1
|
Gunst JD, Goonetilleke N, Rasmussen TA, Søgaard OS. Immunomodulation with IL-7 and IL-15 in HIV-1 infection. J Virus Erad 2023; 9:100347. [PMID: 37767312 PMCID: PMC10520363 DOI: 10.1016/j.jve.2023.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Immunomodulating agents are substances that modify the host immune responses in diseases such as infections, autoimmune conditions and cancers. Immunomodulators can be divided into two main groups: 1) immunostimulators that activate the immune system such as cytokines, toll-like receptor agonists and immune checkpoint blockers; and 2) immunosuppressors that dampen an overactive immune system such as corticosteroids and cytokine-blocking antibodies. In this review, we have focussed on the two primarily T and natural killer (NK) cell homeostatic cytokines: interleukin-7 (IL-7) and -15 (IL-15). These cytokines are immunostimulators which act on immune cells independently of the presence or absence of antigen. In vivo studies have shown that IL-7 administration enhances proliferation of circulating T cells whereas IL-15 agonists enhance the proliferation and function of NK and CD8+ T cells. Both IL-7 and IL-15 therapies have been tested as single interventions in HIV-1 cure-related clinical trials. In this review, we explore whether IL-7 and IL-15 could be part of the therapeutic approaches towards HIV-1 remission.
Collapse
Affiliation(s)
- Jesper D. Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thomas A. Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S. Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Pandit H, Valentin A, Angel M, Deleage C, Bergamaschi C, Bear J, Sowder R, Felber BK, Pavlakis GN. Step-dose IL-7 treatment promotes systemic expansion of T cells and alters immune cell landscape in blood and lymph nodes. iScience 2023; 26:105929. [PMID: 36685042 PMCID: PMC9852696 DOI: 10.1016/j.isci.2023.105929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
We employed a dose-escalation regimen in rhesus macaques to deliver glycosylated IL-7, a cytokine critical for development and maintenance of T lymphocytes. IL-7 increased proliferation and survival of T cells and triggered several chemokines and cytokines. Induction of CXCL13 in lymph nodes (LNs) led to a remarkable increase of B cells in the LNs, proliferation of germinal center follicular T helper cells and elevated IL-21 levels suggesting an increase in follicle activity. Transcriptomics analysis showed induction of IRF-7 and Flt3L, which was linked to increased frequency of circulating plasmacytoid dendritic cells (pDCs) on IL-7 treatment. These pDCs expressed higher levels of CCR7, homed to LNs, and were associated with upregulation of type-1 interferon gene signature and increased production of IFN-α2a on TLR stimulation. Superior effects and dose-sparing advantage was observed by the step-dose regimen. Thus, IL-7 treatment leads to systemic effects involving both lymphoid and myeloid compartments.
Collapse
Affiliation(s)
- Hrishikesh Pandit
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Raymond Sowder
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Coupet CA, Dubois C, Evlachev A, Kehrer N, Baldazza M, Hofman S, Vierboom M, Martin P, Inchauspe G. Intravenous injection of a novel viral immunotherapy encoding human interleukin-7 in nonhuman primates is safe and increases absolute lymphocyte count. Hum Vaccin Immunother 2022; 18:2133914. [PMID: 36315906 PMCID: PMC9746448 DOI: 10.1080/21645515.2022.2133914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Persistence of an immunosuppression, affecting both the innate and adaptive arms of the immune system, plays a role in sepsis patients' morbidity and late mortality pointing to the need for broad and effective immune interventions. MVA-hIL-7-Fc is a non-replicative recombinant Modified Vaccinia virus Ankara encoding the human interleukin-7 fused to human IgG2 Fc fragment. We have shown in murine sepsis models the capacity of this new virotherapy to stimulate both arms of the immune system and increase survival. Herein, an exploratory study in nonhuman primates was performed following a single intravenous injection of the MVA-hIL-7-Fc used at the clinical dose to assess its safety and biological activities. Four cynomolgus macaques were followed for 3 weeks post-injection (p.i), without observed acute adverse reactions. Circulating hIL-7-Fc was detected during the first 3-5 days p.i with a detection peaking at 12 h p.i. IL-7 receptor engagement and downstream signal transduction were detected in T cells demonstrating functionality of the expressed IL-7. Expansion of blood lymphocytes, mainly CD4 and CD8 naïve and central memory T cells, was observed on day 7 p.i. together with a transient increase of Ki67 expression on T lymphocytes. In addition, we observed an increase in circulating B and NK cells as well as monocytes were albeit with different kinetics and levels. This study indicates that a vectorized IL-7-Fc, injected by intravenous route at a relevant clinical dose in a large animal model, is active without adverse reactions supporting the clinical development of this novel virotherapy for treatment of sepsis patients.
