1
|
Cukier HN, Kim H, Griswold AJ, Codreanu SG, Prince LM, Sherrod SD, McLean JA, Dykxhoorn DM, Ess KC, Hedera P, Bowman AB, Neely MD. Genomic, transcriptomic, and metabolomic profiles of hiPSC-derived dopamine neurons from clinically discordant brothers with identical PRKN deletions. NPJ Parkinsons Dis 2022; 8:84. [PMID: 35768426 PMCID: PMC9243035 DOI: 10.1038/s41531-022-00346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating. Thus, we hypothesized that the presence of additional genetic modifiers, including genetic loci relevant to mesencephalic dopamine neuron development, could potentially contribute to the different clinical manifestations of the two brothers. We differentiated human-induced pluripotent stem cells (hiPSCs) derived from the two brothers into mesencephalic neural precursor cells and early postmitotic dopaminergic neurons and performed wholeexome sequencing and transcriptomic and metabolomic analyses. No significant differences in the expression of canonical dopamine neuron differentiation markers were observed. Yet our transcriptomic analysis revealed a significant downregulation of the expression of three neurodevelopmentally relevant cell adhesion molecules, CNTN6, CNTN4 and CHL1, in the cultures of the more severely affected brother. In addition, several HLA genes, known to play a role in neurodevelopment, were differentially regulated. The expression of EN2, a transcription factor crucial for mesencephalic dopamine neuron development, was also differentially regulated. We further identified differences in cellular processes relevant to dopamine metabolism. Lastly, wholeexome sequencing, transcriptomics and metabolomics data all revealed differences in glutathione (GSH) homeostasis, the dysregulation of which has been previously associated with PD. In summary, we identified genetic differences which could potentially, at least partially, contribute to the discordant clinical PD presentation of the two brothers.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simona G Codreanu
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin C Ess
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA.
| | - M Diana Neely
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Shen Y, Zhao H, Li P, Peng Y, Cui P, Miao F, Zhang Y, Zhang A, Zhang J. MHC Class I Molecules and PirB Shape Neuronal Morphology by Affecting the Dendritic Arborization of Cortical Neurons. Neurochem Res 2018; 44:312-322. [PMID: 30406910 DOI: 10.1007/s11064-018-2676-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022]
Abstract
Neuronal MHC class I proteins have been previously reported to regulate synaptic plasticity. Several reports indicate MHC class I proteins are expressed early during development of the nervous system, suggesting they may also play a role in neuronal development. Using cultured cortical neurons, we show MHC class I proteins aggregate at specific sites in neuronal cell bodies, which overlap with the actin cytoskeleton. Knockout of MHC class I in cultured neurons increases total dendritic length and the number of branch points. These effects are abolished by reintroducing MHC class I expression. Similarly, blocking of MHC class I proteins or PirB by an MHCI antibody or a soluble PirB ectodomain respectively, mimics the knock out phenotype of increased dendritic branching. This effect is correlated with decreased phosphorylation of both LIMK and cofilin, suggesting it may be mediated by an induction of cofilin activity. Finally, layer II and III cortical neurons in the sensorimotor region of an MHC class I deficiency mouse model show increased dendritic growth and branching. Altogether, our results suggest MHC class I plays a role in inhibiting or limiting the degree of dendrite arborization during the development of cortical neurons.
