1
|
Logunova N, Kapina M, Dyatlov A, Kondratieva T, Rubakova E, Majorov K, Kondratieva E, Linge I, Apt A. Polygenic TB control and the sequence of innate/adaptive immune responses to infection: MHC-II alleles determine the size of the S100A8/9-producing neutrophil population. Immunology 2024; 173:381-393. [PMID: 39003642 DOI: 10.1111/imm.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Among several quantitative trait loci involved in tuberculosis (TB) control in mice, one was mapped within the chromosome 17 segment occupied by the H2 complex and another within the chromosome 3 segment comprising the S100A8/9 genes, which encode neutrophil inflammatory factor S100A8/9. Previously, we developed a panel of H2-congenic mouse strains differing by small segments of the major histocompatibility complex Class II (MHC-II) region from TB-susceptible H2j mice transferred onto the genetic background of the TB-resistant C57BL/6 (H2b) strain. Susceptible B6.I-9.3 mice differ from B6 progenitors by the alleles of their only classical MHC-II H2-Aβ gene. The goals of the present study were to: (i) comprehensively characterise the differences in TB-related phenotypes between mice of the two strains and (ii) decipher interactions between the H2-Aβ and S100A8/9 genes. Here, we describe the dynamics of TB-related phenotypes differentiating B6.I-9.3 and B6 mice (colony forming units counts, histopathology, lung immune cell infiltration and cytokine profiles). We show that disproportionally diminished CD4+ T-cell population, an enlarged S100A8/9-positive neutrophil population and higher S100A8/9 serum levels in B6.I-9.3 mice collectively form the 'susceptible' phenotype before infection. An increase in IL-17 and a decrease in intrferon-gamma production by CD4+ T-cells in these mice provide a mechanistic explanation of this phenotype. Using F2 segregation analysis, we show that the number of S100A8/9-producing neutrophils in lungs and spleens and the proportion of Th17 CD4+ T-cells in lungs are significantly lower in the presence of the MHC-II dominant 'resistant' b allele compared to the recessive 'susceptible' j/j genotype. This provides direct genetic evidence that MHC-II-regulated CD4+ T-cell landscapes determine neutrophil abundance before infection, an important pathogenic factor in TB immunity.
Collapse
Affiliation(s)
- Nadezhda Logunova
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Marina Kapina
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Alexander Dyatlov
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Tatiana Kondratieva
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Elvira Rubakova
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Konstantin Majorov
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Elena Kondratieva
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Irina Linge
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Alexander Apt
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
2
|
Balazs I, Horvath A, Heschl B, Khalil M, Enzinger C, Stadlbauer V, Seifert-Held T. Anti-CD20 treatment and neutrophil function in central nervous system demyelinating diseases. J Neuroimmunol 2023; 381:578136. [PMID: 37364519 DOI: 10.1016/j.jneuroim.2023.578136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION A contribution of neutrophil granulocytes to the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) is recognized. Anti-CD20 treatments applied in these diseases are associated with infectious complications and neutropenia. No data is available about functional characteristics of neutrophils obtained from patients with anti-CD20 treatments. METHODS In neutrophils isolated from 13 patients with anti-CD20 treatment (9 MS, 4 NMOSD), 11 patients without anti-CD20 treatment (9 MS, 2 NMOSD) and 5 healthy controls, we analyzed chemotaxis, production of reactive oxygen species (ROS), phagocytosis, and formation of neutrophil extracellular traps (NET) in vitro. RESULTS Chemotaxis and ROS production were found unchanged between patients with and without anti-CD20 treatment or between patients and healthy controls. We found a higher proportion of non-phagocytosing cells in patients without anti-CD20 treatment compared to patients with anti-CD20 treatment and healthy controls. As compared to healthy controls, a higher proportion of neutrophils from patients without anti-CD20 treatments underwent NET formation, either unstimulated or stimulated with phorbol 12-myristate 3-acetate for 3 h. In about half of patients with anti-CD20 treatment (n = 7), NET formation of unstimulated neutrophils occurred already within 20 min of incubation. This was not observed in patients without anti-CD20 treatment and healthy controls. CONCLUSION Anti-CD20 treatment in MS and NMOSD patients does not alter chemotaxis and ROS production of neutrophils in vitro but might restore their impaired phagocytosis in these diseases. Our study reveals a predisposition to early NET formation in vitro of neutrophils obtained from patients with anti-CD20 treatment. This may contribute to associated risks of neutropenia and infections.
Collapse
Affiliation(s)
- Irina Balazs
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Bettina Heschl
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Thomas Seifert-Held
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria; Department of Neurology, Hospital Murtal, Gaaler Strasse 10, 8720 Knittelfeld, Austria.
| |
Collapse
|
3
|
Carmona-Rivera C, Kaplan MJ. Low-density granulocytes in systemic autoimmunity and autoinflammation. Immunol Rev 2023; 314:313-325. [PMID: 36305174 PMCID: PMC10050110 DOI: 10.1111/imr.13161] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A body of evidence has re-energized the interest on the role neutrophils in inflammatory and autoimmune conditions. For decades, neutrophils have been considered a homogenous population. Nevertheless, accumulating evidence suggests that neutrophils are more versatile and heterogeneous than initially considered. The notion of neutrophil heterogeneity has been supported by the identification of low-density granulocytes (LDGs) in systemic lupus erythematosus (SLE) and other systemic autoimmune and autoinflammatory conditions. Transcriptomic, epigenetic, proteomic, and functional analyses support that LDGs are a distinct subset of proinflammatory neutrophils implicated in the pathogenesis of SLE and other autoimmune diseases. Importantly, it remains incompletely characterized whether LDGs detected in other inflammatory/autoimmune conditions display the same phenotype that those present in SLE. A shared feature of LDGs across diseases is their association with vascular damage, an important contributor to morbidity and mortality in chronic inflammatory conditions. Additionally, the lack of specific markers to identify LDGs in circulation or in tissue, makes it a challenge to elucidate their role in the pathogenesis of inflammatory and autoimmune conditions. In this review, we aim to examine the evidence on the biology and the putative pathogenic role of LDGs in systemic autoimmune diseases.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Prolonged B-Lymphocyte-Mediated Immune and Inflammatory Responses to Tuberculosis Infection in the Lungs of TB-Resistant Mice. Int J Mol Sci 2023; 24:ijms24021140. [PMID: 36674664 PMCID: PMC9861759 DOI: 10.3390/ijms24021140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
During tuberculosis (TB) infection, B-lymphocytes migrate to the lungs and form B-cell follicles (BCFs) in the vicinity of TB granulomata. B-cell-lacking mice display enhanced susceptibility to TB infection, and early B-cell depletion in infected non-human primates alters T-lymphocyte cytokine responses and increases bacterial burdens in the lungs. However, the role of B cells during late TB stages remained unaddressed. Here, we demonstrate that B cells and BCFs persist up to weeks 25-45 post-challenge in the lungs of TB-resistant C57BL/6 (B6) mice. In hyper-susceptible I/St mice, B-cell content markedly drops between weeks 12-16 post-infection, paralleled by diffuse lung tissue inflammation and elevated gene expression levels for pro-inflammatory cytokines IL-1, IL-11, IL-17a, and TNF-α. To check whether B-cells/BCFs control TB infection at advanced stages, we specifically depleted B-cells from B6 mice by administrating anti-CD20 mAbs at week 16 post-infection. This resulted in more rapid cachexia, a shortened lifespan of the infected animals, an increase in (i) lung-infiltrating CD8+ T cells, (ii) IL-6 production by F4/80+ macrophages, (iii) expression levels of genes for neutrophil-attracting factors CXCL1 and IL-17, and tissue-damaging factors MMP8, MMP9, and S100A8. Taken together, our results suggest that lung B cells and BCFs are moderately protective against chronic TB infection.