Collapse
Affiliation(s)
| | | | | | - Nadine Kehrer
- Infectious Diseases Department, Transgene SA, Lyon, France
| | - Marie Baldazza
- Infectious Diseases Department, Transgene SA, Lyon, France
| | - Sam Hofman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Michel Vierboom
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Perrine Martin
- Infectious Diseases Department, Transgene SA, Lyon, France
| | - Geneviève Inchauspe
- Infectious Diseases Department, Transgene SA, Lyon, France,CONTACT Geneviève Inchauspe Infectious Diseases department, Transgene SA, 317 Avenue Jean Jaures, Lyon69007, France
| |
Collapse
|
4
|
Huang J, Long Z, Jia R, Wang M, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Mao S, Ou X, Sun D, Gao Q, Cheng A. The Broad Immunomodulatory Effects of IL-7 and Its Application In Vaccines. Front Immunol 2021; 12:680442. [PMID: 34956167 PMCID: PMC8702497 DOI: 10.3389/fimmu.2021.680442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin-7 (IL-7) is produced by stromal cells, keratinocytes, and epithelial cells in host tissues or tumors and exerts a wide range of immune effects mediated by the IL-7 receptor (IL-7R). IL-7 is primarily involved in regulating the development of B cells, T cells, natural killer cells, and dendritic cells via the JAK-STAT, PI3K-Akt, and MAPK pathways. This cytokine participates in the early generation of lymphocyte subsets and maintain the survival of all lymphocyte subsets; in particular, IL-7 is essential for orchestrating the rearrangement of immunoglobulin genes and T-cell receptor genes in precursor B and T cells, respectively. In addition, IL-7 can aid the activation of immune cells in anti-virus and anti-tumor immunity and plays important roles in the restoration of immune function. These biological functions of IL-7 make it an important molecular adjuvant to improve vaccine efficacy as it can promote and extend systemic immune responses against pathogens by prolonging lymphocyte survival, enhancing effector cell activity, and increasing antigen-specific memory cell production. This review focuses on the biological function and mechanism of IL-7 and summarizes its contribution towards improved vaccine efficacy. We hope to provide a thorough overview of this cytokine and provide strategies for the development of the future vaccines.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyao Long
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Desalegn G, Tsegaye A, Gebreegziabiher D, Aseffa A, Howe R. Enhanced IFN-γ, but not IL-2, response to Mycobacterium tuberculosis antigens in HIV/latent TB co-infected patients on long-term HAART. BMC Immunol 2019; 20:35. [PMID: 31601184 PMCID: PMC6788090 DOI: 10.1186/s12865-019-0317-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 09/11/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND HIV-infected individuals with latent TB infection are at increased risk of developing active TB. HAART greatly reduces the incidence rate of TB in HIV-infected patients and reconstitutes Mycobacterium tuberculosis (M. tuberculosis)-specific immune response in the first 12 months of therapy. The durability of the anti-mycobacterial immune restoration after a year of HAART however remains less investigated. METHOD A cross-sectional study was conducted to evaluate M. tuberculosis-specific functional immune responses in HIV/latent TB co-infected patients who were on HAART for at least 1.5 up to 9 years as compared to HAART-naïve patients. Three-hundred sixteen HIV-infected patients without active TB were screened by tuberculin skin testing for M. tuberculosis infection and peripheral blood mononuclear cells (PBMCs) were isolated from 61 HIV/latent TB co-infected patients (30 HAART-naïve and 31 HAART-treated). IFN-γ and IL-2 ELISPOT as well as CFSE cell proliferation assays were performed after stimulation with M. tuberculosis antigens PPD and ESAT-6. RESULT The median frequency of PPD and ESAT-6 specific IFN-γ secreting cells was significantly higher in the HAART-treated patients as compared to HAART-naïve patients, p = 0.0021 and p = 0.0081 respectively. However, there was no significant difference in the median frequency of IL-2 secreting cells responding to PPD (p = 0.5981) and ESAT-6 (p = 0.3943) antigens between HAART-naïve and-treated groups. Both IFN-γ and IL-2 responses were independent of CD4+ T cell count regardless of the HAART status. Notably, the frequency of PPD and ESAT-6 specific IL-2 secreting cells was positively associated with CD4+ T cell proliferation while inversely correlated with duration of HAART, raising the possibility that M. tuberculosis-specific IL-2 response that promote the antigen-specific CD4+ T cell proliferation diminish with time on antiretroviral therapy in HIV/latent TB co-infected patients. CONCLUSION This study shows an increased M. tuberculosis-specific IFN-γ, but not IL-2, response in HIV/latent TB co-infected patients with long-term HAART, consistent with only partial immune restoration. Future studies should, therefore, be done to prospectively define the rate and extent to which functional immune responses to M. tuberculosis are restored after long-term HAART.
Collapse
Affiliation(s)
- Girmay Desalegn
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Microbiology and Immunology, Mekelle University, Mekelle, Ethiopia
| | - Aster Tsegaye
- Department of Medical Laboratory Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dawit Gebreegziabiher
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Medical Microbiology and Immunology, Mekelle University, Mekelle, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Controlling IL-7 Injections in HIV-Infected Patients. Bull Math Biol 2018; 80:2349-2377. [PMID: 30073567 DOI: 10.1007/s11538-018-0465-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
Immune interventions consisting in repeated injections are broadly used as they are thought to improve the quantity and the quality of the immune response. However, they also raise several questions that remain unanswered, in particular the number of injections to make or the delay to respect between different injections to achieve this goal. Practical and financial considerations add constraints to these questions, especially in the framework of human studies. We specifically focus here on the use of interleukin-7 (IL-7) injections in HIV-infected patients under antiretroviral treatment, but still unable to restore normal levels of [Formula: see text] T lymphocytes. Clinical trials have already shown that repeated cycles of injections of IL-7 could help maintaining [Formula: see text] T lymphocytes levels over the limit of 500 cells/[Formula: see text]L, by affecting proliferation and survival of [Formula: see text] T cells. We then aim at answering the question: how to maintain a patients level of [Formula: see text] T lymphocytes by using a minimum number of injections (i.e., optimizing the strategy of injections)? Based on mechanistic models that were previously developed for the dynamics of [Formula: see text] T lymphocytes in this context, we model the process by a piecewise deterministic Markov model. We then address the question by using some recently established theory on impulse control problem in order to develop a numerical tool determining the optimal strategy. Results are obtained on a reduced model, as a proof of concept: the method allows to define an optimal strategy for a given patient. This method could be applied to optimize injections schedules in clinical trials.
Collapse
|
7
|
Steele AK, Carrasco-Medina L, Sodora DL, Crawley AM. Increased soluble IL-7 receptor concentrations associate with improved IL-7 therapy outcomes in SIV-infected ART-treated Rhesus macaques. PLoS One 2017; 12:e0188427. [PMID: 29261677 PMCID: PMC5736176 DOI: 10.1371/journal.pone.0188427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
The use of interleukin-7 (IL-7) as an immunorestorative therapeutic has proven effective in HIV infection, cancer and bone marrow transplantation. Mediating its activity through membrane-bound IL-7 receptor α (mCD127), IL-7 therapy increases T-cell numbers and survival. A soluble form, sCD127, is found in plasma, and we have previously identified increased plasma sCD127 concentrations in HIV infection. Furthermore, patients with high sCD127 exhibited the best viral control, implicating a role for IL-7 or sCD127 directly in improved virologic/immunologic outcomes. The role of the cytokine IL-7 in elevating sCD127 levels was addressed here through assessment of retrospective samples obtained from SIV-infected antiretroviral (ART)-treated Rhesus macaques. IL-7 was administered in clustered weekly doses, allowing for an assessment prior, during and following IL-7 administration. The levels of sCD127 remained relatively unchanged during both early SIV infection and following initiation of ART. However, treatment with IL-7 increased sCD127 concentrations in most animals, transiently or persistently, paralleling increased T-cell numbers, correlating significantly with CD8+ T-cell levels. In addition, proliferating CD4+ or CD8+ T-cells (measured by Ki67) increased in association with elevated sCD127 concentrations. Finally, a high concentration of sCD127 in IL7-treated animals was associated with increased retention of T-cells (measured by BrDU). In addition, a lack, or loss of viral control was associated with more pronounced and frequent elevations in plasma sCD127 concentrations with IL-7 therapy. In summary, plasma sCD127 levels in SIV-infected ART-treated macaques was associated with therapeutic IL-7 administration, with higher sCD127 levels in macaques demonstrating the best T-cell responses. This study furthers our knowledge regarding the interrelationship between increased IL-7 levels and elevated sCD127 levels that may have implications for future IL-7 immunotherapeutic approaches in HIV-infected patients.