Collapse
Affiliation(s)
- Yuqing Shen
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Huanhuan Zhao
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ping Li
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yaqin Peng
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Pengfei Cui
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China. .,Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Shivakumar V, Debnath M, Venugopal D, Rajasekaran A, Kalmady SV, Subbanna M, Narayanaswamy JC, Amaresha AC, Venkatasubramanian G. Influence of correlation between HLA-G polymorphism and Interleukin-6 (IL6) gene expression on the risk of schizophrenia. Cytokine 2018; 107:59-64. [DOI: 10.1016/j.cyto.2017.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/14/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
|
4
|
|
5
|
Abstract
Epidemiological studies and mouse models suggest that maternal immune activation, induced clinically through prenatal exposure to one of several infectious diseases, is a risk factor in the development of schizophrenia. This is supported by the strong genetic association established by genome wide association studies (GWAS) between the human leukocyte antigen (HLA) locus and schizophrenia. HLA proteins (also known in mice as the major histocompatibility complex; MHC) are mediators of the T-lymphocyte responses, and genetic variability is well-established as a risk factor for autoimmune diseases and susceptibility to infectious diseases. Taken together, the findings strongly suggest that schizophrenia risk in a subgroup of patients is caused by an infectious disease, and/or an autoimmune phenomenon. However, this view may be overly simplistic. First, MHC proteins have a non-immune effect on synaptogenesis by modulating synaptic pruning by microglia and other mechanisms, suggesting that genetic variability could be compromising this physiological process. Second, some GWAS signals in the HLA locus map near non-HLA genes, such as the histone gene cluster. On the other hand, recent GWAS data show association signals near B-lymphocyte enhancers, which lend support for an infectious disease etiology. Thus, although the genetic findings implicating the HLA locus are very robust, how genetic variability in this region leads to schizophrenia remains to be elucidated.
Collapse
Affiliation(s)
- Ryan Mokhtari
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| |
Collapse
|
6
|
Nardo G, Trolese MC, Bendotti C. Major Histocompatibility Complex I Expression by Motor Neurons and Its Implication in Amyotrophic Lateral Sclerosis. Front Neurol 2016; 7:89. [PMID: 27379008 PMCID: PMC4904147 DOI: 10.3389/fneur.2016.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
Neuronal expression of major histocompatibility complex I (MHCI)-related molecules in adults and during CNS diseases is involved in the synaptic plasticity and axonal regeneration with mechanisms either dependent or independent of their immune functions. Motor neurons are highly responsive in triggering the expression of MHCI molecules during normal aging or following insults and diseases, and this has implications in the synaptic controls, axonal regeneration, and neuromuscular junction stability of these neurons. We recently reported that MHCI and immunoproteasome are strongly activated in spinal motor neurons and their peripheral motor axon in a mouse model of familial amyotrophic lateral sclerosis (ALS) during the course of the disease. This response was prominent in ALS mice with slower disease progression in which the axonal structure and function was better preserved than in fast-progressing mice. This review summarizes and discusses our observations in the light of knowledge about the possible role of MHCI in motor neurons providing additional insight into the pathophysiology of ALS.
Collapse
Affiliation(s)
- Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| | - Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| |
Collapse
|
7
|
Freria CM, Bernardes D, Almeida GL, Simões GF, Barbosa GO, Oliveira ALR. Impairment of toll-like receptors 2 and 4 leads to compensatory mechanisms after sciatic nerve axotomy. J Neuroinflammation 2016; 13:118. [PMID: 27222120 PMCID: PMC4879730 DOI: 10.1186/s12974-016-0579-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
Background Peripheral nerve injury results in retrograde cell body-related changes in the spinal motoneurons that will contribute to the regenerative response of their axons. Successful functional recovery also depends on molecular events mediated by innate immune response during Wallerian degeneration in the nerve microenvironment. A previous study in our lab demonstrated that TLR 2 and 4 develop opposite effects on synaptic stability in the spinal cord after peripheral nerve injury. Therefore, we suggested that the better preservation of spinal cord microenvironment would positively influence distal axonal regrowth. In this context, the present work aimed to investigate the influence of TLR2 and TLR4 on regeneration and functional recovery after peripheral nerve injury. Methods