1
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Wilhelmson AS, Lantero Rodriguez M, Svedlund Eriksson E, Johansson I, Fogelstrand P, Stubelius A, Lindgren S, Fagman JB, Hansson GK, Carlsten H, Karlsson MCI, Ekwall O, Tivesten Å. Testosterone Protects Against Atherosclerosis in Male Mice by Targeting Thymic Epithelial Cells-Brief Report. Arterioscler Thromb Vasc Biol 2018; 38:1519-1527. [PMID: 29853568 PMCID: PMC6039408 DOI: 10.1161/atvbaha.118.311252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Androgen deprivation therapy has been associated with increased cardiovascular risk in men. Experimental studies support that testosterone protects against atherosclerosis, but the target cell remains unclear. T cells are important modulators of atherosclerosis, and deficiency of testosterone or its receptor, the AR (androgen receptor), induces a prominent increase in thymus size. Here, we tested the hypothesis that atherosclerosis induced by testosterone deficiency in male mice is T-cell dependent. Further, given the important role of the thymic epithelium for T-cell homeostasis and development, we hypothesized that depletion of the AR in thymic epithelial cells will result in increased atherosclerosis. Approach and Results— Prepubertal castration of male atherosclerosis-prone apoE−/− mice increased atherosclerotic lesion area. Depletion of T cells using an anti-CD3 antibody abolished castration-induced atherogenesis, demonstrating a role of T cells. Male mice with depletion of the AR specifically in epithelial cells (E-ARKO [epithelial cell-specific AR knockout] mice) showed increased thymus weight, comparable with that of castrated mice. E-ARKO mice on an apoE−/− background displayed significantly increased atherosclerosis and increased infiltration of T cells in the vascular adventitia, supporting a T-cell–driven mechanism. Consistent with a role of the thymus, E-ARKO apoE−/− males subjected to prepubertal thymectomy showed no atherosclerosis phenotype. Conclusions— We show that atherogenesis induced by testosterone/AR deficiency is thymus- and T-cell dependent in male mice and that the thymic epithelial cell is a likely target cell for the antiatherogenic actions of testosterone. These insights may pave the way for new therapeutic strategies for safer endocrine treatment of prostate cancer.
Collapse
Affiliation(s)
- Anna S Wilhelmson
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Marta Lantero Rodriguez
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Elin Svedlund Eriksson
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Inger Johansson
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Per Fogelstrand
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Alexandra Stubelius
- Center for Bone and Arthritis Research, Institute of Medicine (A.S., H.C.).,Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.)
| | - Susanne Lindgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.).,Department of Pediatrics, Institute of Clinical Sciences (S.L., O.E.), University of Gothenburg, Sweden
| | - Johan B Fagman
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Göran K Hansson
- Department of Medicine, Center for Molecular Medicine (G.K.H.)
| | - Hans Carlsten
- Center for Bone and Arthritis Research, Institute of Medicine (A.S., H.C.).,Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.)
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor, and Cell Biology (M.C.I.K.), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.).,Department of Pediatrics, Institute of Clinical Sciences (S.L., O.E.), University of Gothenburg, Sweden
| | - Åsa Tivesten
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| |
Collapse
|
3
|
Besançon A, Michaud B, Beltrand J, Goncalves T, Jais JP, Polak M, Chatenoud L, Robert JJ. Revisiting autoimmune gastritis in children and adolescents with type 1 diabetes. Pediatr Diabetes 2017; 18:772-776. [PMID: 28004477 DOI: 10.1111/pedi.12482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/10/2016] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Assess the frequency of anti-H+ /K+ adenosine triphosphatase (ATPase) autoantibodies (AAB) and symptoms of autoimmune gastritis in children and adolescents with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Anti-H+ /K+ ATPase AAB were measured in 402 children and adolescents (210 boys and 192 girls, 11.1 ± 4.5 years) treated for T1D (screened positive for β-cell AAB), along with search of symptoms of anemia (hemoglobin, serum iron, and ferritin levels) and gastric pain. The AAB specific for thyroperoxydase, thyroglobulin, and transglutaminase were also measured. RESULTS Anti-H+ /K+ ATPase AAB were present in 6.5% of children. Their frequency increased with age: 4% at 10 years, 10% at 15 years, and 20% at 20 years. Iron deficiency (45% vs 3.8%), iron deficiency anemia (36% vs 3.8%), antithyroid AAB (24% vs 9.7%), and family history of Graves' disease (25% vs 5.6%) were more frequent in patients with anti-H+ /K+ ATPase AAB. Two patients, a 13-year-old girl and a 11-year-old boy, experienced symptoms (iron deficiency anemia and epigastric pain) which led to diagnosis of autoimmune gastritis confirmed upon fibroscopy. Both showed high levels of anti-H+ /K+ ATPase AAB and atrophic gastritis. CONCLUSIONS Autoimmune gastritis presents an age-dependent frequency in children and adolescents with T1D but is rarely symptomatic. Screening for anti-H+ /K+ ATPase AAB should thus target patients with iron deficiency, anemia, epigastralgia, autoimmune thyroiditis, or age over 15 years.
