma (p < 0.0001). In conclusion, this study suggests that VAP-1 is linked to progression of tumor invasion and metastasis in breast carcinoma. VAP-1 is shown to be a biomarker that can be predict invasive potential and clinical outcome in breast cancer.
Collapse
Affiliation(s)
- Yen-Chang Clark Lai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joanna Kostoro
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Marttila-Ichihara F, Elima K, Auvinen K, Veres TZ, Rantakari P, Weston C, Miyasaka M, Adams D, Jalkanen S, Salmi M. Amine oxidase activity regulates the development of pulmonary fibrosis. FASEB J 2017; 31:2477-2491. [PMID: 28251930 DOI: 10.1096/fj.201600935r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022]
Abstract
In pulmonary fibrosis, an inflammatory reaction and differentiation of myofibroblasts culminate in pathologic deposition of collagen. Amine oxidase copper containing-3 (AOC3) is a cell-surface-expressed oxidase that regulates leukocyte extravasation. Here we analyzed the potential role of AOC3 using gene-modified and inhibitor-treated mice in a bleomycin-induced pulmonary fibrosis model. Inflammation and fibrosis of lungs were assessed by histologic, flow cytometric, and quantitative PCR analysis. AOC3-deficient mice showed a 30-50% reduction in fibrosis, collagen synthesis, numbers of myofibroblasts, and accumulation of CD4+ lymphocytes, NK T cells, macrophages, and type 2 innate lymphoid cells compared with wild-type control mice. AOC3-knock-in mice, which express a catalytically inactive form of AOC3, were also protected from lung fibrosis. In wild-type mice, a small-molecule AOC3 inhibitor treatment reduced leukocyte infiltration, myofibroblast differentiation, and fibrotic injury both in prophylactic and early therapeutic settings by about 50% but was unable to reverse the established fibrosis. AOC3 was also induced in myofibroblasts in human idiopathic pulmonary fibrosis. Thus, the oxidase activity of AOC3 contributes to the development of lung fibrosis mainly by regulating the accumulation of pathogenic leukocyte subtypes, which drive the fibrotic response.-Marttila-Ichihara, F., Elima, K., Auvinen, K., Veres, T. Z., Rantakari, P., Weston, C., Miyasaka, M., Adams, D., Jalkanen, S., Salmi, M. Amine oxidase activity regulates the development of pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Kati Elima
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Kaisa Auvinen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Tibor Z Veres
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Christopher Weston
- Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom; and
| | - Masayuki Miyasaka
- MediCity Research Laboratory, University of Turku, Turku, Finland.,World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Japan
| | - David Adams
- Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom; and
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques. Sci Rep 2016; 6:35089. [PMID: 27731409 PMCID: PMC5059718 DOI: 10.1038/srep35089] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022] Open
Abstract
Given the important role of inflammation and the potential association of the leukocyte trafficking-associated adhesion molecule vascular adhesion protein 1 (VAP-1) with atherosclerosis, this study examined whether functional VAP-1 is expressed in atherosclerotic lesions and, if so, whether it could be targeted by positron emission tomography (PET). First, immunohistochemistry revealed that VAP-1 localized to endothelial cells of intra-plaque neovessels in human carotid endarterectomy samples from patients with recent ischemic symptoms. In low-density lipoprotein receptor-deficient mice expressing only apolipoprotein B100 (LDLR-/-ApoB100/100), VAP-1 was expressed on endothelial cells lining inflamed atherosclerotic lesions; normal vessel walls in aortas of C57BL/6N control mice were VAP-1-negative. Second, we discovered that the focal uptake of VAP-1 targeting sialic acid-binding immunoglobulin-like lectin 9 based PET tracer [68Ga]DOTA-Siglec-9 in atherosclerotic plaques was associated with the density of activated macrophages (r = 0.58, P = 0.022). As a final point, we found that the inhibition of VAP-1 activity with small molecule LJP1586 decreased the density of macrophages in inflamed atherosclerotic plaques in mice. Our results suggest for the first time VAP-1 as a potential imaging target for inflamed atherosclerotic plaques, and corroborate VAP-1 inhibition as a therapeutic approach in the treatment of atherosclerosis.