Collapse
Affiliation(s)
- Amanda K. Steele
- Center for Infectious Disease Research, Seattle, WA, United States of America
- Collegiate Peaks Science Writing, Denver, CO, United States of America
| | - Lorna Carrasco-Medina
- The Ottawa Hospital–General Campus, Division of Infectious Diseases, Ottawa, ON, Canada
| | - Donald L. Sodora
- Center for Infectious Disease Research, Seattle, WA, United States of America
| | - Angela M. Crawley
- The Ottawa Hospital Research Institute, Chronic Disease Program, Ottawa, ON, Canada
- University of Ottawa, Dept. Biochem., Microbiol., and Immunol., Ottawa, ON, Canada
- Carleton University, Dept. Biol., Ottawa, ON, Canada
- * E-mail:
| |
Collapse
|
8
|
DeGottardi MQ, Okoye AA, Vaidya M, Talla A, Konfe AL, Reyes MD, Clock JA, Duell DM, Legasse AW, Sabnis A, Park BS, Axthelm MK, Estes JD, Reiman KA, Sekaly RP, Picker LJ. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1183-98. [PMID: 27430715 PMCID: PMC4976006 DOI: 10.4049/jimmunol.1600065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023]
Abstract
IL-15 has been implicated as a key regulator of T and NK cell homeostasis in multiple systems; however, its specific role in maintaining peripheral T and NK cell populations relative to other γ-chain (γc) cytokines has not been fully defined in primates. In this article, we address this question by determining the effect of IL-15 inhibition with a rhesusized anti-IL-15 mAb on T and NK cell dynamics in rhesus macaques. Strikingly, anti-IL-15 treatment resulted in rapid depletion of NK cells and both CD4(+) and CD8(+) effector memory T cells (TEM) in blood and tissues, with little to no effect on naive or central memory T cells. Importantly, whereas depletion of NK cells was nearly complete and maintained as long as anti-IL-15 treatment was given, TEM depletion was countered by the onset of massive TEM proliferation, which almost completely restored circulating TEM numbers. Tissue TEM, however, remained significantly reduced, and most TEM maintained very high turnover throughout anti-IL-15 treatment. In the presence of IL-15 inhibition, TEM became increasingly more sensitive to IL-7 stimulation in vivo, and transcriptional analysis of TEM in IL-15-inhibited monkeys revealed engagement of the JAK/STAT signaling pathway, suggesting alternative γc cytokine signaling may support TEM homeostasis in the absence of IL-15. Thus, IL-15 plays a major role in peripheral maintenance of NK cells and TEM However, whereas most NK cell populations collapse in the absence of IL-15, TEM can be maintained in the face of IL-15 inhibition by the activity of other homeostatic regulators, most likely IL-7.
Collapse
Affiliation(s)
- Maren Q DeGottardi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Mukta Vaidya
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Aarthi Talla
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Audrie L Konfe
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Matthew D Reyes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Joseph A Clock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Derick M Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Alfred W Legasse
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Amit Sabnis
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Byung S Park
- Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702; and
| | - Keith A Reiman
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126
| | | | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006;
| |
Collapse
|
9
|
Policicchio BB, Pandrea I, Apetrei C. Animal Models for HIV Cure Research. Front Immunol 2016; 7:12. [PMID: 26858716 PMCID: PMC4729870 DOI: 10.3389/fimmu.2016.00012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.
Collapse
Affiliation(s)
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
10
|
Micci L, Ryan ES, Fromentin R, Bosinger SE, Harper JL, He T, Paganini S, Easley KA, Chahroudi A, Benne C, Gumber S, McGary CS, Rogers KA, Deleage C, Lucero C, Byrareddy SN, Apetrei C, Estes JD, Lifson JD, Piatak M, Chomont N, Villinger F, Silvestri G, Brenchley JM, Paiardini M. Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques. J Clin Invest 2015; 125:4497-513. [PMID: 26551680 PMCID: PMC4665780 DOI: 10.1172/jci81400] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Despite successful control of viremia, many HIV-infected individuals given antiretroviral therapy (ART) exhibit residual inflammation, which is associated with non-AIDS-related morbidity and mortality and may contribute to virus persistence during ART. Here, we investigated the effects of IL-21 administration on both inflammation and virus persistence in ART-treated, SIV-infected rhesus macaques (RMs). Compared with SIV-infected animals only given ART, SIV-infected RMs given both ART and IL-21 showed improved restoration of intestinal Th17 and Th22 cells and a more effective reduction of immune activation in blood and intestinal mucosa, with the latter maintained through 8 months after ART interruption. Additionally, IL-21, in combination with ART, was associated with reduced levels of SIV RNA in plasma and decreased CD4(+) T cell levels harboring replication-competent virus during ART. At the latest experimental time points, which were up to 8 months after ART interruption, plasma viremia and cell-associated SIV DNA levels remained substantially lower than those before ART initiation in IL-21-treated animals but not in controls. Together, these data suggest that IL-21 supplementation of ART reduces residual inflammation and virus persistence in a relevant model of lentiviral disease and warrants further investigation as a potential intervention for HIV infection.