Eighty-eight mice were anesthetized and subjected to unilateral sciatic nerve crush (C3H/HeJ, n = 22, C3H/HePas, n = 22; C57Bl6/J, n = 22 and TLR2−/−, n = 22). After the appropriate survival times (3, 7, 14 days, and 5 weeks), all mice were killed and the sciatic nerves and tibialis cranialis muscles were processed for immunohistochemistry and transmission electron microscopy (TEM). Gait analysis, after sciatic nerve crushing, was performed in another set of mice (minimum of n = 8 per group), by using the walking track test (CatWalk system). Results TLR4 mutant mice presented greater functional recovery as well as an enhanced p75NTR and neurofilament protein expression as compared to the wild-type strain. Moreover, the better functional recovery in mutant mice was correlated to a greater number of nerve terminal sprouts. Knockout mice for TLR2 exhibited 30 % greater number of degenerated axons in the distal stump of the sciatic nerve and a decreased p75NTR and neurofilament protein expression compared to the wild type. However, the absence of TLR2 receptor did not influence the overall functional recovery. End-point equivalent functional recovery in transgenic mice may be a result of enhanced axonal diameter found at 2 weeks after lesion. Conclusions Altogether, the present results indicate that the lack of TLR2 or the absence of functional TLR4 does affect the nerve regeneration process; however, such changes are minimized through different compensatory mechanisms, resulting in similar motor function recovery, as compared to wild-type mice. These findings contribute to the concept that innate immune-related molecules influence peripheral nerve regeneration by concurrently participating in processes taking place both at the CNS and PNS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0579-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C M Freria
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - D Bernardes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - G L Almeida
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - G F Simões
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - G O Barbosa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - A L R Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
8
|
McAllister AK. Major histocompatibility complex I in brain development and schizophrenia. Biol Psychiatry 2014; 75:262-8. [PMID: 24199663 PMCID: PMC4354937 DOI: 10.1016/j.biopsych.2013.10.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/24/2013] [Accepted: 10/07/2013] [Indexed: 02/01/2023]
Abstract
Although the etiology of schizophrenia (SZ) remains unknown, it is increasingly clear that immune dysregulation plays a central role. Genome-wide association studies reproducibly indicate an association of SZ with immune genes within the major histocompatibility complex (MHC). Moreover, environmental factors that increase risk for SZ, such as maternal infection, alter peripheral immune responses as well as the expression of immune molecules in the brain. MHC class I (MHCI) molecules might mediate both genetic and environmental contributions to SZ through direct effects on brain development in addition to mediating immunity. MHCI molecules are expressed on neurons in the central nervous system throughout development and into adulthood, where they regulate many aspects of brain development, including neurite outgrowth, synapse formation and function, long-term and homeostatic plasticity, and activity-dependent synaptic refinement. This review summarizes our current understanding of MHCI expression and function in the developing brain as well as its involvement in maternal immune activation, from the perspective of how these roles for MHCI molecules might contribute to the pathogenesis of SZ.
Collapse
|
9
|
Komal P, Gudavicius G, Nelson CJ, Nashmi R. T-cell receptor activation decreases excitability of cortical interneurons by inhibiting α7 nicotinic receptors. J Neurosci 2014; 34:22-35. [PMID: 24381265 PMCID: PMC6608162 DOI: 10.1523/jneurosci.2093-13.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 11/21/2022] Open
Abstract
Many proteins in the immune system are also expressed in the brain. One such class of immune proteins are T-cell receptors (TCRs), whose functions in T lymphocytes in adaptive immunity are well characterized. In the brain, TCRs are confined to neocortical neurons, but their functional role has not been determined. In mouse layer 1 neocortical neurons, TCR activation inhibited α7 nicotinic currents. TCRs modulated α7 currents via tyrosine phosphorylation of α7 nicotinic receptors (nAChRs) through src tyrosine kinases because eliminating lck kinase expression, coexpressing fyn kinase dead, or mutating tyrosine to alanine in α7 blocked the effect of TCR activation. We found that TCR stimulation decreased surface α7 nAChRs and reduced single-channel conductance. These results reveal that TCRs play a major role in the modulation of cholinergic neurotransmission in the brain mediated by α7 nAChRs and that this has a profound effect on regulating neuronal excitability.