Collapse
Affiliation(s)
- Alix Besançon
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker - Enfants Malades, Paris, France.,INSERM U1151, Hôpital Necker - Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker - Enfants Malades, Paris, France
| | | | - Jacques Beltrand
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker - Enfants Malades, Paris, France.,INSERM U1016 and IMAGINE Institute, Hôpital Necker - Enfants Malades, Paris, France
| | - Tania Goncalves
- INSERM U1151, Hôpital Necker - Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker - Enfants Malades, Paris, France
| | - Jean-Philippe Jais
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Service de Biostatistiques, Hôpital Necker - Enfants Malades, Paris, France
| | - Michel Polak
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker - Enfants Malades, Paris, France.,INSERM U1016 and IMAGINE Institute, Hôpital Necker - Enfants Malades, Paris, France
| | - Lucienne Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker - Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker - Enfants Malades, Paris, France.,Laboratoire d'immunologie biologie, Hôpital Necker - Enfants Malades, Paris, France
| | - Jean-Jacques Robert
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker - Enfants Malades, Paris, France
| |
Collapse
|
4
|
Askenasy N. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation. Immunol Res 2016; 64:360-8. [PMID: 26639356 DOI: 10.1007/s12026-015-8753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel.
| |
Collapse
|
5
|
Laur AM, Floch P, Chambonnier L, Benejat L, Korolik V, Giese A, Dubus P, Mégraud F, Bandeira A, Lehours P. Regulatory T cells may participate in Helicobacter pylori persistence in gastric MALT lymphoma: lessons from an animal model. Oncotarget 2016; 7:3394-402. [PMID: 26657504 PMCID: PMC4823114 DOI: 10.18632/oncotarget.6492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022] Open
Abstract
It has been postulated that the emergence of autoimmune gastritis in neonatal thymectomised (d3Tx) BALB/c mice may be a consequence of post-surgery deficit in Tregs. In this study, previously obtained samples from d3Tx mice were used in order to determine whether thymectomy creates a deficit in this T cell subset thereby allowing the emergence of autoimmune phenomena as a prerequisite for GML. The splenic Treg reserve and the local recruitment of these cells in the gastric mucosa were investigated using complementary molecular and immunohistochemistry approaches. Higher Foxp3/CD3 ratios were found in the spleen of non-infected d3Tx mice compared to non-thymectomised (NTx) controls. These results indicate a relative enrichment of Tregs following thymectomy in adult mice. The absence of Treg depletion in d3Tx mice is in line with the absence of auto-immune gastritis in non-infected d3Tx mice. Higher levels of T cell and Treg infiltration were also found in the stomach of GML-developing d3Tx mice versus NTx mice. Surprisingly, inflammatory scores inversely correlated with the bacterial inoculum. The presence of a small Treg containing compartment among gastric biopsies of GML developing d3Tx mice may play a role in perseverance of a minimal bacterial numbers thereby maintaining an antigen-dependent stimulation and proliferation.
