1
|
Tate BN, Deys MM, Gutierrez-Oviedo FA, Ferguson AD, Zang Y, Bradford BJ, Deme P, Haughey NJ, McFadden JW. Subcutaneous lysophosphatidylcholine administration promotes a febrile and immune response in Holstein heifer calves. J Dairy Sci 2024; 107:3973-3987. [PMID: 38101738 DOI: 10.3168/jds.2023-23688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023]
Abstract
Lysophosphatidylcholine (LPC) is immunomodulatory in nonruminants; however, the actions of LPC on immunity in cattle are undefined. Our objective was to study the effects of LPC administration on measures of immunity, liver health, and growth in calves. Healthy Holstein heifer calves (n = 46; age 7 ± 3 d) were randomly assigned to 1 of 4 treatments (n = 10 to 11 calves/treatment): a milk replacer diet unsupplemented with lecithin in the absence (CON) or presence of subcutaneously (s.c.) administered mixed (mLPC; 69% LPC-16:0, 25% LPC-18:0, 6% other) or pure LPC (pLPC; 99% LPC-18:0), or a milk replacer diet supplemented with 3% lecithin enriched in lysophospholipids containing LPC in the absence of s.c.-administered LPC (LYSO) for 5 wk. Calves received 5 s.c. injections of vehicle (10 mL of phosphate-buffered saline containing 20 mg of bovine serum albumin/mL; CON and LYSO) or vehicle containing mLPC or pLPC to provide 10 mg of total LPC per kilogram of BW per injection every 12 h during wk 2 of life. Calves were fed a milk replacer containing 27% crude protein and 24% fat at 1.75% of BW per day (dry matter basis) until wk 6 of life (start of weaning). Starter grain and water were provided ad libitum. Body measurements were recorded weekly, and clinical observations were recorded daily. Blood samples were collected weekly before morning feeding and at 0, 5, and 10 h, relative to the final s.c. injection of vehicle or LPC. Data were analyzed using a mixed model, with repeated measures including fixed effects of treatment, time, and their interaction. Dunnett's test was used to compare treatments to CON. Peak rectal temperatures were higher in mLPC or pLPC, relative to CON. Plasma LPC concentrations were greater in mLPC and LYSO calves 5 h and 10 h after the final injection, relative to CON. Calves receiving mLPC and pLPC also had higher circulating serum amyloid A concentrations, relative to CON. Calves receiving mLPC had greater serum aspartate aminotransferase, γ-glutamyltransferase, and glutamate dehydrogenase concentrations, relative to CON. Calves provided mLPC experienced lower average daily gain (ADG) after weaning, relative to CON. The LYSO treatment did not modify rectal temperatures, ADG, or measures of liver health, relative to CON. We conclude that LPC administered as s.c. injections induced an acute febrile response, modified measures of liver and immune function, and impaired growth in calves.
Collapse
Affiliation(s)
- B N Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - M M Deys
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | | | - A D Ferguson
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Y Zang
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - P Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - N J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
2
|
Wang C, Gamage PL, Jiang W, Mudalige T. Excipient-related impurities in liposome drug products. Int J Pharm 2024; 657:124164. [PMID: 38688429 DOI: 10.1016/j.ijpharm.2024.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Liposomes are widely used in the pharmaceutical industry as drug delivery systems to increase the efficacy and reduce the off-target toxicity of active pharmaceutical ingredients (APIs). The liposomes are more complex drug delivery systems than the traditional dosage forms, and phospholipids and cholesterol are the major structural excipients. These two excipients undergo hydrolysis and/or oxidation during liposome preparation and storage, resulting in lipids hydrolyzed products (LHPs) and cholesterol oxidation products (COPs) in the final liposomal formulations. These excipient-related impurities at elevated concentrations may affect liposome stability and exert biological functions. This review focuses on LHPs and COPs, two major categories of excipient-related impurities in the liposomal formulations, and discusses factors affecting their formation, and analytical methods to determine these excipient-related impurities.