Collapse
Affiliation(s)
| | - Geoff Gudavicius
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| | - Christopher J. Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| | | |
Collapse
|
10
|
Huang YS, Guilleminault C, Chen CH, Lai PC, Hwang FM. Narcolepsy-cataplexy and schizophrenia in adolescents. Sleep Med 2013; 15:15-22. [PMID: 24268496 DOI: 10.1016/j.sleep.2013.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 09/21/2013] [Accepted: 09/24/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND Despite advances in the understanding of narcolepsy, little information the on association between narcolepsy and psychosis is available, except for amphetamine-related psychotic reactions. Our case-control study aimed to compare clinical differences and analyze risk factors in children who developed narcolepsy with cataplexy (N-C), schizophrenia, and N-C followed by schizophrenia. METHODS Three age- and gender-matched groups of children with N-C schizophrenia (study group), N-C (control group 1), and schizophrenia only (control group 2) were investigated. Subjects filled out sleep questionnaires, sleep diaries, and quality of life scales, followed by polysomnography (PSG), multiple sleep latency tests (MSLT), routine blood tests, HLA typing, genetic analysis of genes of interest, and psychiatric evaluation. The risk factors for schizophrenia also were analyzed. RESULTS The study group was significantly overweight when measuring body mass index (BMI) (P=.016), at narcolepsy onset compared to control group 1, and the study group developed schizophrenia after a mean of 2.55±1.8 years. Compared to control group 2, psychotic symptoms were significantly more severe in the study group, with a higher frequency of depressive symptoms and acute ward hospitalization in 8 out of 10 of the subjects. They also had poorer long-term response to treatment, despite multiple treatment trials targeting their florid psychotic symptoms. All subjects with narcolepsy were HLA DQ B1(∗)0602 positive. The study group had a significantly higher frequency of DQ B1(∗)-03:01/06:02 (70%) than the two other groups, without any significant difference in HLA-DR typing, tumor necrosis factor α (TNF-α) levels, hypocretin (orexin) receptor 1 gene, HCRTR1, and the hypocretin (orexin) receptor 2 gene, HCRTR2, or blood infectious titers. CONCLUSION BMI and weight at onset of narcolepsy as well as a higher frequency of DQ B1(∗)-03:01/06:02 antigens were the only significant differences in the N-C children with secondary schizophrenia; such an association is a therapeutic challenge with long-term persistence of severe psychotic symptoms.
Collapse
Affiliation(s)
- Yu-Shu Huang
- Sleep Center, Chang Gung Memorial Hospital and University, Linkou, Taiwan; Child Psychiatry Department, Chang Gung Memorial Hospital and University, Linkou, Taiwan; Psychiatry Department, Chang Gung Memorial Hospital and University, Linkou, Taiwan
| | | | - Chia-Hsiang Chen
- Psychiatry Department, Chang Gung Memorial Hospital and University, Linkou, Taiwan; Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan; Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Ping-Chin Lai
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital and University, Linkou, Taiwan
| | - Fan-Ming Hwang
- Department of Education, National Chia-Yi University, Chiayi, Taiwan
| |
Collapse
|
11
|
Debnath M, Cannon DM, Venkatasubramanian G. Variation in the major histocompatibility complex [MHC] gene family in schizophrenia: associations and functional implications. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:49-62. [PMID: 22813842 DOI: 10.1016/j.pnpbp.2012.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/23/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder with a complex genetic contribution. Although multiple genetic, immunological and environmental factors are known to contribute to schizophrenia susceptibility, the underlying neurobiological mechanism(s) is yet to be established. The immune system dysfunction theory of schizophrenia is experiencing a period of renewal due to a growth in evidence implicating components of the immune system in brain function and human behavior. Current evidence indicates that certain immune molecules such as Major Histocompatibility Complex (MHC) and cytokines, the key regulators of immunity and inflammation are directly involved in the neurobiological processes related to neurodevelopment, neuronal plasticity, learning, memory and behavior. However, the strongest support in favor of the immune hypothesis has recently emerged from on-going genome wide association studies advocating MHC region variants as major determinants of one's risk for developing schizophrenia. Further identification of the interacting partners and receptors of MHC molecules in the brain and their role in down-stream signaling pathways of neurotransmission have implicated these molecules as potential schizophrenia risk factors. More recently, combined brain imaging and genetic studies have revealed a relationship between genetic variations within the MHC region and neuromorphometric changes during schizophrenia. Furthermore, MHC molecules play a significant role in the immune-infective and neurodevelopmental pathogenetic pathways, currently hypothesized to contribute to the pathophysiology of schizophrenia. Herein, we review the immunological, genetic and expression studies assessing the role of the MHC in conferring risk for developing schizophrenia, we summarize and discuss the possible mechanisms involved, making note of the challenges to, and future directions of, immunogenetic research in schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore-560029, India.