Collapse
|
5
|
Gaffney E, Murphy D, Walsh A, Connolly S, Basdeo SA, Keane J, Phelan JJ. Defining the role of neutrophils in the lung during infection: Implications for tuberculosis disease. Front Immunol 2022; 13:984293. [PMID: 36203565 PMCID: PMC9531133 DOI: 10.3389/fimmu.2022.984293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Neutrophils are implicated in the pathogenesis of many diseases involving inflammation. Neutrophils are also critical to host defence and have a key role in the innate immune response to infection. Despite their efficiencies against a wide range of pathogens however, their ability to contain and combat Mycobacterium tuberculosis (Mtb) in the lung remains uncertain and contentious. The host response to Mtb infection is very complex, involving the secretion of various cytokines and chemokines from a wide variety of immune cells, including neutrophils, macrophages, monocytes, T cells, B cells, NK cells and dendritic cells. Considering the contributing role neutrophils play in the advancement of many diseases, understanding how an inflammatory microenvironment affects neutrophils, and how neutrophils interact with other immune cells, particularly in the context of the infected lung, may aid the design of immunomodulatory therapies. In the current review, we provide a brief overview of the mechanisms that underpin pathogen clearance by neutrophils and discuss their role in the context of Mtb and non-Mtb infection. Next, we examine the current evidence demonstrating how neutrophils interact with a range of human and non-human immune cells and how these interactions can differentially prime, activate and alter a repertoire of neutrophil effector functions. Furthermore, we discuss the metabolic pathways employed by neutrophils in modulating their response to activation, pathogen stimulation and infection. To conclude, we highlight knowledge gaps in the field and discuss plausible novel drug treatments that target host neutrophil metabolism and function which could hold therapeutic potential for people suffering from respiratory infections.
Collapse
|
6
|
Nikonenko BV, Logunova NN, Sterzhanova NV, Kayukova SI, Apt AS. Efficacy of BCG Vaccination Depends on Host Genetics. Bull Exp Biol Med 2021; 171:445-448. [PMID: 34542757 DOI: 10.1007/s10517-021-05246-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 10/20/2022]
Abstract
We studied the effectiveness of anti-tuberculosis vaccination with BCG in mice of inbred strains and F1 hybrids (highly resistant to tuberculosis infection) that represent a wide range of genetically determined differences in susceptibility to infection with virulent Mycobacterium tuberculosis. The greatest relative effect was found in susceptible mice, with the exception of highly susceptible I/St mice that were practically not protected by vaccination. Despite significant effect of vaccination in inbred mice, their resistance to M. tuberculosis infection did not exceed that of non-vaccinated highly resistant F1 hybrids.
Collapse
Affiliation(s)
- B V Nikonenko
- Central Research Institute of Tuberculosis, Moscow, Russia.
| | - N N Logunova
- Central Research Institute of Tuberculosis, Moscow, Russia
| | | | - S I Kayukova
- Central Research Institute of Tuberculosis, Moscow, Russia
| | - A S Apt
- Central Research Institute of Tuberculosis, Moscow, Russia
| |
Collapse
|
7
|
Podstawka J, Sinha S, Hiroki CH, Sarden N, Granton E, Labit E, Kim JH, Andonegui G, Lou Y, Snarr BD, Sheppard DC, Rosin NL, Biernaskie J, Yipp BG. Marginating transitional B cells modulate neutrophils in the lung during inflammation and pneumonia. J Exp Med 2021; 218:e20210409. [PMID: 34313733 PMCID: PMC8318832 DOI: 10.1084/jem.20210409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022] Open
Abstract
Pulmonary innate immunity is required for host defense; however, excessive neutrophil inflammation can cause life-threatening acute lung injury. B lymphocytes can be regulatory, yet little is known about peripheral transitional IgM+ B cells in terms of regulatory properties. Using single-cell RNA sequencing, we discovered eight IgM+ B cell subsets with unique gene regulatory networks in the lung circulation dominated by transitional type 1 B and type 2 B (T2B) cells. Lung intravital confocal microscopy revealed that T2B cells marginate in the pulmonary capillaries via CD49e and require CXCL13 and CXCR5. During lung inflammation, marginated T2B cells dampened excessive neutrophil vascular inflammation via the specialized proresolving molecule lipoxin A4 (LXA4). Exogenous CXCL13 dampened excessive neutrophilic inflammation by increasing marginated B cells, and LXA4 recapitulated neutrophil regulation in B cell-deficient mice during inflammation and fungal pneumonia. Thus, the lung microvasculature is enriched in multiple IgM+ B cell subsets with marginating capillary T2B cells that dampen neutrophil responses.
Collapse
Affiliation(s)
- John Podstawka
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carlos H. Hiroki
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Sarden
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elise Granton
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jung Hwan Kim
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Graciela Andonegui
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuefei Lou
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brendan D. Snarr
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Division of Infectious Diseases, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicole L. Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Blanchett S, Tsai CJ, Sandford S, Loh JM, Huang L, Kirman JR, Proft T. Intranasal immunization with Ag85B peptide 25 displayed on Lactococcus lactis using the PilVax platform induces antigen-specific B- and T-cell responses. Immunol Cell Biol 2021; 99:767-781. [PMID: 33866609 DOI: 10.1111/imcb.12462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/27/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis (Mtb) remains a global epidemic despite the widespread use of Bacillus Calmette-Guérin (BCG). Consequently, novel vaccines are required to facilitate a reduction in Mtb morbidity and mortality. PilVax is a peptide delivery strategy for the generation of highly specific mucosal immune responses and is based on the food-grade bacterium Lactococcus lactis that is used to express selected peptides engineered within the Streptococcus pyogenes M1T1 pilus, allowing for peptide amplification, stabilization and enhanced immunogenicity. In the present study, the dominant T-cell epitope from the Mtb protein Ag85B was genetically engineered into the pilus backbone subunit and expressed on the surface of L. lactis. Western blot and flow cytometry confirmed formation of pilus containing the peptide DNA sequence. B-cell responses in intranasally vaccinated mice were analyzed by ELISA while T-cell responses were analyzed by flow cytometry. Serum titers of peptide-specific immunoglobulin (Ig) G and IgA were detected, confirming that vaccination produced antibodies against the cognate peptide. Peptide-specific IgA was also detected across several mucosal sites sampled. Peptide-specific CD4+ T cells were detected at levels similar to those of mice immunized with BCG. PilVax immunization resulted in an unexpected increase in the numbers of CD3+ CD4- CD8- [double negative (DN)] T cells in the lungs of vaccinated mice. Analysis of cytokine production following stimulation with the cognate peptide showed the major cytokine producing cells to be CD4+ T cells and DN T cells. This study provides insight into the antibody and peptide-specific cellular immune responses generated by PilVax vaccination and demonstrates the suitability of this vaccine for conducting a protection study.
Collapse
Affiliation(s)
- Samuel Blanchett
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Catherine Jy Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Sarah Sandford
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Jacelyn Ms Loh
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Lucy Huang
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Joanna R Kirman
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand.,Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci 2021; 22:ijms22094801. [PMID: 33946542 PMCID: PMC8125784 DOI: 10.3390/ijms22094801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.
Collapse
|
10
|
Abstract
Mycobacterium tuberculosis remains the leading cause of death attributed to a single infectious organism. Bacillus Calmette-Guerin (BCG), the standard vaccine against M. tuberculosis, is thought to prevent only 5% of all vaccine-preventable deaths due to tuberculosis, thus an alternative vaccine is required. One of the principal barriers to vaccine development against M. tuberculosis is the complexity of the immune response to infection, with uncertainty as to what constitutes an immunological correlate of protection. In this paper, we seek to give an overview of the immunology of M. tuberculosis infection, and by doing so, investigate possible targets of vaccine development. This encompasses the innate, adaptive, mucosal and humoral immune systems. Though MVA85A did not improve protection compared with BCG alone in a large-scale clinical trial, the correlates of protection this has revealed, in addition to promising results from candidate such as VPM1002, M72/ASO1E and H56:IC31 point to a brighter future in the field of TB vaccine development.