Collapse
Affiliation(s)
- Changguang Wang
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Prabhath L Gamage
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
3
|
Shrestha S, Lee YB, Lee H, Choi YK, Park BY, Kim MJ, Youn YJ, Kim SH, Jung SJ, Song DK, Jin HK, Bae JS, Lee IK, Jeon JH, Hong CW. Diabetes Primes Neutrophils for Neutrophil Extracellular Trap Formation through Trained Immunity. RESEARCH (WASHINGTON, D.C.) 2024; 7:0365. [PMID: 38654733 PMCID: PMC11037460 DOI: 10.34133/research.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Neutrophils are primed for neutrophil extracellular trap (NET) formation during diabetes, and excessive NET formation from primed neutrophils compromises wound healing in patients with diabetes. Here, we demonstrate that trained immunity mediates diabetes-induced NET priming in neutrophils. Under diabetic conditions, neutrophils exhibit robust metabolic reprogramming comprising enhanced glycolysis via the pentose phosphate pathway and fatty acid oxidation, which result in the accumulation of acetyl-coenzyme A. Adenosine 5'-triphosphate-citrate lyase-mediated accumulation of acetyl-coenzyme A and histone acetyltransferases further induce the acetylation of lysine residues on histone 3 (AcH3K9, AcH3K14, and AcH3K27) and histone 4 (AcH4K8). The pharmacological inhibition of adenosine 5'-triphosphate-citrate lyase and histone acetyltransferases completely inhibited high-glucose-induced NET priming. The trained immunity of neutrophils was further confirmed in neutrophils isolated from patients with diabetes. Our findings suggest that trained immunity mediates functional changes in neutrophils in diabetic environments, and targeting neutrophil-trained immunity may be a potential therapeutic target for controlling inflammatory complications of diabetes.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yu-Bin Lee
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hoyul Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease,
Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Bo-Yoon Park
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
| | - Mi-Jin Kim
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
| | - Young-Jin Youn
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sun-Hwa Kim
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soo-Jung Jung
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine,
Hallym University, Chuncheon 24252, Republic of Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine,
Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Alzheimer’s disease Research Institute,
Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
- KNU Alzheimer’s disease Research Institute,
Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease,
Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Hospital, Daegu 41940, Republic of Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease,
Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
4
|
Li ZC, Wang J, Liu HB, Zheng YM, Huang JH, Cai JB, Zhang L, Liu X, Du L, Yang XT, Chai XQ, Jiang YH, Ren ZG, Zhou J, Fan J, Yu DC, Sun HC, Huang C, Liu F. Proteomic and metabolomic features in patients with HCC responding to lenvatinib and anti-PD1 therapy. Cell Rep 2024; 43:113877. [PMID: 38421869 DOI: 10.1016/j.celrep.2024.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Combination therapy (lenvatinib/programmed death-1 inhibitor) is effective for treating unresectable hepatocellular carcinoma (uHCC). We reveal that responders have better overall and progression-free survival, as well as high tumor mutation burden and special somatic variants. We analyze the proteome and metabolome of 82 plasma samples from patients with hepatocellular carcinoma (HCC; n = 51) and normal controls (n = 15), revealing that individual differences outweigh treatment differences. Responders exhibit enhanced activity in the alternative/lectin complement pathway and higher levels of lysophosphatidylcholines (LysoPCs), predicting a favorable prognosis. Non-responders are enriched for immunoglobulins, predicting worse outcomes. Compared to normal controls, HCC plasma proteins show acute inflammatory response and platelet activation, while LysoPCs decrease. Combination therapy increases LysoPCs/phosphocholines in responders. Logistic regression/random forest models using metabolomic features achieve good performance in the prediction of responders. Proteomic analysis of cancer tissues unveils molecular features that are associated with side effects in responders receiving combination therapy. In conclusion, our analysis identifies plasma features associated with uHCC responders to combination therapy.
Collapse
Affiliation(s)
- Zhong-Chen Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - He-Bin Liu
- Shanghai Omicsolution Co., Ltd., 28 Yuanwen Road, Shanghai 201199, China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jian-Hang Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Institutes of Biomedical of Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xin Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, Shanghai 200071, China
| | - Ling Du
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Xue-Ting Yang
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Xiao-Qiang Chai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Zheng-Gang Ren
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - De-Cai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Feng Liu
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China.