Collapse
Affiliation(s)
- Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emily S. Ryan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rémi Fromentin
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, and Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, Georgia, USA
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tianyu He
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sara Paganini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, and
| | - Ann Chahroudi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Clarisse Benne
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S. McGary
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kenneth A. Rogers
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claire Deleage
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Carissa Lucero
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Siddappa N. Byrareddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacob D. Estes
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Jeffrey D. Lifson
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Michael Piatak
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, and Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Francois Villinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Okoye AA, Rohankhedkar M, Konfe AL, Abana CO, Reyes MD, Clock JA, Duell DM, Sylwester AW, Sammader P, Legasse AW, Park BS, Axthelm MK, Nikolich-Žugich J, Picker LJ. Effect of IL-7 Therapy on Naive and Memory T Cell Homeostasis in Aged Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2015; 195:4292-305. [PMID: 26416281 DOI: 10.4049/jimmunol.1500609] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/28/2015] [Indexed: 12/16/2022]
Abstract
Aging is associated with gradual deterioration of adaptive immune function, a hallmark of which is the profound loss of naive T cells (TN) associated with decline in thymic output and export of new cells into the peripheral T cell pool. Because the lymphotropic cytokine IL-7 plays crucial roles in both development of TN in the thymus and TN homeostasis in the periphery, we sought to determine the extent to which therapeutic administration of IL-7 could reverse TN deficiency in aging rhesus macaques (RM), either by enhancement of the demonstrably reduced thymopoiesis or by peripheral TN expansion. Our results indicate that treatment of both adult (8-15 y) and old (>20 y) RM with recombinant simian IL-7 (rsIL-7) results in only transient increases in peripheral CD4(+) and CD8(+) TN numbers with no long-term benefit, even with repeated therapy. This transient effect was due to peripheral TN expansion and not enhanced thymic function, and appeared to be limited by induction of IL-7 nonresponsiveness. However, rsIL-7 therapy had a more promising effect on the central memory T cell (TCM) population (both CD4(+) and CD8(+)) in adult and old RM, doubling the numbers of these cells in circulation and maintaining this larger population long term. IL-7 therapy did not reduce TCR diversity of the memory T cell compartment, suggesting that rsIL-7-induced expansion was symmetrical. Thus, although rsIL-7 failed to counter age-associated TN loss, the ability of this therapy to expand clonotypically diverse CD4(+) and CD8(+) TCM populations might potentially improve adaptive immune responsiveness in the elderly.
Collapse
Affiliation(s)
- Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Mukta Rohankhedkar
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Audrie L Konfe
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Chike O Abana
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Matthew D Reyes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Joseph A Clock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Derick M Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Andrew W Sylwester
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | | | - Alfred W Legasse
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Byung S Park
- Division of Biostatistics, Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724; and The Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724.
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006;
| |
Collapse
|
12
|
Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejucq-Rainsford N, Satie AP, Mélard A, David L, Gommet C, Ghosn J, Noel N, Pourcher G, Martinez V, Benoist S, Béréziat V, Cosma A, Favier B, Vaslin B, Rouzioux C, Capeau J, Müller-Trutwin M, Dereuddre-Bosquet N, Le Grand R, Lambotte O, Bourgeois C. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection. PLoS Pathog 2015; 11:e1005153. [PMID: 26402858 PMCID: PMC4581628 DOI: 10.1371/journal.ppat.1005153] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/14/2015] [Indexed: 12/14/2022] Open
Abstract
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.
Collapse
Affiliation(s)
- Abderaouf Damouche
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Thierry Lazure
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’anatomo-pathologie, Le Kremlin-Bicêtre, France
| | - Véronique Avettand-Fènoël
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | | | - Anne-Pascale Satie
- INSERM, U1085-IRSET, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Adeline Mélard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Ludivine David
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | | | - Jade Ghosn
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
| | - Nicolas Noel
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Guillaume Pourcher
- Assistance Publique—Hôpitaux de Paris, Hôpital Béclère, Service de Chirurgie Viscérale Minimale invasive, Clamart, France
- INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Valérie Martinez
- Assistance Publique—Hôpitaux de Paris, Hôpital Antoine Béclère, Service de Médecine Interne et Immunologie clinique, Clamart, France
| | - Stéphane Benoist
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Chirurgie générale et digestive, Le Kremlin-Bicêtre, France
| | - Véronique Béréziat
- INSERM UMR S938, CDR Saint-Antoine; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Tenon, Service de Biochimie et Hormonologie; ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Antonio Cosma
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Christine Rouzioux
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Jacqueline Capeau
- INSERM UMR S938, CDR Saint-Antoine; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Tenon, Service de Biochimie et Hormonologie; ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | | | - Nathalie Dereuddre-Bosquet
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Christine Bourgeois
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
13
|
Fukazawa Y, Lum R, Okoye AA, Park H, Matsuda K, Bae JY, Hagen SI, Shoemaker R, Deleage C, Lucero C, Morcock D, Swanson T, Legasse AW, Axthelm MK, Hesselgesser J, Geleziunas R, Hirsch VM, Edlefsen PT, Piatak M, Estes JD, Lifson JD, Picker LJ. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med 2015; 21:132-9. [PMID: 25599132 PMCID: PMC4320022 DOI: 10.1038/nm.3781] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/30/2014] [Indexed: 12/17/2022]
Abstract
Chronic-phase HIV and simian immunodeficiency virus (SIV) replication is reduced by as much as 10,000-fold in elite controllers (ECs) compared with typical progressors (TPs), but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here we show that productive SIV infection in rhesus monkey ECs, but not TPs, is markedly restricted to CD4(+) follicular helper T (TFH) cells, suggesting that these EC monkeys' highly effective SIV-specific CD8(+) T cells can effectively clear productive SIV infection from extrafollicular sites, but their relative exclusion from B cell follicles prevents their elimination of productively infected TFH cells. CD8(+) lymphocyte depletion in EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH cells, with restriction of productive infection to TFH cells resuming upon CD8(+) T cell recovery. Thus, B cell follicles constitute 'sanctuaries' for persistent SIV replication in the presence of potent anti-viral CD8(+) T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy.