Collapse
Affiliation(s)
- Benedict Brazier
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| |
Collapse
|
11
|
Bénard A, Sakwa I, Schierloh P, Colom A, Mercier I, Tailleux L, Jouneau L, Boudinot P, Al-Saati T, Lang R, Rehwinkel J, Loxton AG, Kaufmann SHE, Anton-Leberre V, O'Garra A, Sasiain MDC, Gicquel B, Fillatreau S, Neyrolles O, Hudrisier D. B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis. Am J Respir Crit Care Med 2019; 197:801-813. [PMID: 29161093 DOI: 10.1164/rccm.201707-1475oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RATIONALE In addition to their well-known function as antibody-producing cells, B lymphocytes can markedly influence the course of infectious or noninfectious diseases via antibody-independent mechanisms. In tuberculosis (TB), B cells accumulate in lungs, yet their functional contribution to the host response remains poorly understood. OBJECTIVES To document the role of B cells in TB in an unbiased manner. METHODS We generated the transcriptome of B cells isolated from Mycobacterium tuberculosis (Mtb)-infected mice and validated the identified key pathways using in vitro and in vivo assays. The obtained data were substantiated using B cells from pleural effusion of patients with TB. MEASUREMENTS AND MAIN RESULTS B cells isolated from Mtb-infected mice displayed a STAT1 (signal transducer and activator of transcription 1)-centered signature, suggesting a role for IFNs in B-cell response to infection. B cells stimulated in vitro with Mtb produced type I IFN, via a mechanism involving the innate sensor STING (stimulator of interferon genes), and antagonized by MyD88 (myeloid differentiation primary response 88) signaling. In vivo, B cells expressed type I IFN in the lungs of Mtb-infected mice and, of clinical relevance, in pleural fluid from patients with TB. Type I IFN expression by B cells induced an altered polarization of macrophages toward a regulatory/antiinflammatory profile in vitro. In vivo, increased provision of type I IFN by B cells in a murine model of B cell-restricted Myd88 deficiency correlated with an enhanced accumulation of regulatory/antiinflammatory macrophages in Mtb-infected lungs. CONCLUSIONS Type I IFN produced by Mtb-stimulated B cells favors macrophage polarization toward a regulatory/antiinflammatory phenotype during Mtb infection.
Collapse
Affiliation(s)
- Alan Bénard
- 1 Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.,2 International Associated Laboratory CNRS "IM-TB/HIV (Immunometabolism and Macrophages in Tuberculosis/Human Immunodeficiency Virus-1 Co-infection)," Toulouse, France, and Buenos Aires, Argentina.,3 Department of Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Imme Sakwa
- 4 Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Pablo Schierloh
- 2 International Associated Laboratory CNRS "IM-TB/HIV (Immunometabolism and Macrophages in Tuberculosis/Human Immunodeficiency Virus-1 Co-infection)," Toulouse, France, and Buenos Aires, Argentina.,5 Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina, Pacheco de Melo, Buenos Aires, Argentina
| | - André Colom
- 1 Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.,2 International Associated Laboratory CNRS "IM-TB/HIV (Immunometabolism and Macrophages in Tuberculosis/Human Immunodeficiency Virus-1 Co-infection)," Toulouse, France, and Buenos Aires, Argentina
| | - Ingrid Mercier
- 1 Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.,2 International Associated Laboratory CNRS "IM-TB/HIV (Immunometabolism and Macrophages in Tuberculosis/Human Immunodeficiency Virus-1 Co-infection)," Toulouse, France, and Buenos Aires, Argentina.,6 Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, CNRS, Institut National de la Recherche Agronomique (INRA), Institut National des Sciences Appliquées, Toulouse, France
| | - Ludovic Tailleux
- 7 Unit of Mycobacterial Genetics and.,8 Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Luc Jouneau
- 9 Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Pierre Boudinot
- 9 Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Talal Al-Saati
- 10 Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier/École Nationale Vétérinaire de Toulouse/Centre Régional d'Exploration Fonctionnelle et Ressources Expérimentales, Service d'Histopathologie, Centre Hospitalier Universitaire, Purpan, Toulouse, France
| | - Roland Lang
- 11 Institute of Clinical Microbiology, Immunology, and Hygiene, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Rehwinkel
- 12 Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andre G Loxton
- 13 South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Stefan H E Kaufmann
- 14 Department of Immunology, Max Planck Institute of Infection Biology, Berlin, Germany
| | - Véronique Anton-Leberre
- 6 Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, CNRS, Institut National de la Recherche Agronomique (INRA), Institut National des Sciences Appliquées, Toulouse, France
| | - Anne O'Garra
- 15 Division of Immunoregulation, Medical Research Council, National Institute for Medical Research, London, United Kingdom.,16 National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Maria Del Carmen Sasiain
- 2 International Associated Laboratory CNRS "IM-TB/HIV (Immunometabolism and Macrophages in Tuberculosis/Human Immunodeficiency Virus-1 Co-infection)," Toulouse, France, and Buenos Aires, Argentina.,5 Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina, Pacheco de Melo, Buenos Aires, Argentina
| | - Brigitte Gicquel
- 9 Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Simon Fillatreau
- 4 Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany.,17 Institut Necker-Enfants Malades, INSERM U1151-CNRS Unité Mixte de Recherche 8253, Paris, France.,18 Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,19 Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Olivier Neyrolles
- 1 Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.,2 International Associated Laboratory CNRS "IM-TB/HIV (Immunometabolism and Macrophages in Tuberculosis/Human Immunodeficiency Virus-1 Co-infection)," Toulouse, France, and Buenos Aires, Argentina
| | - Denis Hudrisier
- 1 Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.,2 International Associated Laboratory CNRS "IM-TB/HIV (Immunometabolism and Macrophages in Tuberculosis/Human Immunodeficiency Virus-1 Co-infection)," Toulouse, France, and Buenos Aires, Argentina
| |
Collapse
|
12
|
Irons EE, Lee-Sundlov MM, Zhu Y, Neelamegham S, Hoffmeister KM, Lau JT. B cells suppress medullary granulopoiesis by an extracellular glycosylation-dependent mechanism. eLife 2019; 8:47328. [PMID: 31408003 PMCID: PMC6713473 DOI: 10.7554/elife.47328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/10/2019] [Indexed: 12/18/2022] Open
Abstract
The immune response relies on the integration of cell-intrinsic processes with cell-extrinsic cues. During infection, B cells vacate the marrow during emergency granulopoiesis but return upon restoration of homeostasis. Here we report a novel glycosylation-mediated crosstalk between marrow B cells and hematopoietic progenitors. Human B cells secrete active ST6GAL1 sialyltransferase that remodels progenitor cell surface glycans to suppress granulopoiesis. In mouse models, ST6GAL1 from B cells alters the sialylation profile of bone marrow populations, and mature IgD+ B cells were enriched in sialylated bone marrow niches. In clinical multiple myeloma, ST6GAL1 abundance in the multiple myeloma cells negatively correlated with neutrophil abundance. These observations highlight not only the ability of medullary B cells to influence blood cell production, but also the disruption to normal granulopoiesis by excessive ST6GAL1 in malignancy.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| | | | - Yuqi Zhu
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, United States
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, United States
| | | | - Joseph Ty Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| |
Collapse
|
13
|
Steigler P, Verrall AJ, Kirman JR. Beyond memory T cells: mechanisms of protective immunity to tuberculosis infection. Immunol Cell Biol 2019; 97:647-655. [PMID: 31141205 DOI: 10.1111/imcb.12278] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) is a serious infectious disease caused by infection with Mycobacterium tuberculosis, and kills more people annually than any other single infectious agent. Although a vaccine is available, it is only moderately effective and an improved vaccine is urgently needed. The ability to develop a more effective vaccine has been thwarted by a lack of understanding of the mechanism of vaccine-induced immune protection. Over recent decades, many novel TB vaccines have been developed and almost all have aimed to generate memory CD4 T cells. In this review, we critically evaluate evidence in the literature that supports the contention that memory CD4 T cells are the prime mediators of vaccine-induced protection against TB. Because of the lack of robust evidence supporting memory CD4 T cells in this role, the potential for B-cell antibody and "trained" innate cells as alternative mediators of protective immunity is explored.
Collapse
Affiliation(s)
- Pia Steigler
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research (CIDRI), Cape Town, South Africa
| | - Ayesha J Verrall
- Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Joanna R Kirman
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
15
|
Barreira-Silva P, Torrado E, Nebenzahl-Guimaraes H, Kallenius G, Correia-Neves M. Aetiopathogenesis, immunology and microbiology of tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10020917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Dyatlov AV, Apt AS, Linge IA. B lymphocytes in anti-mycobacterial immune responses: Pathogenesis or protection? Tuberculosis (Edinb) 2018; 114:1-8. [PMID: 30711147 DOI: 10.1016/j.tube.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
The role of B cells and antibodies in tuberculosis (TB) immunity, protection and pathogenesis remain contradictory. The presence of organized B cell follicles close to active TB lesions in the lung tissue raises the question about the role of these cells in local host-pathogen interactions. In this short review, we summarize the state of our knowledge concerning phenotypes of B cells populating tuberculous lungs, their secretory activity, interactions with other immune cells and possible involvement in protective vs. pathogenic TB immunity.