Collapse
Affiliation(s)
- Amandine Marine Laur
- University Bordeaux, Bacteriology Laboratory, Bordeaux, France.,INSERM U853, Bordeaux, France
| | - Pauline Floch
- University Bordeaux, Bacteriology Laboratory, Bordeaux, France.,INSERM U853, Bordeaux, France
| | - Lucie Chambonnier
- University Bordeaux, Bacteriology Laboratory, Bordeaux, France.,INSERM U853, Bordeaux, France
| | - Lucie Benejat
- University Bordeaux, Bacteriology Laboratory, Bordeaux, France
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Nathan QLD, Australia
| | - Alban Giese
- University Bordeaux, EA 2406, Bordeaux, France
| | | | - Francis Mégraud
- University Bordeaux, Bacteriology Laboratory, Bordeaux, France.,INSERM U853, Bordeaux, France
| | - Antonio Bandeira
- Unit for Biology of Lymphocyte Populations, Immunology Department, Institut Pasteur and CIMI, Unity of Treg Biology and Therapy, University of Pierre & Marie Curie, Paris, France
| | - Philippe Lehours
- University Bordeaux, Bacteriology Laboratory, Bordeaux, France.,INSERM U853, Bordeaux, France
| |
Collapse
|
6
|
Askenasy N. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells? Immunol Res 2016; 64:36-43. [PMID: 26482052 DOI: 10.1007/s12026-015-8725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.
Collapse
|
7
|
Kroger CJ, Wang B, Tisch R. Temporal increase in thymocyte negative selection parallels enhanced thymic SIRPα + DC function. Eur J Immunol 2016; 46:2352-2362. [PMID: 27501268 DOI: 10.1002/eji.201646354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/24/2016] [Accepted: 08/04/2016] [Indexed: 01/24/2023]
Abstract
Dysregulation of negative selection contributes to T-cell-mediated autoimmunity, such as type 1 diabetes. The events regulating thymic negative selection, however, are ill defined. Work by our group and others suggest that negative selection is inefficient early in ontogeny and increases with age. This study examines temporal changes in negative selection and the thymic DC compartment. Peptide-induced thymocyte deletion in vivo was reduced in newborn versus 4-week-old NOD mice, despite a similar sensitivity of the respective thymocytes to apoptosis induction. The temporal increase in negative selection corresponded with an elevated capacity of thymic antigen-presenting cells to stimulate T cells, along with altered subset composition and function of resident DC. The frequency of signal regulatory protein α+ (SIRPα+ ) and plasmacytoid DCs was increased concomitant with a decrease in CD8α+ DC in 4-week-old NOD thymi. Importantly, 4-week-old versus newborn thymic SIRPα+ DC exhibited increased antigen processing and presentation via the MHC class II but not class I pathway, coupled with an enhanced T-cell stimulatory capacity not seen in thymic plasmacytoid DC and CD8α+ DC. These findings indicate that the efficiency of thymic DC-mediated negative selection is limited early after birth, and increases with age paralleling expansion of functionally superior thymic SIRPα+ DC.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
MHC-mismatched mixed chimerism augments thymic regulatory T-cell production and prevents relapse of EAE in mice. Proc Natl Acad Sci U S A 2015; 112:15994-9. [PMID: 26647186 DOI: 10.1073/pnas.1521157112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system with demyelination, axon damage, and paralysis. Induction of mixed chimerism with allogeneic donors has been shown to not cause graft-versus-host disease (GVHD) in animal models and humans. We have reported that induction of MHC-mismatched mixed chimerism can cure autoimmunity in autoimmune NOD mice, but this approach has not yet been tested in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). Here, we report that MHC-mismatched mixed chimerism with C57BL/6 (H-2(b)) donor in SJL/J (H-2(s)) EAE recipients eliminates clinical symptoms and prevents relapse. This cure is demonstrated by not only disappearance of clinical signs but also reversal of autoimmunity; elimination of infiltrating T, B, and macrophage cells in the spinal cord; and regeneration of myelin sheath. The reversal of autoimmunity is associated with a marked reduction of autoreactivity of CD4(+) T cells and significant increase in the percentage of Foxp3(+) Treg among host-type CD4(+) T cells in the spleen and lymph nodes. The latter is associated with a marked reduction of the percentage of host-type CD4(+)CD8(+) thymocytes and an increase of Treg percentage among the CD4(+)CD8(+) and CD4(+)CD8(-) thymocytes. Thymectomy leads to loss of prevention of EAE relapse by induction of mixed chimerism, although there is a dramatic expansion of host-type Treg cells in the lymph nodes. These results indicate that induction of MHC-mismatched mixed chimerism can restore thymic negative selection of autoreactive CD4(+) T cells, augment production of Foxp3(+) Treg, and cure EAE.