Collapse
Affiliation(s)
- Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | - Richard Lum
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | - Kenta Matsuda
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jin Young Bae
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | - Shoko I. Hagen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Carissa Lucero
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - David Morcock
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Tonya Swanson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | - Alfred W. Legasse
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | - Vanessa M. Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| |
Collapse
|
14
|
Thiébaut R, Drylewicz J, Prague M, Lacabaratz C, Beq S, Jarne A, Croughs T, Sekaly RP, Lederman MM, Sereti I, Commenges D, Lévy Y. Quantifying and predicting the effect of exogenous interleukin-7 on CD4+ T cells in HIV-1 infection. PLoS Comput Biol 2014; 10:e1003630. [PMID: 24853554 PMCID: PMC4031052 DOI: 10.1371/journal.pcbi.1003630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 04/03/2014] [Indexed: 12/22/2022] Open
Abstract
Exogenous Interleukin-7 (IL-7), in supplement to antiretroviral therapy, leads to a substantial increase of all CD4+ T cell subsets in HIV-1 infected patients. However, the quantitative contribution of the several potential mechanisms of action of IL-7 is unknown. We have performed a mathematical analysis of repeated measurements of total and naive CD4+ T cells and their Ki67 expression from HIV-1 infected patients involved in three phase I/II studies (N = 53 patients). We show that, besides a transient increase of peripheral proliferation, IL-7 exerts additional effects that play a significant role in CD4+ T cell dynamics up to 52 weeks. A decrease of the loss rate of the total CD4+ T cell is the most probable explanation. If this effect could be maintained during repeated administration of IL-7, our simulation study shows that such a strategy may allow maintaining CD4+ T cell counts above 500 cells/µL with 4 cycles or fewer over a period of two years. This in-depth analysis of clinical data revealed the potential for IL-7 to achieve sustained CD4+ T cell restoration with limited IL-7 exposure in HIV-1 infected patients with immune failure despite antiretroviral therapy. HIV infection is characterized by a decrease of CD4+ T-lymphocytes in the blood. Whereas antiretroviral treatment succeeds to control viral replication, some patients fail to reconstitute their CD4+ T cell count to normal value. IL-7 is a promising cytokine under evaluation for its use in HIV infection, in supplement to antiretroviral therapy, as it increases cell proliferation and survival. Here, we use data from three clinical trials testing the effect of IL-7 on CD4+ T-cell recovery in treated HIV-infected individuals and use a simple mathematical model to quantify IL-7 effects by estimating the biological parameters of the model. We show that the increase of peripheral proliferation could not explain alone the long-term dynamics of T cells after IL-7 injections underlining other important effects such as the improvement of cell survival. We also investigate the feasibility and the efficiency of repetitions of IL-7 cycles and argue for further evaluation through clinical trials.
Collapse
Affiliation(s)
- Rodolphe Thiébaut
- INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Univ. Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- INRIA, SISTM team, Bordeaux, France
- * E-mail:
| | - Julia Drylewicz
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Mélanie Prague
- INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Univ. Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- INRIA, SISTM team, Bordeaux, France
| | - Christine Lacabaratz
- INSERM, Unité U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S955 Creteil, France
| | | | - Ana Jarne
- INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Univ. Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- INRIA, SISTM team, Bordeaux, France
| | | | - Rafick-Pierre Sekaly
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, Florida, United States of America
| | - Michael M. Lederman
- Case Western Reserve University/University Hospitals/Case Medical Center, Cleveland, Ohio, United States of America
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Commenges
- INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Univ. Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- INRIA, SISTM team, Bordeaux, France
| | - Yves Lévy
- INSERM, Unité U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S955 Creteil, France
- AP-HP, Groupe Henri-Mondor Albert-Chenevier, Immunologie Clinique, Creteil, France
| |
Collapse
|
15
|
Pallikkuth S, Micci L, Ende ZS, Iriele RI, Cervasi B, Lawson B, McGary CS, Rogers KA, Else JG, Silvestri G, Easley K, Estes JD, Villinger F, Pahwa S, Paiardini M. Maintenance of intestinal Th17 cells and reduced microbial translocation in SIV-infected rhesus macaques treated with interleukin (IL)-21. PLoS Pathog 2013; 9:e1003471. [PMID: 23853592 PMCID: PMC3701718 DOI: 10.1371/journal.ppat.1003471] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/16/2013] [Indexed: 11/18/2022] Open
Abstract
In pathogenic HIV and SIV infections of humans and rhesus macaques (RMs), preferential depletion of CD4⁺ Th17 cells correlates with mucosal immune dysfunction and disease progression. Interleukin (IL)-21 promotes differentiation of Th17 cells, long-term maintenance of functional CD8⁺ T cells, and differentiation of memory B cells and antibody-secreting plasma cells. We hypothesized that administration of IL-21 will improve mucosal function in the context of pathogenic HIV/SIV infections. To test this hypothesis, we infected 12 RMs with SIV(mac239) and at day 14 post-infection treated six of them with rhesus rIL-21-IgFc. IL-21-treatment was safe and did not increase plasma viral load or systemic immune activation. Compared to untreated animals, IL-21-treated RMs showed (i) higher expression of perforin and granzyme B in total and SIV-specific CD8⁺ T cells and (ii) higher levels of intestinal Th17 cells. Remarkably, increased levels of Th17 cells were associated with reduced levels of intestinal T cell proliferation, microbial translocation and systemic activation/inflammation in the chronic infection. In conclusion, IL-21-treatment in SIV-infected RMs improved mucosal immune function through enhanced preservation of Th17 cells. Further preclinical studies of IL-21 may be warranted to test its potential use during chronic infection in conjunction with antiretroviral therapy.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Zachary S. Ende
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Robin I. Iriele
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Barbara Cervasi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Benton Lawson
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Colleen S. McGary
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kenneth A. Rogers
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - James G. Else
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, Georgia, United States of America
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, SAIC-Frederick, Frederick, Maryland, United States of America
| | - Francois Villinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Savita Pahwa
- University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Del Prete GQ, Lifson JD. Considerations in the development of nonhuman primate models of combination antiretroviral therapy for studies of AIDS virus suppression, residual virus, and curative strategies. Curr Opin HIV AIDS 2013; 8:262-72. [PMID: 23698559 PMCID: PMC3939607 DOI: 10.1097/coh.0b013e328361cf40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Animal models will be critical for preclinical evaluations of novel HIV eradication and/or functional cure strategies in the setting of suppressive combination antiretroviral therapy (cART). Here, the strengths, limitations, and challenges of recent efforts to develop nonhuman primate (NHP) models of cART-mediated suppression for use in studies of persistent virus and curative approaches are discussed. RECENT FINDINGS Several combinations of NHP species and viruses that recapitulate key aspects of human HIV infection have been adapted for cART-mediated suppression studies. Different cART regimens incorporating drugs targeting multiple different steps of the viral replication cycle have provided varying levels of virologic suppression, dependent in part upon the host species, virus, drug regimen and timing, and virologic monitoring assay sensitivity. New, increasingly sensitive virologic monitoring approaches for measurements of plasma viral RNA, cell-associated and tissue-associated viral RNA and DNA, and the replication-competent residual viral pool in the setting of cART in NHP models are being developed to allow for the assessment of persistent virus on cART and to evaluate the impact of viral induction/eradication strategies in vivo. SUMMARY Given the vagaries of each specific virus and host species, and cART regimen, each model will require further development and analysis to determine their appropriate application for addressing specific experimental questions.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