Collapse
Affiliation(s)
- Alexander V Dyatlov
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander S Apt
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia; Department of Immunology, School of Biology, M. V. Lomonosov Moscow State University, Russia.
| | - Irina A Linge
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|
17
|
Majlessi L, Sayes F, Bureau JF, Pawlik A, Michel V, Jouvion G, Huerre M, Severgnini M, Consolandi C, Peano C, Brosch R, Touati E, Leclerc C. Colonization with Helicobacter is concomitant with modified gut microbiota and drastic failure of the immune control of Mycobacterium tuberculosis. Mucosal Immunol 2017; 10:1178-1189. [PMID: 28145441 DOI: 10.1038/mi.2016.140] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/28/2016] [Indexed: 02/04/2023]
Abstract
Epidemiological and experimental observations suggest that chronic microbial colonization can impact the immune control of other unrelated pathogens contracted in a concomitant or sequential manner. Possible interactions between Mycobacterium tuberculosis infection and persistence of other bacteria have scarcely been investigated. Here we demonstrated that natural colonization of the digestive tract with Helicobacter hepaticus in mice is concomitant with modification of the gut microbiota, subclinical inflammation, and drastic impairment of immune control of the growth of subsequently administered M. tuberculosis, which results in severe lung tissue injury. Our results provided insights upon the fact that this prior H. hepaticus colonization leads to failures in the mechanisms that could prevent the otherwise balanced cross-talk between M. tuberculosis and the immune system. Such disequilibrium ultimately leads to the inhibition of control of mycobacterial growth, outbreak of inflammation, and lung pathology. Among the dysregulated immune signatures, we noticed a correlation between the detrimental lung injury and the accumulation of activated T-lymphocytes. Our findings suggest that the impact of prior Helicobacter spp. colonization and subsequent M. tuberculosis parasitism might be greater than previously thought, which is a key point given that both species are among the most frequent invasive bacteria in human populations.
Collapse
Affiliation(s)
- L Majlessi
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France.,Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France.,INSERM U1041, Paris, France
| | - F Sayes
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France.,Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France.,INSERM U1041, Paris, France
| | - J-F Bureau
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
| | - A Pawlik
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - V Michel
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France.,CNRS ERL3526, Paris, France
| | - G Jouvion
- Institut Pasteur, Unité d'Histopathologie Humaine et Modèles Animaux, Paris, France.,Institut Pasteur, URE Histotechnologie et Pathologie, Paris, France
| | - M Huerre
- Institut Pasteur, URE Histotechnologie et Pathologie, Paris, France.,Institut Curie, Département de Pathologie, Paris, France
| | - M Severgnini
- Institute of Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - C Consolandi
- Institute of Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - C Peano
- Institute of Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - R Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - E Touati
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France.,CNRS ERL3526, Paris, France
| | - C Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France.,INSERM U1041, Paris, France
| |
Collapse
|
18
|
Linge IA, Kondratieva EV, Kondratieva TK, Makarov VA, Polshakov VI, Savelyev OY, Apt AS. "Suppressor Factor" of Neutrophils: A Short Story of a Long-Term Misconception. BIOCHEMISTRY (MOSCOW) 2016; 81:1284-1292. [PMID: 27914454 DOI: 10.1134/s0006297916110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A large body of evidence obtained during the last decade has demonstrated that neutrophils suppress T cell proliferation in different models of inflammation and cell interaction. The commonly used method for assessing cell proliferation and proliferation inhibition is measuring [3H]thymidine incorporation into cells. Earlier, we observed inhibition of [3H]thymidine uptake in experiments on neutrophil-mediated regulation of T cell response in tuberculosis immunity. Here, we used different types of proliferating cells to analyze the nature of the soluble "neutrophil factor" by a variety of methods (dialysis, HPLC, mass spectrometry, and NMR) and unambiguously demonstrated that neutrophils do not synthesize a specific factor inhibiting cell proliferation, but secrete high concentrations of extracellular thymidine that competitively inhibit [3H]thymidine incorporation. Although the physiological significance of thymidine secretion by neutrophils remains unknown, this phenomenon should be carefully considered when designing test systems for studying cell-cell interactions.
Collapse
Affiliation(s)
- I A Linge
- Central Research Institute for Tuberculosis, Moscow, 107564, Russia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Linge I, Dyatlov A, Kondratieva E, Avdienko V, Apt A, Kondratieva T. B-lymphocytes forming follicle-like structures in the lung tissue of tuberculosis-infected mice: Dynamics, phenotypes and functional activity. Tuberculosis (Edinb) 2016; 102:16-23. [PMID: 28061947 DOI: 10.1016/j.tube.2016.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
During tuberculosis (TB) infection, B cells form follicles in close vicinity of lung granuloma. We assessed the dynamics of follicle formation, surface phenotypes and functional activity of lung B cells during TB course in genetically susceptible mice. The follicles appeared early post infection and peaked at weeks 7-8. Lung B cells resembled classical B2 cells (CD19+IgMloIgDhiCD1d-CD21/35intCD5-CD11b-CD43-), but differed from them by the absence of B2 marker CD23. Lung B-cells constitutively expressed MHC II molecules, presented mycobacterial antigens to immune CD4+ T-cells and produced high amounts of IL-6 and IL-11, but no classical type 1 (TNF-α, IFN-γ), or anti-inflammatory (IL-10, TGF-β) cytokines. The total antibody response in tuberculous lung showed almost no specificity to mycobacteria. A panel of monoclonal antibodies obtained from lung B cells contained only few clones with reactivity to mycobacteria. Our results suggest that anti-TB B cell response in the lung has clear pathological and doubtful protective role.
Collapse
Affiliation(s)
- Irina Linge
- Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander Dyatlov
- Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Elena Kondratieva
- Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Vadim Avdienko
- Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander Apt
- Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia; Department of Immunology, School of Biology, Moscow State University, Moscow, Russia.
| | - Tatiana Kondratieva
- Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|
20
|
Parsa R, Lund H, Georgoudaki AM, Zhang XM, Ortlieb Guerreiro-Cacais A, Grommisch D, Warnecke A, Croxford AL, Jagodic M, Becher B, Karlsson MCI, Harris RA. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med 2016; 213:1537-53. [PMID: 27432941 PMCID: PMC4986521 DOI: 10.1084/jem.20150577] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/24/2016] [Indexed: 01/10/2023] Open
Abstract
Harris and collaborators show that neutropenia results in increased formation of plasma cells and elevated antibody production. Prolonged infections or adjuvant usage can trigger emergency granulopoiesis (EG), leading to dysregulation in neutrophil blood counts. However, the impact of EG on T and B cell function remains largely unknown. In this study, to address this question, we used a mouse model of neutropenia and studied immune activation after adjuvant administration. The initial neutropenic state fostered an environment of increased dendritic cell activation and T cell–derived IL-17 production. Interestingly, neutropenic lysozyme 2–diphtheria toxin A mice exhibited striking EG and amplified neutrophil recruitment to the lymph nodes (LNs) that was dependent on IL-17–induced prostaglandin activity. The recruited neutrophils secreted a B cell–activating factor that highly accelerated plasma cell generation and antigen-specific antibody production. Reduction of neutrophil functions via granulocyte colony-stimulating factor neutralization significantly diminished plasma cell formation, directly linking EG with the humoral immune response. We conclude that neutrophils are capable of directly regulating T cell–dependent B cell responses in the LN.