Collapse
|
13
|
Kostoro J, Chang SJ, Clark Lai YC, Wu CC, Chai CY, Kwan AL. Overexpression of vascular adhesion protein-1 is associated with poor prognosis of astrocytomas. APMIS 2016; 124:462-8. [PMID: 26935340 DOI: 10.1111/apm.12525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/18/2015] [Indexed: 02/02/2023]
Abstract
Vascular adhesion protein-1 (VAP-1) is one of the endothelial adhesion molecules that is believed to play a role in tumor progression and metastasis, supporting cancer cell extravasation. Very few studies have been performed on analyzing the contribution of VAP-1 in brain tumor. Astrocytomas are the most common type of brain tumors, which are classified by World Health Organization (WHO) into four grades according to the degree of malignancy. This study was designed to investigate VAP-1 expression level in different astrocytoma grades and its correlation with clinicopathological features as well as prognosis of astrocytoma patients. Eighty-seven patients with different grades of astrocytoma (WHO Grade I-Grade IV) were enrolled in this study. The expression of VAP-1 was assayed by immunohistochemistry. The correlation between VAP-1 expression and clinicopathological features was evaluated by Chi-square test, and overall survival was analyzed by Kaplan-Meier method. Cox regression analysis was applied to analyze the independent influence of each parameter on overall survival. The expression level of VAP-1 was significantly higher in diffuse astrocytoma than those of pilocytic astrocytoma (p < 0.0001). In the subgroup analysis, upregulated VAP-1 expression was frequently found in older age patients (≥50 years). The VAP-1 expression was found to be significantly correlated with the overall survival (p = 0.0002). There was a statistical correlation between VAP-1(high) tumors in diffuse astrocytoma and VAP-1(low) tumors in pilocytic astrocytoma (p < 0.0001). Multivariate Cox analysis indicated VAP-1 was an independent predictive marker for poorer prognosis (p = 0.0036). Therefore, VAP-1 could be a promising prognostic biomarker in astrocytoma.
Collapse
Affiliation(s)
- Joanna Kostoro
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Chang Clark Lai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Ward ST, Weston CJ, Shepherd EL, Hejmadi R, Ismail T, Adams DH. Evaluation of serum and tissue levels of VAP-1 in colorectal cancer. BMC Cancer 2016; 16:154. [PMID: 26912327 PMCID: PMC4766640 DOI: 10.1186/s12885-016-2183-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/16/2016] [Indexed: 01/25/2023] Open
Abstract
Background The endothelial adhesion molecule, vascular adhesion protein-1 (VAP-1, AOC3) promotes lymphocyte recruitment to tumours, although the contribution that VAP-1 makes to lymphocyte recruitment in human colorectal cancer (CRC) is unknown. VAP-1 exists in circulating soluble form (sVAP-1). A previous study demonstrated elevated sVAP-1 levels in CRC patients. The aim of this study was to confirm this finding and study the differences in tissue VAP-1 expression between CRC and healthy tissues. Methods sVAP-1 levels were measured in the serum of 31 patients with CRC and 31 age- and sex-matched controls. Tissue VAP-1 levels were measured by immunohistochemistry, quantitative real-time PCR and Western blotting. Results The mean sVAP-1 level ± SD was significantly lower in the CRC group compared with the control group (399 ± 138 ng/ml versus 510 ± 142 ng/ml, P = 0.003). Tissue VAP-1 protein and mRNA levels were significantly lower in CRC compared with normal colon tissue. VAP-1 immunostaining was practically absent from CRC. Conclusions VAP-1 is downregulated in human CRC and although the molecular basis of this down regulation is not yet known, we suggest it may be part of a mechanism used by the tumour to prevent the recruitment of anti-tumour immune cells. Our data contradicts the findings of others with regard sVAP-1 levels in patients with CRC. Possible reasons for this are discussed.