17
|
Sundaravaradan V, Saleem R, Micci L, Gasper MA, Ortiz AM, Else J, Silvestri G, Paiardini M, Aitchison JD, Sodora DL. Multifunctional double-negative T cells in sooty mangabeys mediate T-helper functions irrespective of SIV infection. PLoS Pathog 2013; 9:e1003441. [PMID: 23825945 PMCID: PMC3694849 DOI: 10.1371/journal.ppat.1003441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/06/2013] [Indexed: 12/03/2022] Open
Abstract
Studying SIV infection of natural host monkey species, such as sooty mangabeys, has provided insights into the immune changes associated with these nonprogressive infections. Mangabeys maintain immune health despite high viremia or the dramatic CD4 T cell depletion that can occur following multitropic SIV infection. Here we evaluate double-negative (DN)(CD3+CD4−CD8−) T cells that are resistant to SIV infection due to a lack of CD4 surface expression, for their potential to fulfill a role as helper T cells. We first determined that DN T cells are polyclonal and predominantly exhibit an effector memory phenotype (CD95+CD62L−). Microarray analysis of TCR (anti-CD3/CD28) stimulated DN T cells indicated that these cells are multifunctional and upregulate genes with marked similarity to CD4 T cells, such as immune genes associated with Th1 (IFNγ), Th2 (IL4, IL5, IL13, CD40L), Th17 (IL17, IL22) and TFH (IL21, ICOS, IL6) function, chemokines such as CXCL9 and CXCL10 and transcription factors known to be actively regulated in CD4 T cells. Multifunctional T-helper cell responses were maintained in DN T cells from uninfected and SIV infected mangabeys and persisted in mangabeys exhibiting SIV mediated CD4 loss. Interestingly, TCR stimulation of DN T cells from SIV infected mangabeys results in a decreased upregulation of IFNγ and increased IL5 and IL13 expression compared to uninfected mangabeys. Evaluation of proliferative capacity of DN T cells in vivo (BrDU labeling) indicated that these cells maintain their ability to proliferate despite SIV infection, and express the homeostatic cytokine receptors CD25 (IL2 receptor) and CD127 (IL7 receptor). This study identifies the potential for a CD4-negative T cell subset that is refractory to SIV infection to perform T-helper functions in mangabeys and suggests that immune therapeutics designed to increase DN T cell function during HIV infection may have beneficial effects for the host immune system. SIV infection of sooty mangabeys is generally characterized by maintained CD4 T cell levels and a lack of disease progression despite active virus replication. We have previously shown however, that dramatic loss of CD4 T cells can occur during SIV infection of mangabeys. This study investigates the potential for double negative (DN) T cells (which lack CD4 and CD8, and are refractory to SIV/HIV infection) to perform helper T cell functions. In our study, sooty mangabey DN T cells exhibited a memory phenotype and a diverse repertoire in their T cell receptors. Once stimulated, the DN T cells expressed multiple cytokines, indicating that they have the potential to function as helper T cells (a function normally undertaken by CD4+ T cells). In SIV infected mangabeys, DN T cells continue to function, proliferate in vivo, and maintain expression of homeostatic cytokine receptors on their surface. It is therefore likely that DN T cells have the potential to compensate for the loss of CD4 T cells during SIV infection. These studies indicate that increasing DN T cell levels and/or function during pathogenic HIV infection may provide one tangible component of a functional cure, and inhibit progression to clinical disease and AIDS
Collapse
Affiliation(s)
| | - Ramsey Saleem
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Luca Micci
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Melanie A. Gasper
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Alexandra M. Ortiz
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - James Else
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - John D. Aitchison
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Donald L. Sodora
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
18
|
The influence of HIV on CD127 expression and its potential implications for IL-7 therapy. Semin Immunol 2012; 24:231-40. [PMID: 22421574 DOI: 10.1016/j.smim.2012.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/31/2011] [Accepted: 02/15/2012] [Indexed: 12/22/2022]
Abstract
Interleukin-7 (IL-7) is critical for early T-cell development and plays an important role in T-cell homeostasis, differentiation and function. Signalling via the IL-7 receptor is dependent on the expression of its components, IL-7Rα (CD127) and IL-2Rγ (CD132) and is mediated in part by alterations in CD127 expression levels in different cell subsets. Naïve and memory T-cells express high levels of CD127, while effector cells are CD127(lo) and retention of the receptor is thought to influence the development of memory cells. Reduced expression of CD127 has been associated with markers of disease severity in HIV infection and other chronic viral infections as well as in various cancers. In HIV infection, decreased CD127 expression on T-cells is correlated with reduced CD4(+) T-cell counts, increased viral replication and immune activation. The loss of IL-7 activity, due to decreased CD127 expression, may contribute to the observed loss of CD8(+) cytotoxic T lymphocyte (CTL) activity in HIV infection. The downregulation of CD127 expression in HIV infection may be due to host (e.g. IL-7, IL-4, immune activation) and/or viral (e.g. HIV-tat) factors and mechanisms of receptor regulation may differ by cell type. In addition, the expression of a soluble form of CD127 (sCD127) has been shown to be increased in HIV infection. This protein may affect IL-7 activity in vivo and therefore may have implications for IL-7-based therapies which are currently being tested in clinical trials. Understanding how CD127 is regulated during HIV infection will provide insight for the development of novel therapeutics to improve immune function and anti-viral T-cell activity.
Collapse
|
19
|
Incomplete immune recovery in HIV infection: mechanisms, relevance for clinical care, and possible solutions. Clin Dev Immunol 2012; 2012:670957. [PMID: 22474480 PMCID: PMC3312328 DOI: 10.1155/2012/670957] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/22/2011] [Indexed: 12/31/2022]
Abstract
Treatment of HIV-infected patients with highly active antiretroviral therapy (HAART) usually results in diminished viral replication, increasing CD4+ cell counts, a reversal of most immunological disturbances, and a reduction in risk of morbidity and mortality. However, approximately 20% of all HIV-infected patients do not achieve optimal immune reconstitution despite suppression of viral replication. These patients are referred to as immunological nonresponders (INRs). INRs present with severely altered immunological functions, including malfunction and diminished production of cells within lymphopoetic tissue, perturbed frequencies of immune regulators such as regulatory T cells and Th17 cells, and increased immune activation, immunosenescence, and apoptosis. Importantly, INRs have an increased risk of morbidity and mortality compared to HIV-infected patients with an optimal immune reconstitution. Additional treatment to HAART that may improve immune reconstitution has been investigated, but results thus far have proved disappointing. The reason for immunological nonresponse is incompletely understood. This paper summarizes the known and unknown factors regarding the incomplete immune reconstitution in HIV infection, including mechanisms, relevance for clinical care, and possible solutions.