| | | | | |
Collapse
|
12
|
Chacon MA, Boulanger LM. MHC class I protein is expressed by neurons and neural progenitors in mid-gestation mouse brain. Mol Cell Neurosci 2012; 52:117-27. [PMID: 23147111 DOI: 10.1016/j.mcn.2012.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/09/2012] [Accepted: 11/02/2012] [Indexed: 02/04/2023] Open
Abstract
Proteins of the major histocompatibility complex class I (MHCI) are known for their role in the vertebrate adaptive immune response, and are required for normal postnatal brain development and plasticity. However, it remains unknown if MHCI proteins are present in the mammalian brain before birth. Here, we show that MHCI proteins are widely expressed in the developing mouse central nervous system at mid-gestation (E9.5-10.5). MHCI is strongly expressed in several regions of the prenatal brain, including the neuroepithelium and olfactory placode. MHCI is expressed by neural progenitors at these ages, as identified by co-expression in cells positive for neuron-specific class III β-tubulin (Tuj1) or for Pax6, a marker of neural progenitors in the dorsal neuroepithelium. MHCI is also co-expressed with nestin, a marker of neural stem/progenitor cells, in olfactory placode, but the co-localization is less extensive in other regions. MHCI is detected in the small population of post-mitotic neurons that are present at this early stage of brain development, as identified by co-expression in cells positive for neuronal microtubule-associated protein-2 (MAP2). Thus MHCI protein is expressed during the earliest stages of neuronal differentiation in the mammalian brain. MHCI expression in neurons and neural progenitors at mid-gestation, prior to the maturation of the adaptive immune system, is consistent with MHCI performing non-immune functions in prenatal brain development. These results raise the possibility that disruption of the levels and/or patterns of MHCI expression in the prenatal brain could contribute to the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marcelo A Chacon
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, 123 Lewis Thomas Laboratories, Washington Road, Princeton, NJ 08544, USA
| | | |
Collapse
|
13
|
Elmer BM, McAllister AK. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci 2012; 35:660-70. [PMID: 22939644 DOI: 10.1016/j.tins.2012.08.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/27/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
Proper development of the central nervous system (CNS) requires the establishment of appropriate connections between neurons. Recent work suggests that this process is controlled by a balance between synaptogenic molecules and proteins that negatively regulate synapse formation and plasticity. Surprisingly, many of these newly identified synapse-limiting molecules are classic 'immune' proteins. In particular, major histocompatibility complex class I (MHCI) molecules regulate neurite outgrowth, the establishment and function of cortical connections, activity-dependent refinement in the visual system, and long-term and homeostatic plasticity. This review summarizes our current understanding of MHCI expression and function in the CNS, as well as the potential mechanisms used by MHCI to regulate brain development and plasticity.