Collapse
Affiliation(s)
- Stephen T Ward
- Centre for Liver Research & NIHR Birmingham Biomedical Research Unit, Level 5 Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham, B15 2TT, UK.
| | - Christopher J Weston
- Centre for Liver Research & NIHR Birmingham Biomedical Research Unit, Level 5 Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham, B15 2TT, UK
| | - Emma L Shepherd
- Centre for Liver Research & NIHR Birmingham Biomedical Research Unit, Level 5 Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham, B15 2TT, UK
| | - Rahul Hejmadi
- Department of Colorectal Surgery, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham, B15 2GW, UK
| | - Tariq Ismail
- Department of Colorectal Surgery, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham, B15 2GW, UK
| | - David H Adams
- Centre for Liver Research & NIHR Birmingham Biomedical Research Unit, Level 5 Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham, B15 2TT, UK
| |
Collapse
|
15
|
Pannecoeck R, Serruys D, Benmeridja L, Delanghe JR, van Geel N, Speeckaert R, Speeckaert MM. Vascular adhesion protein-1: Role in human pathology and application as a biomarker. Crit Rev Clin Lab Sci 2015; 52:284-300. [PMID: 26287391 DOI: 10.3109/10408363.2015.1050714] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vascular adhesion protein-1 (VAP-1) is a member of the copper-containing amine oxidase/semicarbazide-sensitive amine oxidase (AOC/SSAO) enzyme family. SSAO enzymes catalyze oxidative deamination of primary amines, which results in the production of the corresponding aldehyde, hydrogen peroxide and ammonium. VAP-1 is continuously expressed as a transmembrane glycoprotein in the vascular wall during development and facilitates the accumulation of inflammatory cells into the inflamed environment in concert with other leukocyte adhesion molecules. The soluble form of VAP-1 is released into the circulation mainly from vascular endothelial cells. Over- and under-expression of sVAP-1 result in alterations of the reported reaction product levels, which are involved in the pathogenesis of multiple human diseases. The combination of enzymatic and adhesion capacities as well as its strong association with inflammatory pathologies makes VAP-1 an interesting therapeutic target for drug discovery. In this article, we will review the general characteristics and biological functions of VAP-1, focusing on its important role as a prognostic biomarker in human pathologies. In addition, the potential therapeutic application of VAP-1 inhibitors will be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Nanja van Geel
- c Department of Dermatology , Ghent University Hospital , Gent , Belgium
| | | | | |
Collapse
|
16
|
Ectoenzymes in leukocyte migration and their therapeutic potential. Semin Immunopathol 2014; 36:163-76. [PMID: 24638888 DOI: 10.1007/s00281-014-0417-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/19/2014] [Indexed: 02/07/2023]
Abstract
Inflammation causes or accompanies a huge variety of diseases. Migration of leukocytes from the blood into the tissues, in the tissues, and from the tissues to lymphatic vasculature is crucial in the formation and resolution of inflammatory infiltrates. In addition to classical adhesion and activation molecules, several other molecules are known to contribute to the leukocyte traffic. Several of them belong to ectoenzymes, which are cell surface molecules having catalytically active sites outside the cell. We will review here how several ectoenzymes present on leukocytes or endothelial cell surface function as adhesins and/or modulate the extravasation cascade through their enzymatic activities. Moreover, their therapeutic potential as immune modulators in different experimental inflammation models and in clinical trials will be discussed.
Collapse
|
17
|
Lee WY, Salmi M, Kelly MM, Jalkanen S, Kubes P. Therapeutic advantage of anti-VAP-1 over anti-α4 integrin antibody in concanavalin a-induced hepatitis. Hepatology 2013; 58:1413-23. [PMID: 23686782 DOI: 10.1002/hep.26469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/11/2013] [Indexed: 01/11/2023]
Abstract
UNLABELLED Hepatitis induced by concanavalin A (Con A) in mice is well known to be a T-lymphocyte-mediated injury. It has been reported that T helper (Th)1 and Th2 lymphocytes use α4 integrin and vascular adhesion protein (VAP)-1, respectively, to adhere within the hepatic sinusoids. Therefore, we investigated whether inhibition of these molecules ameliorates or worsens the Con A-induced hepatic injury in vivo. Vehicle or antibody to α4 integrin or VAP-1 was intravenously administered 30 minutes before Con A administration. In control mice Con A markedly increased the serum alanine aminotransferase (ALT) level in a dose-dependent manner, and induced a massive infiltration of CD3, particularly interleukin (IL)-4 producing CD4 T cells and liver injury. Both parameters were reduced by anti-VAP-1 antibody despite antibody only blocking the adhesion, not the amine oxidase activity of VAP-1. Both activities of VAP-1 were eliminated in VAP-1-deficient mice and both Con A-induced liver injury and CD4 T-cell infiltration were eradicated. In contrast to anti-VAP-1, anti-α4 integrin antibody reduced interferon-gamma (IFN-γ)-producing CD3 T cells but this worsened Con A hepatitis, suggesting inhibition of a suppressor cell. Con A induced the recruitment of CD49d(+) monocytic myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) into the liver. Anti-α4 integrin dramatically blocked the influx of MDSCs but not Tregs. CONCLUSION Our findings show that VAP-1 and α4 integrin have opposing effects in Con A-induced hepatic injury, which is associated with blocking the recruitment of CD4 lymphocytes and monocytic MDSCs, respectively. Moreover, these data provide the rationale for a potential therapeutic approach to target adhesion molecules in autoimmune hepatitis.