Collapse
Affiliation(s)
- Roham Parsa
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Harald Lund
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Anna-Maria Georgoudaki
- B Cell Biology, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Xing-Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - André Ortlieb Guerreiro-Cacais
- Neuroimmunology, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - David Grommisch
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Andreas Warnecke
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Andrew L Croxford
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zürich, Switzerland
| | - Maja Jagodic
- Neuroimmunology, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zürich, Switzerland
| | - Mikael C I Karlsson
- B Cell Biology, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| |
Collapse
|
21
|
Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev 2015; 264:167-81. [PMID: 25703559 DOI: 10.1111/imr.12276] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Better understanding of the immunological components and their interactions necessary to prevent or control Mycobacterium tuberculosis (Mtb) infection in humans is critical for tuberculosis (TB) vaccine development strategies. Although the contributory role of humoral immunity in the protection against Mtb infection and disease is less defined than the role of T cells, it has been well-established for many other intracellular pathogens. Here we update and discuss the increasing evidence and the mechanisms of B cells and antibodies in the defense against Mtb infection. We posit that B cells and antibodies have a variety of potential protective roles at each stage of Mtb infection and postulate that such roles should be considered in the development strategies for TB vaccines and other immune-based interventions.
Collapse
|
22
|
Riccomi A, Palma C. B Cells and Programmed Death-Ligand 2 Signaling Are Required for Maximal Interferon-γ Recall Response by Splenic CD4⁺ Memory T Cells of Mice Vaccinated with Mycobacterium tuberculosis Ag85B. PLoS One 2015; 10:e0137783. [PMID: 26379242 PMCID: PMC4574766 DOI: 10.1371/journal.pone.0137783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
CD4+ T cells producing interferon-γ are crucial for protection against Mycobacterium tuberculosis infection and are the cornerstone of tuberculosis vaccination and immunological diagnostic assays. Since emerging evidence indicates that B cells can modulate T cell responses to M. tuberculosis infection, we investigated the contribution of B cells in regulating interferon-γ recall response by memory Thelper1 cells specific for Ag85B, a leading candidate for tuberculosis sub-unit vaccines. We found that B cells were able to maximize the reactivation of CD4+ memory T cells and the interferon-γ response against ex vivo antigen recall in spleens of mice vaccinated with Ag85B. B cell-mediated increase of interferon-γ response was particular evident for high interferon-γ producer CD4+ memory T cells, likely because those T cells were required for triggering and amplification of B cell activation. A positive-feedback loop of mutual activation between B cells, not necessarily antigen-experienced but with integral phosphatidylinositol-3 kinase (PI3K) pathway and a peculiar interferon-γ-producing CD4highT cell subset was established. Programed death-ligand 2 (PD-L2), expressed both on B and the highly activated CD4high T cells, contributed to the increase of interferon-γ recall response through a PD1-independent pathway. In B cell-deficient mice, interferon-γ production and activation of Ag85B-specific CD4+ T cells were blunted against ex vivo antigen recall but these responses could be restored by adding B cells. On the other hand, B cells appeared to down-regulate interleukin-22 recall response. Our data point out that nature of antigen presenting cells determines quality and size of T cell cytokine recall responses. Thus, antigen presenting cells, including B cells, deserve to be considered for a better prediction of cytokine responses by peripheral memory T cells specific for M. tuberculosis antigens. We also invite to consider B cells, PD-L2 and PI3K as potential targets for therapeutic modulation of T cell cytokine responses for tuberculosis control.
Collapse
Affiliation(s)
- Antonella Riccomi
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Carla Palma
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| |
Collapse
|
23
|
Kadota K, Nitadori JI, Ujiie H, Buitrago DH, Woo KM, Sima CS, Travis WD, Jones DR, Adusumilli PS. Prognostic Impact of Immune Microenvironment in Lung Squamous Cell Carcinoma: Tumor-Infiltrating CD10+ Neutrophil/CD20+ Lymphocyte Ratio as an Independent Prognostic Factor. J Thorac Oncol 2015; 10:1301-1310. [PMID: 26291010 PMCID: PMC4545576 DOI: 10.1097/jto.0000000000000617] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION We previously reported the prognostic significance of the lung adenocarcinoma immune microenvironment. In this study, we preformed comprehensive analysis of immune markers and their associations with prognosis in patients with lung squamous cell carcinoma. METHODS We reviewed surgically resected, solitary lung squamous cell carcinoma patients (n = 485; 1999-2009) who were randomly split into a training cohort (n = 331) and validation cohort (n = 154). We constructed tissue microarrays and performed immunostaining for CD3, CD45RO, CD8, CD4, FoxP3, CD20, CD68, CXCL12, CXCR4, CCR7, interleukin-7 receptor, and interleukin-12 receptor β2. Overall survival (OS) was analyzed using the log-rank test and the Cox proportional hazards model. RESULTS Analysis of single immune cell infiltration revealed that high tumor-infiltrating CD10(+) neutrophils were associated with worse prognoses in the training cohort (p = 0.021). Analysis of biologically relevant immune cell combinations identified that patients with high CD10 neutrophil and low CD20(+) lymphocyte had a significantly worse OS (5-year OS, 42%) than those with other combinations of CD10 and CD20 (5-year OS, 62%; p < 0.001); this was confirmed in the validation cohort (p = 0.032). For the multivariate analysis, high CD10/low CD20 immune cell infiltration was an independent predictor of OS in both the training cohort (hazard ratio = 1.61, p = 0.006) and the validation cohort (hazard ratio = 1.75; p = 0.043). CONCLUSION High CD10(+)/low CD20(+) immune cell infiltration ratio is a significant prognostic factor of lung squamous cell carcinoma. Immunomodulatory therapy of tumor-specific neutrophil and B-lymphocyte responses may have applicability in the treatment of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Kyuichi Kadota
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Faculty of Medicine, Department of Diagnostic Pathology, Kagawa University, Kagawa, Japan
| | - Jun-Ichi Nitadori
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Thoracic Surgery, University of Tokyo, Tokyo, Japan
| | - Hideki Ujiie
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel H Buitrago
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kaitlin M Woo
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Camelia S Sima
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
24
|
Abstract
SUMMARY Tuberculosis (TB) is a leading cause of death worldwide despite the availability of effective chemotherapy for over 60 years. Although Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination protects against active TB disease in some populations, its efficacy is suboptimal. Development of an effective TB vaccine is a top global priority that has been hampered by an incomplete understanding of protective immunity to TB. Thus far, preventing TB disease, rather than infection, has been the primary target for vaccine development. Several areas of research highlight the importance of including preinfection vaccines in the development pipeline. First, epidemiology and mathematical modeling studies indicate that a preinfection vaccine would have a high population-level impact for control of TB disease. Second, immunology studies support the rationale for targeting prevention of infection, with evidence that host responses may be more effective during acute infection than during chronic infection. Third, natural history studies indicate that resistance to TB infection occurs in a small percentage of the population. Fourth, case-control studies of BCG indicate that it may provide protection from infection. Fifth, prevention-of-infection trials would have smaller sample sizes and a shorter duration than disease prevention trials and would enable opportunities to search for correlates of immunity as well as serve as a criterion for selecting a vaccine product for testing in a larger TB disease prevention trial. Together, these points support expanding the focus of TB vaccine development efforts to include prevention of infection as a primary goal along with vaccines or other interventions that reduce the rate of transmission and reactivation.
Collapse
|
25
|
Yeremeev V, Linge I, Kondratieva T, Apt A. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb) 2015; 95:447-51. [PMID: 25935122 DOI: 10.1016/j.tube.2015.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 12/22/2022]
Abstract
Mice of the I/St inbred strain genetically hyper-susceptible to TB infection and prone to form neutrophil-abundant necrotic lung lesions and relatively resistant mice of the C57BL/6 (B6) strain were infected with 100 CFU of M. tuberculosis H37Rv. To verify the role of neutrophils in TB immunity, we selectively depleted neutrophils from infected mice with highly specific 1A8 anti-Ly6G antibodies at day 2 and 6 post-challenge. Depletion of neutrophils resulted in reduced lung tissue pathology, mycobacterial CFU counts and an increase of the survival time in genetically susceptible I/St, but not in B6 mice. Furthermore, we demonstrated that in vivo neutrophil depletion at the onset of TB infection results in a significant increase in numbers of mycobacteria-specific IFN-γ-producing T-cells at the time point when the acquired immunity to mycobacteria is fully developed. These results suggest antagonistic activity of neutrophils and immune T-cells in the course of TB infection and provide further evidence of deleterious rather than protective role of the former.