Collapse
|
9
|
Kisand K, Peterson P, Laan M. Lymphopenia-induced proliferation in aire-deficient mice helps to explain their autoimmunity and differences from human patients. Front Immunol 2014; 5:51. [PMID: 24592265 PMCID: PMC3923166 DOI: 10.3389/fimmu.2014.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/29/2014] [Indexed: 12/23/2022] Open
Abstract
Studies on autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) and its mouse model – both caused by mutant AIRE – have greatly advanced the understanding of thymic processes that generate a self-tolerant T-cell repertoire. Much is now known about the molecular mechanisms by which AIRE induces tissue-specific antigen expression in thymic epithelium, and how this leads to negative selection of auto-reactive thymocytes. However, we still do not understand the processes that lead to the activation of any infrequent naïve auto-reactive T-cells exported by AIRE-deficient thymi. Also, the striking phenotypic differences between APECED and its mouse models have puzzled researchers for years. The aim of this review is to suggest explanations for some of these unanswered questions, based on a fresh view of published experiments. We review evidence that auto-reactive T-cells can be activated by the prolonged neonatal lymphopenia that naturally develops in young Aire-deficient mice due to delayed export of mature thymocytes. Lymphopenia-induced proliferation (LIP) helps to fill the empty space; by favoring auto-reactive T-cells, it also leads to lymphocyte infiltration in the same tissues as in day 3 thymectomized animals. The LIP becomes uncontrolled when loss of Aire is combined with defects in genes responsible for anergy induction and Treg responsiveness, or in signaling from the T-cell receptor and homeostatic cytokines. In APECED patients, LIP is much less likely to be involved in activation of naïve auto-reactive T-cells, as humans are born with a more mature immune system than in neonatal mice. We suggest that human AIRE-deficiency presents with different phenotypes because of additional precipitating factors that compound the defective negative selection of potentially autoaggressive tissue-specific thymocytes.
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Martti Laan
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| |
Collapse
|
10
|
He Q, Morillon YM, Spidale NA, Kroger CJ, Liu B, Sartor RB, Wang B, Tisch R. Thymic development of autoreactive T cells in NOD mice is regulated in an age-dependent manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5858-66. [PMID: 24198282 PMCID: PMC3858497 DOI: 10.4049/jimmunol.1302273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inefficient thymic negative selection of self-specific T cells is associated with several autoimmune diseases, including type 1 diabetes. The factors that influence the efficacy of thymic negative selection, as well as the kinetics of thymic output of autoreactive T cells remain ill-defined. We investigated thymic production of β cell-specific T cells using a thymus-transplantation model. Thymi from different aged NOD mice, representing distinct stages of type 1 diabetes, were implanted into NOD.scid recipients, and the diabetogenicity of the resulting T cell pool was examined. Strikingly, the development of diabetes-inducing β cell-specific CD4(+) and CD8(+) T cells was regulated in an age-dependent manner. NOD.scid recipients of newborn NOD thymi developed diabetes. However, recipients of thymi from 7- and 10-d-old NOD donor mice remained diabetes-free and exhibited a progressive decline in islet infiltration and β cell-specific CD4(+) and CD8(+) T cells. A similar temporal decrease in autoimmune infiltration was detected in some, but not all, tissues of recipient mice implanted with thymi from NOD mice lacking expression of the autoimmune regulator transcription factor, which develop multiorgan T cell-mediated autoimmunity. In contrast, recipients of 10 d or older thymi lacked diabetogenic T cells but developed severe colitis marked by increased effector T cells reactive to intestinal microbiota. These results demonstrate that thymic development of autoreactive T cells is limited to a narrow time window and occurs in a reciprocal manner compared with colonic microbiota-responsive T cells in NOD mice.