Collapse
Affiliation(s)
- Bradford M Elmer
- Center for Neuroscience, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
14
|
Major histocompatibility complex class I molecules modulate embryonic neuritogenesis and neuronal polarization. J Neuroimmunol 2012; 247:1-8. [PMID: 22503373 DOI: 10.1016/j.jneuroim.2012.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022]
Abstract
We studied cultured hippocampal neurons from embryonic wildtype, major histocompatibility complex class I (MHCI) heavy chain-deficient (K(b)D(b)-/-) and NSE-D(b) (which have elevated neuronal MHCI expression) C57BL/6 mice. K(b)D(b)-/- neurons displayed slower neuritogenesis and establishment of polarity, while NSE-D(b) neurons had faster neurite outgrowth, more primary neurites, and tended to have accelerated polarization. Additional studies with ß2M-/- neurons, exogenous ß2M, and a self-MHCI monomer suggest that free heavy chain cis interactions with other surface molecules can promote neuritogenesis while tripartite MHCI interactions with classical MHCI receptors can inhibit axon outgrowth. Together with the results of others, MHCI appears to differentially modulate neuritogenesis and synaptogenesis.
Collapse
|
15
|
Christianson MG, Lo DC. Development of a low-pressure microtargeting biolistic device for transfection of retinal explants. Mol Vis 2011; 17:2947-55. [PMID: 22128241 PMCID: PMC3224834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/11/2011] [Indexed: 10/30/2022] Open
Abstract
Biolistic transfection offers a key experimental method for molecular perturbation of bona fide, postmitotic neurons within their native local environment in explanted tissues. However, current, commercially available biolistic devices unavoidably deliver traumatic injury to surface layers of explanted tissues because of helium co-emission with DNA-coated gold particles during the shooting process. This makes such methods unsuitable for use with the delicate tissue layers of the mammalian retina. Here, we report the development of a novel and inexpensive microtargeting biolistic device that avoids the trauma associated with conventional entrainment biolistic methods, permitting rapid and efficient transfection of retinal ganglion cells in the adult mammalian retina without significant damage to their local microenvironment. By using low helium inflow pressures and vacuum diversion to eliminate helium emission during the transfection process, we found that the current method allowed efficient transfection as well as morphological and functional preservation of retinal ganglion cells and their local glial microenvironment in transfected retinal explants from adult rats. The use of an ethanol-gold suspension further supported rapid and extended shooting sequences and reduced shot-to-shot variation during transfection compared to existing tubing-based devices. This new biolistic device should be useful not only in the retina, but also in other tissue explant settings in which preservation of local cellular and tissue integrity is a priority.
Collapse
|
16
|
Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 2011; 32:548-58. [PMID: 21962745 DOI: 10.1016/j.it.2011.08.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
Defective ribosomal products (DRiPs) are a subset of rapidly degraded polypeptides that provide peptide ligands for major histocompatibility complex (MHC) class I molecules. Here, recent progress in understanding DRiP biogenesis is reviewed. These findings place DRiPs at the center of the MHC class I antigen processing pathway, linking immunosurveillance of viruses and tumors to mechanisms of specialized translation and cellular compartmentalization. DRiPs enable the immune system to rapidly detect alterations in cellular gene expression with great sensitivity.
Collapse
|
17
|
Washburn LR, Zekzer D, Eitan S, Lu Y, Dang H, Middleton B, Evans CJ, Tian J, Kaufman DL. A potential role for shed soluble major histocompatibility class I molecules as modulators of neurite outgrowth. PLoS One 2011; 6:e18439. [PMID: 21483793 PMCID: PMC3069096 DOI: 10.1371/journal.pone.0018439] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/07/2011] [Indexed: 11/18/2022] Open
Abstract
The neurobiological activities of classical major histocompatibility class I (MHCI) molecules are just beginning to be explored. To further examine MHCI's actions during the formation of neuronal connections, we cultured embryonic mouse retina explants a short distance from wildtype thalamic explants, or thalami from transgenic mice (termed “NSE-Db”) whose neurons express higher levels of MHCI. While retina neurites extended to form connections with wildtype thalami, we were surprised to find that retina neurite outgrowth was very stunted in regions proximal to NSE-Db thalamic explants, suggesting that a diffusible factor from these thalami inhibited retina neurite outgrowth. It has been long known that MHCI-expressing cells release soluble forms of MHCI (sMHCI) due to the shedding of intact MHCI molecules, as well as the alternative exon splicing of its heavy chain or the action proteases which cleave off it's transmembrane anchor. We show that the diffusible inhibitory factor from the NSE-Db thalami is sMHCI. We also show that COS cells programmed to express murine MHCI release sMHCI that inhibits neurite outgrowth from nearby neurons in vitro. The neuroinhibitory effect of sMHCI could be blocked by lowering cAMP levels, suggesting that the neuronal MHCI receptor's signaling mechanism involves a cyclic nucleotide-dependent pathway. Our results suggest that MHCI may not only have neurobiological activity in its membrane-bound form, it may also influence local neurons as a soluble molecule. We discuss the involvement of complement proteins in generating sMHCI and new theoretical models of MHCI's biological activities in the nervous system.