Collapse
Affiliation(s)
- Vladimir Yeremeev
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Irina Linge
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Tatiana Kondratieva
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander Apt
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia.
| |
Collapse
|
26
|
Hoff ST, Salman AM, Ruhwald M, Ravn P, Brock I, Elsheikh N, Andersen P, Agger EM. Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells. Tuberculosis (Edinb) 2014; 95:40-7. [PMID: 25476870 DOI: 10.1016/j.tube.2014.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment. A candidate for such regulation could be the chemokine CXCL10. CXCL10 is mainly produced by human monocytes, but a few reports have also found CXCL10 production by human B cells. The objective of this study was to investigate CXCL10 production by human B cells in response to in vitro stimulation with Mtb antigens. METHODOLOGY/PRINCIPAL FINDINGS We analyzed human blood samples from 30 volunteer donors using multiparameter flow cytometry, and identified a subgroup of B cells producing CXCL10 in response to in vitro stimulation with antigens. T cells did not produce CXCL10, but CXCL10 production by B cells appeared to be mediated via IFN-γ and dependent on contact with antigen-specific T cells recognizing the antigen. CONCLUSION Human B cells are able to produce CXCL10 in an IFN-γ and T cell contact-dependent manner. The present findings suggest a possible mechanism through which B cells in part may influence granuloma formation in human tuberculosis (TB) and participate in infection control.
Collapse
Affiliation(s)
- Soren T Hoff
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark.
| | - Ahmed M Salman
- Ain Shams University, Faculty of Science, Department of Biochemistry, Cairo, Egypt.
| | - Morten Ruhwald
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark.
| | - Pernille Ravn
- Copenhagen University Hospital Hillerød, Department of Infectious Diseases, Denmark.
| | - Inger Brock
- Copenhagen University Hospital Hillerød, Department of Clinical Microbiology, Denmark.
| | - Nabila Elsheikh
- Al Azhar University, Molecular Immunology Unit, Faculty of Medicine, Cairo, Egypt.
| | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark.
| | - Else Marie Agger
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark.
| |
Collapse
|
27
|
Achkar JM, Chan J, Casadevall A. Role of B cells and antibodies in acquired immunity against Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2014; 5:a018432. [PMID: 25301934 DOI: 10.1101/cshperspect.a018432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Accumulating evidence has documented a role for B cells and antibodies (Abs) in the immunity against Mycobacterium tuberculosis (Mtb). Passive transfer studies with monoclonal antibodies (mAbs) against mycobacterial antigens have shown protection against the tubercle bacillus. B cells and Abs are believed to contribute to an enhanced immune response against Mtb by modulating various immunological components in the infected host including the T-cell compartment. Nevertheless, the extent and contribution of B cells and Abs to protection against Mtb remains uncertain. In this article we summarize the most relevant findings supporting the role of B cells and Abs in the defense against Mtb and discuss the potential mechanisms of protection.
Collapse
Affiliation(s)
- Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461 Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Arturo Casadevall
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461 Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
28
|
Abstract
The mouse provides a tool with which to probe the complex interaction between the mammalian immune system and the slow-growing, inflammatory, and persistent bacterium, Mycobacterium tuberculosis (Mtb). Simple mouse models using genetic deletion or antibody inhibition have identified causal connections between specific components of the immune response and survival upon challenge with Mtb, and these studies have corresponded with observations made in humans. To improve on current intervention strategies, it is essential that the complex interactions between the components of the immune response that mediate and regulate the protective response to Mtb infection be dissected; furthermore, the pathways by which specific molecules and cells act must be delineated. The mouse model provides a tool with which to achieve this goal; however, experimental design and data interpretation must be made in the context of data sets generated from the entire tuberculosis field.
Collapse
|
29
|
Abreu MT, Carvalheiro H, Rodrigues-Sousa T, Domingos A, Segorbe-Luis A, Rodrigues-Santos P, Souto-Carneiro MM. Alterations in the peripheral blood B cell subpopulations of multidrug-resistant tuberculosis patients. Clin Exp Med 2013; 14:423-9. [PMID: 24068613 DOI: 10.1007/s10238-013-0258-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 09/02/2013] [Indexed: 01/09/2023]
Abstract
The function of B cells in the immune response against Mycobacterium tuberculosis (Mtb) is still regarded as secondary, although major findings in mouse models of tuberculosis (TB) support their participation as regulators and antibody producers. However, studies in cohorts of TB or multidrug-resistant TB (MDR-TB) patients have failed to clearly identify changes in the circulating B cell pool. Therefore, in the present study we aimed at identifying alterations in the different B cell subpopulations in peripheral blood samples of HIV-negative pulmonary MDR-TB patients when compared to healthy donors. The data show, for the first time, that MDR-TB patients, similarly to what has been observed in other chronic inflammatory diseases, have a much lower frequency of peripheral blood unswitched IgD(+)CD27(+) memory B cells. Equally novel are the findings that in MDR-TB patients there is a reduction in the circulating plasma cell pool and that in MDR-TB there is an increased frequency of circulating type 1 transitional IgD(+)CD38(++), CD69(+) and TLR9(+) B cells. These results document disease-related shifts in peripheral blood B cell subsets in MDR-TB and suggest that such changes should be taken into account when designing new strategies to boost the cellular and humoral immune response against Mtb.
Collapse
Affiliation(s)
- Mónica T Abreu
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marques de Pombal, 3004-517, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Heritable defects in human B cell/antibody development are not associated with increased susceptibility to Staphylococcus aureus infection. Protein A (SpA), a surface molecule of S. aureus, binds the Fcγ domain of immunoglobulin (Ig) and cross-links the Fab domain of VH3-type B cell receptors (IgM). Here we generated S. aureus spa variants harboring amino acid substitutions at four key residues in each of the five Ig-binding domains of SpA. Wild-type S. aureus required SpA binding to Ig to resist phagocytosis and SpA-mediated B cell receptor cross-linking to block antibody development in mice. The spaKKAA mutant, which cannot bind Ig or IgM, was phagocytosed and elicited B cell responses to key virulence antigens that protected animals against lethal S. aureus challenge. The immune evasive attributes of S. aureus SpA were abolished in µMT mice lacking mature B cells and antibodies. Thus, while wild-type S. aureus escapes host immune surveillance, the spaKKAA variant elicits adaptive responses that protect against recurrent infection. Staphylococcus aureus causes recurrent skin and bloodstream infections without eliciting immunity. Heritable defects in neutrophil and T cell function, but not B cell or antibody development, are associated with increased incidence of S. aureus infection, and efforts to develop antibody-based S. aureus vaccines have thus far been unsuccessful. We show here that the Fcγ and VH3-type Fab binding activities of staphylococcal protein A (SpA) are essential for S. aureus escape from host immune surveillance in mice. The virulence attributes of SpA in mice required mature B cells and immunoglobulin. These results suggest that antibodies and B cells play a key role in the pathogenesis of staphylococcal infections and provide insights into the development of a vaccine against S. aureus.
Collapse
|
31
|
B cells regulate neutrophilia during Mycobacterium tuberculosis infection and BCG vaccination by modulating the interleukin-17 response. PLoS Pathog 2013; 9:e1003472. [PMID: 23853593 PMCID: PMC3708864 DOI: 10.1371/journal.ppat.1003472] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022] Open
Abstract
We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. Mycobacterium tuberculosis poses a serious threat to public health globally. It has been well established that T cells are critical in protection against M. tuberculosis. The role of B cells and humoral immunity in the process is less well understood. We previously showed that B cells and humoral immunity regulate the immune response against M. tuberculosis. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may modulate the development of vaccine-induced protective immunity. The data reveal that B cells can regulate neutrophilia during M. tuberculosis infection and BCG vaccination by modulating the IL-17 response. Vaccination studies show that excess neutrophilia adversely affects the development of BCG-elicited Th1 response. These observations suggest that B cells can optimize the development of protective immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Understanding the mechanisms by which B cells and humoral immunity modulate the immune response during M. tuberculosis infection and BCG immunization, particularly those that regulate IL-17 levels and neutrophilia, may lead to the development of novel strategies for the control of the tubercle bacillus, including efficacious vaccines.