Collapse
MESH Headings
- Adoptive Transfer
- Aging/immunology
- Animals
- Animals, Newborn
- Animals, Suckling
- Autoantigens/immunology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/immunology
- Autoimmunity/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Clonal Selection, Antigen-Mediated
- Colitis/etiology
- Colitis/immunology
- Colon/immunology
- Colon/microbiology
- Colon/pathology
- Cytotoxicity, Immunologic
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Female
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Lymphoid Tissue/pathology
- Mice
- Mice, Inbred NOD/immunology
- Mice, Knockout
- Mice, SCID
- Organ Specificity
- Pancreas/immunology
- Pancreas/pathology
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/pathology
- Salivary Glands/immunology
- Salivary Glands/pathology
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Thymus Gland/growth & development
- Thymus Gland/immunology
- Thymus Gland/pathology
- Thymus Gland/transplantation
- Transcription Factors/deficiency
- Transcription Factors/physiology
- AIRE Protein
Collapse
Affiliation(s)
- Qiuming He
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Y. Maurice Morillon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Nicholas A. Spidale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Charles J. Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Bo Liu
- Department of Medicine (Gastroenterology and Hepatology), University of North Carolina at Chapel Hill, North Carolina, USA
| | - R. Balfour Sartor
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Medicine (Gastroenterology and Hepatology), University of North Carolina at Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Abstract
Insulin is the hormone produced by pancreatic β-cells, with a central role in carbohydrate and fat metabolism. Together with its precursors preproinsulin and proinsulin, insulin is also a key target antigen (Ag) of the autoimmune islet destruction leading to type 1 diabetes. Being recognized by both autoantibodies (aAbs) and autoreactive T cells, insulin plays a triggering role, at least in rodent models, in diabetes pathogenesis. It is expressed not only by β-cells but also in the thymus, where it plays a major role in central tolerance mechanisms. We will summarize current knowledge concerning insulin, its role in β-cell autoimmunity as initial target Ag, its recognition by aAbs and autoreactive T cells, and the detection of these immune responses to provide biomarkers for clinical trials employing insulin as an immune modulatory agent.
Collapse
Affiliation(s)
- Sloboda Culina
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 Avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | |
Collapse
|
12
|
Borges M, Barreira-Silva P, Flórido M, Jordan MB, Correia-Neves M, Appelberg R. Molecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy. THE JOURNAL OF IMMUNOLOGY 2012; 189:3600-8. [PMID: 22922815 DOI: 10.4049/jimmunol.1201525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thymic atrophy has been described as a consequence of infection by several pathogens and shown to be induced through diverse mechanisms. Using the mouse model of Mycobacterium avium infection, we show in this study that the production of NO from IFN-γ-activated macrophages plays a major role in mycobacterial infection-induced thymic atrophy. Our results show that disseminated infection with a highly virulent strain of M. avium, but not with a low-virulence strain, led to a progressive thymic atrophy. Thymic involution was prevented in genetically manipulated mice unable to produce IFN-γ or the inducible NO synthase. In addition, mice with a selective impairment of IFN-γ signaling in macrophages were similarly protected from infection-induced thymic atrophy. A slight increase in the concentration of corticosterone was found in mice infected with the highly virulent strain, and thymocytes presented an increased susceptibility to dexamethasone-induced death during disseminated infection. The administration of an antagonist of glucocorticoid receptors partially reverted the infection-induced thymic atrophy. We observed a reduction in all thymocyte populations analyzed, including the earliest thymic precursors, suggesting a defect during thymic colonization by T cell precursors and/or during the differentiation of these cells in the bone marrow in addition to local demise of thymic cells. Our data suggest a complex picture underlying thymic atrophy during infection by M. avium with the participation of locally produced NO, endogenous corticosteroid activity, and reduced bone marrow seeding.
Collapse
Affiliation(s)
- Margarida Borges
- Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
13
|
Shanmugasundaram R, Selvaraj RK. CD4+CD25+ Regulatory T cell ontogeny and preferential migration to the cecal tonsils in chickens. PLoS One 2012; 7:e33970. [PMID: 22479489 PMCID: PMC3313958 DOI: 10.1371/journal.pone.0033970] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/20/2012] [Indexed: 01/28/2023] Open
Abstract
Thymic CD4(+)CD25(+) cells have regulatory-T-cell-like properties in chickens. This study examined the ontogeny of CD4(+)CD25(+) cells in the thymus and in peripheral compartments in chickens. CD4(+)CD25(+) cells started to appear in the thymus at day 15 of incubation (E15), although at low percentages. Expressed as a percentage of CD4(+) cells, CD4(+)CD25(+) cells increased (P<0.01) from 1.7% at E20 to 7.3% at 0 d post-hatch (D0). CD4(+)CD25(+) cells did not appear in the spleen or cecal tonsils of embryos. Expressed as a percentage of CD4(+) cells, CD4(+)CD25(+) cells increased (P<0.01) from 0% at D0 to 27% at D1 in cecal tonsils and from 0% at D0 to 11% at D1 in the spleen. Expressed as a percentage of all mononuclear cells, cecal tonsils at D1 had approximately 3.5-fold higher percentage of CD4(+)CD25(+) cells than the spleen at D1. CD4(+)CD25(+) cells from cecal tonsils of chicks at D1 were suppressive. CD4(+)CD25(+) cells from D0 thymus, when injected back into MHC-compatible chicks, migrated to cecal tonsils and lungs and were detected until 10 d post-injection. CD4(+)CD25(+) cells from cecal tonsils had a higher (P = 0.01) relative amount of CCR9 mRNA than CD4(+)CD25(+) cells from the thymus. It could be concluded that in chickens CD4(+)CD25(+) cells migrate from the thymus immediately post-hatch and preferentially colonize the gut associated lymphoid tissues. CD4(+)CD25(+) cells' preferential migration to cecal tonsils is likely directed through the CCR9 pathway in chickens.