Collapse
Affiliation(s)
- Lorraine R. Washburn
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dan Zekzer
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shoshana Eitan
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yuxin Lu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hoa Dang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Blake Middleton
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christopher J. Evans
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wu ZP, Bilousova T, Escande-Beillard N, Dang H, Hsieh T, Tian J, Kaufman DL. Major histocompatibility complex class I-mediated inhibition of neurite outgrowth from peripheral nerves. Immunol Lett 2011; 135:118-23. [PMID: 20974178 PMCID: PMC5776043 DOI: 10.1016/j.imlet.2010.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/14/2010] [Accepted: 10/17/2010] [Indexed: 10/18/2022]
Abstract
Studies of mice deficient in classical major histocompatability complex class I (MHCI) revealed that MHCI plays an important role in neurodevelopment in the central nervous system. We previously studied the effects of recombinant MHCI molecules on wildtype retina explants and observed that MHCI can inhibit retina neurite outgrowth, with self-MHCI molecules having greater inhibitory effect than non-self MHCI molecules. Here, we examined classical MHCI's effects on axon outgrowth from neurons of the peripheral nervous system (PNS). We used the embryonic dorsal root ganglia (DRG) explant model since their neurons express MHCI and because DRG explants have been widely used to assess the effects of molecules on axonal outgrowth from PNS neurons. We observed that picomolar levels of a recombinant self-MHCI molecule, but not non-self MHCI molecules, inhibited axon outgrowth from DRG explants. This differential sensitivity to self- vs. non-self MHCI suggests that early in development, self-MHCI may "educate" PNS neurons to express appropriate MHCI receptors, as occurs during natural killer cell development. Furthermore, we observed that a MHCI tetramer stained embryonic DRG neurons, indicating the expression of classical MHCI receptors. These results suggest that MHCI and MHCI receptors play roles during early stages of PNS development and may provide new targets of therapeutic strategies to promote neuronal outgrowth after PNS injury.
Collapse
Affiliation(s)
- Zhongqi-Phyllis Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Tina Bilousova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Nathalie Escande-Beillard
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Hoa Dang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Terry Hsieh
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
19
|
Ribic A, Flügge G, Schlumbohm C, Mätz-Rensing K, Walter L, Fuchs E. Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey. Behav Brain Funct 2011; 7:1. [PMID: 21205317 PMCID: PMC3023691 DOI: 10.1186/1744-9081-7-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/04/2011] [Indexed: 01/31/2023] Open
Abstract
Background Several recent studies have highlighted the important role of immunity-related molecules in synaptic plasticity processes in the developing and adult mammalian brains. It has been suggested that neuronal MHCI (major histocompatibility complex class I) genes play a role in the refinement and pruning of synapses in the developing visual system. As a fast evolutionary rate may generate distinct properties of molecules in different mammalian species, we studied the expression of MHCI molecules in a nonhuman primate, the common marmoset monkey (Callithrix jacchus). Methods and results Analysis of expression levels of MHCI molecules in the developing visual cortex of the common marmoset monkeys revealed a distinct spatio-temporal pattern. High levels of expression were detected very early in postnatal development, at a stage when synaptogenesis takes place and ocular dominance columns are formed. To determine whether the expression of MHCI molecules is regulated by retinal activity, animals were subjected to monocular enucleation. Levels of MHCI heavy chain subunit transcripts in the visual cortex were found to be elevated in response to monocular enucleation. Furthermore, MHCI heavy chain immunoreactivity revealed a banded pattern in layer IV of the visual cortex in enucleated animals, which was not observed in control animals. This pattern of immunoreactivity indicated that higher expression levels were associated with retinal activity coming from the intact eye. Conclusions These data demonstrate that, in the nonhuman primate brain, expression of MHCI molecules is regulated by neuronal activity. Moreover, this study extends previous findings by suggesting a role for neuronal MHCI molecules during synaptogenesis in the visual cortex.