Collapse
Affiliation(s)
- Woo-Yong Lee
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
18
|
Vascular adhesion protein 1 in the eye. J Ophthalmol 2013; 2013:925267. [PMID: 23840939 PMCID: PMC3687510 DOI: 10.1155/2013/925267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/17/2013] [Accepted: 05/14/2013] [Indexed: 11/29/2022] Open
Abstract
Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1), a dual-function molecule with adhesive and enzymatic properties, is expressed on the surface of vascular endothelial cells of mammals. It also exists as a soluble form (sVAP-1), which is implicated in oxidative stress via its enzymatic activity and can be a prognostic biomarker. Recent evidence suggests that VAP-1 is an important therapeutic target for several inflammation-related ocular diseases, such as uveitis, age-related macular degeneration (AMD), and diabetic retinopathy (DR), by involving in the recruitment of leukocytes at sites of inflammation. Furthermore, VAP-1 plays an important role in the pathogenesis of conjunctival inflammatory diseases such as pyogenic granulomas and the progression of conjunctival lymphoma. VAP-1 may be an alternative therapeutic target in ocular diseases. The in vivo imaging of inflammation using VAP-1 as a target molecule is a novel approach with a potential for early detection and characterization of inflammatory diseases. This paper reviews the critical roles of VAP-1 in ophthalmological diseases which may provide a novel research direction or a potent therapeutic strategy.
Collapse
|
19
|
Li R, Li H, Luo HJ, Lin ZX, Jiang ZW, Luo WH. SSAO inhibitors suppress hepatocellular tumor growth in mice. Cell Immunol 2013; 283:61-9. [PMID: 23850964 DOI: 10.1016/j.cellimm.2013.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/16/2013] [Accepted: 06/13/2013] [Indexed: 02/05/2023]
Abstract
Vascular adhesion protein-1 (VAP-1) is both an endothelial adhesion molecule involved in leukocytes emigration, and an oxidase belonging to the family of semicarbazide-sensitive amine oxidases (SSAOs). The enzyme activity of VAP-1 plays an important role in the migration of myeloid-derived suppressor cells (MDSCs) into tumor site, and SSAO inhibitors can block the function of VAP-1. The effects of SSAO inhibitors on leukocyte infiltration and tumor progression were evaluated in H22 hepatocellular carcinoma-bearing C57BL/6 mice. Tumor weight and volume were measured after SSAO inhibitor treatment. Then, MDSCs recruitment and neo-angiogenesis were determined using immunostaining. SSAO inhibitors significantly blocked the catalytic activity of VAP-1 in tumor, attenuated tumor progression, and reduced neo-angiogenesis. CD11b(+) and Gr-1(+) MDSCs, which normally infiltrate into tumors, were significantly diminished in tumor-bearing mice treated with SSAO inhibitors. The present study demonstrated that SSAO inhibitors might have an anti-tumor effect on hepatocellular carcinoma by inhibiting recruitment of CD11b(+) and Gr-1(+) cells and hindering angiogenesis, which could be attributed to impairing the catalytic activity of VAP-1.