Collapse
|
32
|
X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. mBio 2013; 4:mBio.00265-13. [PMID: 23820392 PMCID: PMC3705448 DOI: 10.1128/mbio.00265-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a signaling molecule that plays important roles in B-1 B cell development and innate myeloid cell functions and has recently been identified as a target for therapy of B cell lymphomas. We examined the contribution of B-1 B cells to resistance to Cryptococcus neoformans infection by utilizing X-linked immunodeficient (XID) mice (CBA-CaHN-XID), which possess a mutation in Btk. XID mice had significantly higher brain fungal burdens than the controls 6 weeks after infection with C. neoformans strain 52D (CN52D); however, consistent with the propensity for greater virulence of C. neoformans strain H99 (CNH99), CNH99-infected XID mice had higher lung and brain fungal burdens than the controls 3 weeks after infection. Further studies in a chronic CN52D model revealed markedly lower levels of total and C. neoformans-specific serum IgM in XID mice than in the control mice 1 and 6 weeks after infection. Alveolar macrophage phagocytosis was markedly impaired in CN52D-infected XID mice compared to the controls, with XID mice exhibiting a disorganized lung inflammatory pattern in which Gomori silver staining revealed significantly more enlarged, extracellular C. neoformans cells than the controls. Adoptive transfer of B-1 B cells to XID mice restored peritoneal B-1 B cells but did not restore IgM levels to those of the controls and had no effect on the brain fungal burden at 6 weeks. Taken together, our data support the hypothesis that IgM promotes fungal containment in the lungs by enhancing C. neoformans phagocytosis and restricting C. neoformans enlargement. However, peritoneal B-1 B cells are insufficient to reconstitute a protective effect in the lungs. Cryptococcus neoformans is a fungal pathogen that causes an estimated 600,000 deaths per year. Most infections occur in individuals who are immunocompromised, with the majority of cases occurring in those with HIV/AIDS, but healthy individuals also develop disease. Immunoglobulin M (IgM) has been linked to resistance to disease in humans and mice. In this article, we found that X-linked immunodeficient (XID) mice, which have markedly reduced levels of IgM, were unable to contain Cryptococcus in the lungs. This was associated with reduced yeast uptake by macrophages, an aberrant tissue inflammatory response, an enlargement of the yeast cells in the lungs, and fungal dissemination to the brain. Since XID mice have a mutation in the Bruton’s tyrosine kinase (Btk) gene, our data suggest that treatments aimed at blocking the function of Btk could pose a higher risk for cryptococcosis.
Collapse
|
33
|
Lugo-Villarino G, Hudrisier D, Benard A, Neyrolles O. Emerging trends in the formation and function of tuberculosis granulomas. Front Immunol 2013; 3:405. [PMID: 23308074 PMCID: PMC3538282 DOI: 10.3389/fimmu.2012.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/15/2012] [Indexed: 11/13/2022] Open
Abstract
The granuloma is an elaborated aggregate of immune cells found in non-infectious as well as infectious diseases. It is a hallmark of tuberculosis (TB). Predominantly thought as a host-driven strategy to constrain the bacilli and prevent dissemination, recent discoveries indicate the granuloma can also be modulated into an efficient tool to promote microbial pathogenesis. The aim of future studies will certainly focus on better characterization of the mechanisms driving the modulation of the granuloma functions. Here, we provide unique perspectives from both the innate and adaptive immune system in the formation and the role of the TB granuloma. As macrophages (Mϕs) comprise the bulk of granulomas, we highlight the emerging concept of Mϕ polarization and its potential impact in the microbicide response, and other activities, that may ultimately shape the fate of granulomas. Alternatively, we shed light on the ability of B-cells to influence inflammatory status within the granuloma.
Collapse
Affiliation(s)
- Geanncarlo Lugo-Villarino
- CNRS, Institut de Pharmacologie et de Biologie Structurale Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier Toulouse, France
| | | | | | | |
Collapse
|
34
|
Shepelkova G, Pommerenke C, Alberts R, Geffers R, Evstifeev V, Apt A, Schughart K, Wilk E. Analysis of the lung transcriptome in Mycobacterium tuberculosis-infected mice reveals major differences in immune response pathways between TB-susceptible and resistant hosts. Tuberculosis (Edinb) 2012; 93:263-9. [PMID: 23276693 DOI: 10.1016/j.tube.2012.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/07/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
Using whole genome microarrays, we compared changes in gene expression patterns in the lungs of TB-resistant A/Sn and TB-susceptible I/St mice at day 14 following infection with Mycobacterium tuberculosis H37Rv. Analyses of differentially expressed genes for representation of gene ontology terms and activation of regulatory pathways revealed interstrain differences in antigen presentation, NK, T and B cell activation pathways. In general, resistant A/Sn mice exhibited a more complex pattern and stronger activation of host defense pathways compared to the TB-susceptible I/St mouse strain. In addition, in I/St mice elevated activation of genes involved in neutrophil response was observed and confirmed by quantitative RT-PCR and histopathology. Furthermore, a specific post infection upregulation of cysteine protease inhibitors was found in susceptible I/St mice.
Collapse
Affiliation(s)
- Galina Shepelkova
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mehra S, Alvarez X, Didier PJ, Doyle LA, Blanchard JL, Lackner AA, Kaushal D. Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis. J Infect Dis 2012; 207:1115-27. [PMID: 23255564 DOI: 10.1093/infdis/jis778] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The BCG vaccine is ineffective against adult tuberculosis. Hence, new antituberculosis vaccines are needed. Correlates of protection against tuberculosis are not known. We studied the effects of BCG vaccination on gene expression in tuberculosis granulomas using macaques. METHODS Macaques were BCG-vaccinated or sham-vaccinated and then challenged with virulent Mycobacterium tuberculosis. Lung lesions were used for comparative transcriptomics. RESULTS Vaccinated macaques were protected with lower bacterial burden and immunopathology. Lesions from BCG-vaccinated nonhuman primates (NHPs) showed a better balance of α- and β-chemokine gene expression with higher levels of β-chemokine expression relative to nonvaccinated animals. Consistent with this, sham-vaccinated macaques recruited fewer macrophages relative to neutrophils in their lungs. The expression of indoleamine 2,3-dioxygenase (IDO), a known immunosuppressor, was significantly higher in both week 5 and 10 lesions from sham-vaccinated, relative to BCG-vaccinated, NHPs. IDO expression was primarily limited to the nonlymphocytic region of the lesions, within the inner ring structure surrounding the central necrosis. CONCLUSIONS Our study defines lung gene expression correlates of protective response against tuberculosis, relative to disease, which can potentially be employed to assess the efficacy of candidate antituberculosis vaccines. Mycobacterium tuberculosis may modulate protective immune responses using diverse mechanisms, including increased recruitment of inflammatory neutrophils and the concomitant use of IDO to modulate inflammation.
Collapse
Affiliation(s)
- Smriti Mehra
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG, Ronacher K, King EC, Lukey PT, Duncan K, Van Helden PD, Walzl G, Dockrell HM. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 2012; 207:18-29. [PMID: 22872737 DOI: 10.1093/infdis/jis499] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Accurate assessment of treatment efficacy would facilitate clinical trials of new antituberculosis drugs. We hypothesized that early alterations in peripheral immunity could be measured by gene expression profiling in tuberculosis patients undergoing successful conventional combination treatment. METHODS Ex vivo blood samples from 27 pulmonary tuberculosis patients were assayed at diagnosis and during treatment. RNA was processed and hybridized to Affymetrix GeneChips, to determine expression of over 47,000 transcripts. RESULTS There were significant ≥ 2-fold changes in expression of >4000 genes during treatment. Rapid, large-scale changes were detected, with down-regulated expression of 1261 genes within the first week, including inflammatory markers such as complement components C1q and C2. This was followed by slower changes in expression of different networks of genes, including a later increase in expression of B-cell markers, transcription factors, and signaling molecules. CONCLUSIONS The fast initial down-regulation of expression of inflammatory mediators coincided with rapid killing of actively dividing bacilli, whereas slower delayed changes occurred as drugs acted on dormant bacilli and coincided with lung pathology resolution. Measurement of biosignatures during clinical trials of new drugs could be useful predictors of rapid bactericidal or sterilizing drug activity, and would expedite the licensing of new treatment regimens.