Collapse
|
20
|
Morre M, Beq S. Interleukin-7 and immune reconstitution in cancer patients: a new paradigm for dramatically increasing overall survival. Target Oncol 2012; 7:55-68. [PMID: 22383042 PMCID: PMC3304058 DOI: 10.1007/s11523-012-0210-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/16/2012] [Indexed: 12/27/2022]
Abstract
Although great effort is being expended in the development of cancer immunotherapies, it is surprising that global lymphopenia and its various dimensions are not being systematically assessed in cancer patients. The incident pathologies associated with various immunosuppressed conditions such as those found in HIV infection have taught us that measuring various T cell populations including CD4 provides the clinician with a reliable measure for gauging the risk of cancer and opportunistic infections. Importantly, recent data emphasize the key link between lymphocyte T cell counts and overall survival in cancer patients receiving chemotherapy. Treatment of immunocompromised patients with interleukin-7 (IL-7), a critical growth and homeostatic factor for T cells, has been shown to produce a compelling profile of T cell reconstitution. The clinical results of this investigational therapy confirm data obtained from numerous preclinical studies and demonstrate the long-term stability of this immune reconstitution, not only on CD4 but also on CD8 T cells, involving recent thymic emigrants as well as naive, memory, and central memory T cells. Furthermore, IL-7 therapy also contributes to restoration of a broadened diversity of the T cell repertoire as well as to migration of these cells to lymph nodes and tissues. All these properties support the initiation of new clinical studies aimed at reconstituting the immune system of cancer patients before or immediately after chemotherapy in order to demonstrate a potentially profound increase in overall survival.
Collapse
Affiliation(s)
- Michel Morre
- Cytheris S.A., 175 rue Jean Jacques Rousseau, 92130, Issy-Les-Moulineaux, France.
| | | |
Collapse
|
21
|
Sundaravaradan V, Mir KD, Sodora DL. Double-negative T cells during HIV/SIV infections: potential pinch hitters in the T-cell lineup. Curr Opin HIV AIDS 2012; 7:164-71. [PMID: 22241163 PMCID: PMC3639317 DOI: 10.1097/coh.0b013e3283504a66] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the role of CD3+CD4-CD8- double-negative T cells, which have both regulatory and helper T-cell functions and may have the potential to compensate for the reduced levels of CD4 T cells during SIV/HIV infection. RECENT FINDINGS Double-negative T cells have been characterized in several human diseases and in murine models of autoimmunity and transplantation, where they exhibit both immunoregulatory and helper T-cell-like function. During the natural nonpathogenic SIV infection of African nonhuman primates, the lack of clinical disease progression is associated with the presence of double-negative T cells that maintain helper T-cell functions while remaining refractory to viral infection. Moreover, DN T cells may compensate for very low levels of CD4+ T cells observed in a cohort of SIV-infected sooty mangabeys that have remained free of clinical AIDS for over 10 years. These studies identify a potential for double-negative T cells to provide critical helper function during HIV infection. SUMMARY Double-negative T cells with some CD4+ T-cell functions are associated with a nonpathogenic outcome during SIV infection and represent a potential immune therapeutic target in HIV-infected patients.
Collapse
|
22
|
Wang NX, Bazdar DA, Sieg SF, von Recum HA. Microparticle delivery of Interleukin-7 to boost T-cell proliferation and survival. Biotechnol Bioeng 2012; 109:1835-43. [DOI: 10.1002/bit.24431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/14/2011] [Accepted: 12/27/2011] [Indexed: 11/10/2022]
|
23
|
Zeng M, Southern PJ, Reilly CS, Beilman GJ, Chipman JG, Schacker TW, Haase AT. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog 2012; 8:e1002437. [PMID: 22241988 PMCID: PMC3252371 DOI: 10.1371/journal.ppat.1002437] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) can suppress HIV-1 replication and normalize the chronic immune activation associated with infection, but restoration of naïve CD4+ T cell populations is slow and usually incomplete for reasons that have yet to be determined. We tested the hypothesis that damage to the lymphoid tissue (LT) fibroblastic reticular cell (FRC) network contributes to naïve T cell loss in HIV-1 infection by restricting access to critical factors required for T cell survival. We show that collagen deposition and progressive loss of the FRC network in LTs prior to treatment restrict both access to and a major source of the survival factor interleukin-7 (IL-7). As a consequence, apoptosis within naïve T cell populations increases significantly, resulting in progressive depletion of both naïve CD4+ and CD8+ T cell populations. We further show that the extent of loss of the FRC network and collagen deposition predict the extent of restoration of the naïve T cell population after 6 month of HAART, and that restoration of FRC networks correlates with the stage of disease at which the therapy is initiated. Because restoration of the FRC network and reconstitution of naïve T cell populations are only optimal when therapy is initiated in the early/acute stage of infection, our findings strongly suggest that HAART should be initiated as soon as possible. Moreover, our findings also point to the potential use of adjunctive anti-fibrotic therapies to avert or moderate the pathological consequences of LT fibrosis, thereby improving immune reconstitution. The hallmark of HIV-1 infection is depletion of CD4 T cells, whose loss leads to the opportunistic infections and cancers characteristic of AIDS. Highly active antiretroviral therapy (HAART) can control HIV-1 replication, but reconstitution particularly of naïve T cells is often incomplete and slow. We show here that fibrosis damages lymphoid tissues (LT), thereby contributing to depletion and incomplete reconstitution. Prior to treatment, chronic immune activation induces LT fibrosis to disrupt the fibroblastic reticular cell (FRC) network, the major source of the T cell survival factor interleukin 7 (IL-7). Fibrosis in this way interferes with the access of T cells to IL-7 “posted” on the FRC network. Without a source and access to IL-7, naïve cells are depleted prior to initiating HAART because of increased apoptosis, and, even after initiating HAART, the losses continue by this mechanism because of pre-existing LT damage. Thus, LT fibrosis impairs immune reconstitution despite the beneficial effects of HAART in suppressing viral replication. Because less LT damage has accumulated in earlier stages of infection, early initiation of HAART also improves immune reconstitution. This LT damage mechanism also suggests that anti-fibrotic treatment in addition to HAART could further improve immune reconstitution.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Peter J. Southern
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cavan S. Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Greg J. Beilman
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jeffrey G. Chipman
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy W. Schacker
- Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ashley T. Haase
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
24
|