Collapse
Affiliation(s)
| | - Ramesh K. Selvaraj
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, United States of America
| |
Collapse
|
14
|
AbuAttieh M, Bender D, Liu E, Wettstein P, Platt JL, Cascalho M. Affinity maturation of antibodies requires integrity of the adult thymus. Eur J Immunol 2011; 42:500-10. [PMID: 22105515 DOI: 10.1002/eji.201141889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/06/2011] [Accepted: 11/11/2011] [Indexed: 01/23/2023]
Abstract
The generation of B-cell responses to proteins requires a functional thymus to produce CD4(+) T cells which helps in the activation and differentiation of B cells. Because the mature T-cell repertoire has abundant cells with the helper phenotype, one might predict that in mature individuals, the generation of B-cell memory would proceed independently of the thymus. Contrary to that prediction, we show here that the removal of the thymus after the establishment of the T-cell compartment or sham surgery without removal of the thymus impairs the affinity maturation of antibodies. Because removal or manipulation of the thymus did not decrease the frequency of mutation of the Ig variable heavy chain exons encoding antigen-specific antibodies, we conclude that the thymus controls affinity maturation of antibodies in the mature individual by facilitating the selection of B cells with high-affinity antibodies.
Collapse
Affiliation(s)
- Mouhammed AbuAttieh
- Department of Surgery, Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
15
|
Immunosuppressive therapy exacerbates autoimmunity in NOD mice and diminishes the protective activity of regulatory T cells. J Autoimmun 2010; 35:145-52. [PMID: 20638242 DOI: 10.1016/j.jaut.2010.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 06/13/2010] [Indexed: 01/29/2023]
Abstract
Mounting evidence indicates that immunosuppressive therapy and autologous bone marrow transplantation are relatively inefficient approaches to treat autoimmune diabetes. In this study we assessed the impact of immunosuppression on inflammatory insulitis in NOD mice, and the effect of radiation on immunomodulation mediated by adoptive transfer of various cell subsets. Sublethal radiation of NOD females at the age of 14 weeks (onset of hyperglycemia) delayed the onset of hyperglycemia, however two thirds of the mice became diabetic. Adoptive transfer of splenocytes into irradiated NON and NOD mice precipitated disease onset despite increased contents of CD25(+)FoxP3(+) T cells in the pancreas and regional lymphatics. Similar phenotypic changes were observed when CD25(+) T cells were infused after radiation, which also delayed disease onset without affecting its incidence. Importantly, irradiation increased the susceptibility to diabetes in NOD and NON mice (71-84%) as compared to immunomodulation with splenocytes and CD25(+) T cells in naïve recipients (44-50%). Although irradiation had significant and durable influence on pancreatic infiltrates and the fractions of functional CD25(+)FoxP3(+) Treg cells were elevated by adoptive cell transfer, this approach conferred no protection from disease progression. Irradiation was ineffective both in debulking of pathogenic clones and in restoring immune homeostasis, and the consequent homeostatic expansion evolves as an unfavorable factor in attempts to restore self-tolerance and might even provoke uncontrolled proliferation of pathogenic clones. The obstacles imposed by immunosuppression on abrogation of autoimmune insulitis require replacement of non-specific immunosuppressive therapy by selective immunomodulation that does not cause lymphopenia.
Collapse
|
16
|
Kawahata K, Kanzaki T, Imamura M, Akahira L, Michishita K, Dohi M, Yamamoto K. Regulatory T cells in the control of T cell homeostasis. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|