| |
Collapse
|
5
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
6
|
Patients with Bacterial Sepsis Are Heterogeneous with Regard to Their Systemic Lipidomic Profiles. Metabolites 2022; 13:metabo13010052. [PMID: 36676977 PMCID: PMC9864715 DOI: 10.3390/metabo13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. In the present study, we investigated the systemic/serum lipidomic profile at the time of hospital admission for patients with bacterial sepsis. The study included 60 patients; 35 patients fulfilled the most recent 2016 Sepsis-3 criteria (referred to as Sepsis-3) whereas the remaining 25 patients had sepsis only according to the previous Sepsis-2 definition and could be classified as having Systemic Inflammatory Response Syndrome (SIRS). A total of 966 lipid metabolites were identified. Patients fulfilling the Sepsis-3 criteria differed from the Sepsis-2 patients with regard to only 15 lipid metabolites, and especially sphingolipids metabolism differed between these patient subsets. A total of only 43 metabolites differed between patients with and without bacteremia, including 12 lysophosphatidylcholines and 18 triacylglycerols (15 C18/C20 fatty acid metabolites decreased and three C14 myristate acid metabolites that were increased in bacteremia). Unsupervised hierarchical clustering analyses based on the identified sphingolipids, phosphatidylcholine and triacylglycerols showed that (i) the majority of Sepsis-3 patients differed from SIRS patients especially with regard to lysophosphatidylcholine levels; (ii) the minority of Sepsis-3 patients that clustered together with the majority of SIRS patients showed lower Sequential Organ Failure Assessment (SOFA) scores than the other Sepsis-3 patients; and (iii) the variation between the patients in the identified/altered sphingolipid and triacylglycerol metabolites further increased the heterogeneity of Sepsis-3 patients with regard to their systemic lipidomic profile at the time of diagnosis. To conclude, patients fulfilling the Sepsis-3 criteria differ with regard to their metabolic profile, and this variation depends on disease severity.
Collapse
|
7
|
Kang SH, Ham HY, Hong CW, Song DK. Glycine induces enhancement of bactericidal activity of neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:229-238. [PMID: 35766001 PMCID: PMC9247710 DOI: 10.4196/kjpp.2022.26.4.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
Severe bacterial infections are frequently accompanied by depressed neutrophil functions. Thus, agents that increase the microbicidal activity of neutrophils could add to a direct antimicrobial therapy. Lysophosphatidylcholine augments neutrophil bactericidal activity via the glycine (Gly)/glycine receptor (GlyR) α2/TRPM2/p38 mitogen-activated protein kinase (MAPK) pathway. However, the direct effect of glycine on neutrophil bactericidal activity was not reported. In this study, the effect of glycine on neutrophil bactericidal activity was examined. Glycine augmented bactericidal activity of human neutrophils (EC50 = 238 μM) in a strychnine (a GlyR antagonist)-sensitive manner. Glycine augmented bacterial clearance in mice, which was also blocked by strychnine (0.4 mg/kg, s.c.). Glycine enhanced NADPH oxidase-mediated reactive oxygen species (ROS) production and TRPM2-mediated [Ca2+]i increase in neutrophils that had taken up E. coli. Glycine augmented Lucifer yellow uptake (fluid-phase pinocytosis) and azurophil granule-phagosome fusion in neutrophils that had taken up E. coli in an SB203580 (a p38 MAPK inhibitor)-sensitive manner. These findings indicate that glycine augments neutrophil microbicidal activity by enhancing azurophil granule-phagosome fusion via the GlyRα2/ROS/calcium/p38 MAPK pathway. We suggest that glycine could be a useful agent for increasing neutrophil bacterial clearance.
Collapse
Affiliation(s)
- Shin-Hae Kang
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hwa-Yong Ham
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
8
|
Ham HY, Kang SH, Song DK. Lysophosphatidylcholine induces azurophil granule translocation via Rho/Rho kinase/F-actin polymerization in human neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:175-182. [PMID: 35477545 PMCID: PMC9046897 DOI: 10.4196/kjpp.2022.26.3.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022]
Abstract
Translocation of azurophil granules is pivotal for bactericidal activity of neutrophils, the first-line defense cells against pathogens. Previously, we reported that lysophosphatidylcholine (LPC), an endogenous lipid, enhances bactericidal activity of human neutrophils via increasing translocation of azurophil granules. However, the precise mechanism of LPC-induced azurophil granule translocation was not fully understood. Treatment of neutrophil with LPC significantly increased CD63 (an azurophil granule marker) surface expression. Interestingly, cytochalasin B, an inhibitor of action polymerization, blocked LPC-induced CD63 surface expression. LPC increased F-actin polymerization. LPC-induced CD63 surface expression was inhibited by both a Rho specific inhibitor, Tat-C3 exoenzyme, and a Rho kinase (ROCK) inhibitor, Y27632 which also inhibited LPC-induced F-actin polymerization. LPC induced Rho-GTP activation. NSC23766, a Rac inhibitor, however, did not affect LPC-induced CD63 surface expression. Theses results suggest a novel regulatory mechanism for azurophil granule translocation where LPC induces translocation of azurophil granules via Rho/ROCK/F-actin polymerization pathway.