Collapse
Affiliation(s)
- Adema Ribic
- German Primate Center/Leibniz Institute for Primate Research, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Joseph MS, Bilousova T, Zdunowski S, Wu ZP, Middleton B, Boudzinskaia M, Wong B, Ali N, Zhong H, Yong J, Washburn L, Escande-Beillard N, Dang H, Edgerton VR, Tillakaratne NJK, Kaufman DL. Transgenic mice with enhanced neuronal major histocompatibility complex class I expression recover locomotor function better after spinal cord injury. J Neurosci Res 2010; 89:365-72. [PMID: 21259323 DOI: 10.1002/jnr.22557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 02/04/2023]
Abstract
Mice that are deficient in classical major histocompatibility complex class I (MHCI) have abnormalities in synaptic plasticity and neurodevelopment and have more extensive loss of synapses and reduced axon regeneration after sciatic nerve transection, suggesting that MHCI participates in maintaining synapses and axon regeneration. Little is known about the biological consequences of up-regulating MHCI's expression on neurons. To understand MHCI's neurobiological activity better, and in particular its role in neurorepair after injury, we have studied neurorepair in a transgenic mouse model in which classical MHCI expression is up-regulated only on neurons. Using a well-established spinal cord injury (SCI) model, we observed that transgenic mice with elevated neuronal MHCI expression had significantly better recovery of locomotor abilities after SCI than wild-type mice. Although previous studies have implicated inflammation as both deleterious and beneficial for recovery after SCI, our results point directly to enhanced neuronal MHCI expression as a beneficial factor for promoting recovery of locomotor function after SCI.
Collapse
Affiliation(s)
- M Selvan Joseph
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhao H, Xiao S, Kong X, Wang J, Cao X, Gencheng W, Loh HH, Law PY. Neuron-glial cell communication in the traumatic stress-induced immunomodulation. Synapse 2010; 65:433-40. [DOI: 10.1002/syn.20861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/16/2010] [Indexed: 11/08/2022]
|
22
|
Wu ZP, Washburn L, Bilousova TV, Boudzinskaia M, Escande-Beillard N, Querubin J, Dang H, Xie CW, Tian J, Kaufman DL. Enhanced neuronal expression of major histocompatibility complex class I leads to aberrations in neurodevelopment and neurorepair. J Neuroimmunol 2010; 232:8-16. [PMID: 20950866 DOI: 10.1016/j.jneuroim.2010.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 01/22/2023]
Abstract
Mice deficient in classical major histocompatibility complex class I (MHCI) have aberrations in neurodevelopment. The consequences of upregulated neuronal MHCI expression have not been examined. We found that transgenic C57Bl/6 mice that are engineered to express higher levels of self-D(b) on their CNS neurons have alterations in their hippocampal morphology and retinogeniculate projections, as well as impaired neurorepair responses. Thus, enhanced neuronal classical MHCI expression can lead to aberrations in neural circuitry and neurorepair. These findings complement a growing body of knowledge concerning the neurobiological activities of MHCI and may have potential clinical relevance.
Collapse
Affiliation(s)
- Zhongqi-Phyllis Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|