Collapse
Affiliation(s)
- Rui Li
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | | | | | | | | |
Collapse
|
20
|
Ferjančič Š, Gil-Bernabé AM, Hill SA, Allen PD, Richardson P, Sparey T, Savory E, McGuffog J, Muschel RJ. VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood 2013; 121:3289-97. [PMID: 23407548 DOI: 10.1182/blood-2012-08-449819] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pulmonary metastasis is a frequent cause of poor outcome in cancer patients. The formation of pulmonary metastasis is greatly facilitated by recruitment of myeloid cells, which are crucial for tumor cell survival and extravasation. During inflammation, homing of myeloid cells is mediated by endothelial activation, raising the question of a potential role for endothelial activation in myeloid cell recruitment during pulmonary metastasis. Here, we show that metastatic tumor cell attachment causes the induction of the endothelial activation markers vascular cell adhesion molecule-1 (VCAM-1) and vascular adhesion protein-1 (VAP-1). Induction of VCAM-1 is dependent on tumor cell-clot formation, decreasing upon induction of tissue factor pathway inhibitor or treatment with hirudin. Furthermore, inhibition of endothelial activation with a VCAM-1 blocking antibody or a VAP-1 small molecule inhibitor leads to reduced myeloid cell recruitment and diminished tumor cell survival and metastasis without affecting tumor cell adhesion. Simultaneous inhibition of VCAM-1 and VAP-1 does not result in further reduction in myeloid cell recruitment and tumor cell survival, suggesting that both act through closely related mechanisms. These results establish VCAM-1 and VAP-1 as mediators of myeloid cell recruitment in metastasis and identify VAP-1 as a potential target for therapeutic intervention to combat early metastasis.
Collapse
Affiliation(s)
- Špela Ferjančič
- Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Fukuhara J, Kase S, Noda K, Murata M, Noda M, Ando R, Dong Z, Ishida S, Kanda A. Immunolocalization of Vascular Adhesion Protein-1 in Human Conjunctival Tumors. Ophthalmic Res 2012; 48:33-7. [DOI: 10.1159/000335983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022]
|
23
|
Affiliation(s)
- Luca Salassa
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
24
|
Yegutkin GG, Marttila-Ichihara F, Karikoski M, Niemelä J, Laurila JP, Elima K, Jalkanen S, Salmi M. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur J Immunol 2011; 41:1231-41. [PMID: 21469131 DOI: 10.1002/eji.201041292] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD73/ecto-5'-nucleotidase dephosphorylates extracellular AMP into adenosine, and it is a key enzyme in the regulation of adenosinergic signaling. The contribution of host CD73 to tumor growth and anti-tumor immunity has not been studied. Here, we show that under physiological conditions CD73-deficient mice had significantly elevated ATPase and ADPase activities in LN T cells. In a melanoma model, the growth of primary tumors and formation of metastasis were significantly attenuated in mice lacking CD73. Among tumor-infiltrating leukocytes there were fewer Tregs and mannose receptor-positive macrophages, and increased IFN-γ and NOS2 mRNA production in CD73-deficient mice. Treatment of tumor-bearing animals with soluble apyrase, an enzyme hydrolyzing ATP and ADP, significantly inhibited tumor growth and accumulation of intratumoral Tregs and mannose receptor-positive macrophages in the WT C57BL/6 mice but not in the CD73-deficient mice. Pharmacological inhibition of CD73 with α,β-methylene-adenosine-5'-diphosphate in WT mice retarded tumor progression similarly to the genetic deletion of CD73. Together these data show that increased pericellular ATP degradation in the absence of CD73 activity in the host cells is a novel mechanism controlling anti-tumor immunity and tumor progression, and that the purinergic balance can be manipulated therapeutically to inhibit tumor growth.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory, University of Turku, and National Institute of Health and Welfare, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dunkel P, Balogh B, Meleddu R, Maccioni E, Gyires K, Mátyus P. Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1: a patent survey. Expert Opin Ther Pat 2011; 21:1453-71. [PMID: 21675926 DOI: 10.1517/13543776.2011.594040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Vascular adhesion protein-1 (VAP-1)/semicarbazide-sensitive amine oxidase (SSAO) is an adhesion protein involved in leukocyte trafficking and inflammatory processes, with a special amine oxidase activity. Inhibitors have been mainly developed for treating chronic inflammatory disorders. The utility of inhibitors as antiangiogenic agents in ophthalmological and oncological diseases is currently under evaluation. SSAO substrates may mimic several insulin effects, although their utility for the treatment of diabetes is still far from being fully understood. AREAS COVERED This paper reviews the patent literature of SSAO/VAP-1 inhibitors and substrates, for the period of 1990 - 2010. The current stage of SSAO/VAP-1-interacting agents published in patents is described, along with their chemical structures and pharmacological uses. EXPERT OPINION SSAO/VAP-1 is a promising anti-inflammatory target. Another important field for therapeutic application of these inhibitors may be ophthalmology, due to their antiangiogenic effects. SSAO substrates might also be of therapeutic value in the treatment of diabetes; however, more extensive research has to be undertaken to validate this approach.