Collapse
Affiliation(s)
- Jacqueline M Cliff
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Corleis B, Korbel D, Wilson R, Bylund J, Chee R, Schaible UE. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol 2012; 14:1109-21. [DOI: 10.1111/j.1462-5822.2012.01783.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Neutrophils in tuberculosis: friend or foe? Trends Immunol 2011; 33:14-25. [PMID: 22094048 DOI: 10.1016/j.it.2011.10.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/06/2011] [Accepted: 10/17/2011] [Indexed: 12/22/2022]
Abstract
Neutrophils are rapidly recruited to sites of mycobacterial infection, where they phagocytose bacilli. Whether neutrophils can kill mycobacteria in vivo probably depends on the tissue microenvironment, stage of infection, individual host, and infecting organism. The interaction of neutrophils with macrophages, as well as the downstream effects on T cell activity, could result in a range of outcomes from early clearance of infection to dissemination of viable bacteria together with an attenuated acquired immune response. In established disease, neutrophils accumulate in situations of high pathogen load or immunological dysfunction, and are likely to contribute to pathology. These activities may have clinical importance in terms of new treatments, targeted interventions and vaccine strategies.
Collapse
|
39
|
Lemos MP, Rhee KY, McKinney JD. Expression of the leptin receptor outside of bone marrow-derived cells regulates tuberculosis control and lung macrophage MHC expression. THE JOURNAL OF IMMUNOLOGY 2011; 187:3776-84. [PMID: 21859958 DOI: 10.4049/jimmunol.1003226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leptin is a pleiotropic hormone proposed to link nutritional status to the development of strong Th1 immunity. Because Mycobacterium tuberculosis control is affected by starvation and diabetes, we studied the role of the leptin receptor in regulating distinct immune cells during chronic infection. Infected db/db mice, bearing a natural mutation in the leptin receptor, have a markedly increased bacterial load in their lungs when compared with that of their wild-type counterparts. In response to M. tuberculosis infection, db/db mice exhibited disorganized granulomas, neutrophilia, and reduced B cell migration to the lungs, correlating with dysfunctional lung chemokine responses that include XCL1, CCL2, CXCL1, CXCL2, and CXCL13. In a db/db lung, myeloid cells were delayed in their production of inducible NO synthase and had reduced expression of MHC I and II. Although the Th1 cell response developed normally in the absence of leptin signaling, production of pulmonary IFN-γ was delayed and ineffective. Surprisingly, a proper immune response took place in bone marrow (BM) chimeras lacking leptin receptor exclusively in BM-derived cells, indicating that leptin acts indirectly on immune cells to modulate the antituberculosis response and bacterial control. Together, these findings suggest that the pulmonary response to M. tuberculosis is affected by the host's nutritional status via the regulation of non-BM-derived cells, not through direct action of leptin on Th1 immunity.
Collapse
Affiliation(s)
- Maria P Lemos
- The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
40
|
Zhang M, Wang Z, Graner MW, Yang L, Liao M, Yang Q, Gou J, Zhu Y, Wu C, Liu H, Zhou B, Chen X. B cell infiltration is associated with the increased IL-17 and IL-22 expression in the lungs of patients with tuberculosis. Cell Immunol 2011; 270:217-23. [PMID: 21741035 DOI: 10.1016/j.cellimm.2011.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/25/2011] [Accepted: 05/13/2011] [Indexed: 12/11/2022]
Abstract
Although it has been recognized that ectopic follicle-like B cell aggregate formation is common in the lungs of patients with tuberculosis, the role of infiltrated B cells in human tuberculosis remains to be elucidated. In the present study, we showed that ectopic B cell aggregate formation was associated with containment of Mycobacterium tuberculosis. The area ratio of ectopic B cell aggregates was correlated with localized IL-17 mRNA expression and peripheral TGF-β and IL-6 mRNA expression. Depletion of B cells from pleural fluid mononuclear cells resulted in significantly diminished M. tuberculosis antigen-specific IL-17 and IL-22 production, but not in IFN-γ secretion. Therefore, ectopic lung B cell formation is important for containment of M. tuberculosis, and up-regulation of IL-17 and IL-22 responses may be an important mechanism underlying the protective role B cells in human tuberculosis.
Collapse
Affiliation(s)
- Mingxia Zhang
- Shenzhen Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fillatreau S. Novel regulatory functions for Toll-like receptor-activated B cells during intracellular bacterial infection. Immunol Rev 2011; 240:52-71. [PMID: 21349086 DOI: 10.1111/j.1600-065x.2010.00991.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infections by intracellular bacterial pathogens remain a major cause of human diseases worldwide. Despite intensive efforts, the development of effective vaccines or immunotherapies against these diseases has largely remained unsuccessful, asking for the exploration of new aspects of the host response to these pathogens. Genetic studies have demonstrated beyond doubt that cell-mediated mechanisms of host defense involving innate immunity and T cells are of crucial importance for the control of these diseases. By contrast, the role of B cells during intracellular bacterial infection has so far received little attention besides their role as antibody-producing cells. However, the general knowledge of B-cell immunology and in particular of their antibody-independent functions has greatly increased during the last years. Recently, it was found in a model of Salmonella typhimurium infection that Toll-like receptor triggering on B cells resulted through interleukin-10 secretion in a marked suppression of innate defense mechanisms ultimately leading to uncontrolled growth of the bacteria and earlier death from the disease during both primary and secondary infections. This article reviews the protective and deleterious roles of B cells during intracellular bacterial infections and discusses how manipulating their antibody-independent functions may be a powerful means to therapeutically improve host resistance against these diseases.
Collapse
Affiliation(s)
- Simon Fillatreau
- Deutsches Rheuma-ForschungsZentrum, Leibniz Institute, Berlin, Germany.
| |
Collapse
|
42
|
Abstract
Millions of people harbor latent infections of the fungus Histoplasma capsulatum. Such persistent infections represent a stalemate between mechanisms of virulence and the immune response. The differing responses of inbred mouse strains to the same pathogen reflect variation in the genes that control the outcome of infection. Here we show that a 250-fold difference in H. capsulatum susceptibility between inbred mouse strains is attributable to the genotype at the MHC H2 locus. Gene expression analysis of strains varying only at the H2 locus identified genotype-specific and genotype-independent expression signatures, including infection-induced genes such as the fungal pattern recognition receptor Clec7a. Surprisingly, B-cell-specific gene expression was negatively correlated with fungal burden, whereas neutrophil-specific genes were correlated with superior disease outcome. Indeed, disease outcome improved when B cells were eliminated and neutrophils were more active, a previously unknown aspect of the host response. These data refine the understanding of genetic influences on histoplasmosis, reveal how shifts in the composition of immune cell populations compel different disease outcomes, and uncover how innate immunity modulation alters histoplasmosis.
Collapse
|
43
|
Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PLoS One 2010; 5:e10515. [PMID: 20463893 PMCID: PMC2865535 DOI: 10.1371/journal.pone.0010515] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/13/2010] [Indexed: 12/31/2022] Open
Abstract
Development of lung granulomata is a hallmark of infections caused by virulent mycobacteria, reflecting both protective host response that restricts infection spreading and inflammatory pathology. The role of host genetics in granuloma formation is not well defined. Earlier we have shown that mice of the I/St strain are extremely susceptible to Mycobacterium tuberculosis but resistant to M. avium infection, whereas B6 mice show a reversed pattern of susceptibility. Here, by directly comparing: (i) characteristics of susceptibility to two infections in vivo; (ii) architecture of lung granulomata assessed by immune staining; and (iii) expression of genes encoding regulatory factors of neutrophil influx in the lung tissue, we demonstrate that genetic susceptibility of the host largely determines the pattern of lung pathology. Necrotizing granuloma surrounded by hypoxic zones, as well as a massive neutrophil influx, develop in the lungs of M. avium-infected B6 mice and in the lungs of M. tuberculosis-infected I/St mice, but not in the lungs of corresponding genetically resistant counterparts. The mirror-type lung tissue responses to two virulent mycobacteria indicate that the level of genetic susceptibility of the host to a given mycobacterial species largely determines characteristics of pathology, and directly demonstrate the importance of host genetics in pathogenesis.
Collapse
|