Pallikkuth S, Rogers K, Villinger F, Dosterii M, Vaccari M, Franchini G, Pahwa R, Pahwa S. Interleukin-21 administration to rhesus macaques chronically infected with simian immunodeficiency virus increases cytotoxic effector molecules in T cells and NK cells and enhances B cell function without increasing immune activation or viral replication. Vaccine 2011; 29:9229-38. [PMID: 21996099 DOI: 10.1016/j.vaccine.2011.09.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/17/2011] [Accepted: 09/23/2011] [Indexed: 11/15/2022]
Abstract
We have previously shown that interleukin-21, a pleiotropic C γ-chain signaling cytokine, induces the expression of the cytotoxic molecules granzyme B (GrB) and perforin in vitro in CD8 T cells and NK cells of chronically HIV infected individuals. In this pilot study, four chronically SIV infected rhesus macaques (RM) in late-stage disease were given two doses of recombinant MamuIL-21, 50 μg/kg, intravenously 7 days apart, followed by one subcutaneous dose, 100 μg/kg, 23 days after the second dose. Three animals served as controls. After each dose of IL-21, increases were noted in frequency and mean fluorescence intensity of GrB and perforin expression in memory and effector subsets of CD8 T cells in peripheral blood (PB), in peripheral and mesenteric lymph node (LN) cells, in PB memory and effector CD4 T cells and in NK cells. Frequencies of SIV-gag specific CD107a(+)IFN-γ(+) CD8 T cells increased 3.8-fold in PB and 1.8-fold in LN. In addition, PB CD27(+) memory B cells were 2-fold higher and serum SIV antibodies increased significantly after IL-21 administration. No changes were observed in markers of T cell activation, T cell proliferation or plasma virus load. Thus, administration of IL-21 to chronically SIV infected viremic animals was safe, well tolerated and could augment the cytotoxic potential of T cells and NK cells, promote B cell differentiation with increases in SIV antibody titers without discernable increase in cellular activation. Further studies are warranted to elucidate the effects and potential benefit of IL-21 administration in the context of SIV/HIV infection and in SIV/HIV vaccine design.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology & Immunology, Developmental centre for AIDS research (D-CFAR), University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Khoury G, Rajasuriar R, Cameron PU, Lewin SR. The role of naïve T-cells in HIV-1 pathogenesis: an emerging key player. Clin Immunol 2011; 141:253-67. [PMID: 21996455 DOI: 10.1016/j.clim.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Functional naïve T-cells are critical for an effective immune response to multiple pathogens. HIV leads to a significant reduction in CD4+ naïve T-cell number and impaired function and there is incomplete recovery following combination antiretroviral therapy (cART). Here we review the basic homeostatic mechanisms that maintain naïve CD4+ T-cells and discuss recent developments in understanding the impact of HIV infection on naïve CD4+ T-cells. Finally we review therapeutic interventions in HIV-infected individuals aimed at specifically enhancing recovery of naïve CD4+ T-cells.
Collapse
Affiliation(s)
- Gabriela Khoury
- Department of Medicine, Monash University, Melbourne Victoria, 3004, Australia
| | | | | | | |
Collapse
|
26
|
Crawley AM, Angel JB. Expression of γ-chain cytokine receptors on CD8+ T cells in HIV infection with a focus on IL-7Rα (CD127). Immunol Cell Biol 2011; 90:379-87. [PMID: 21863001 DOI: 10.1038/icb.2011.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
When interleukin-2 (IL-2) receptor γ-chain (γ(C))-sharing cytokine receptors on T cells bind their specific ligands (IL-2, -4, -7, -9, -15 or -21), they initiate a variety of cell signals that promote survival, differentiation or antiviral or antitumor cytolytic functions. Although expression of the γ(C) is constitutive across T-cell subsets, the varying expression of other receptor complex components can regulate cytokine signalling and function. Impaired γ(C) cytokine activity in HIV infection, and the role of γ(C) cytokines in CD8(+) T-cell function and homeostasis, implicates these molecules among potential contributors to the observed decline of cytolytic activity (CTL) in HIV disease. In particular, this review will be highlighting information about the IL-7 receptor (IL-7R) complex, which is composed of the γ(C) and the IL-7Rα (CD127) chains. There has been an abundance of HIV-related CD127 research and its important role in CD8(+) T-cell survival and function. The expression of CD127 undergoes dramatic changes throughout the course of T-cell responses in HIV infection. The expression of CD127 is significantly decreased in progressive HIV disease, whereas effective antiretroviral therapy results in its recovery. Observations of impaired IL-7 activity in HIV(+) individuals have suggested that CD127 has an important role in HIV immunopathogenesis. In addition, a soluble form of CD127 (sCD127) is upregulated in the plasma of HIV(+) individuals. Hence, CD127 is being increasingly considered as a marker of disease prognosis, and related information may provide insight into understanding the expression and role of other γ(C) receptors in HIV disease and contribute to the development of novel cytokine-based therapeutics.
Collapse
Affiliation(s)
- Angela M Crawley
- Department of Chronic Disease, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
27
|
Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW, Reilly CS, Estes JD, Burton GF, Silvestri G, Lifson JD, Carlis JV, Haase AT. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest 2011; 121:998-1008. [PMID: 21393864 PMCID: PMC3049394 DOI: 10.1172/jci45157] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/20/2010] [Indexed: 01/19/2023] Open
Abstract
The hallmark of HIV-1 and SIV infections is CD4(+) T cell depletion. Both direct cell killing and indirect mechanisms related to immune activation have been suggested to cause the depletion of T cells. We have now identified a mechanism by which immune activation-induced fibrosis of lymphoid tissues leads to depletion of naive T cells in HIV-1 infected patients and SIV-infected rhesus macaques. The T regulatory cell response to immune activation increased procollagen production and subsequent deposition as fibrils via the TGF-β1 signaling pathway and chitinase 3-like-1 activity in fibroblasts in lymphoid tissues from patients infected with HIV-1. Collagen deposition restricted T cell access to the survival factor IL-7 on the fibroblastic reticular cell (FRC) network, resulting in apoptosis and depletion of T cells, which, in turn, removed a major source of lymphotoxin-β, a survival factor for FRCs during SIV infection in rhesus macaques. The resulting loss of FRCs and the loss of IL-7 produced by FRCs may thus perpetuate a vicious cycle of depletion of T cells and the FRC network. Because this process is cumulative, early treatment and antifibrotic therapies may offer approaches to moderate T cell depletion and improve immune reconstitution during HIV-1 infection.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony J. Smith
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen W. Wietgrefe
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter J. Southern
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy W. Schacker
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cavan S. Reilly
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jacob D. Estes
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory F. Burton
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guido Silvestri
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey D. Lifson
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John V. Carlis
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashley T. Haase
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|