Collapse
Affiliation(s)
- Petra Dunkel
- Semmelweis University, Department of Organic Chemistry , Hőgyes Endre utca 7, 1092 Budapest , Hungary
| | | | | | | | | | | |
Collapse
|
26
|
Weston CJ, Adams DH. Hepatic consequences of vascular adhesion protein-1 expression. J Neural Transm (Vienna) 2011; 118:1055-64. [PMID: 21512782 DOI: 10.1007/s00702-011-0647-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/10/2011] [Indexed: 01/09/2023]
|
27
|
Salmi M, Jalkanen S. Homing-associated molecules CD73 and VAP-1 as targets to prevent harmful inflammations and cancer spread. FEBS Lett 2011; 585:1543-50. [DOI: 10.1016/j.febslet.2011.04.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 01/01/2023]
|
28
|
Preliminary studies of the effects of vascular adhesion protein-1 inhibitors on experimental corneal neovascularization. J Neural Transm (Vienna) 2011; 118:1065-9. [DOI: 10.1007/s00702-011-0595-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/27/2011] [Indexed: 01/28/2023]
|
29
|
Iffiú-Soltész Z, Mercader J, Daviaud D, Boucher J, Carpéné C. Increased primary amine oxidase expression and activity in white adipose tissue of obese and diabetic db-/- mice. J Neural Transm (Vienna) 2011; 118:1071-7. [PMID: 21298297 DOI: 10.1007/s00702-011-0586-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/16/2011] [Indexed: 10/18/2022]
Abstract
The major form of primary amine oxidase expressed in adipose tissue (AT) is encoded by AOC3 gene and is known as semicarbazide-sensitive amine oxidase, identical to vascular adhesion protein-1 (SSAO/VAP-1). Exogenous substrates of SSAO/VAP-1 (e.g. benzylamine) stimulate glucose transport in adipocytes and improve glucose tolerance when injected in diabetic rodents. Numerous reports on the circulating, soluble SSAO/VAP-1 have univocally evidenced an increase in diabetic conditions. However, only scarce studies have investigated whether obesity and/or diabetes is accompanied with variations of AOC3 expression in AT. Therefore, we compared the SSAO/VAP-1 content in different fat depots of db-/- mice (lacking leptin receptor and being hyperphagic, diabetic and obese) and db+/- littermates (normoglycemic and lean). AOC3 expression was increased in perigonadal and subcutaneous AT of db-/- mice, while the maximal velocity of benzylamine oxidation (V (max), expressed as pmoles of hydrogen peroxide produced/min/mg protein) increased only in the latter. Indeed, the relative abundance of primary amine oxidase was increased in subcutaneous AT of db-/- mice at all the levels: mRNA, protein and activity. While considering the overall capacity to oxidise amines contained in each depot, there was an increase in the hypertrophic fat pads of the obese db-/- mice, irrespective of their anatomical location, as a result of their dramatically larger mass than in lean db+/- control. Such higher amount of AT-bound primary amine oxidase warrants further studies to determine whether SSAO/VAP-1 inhibition or activation may be useful in treating metabolic diseases.
Collapse
Affiliation(s)
- Zsuzsa Iffiú-Soltész
- Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil (I2MC), Toulouse, France
| | | | | | | | | |
Collapse
|