Collapse
Affiliation(s)
- Hwa-Yong Ham
- Department of Pharmacology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Shin-Hae Kang
- Department of Pharmacology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Dong-Keun Song
- Department of Pharmacology, Hallym University College of Medicine, Chuncheon 24252, Korea
| |
Collapse
|
9
|
O'Donnell VB. New appreciation for an old pathway: the Lands Cycle moves into new arenas in health and disease. Biochem Soc Trans 2022; 50:1-11. [PMID: 35225335 PMCID: PMC9022965 DOI: 10.1042/bst20210579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Valerie B. O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4SN, U.K
| |
Collapse
|
10
|
Wang G, Huang W, Wang S, Wang J, Cui W, Zhang W, Lou A, Geng S, Li X. Macrophagic Extracellular Vesicle CXCL2 Recruits and Activates the Neutrophil CXCR2/PKC/NOX4 Axis in Sepsis. THE JOURNAL OF IMMUNOLOGY 2021; 207:2118-2128. [PMID: 34507947 DOI: 10.4049/jimmunol.2100229] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 01/21/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysfunctional host response to infection. Neutrophils play a protective role by releasing antibacterial proteins or by phagocytizing bacteria. However, excess neutrophils can induce tissue damage. Recently, a novel intercellular communication pathway involving extracellular vesicles (EVs) has garnered considerable attention. However, whether EVs secreted by macrophages mediate neutrophil recruitment to infected sites has yet to be studied. In this study, we assessed the chemotactic effect of EVs isolated from mouse Raw264.7 macrophages on mouse neutrophils and found that CXCL2 was highly expressed in these EVs. By regulating CXCL2 in Raw264.7 macrophages, we found that CXCL2 on macrophage EVs recruited neutrophils in vitro and in vivo. The CXCL2 EVs activated the CXCR2/PKC/NOX4 pathway and induced tissue damage. This study provides information regarding the mechanisms underlying neutrophil recruitment to tissues and proposes innovative strategies and targets for the treatment of sepsis.
Collapse
Affiliation(s)
- Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; .,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weichang Huang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui, Zhejiang, China; and
| | - Jun Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanfu Cui
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenyong Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; .,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Amunugama K, Pike DP, Ford DA. The lipid biology of sepsis. J Lipid Res 2021; 62:100090. [PMID: 34087197 PMCID: PMC8243525 DOI: 10.1016/j.jlr.2021.100090] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Sepsis, defined as the dysregulated immune response to an infection leading to organ dysfunction, is one of the leading causes of mortality around the globe. Despite the significant progress in delineating the underlying mechanisms of sepsis pathogenesis, there are currently no effective treatments or specific diagnostic biomarkers in the clinical setting. The perturbation of cell signaling mechanisms, inadequate inflammation resolution, and energy imbalance, all of which are altered during sepsis, are also known to lead to defective lipid metabolism. The use of lipids as biomarkers with high specificity and sensitivity may aid in early diagnosis and guide clinical decision making. In addition, identifying the link between specific lipid signatures and their role in sepsis pathology may lead to novel therapeutics. In this review, we discuss the recent evidence on dysregulated lipid metabolism both in experimental and human sepsis focused on bioactive lipids, fatty acids, and cholesterol as well as the enzymes regulating their levels during sepsis. We highlight not only their potential roles in sepsis pathogenesis but also the possibility of using these respective lipid compounds as diagnostic and prognostic biomarkers of sepsis.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel P Pike
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Song MH, Gupta A, Kim HO, Oh K. Lysophosphatidylcholine aggravates contact hypersensitivity by promoting neutrophil infiltration and IL17 expression. BMB Rep 2021. [PMID: 33172544 PMCID: PMC8093940 DOI: 10.5483/bmbrep.2021.54.4.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mi Hye Song
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Anupriya Gupta
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Kwonik Oh
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252, Korea
- Institute of Medical Science, Hallym University College of Medicine, Chuncheon 24252, Korea
| |
Collapse
|
13
|
Kim JK, Youn YJ, Lee YB, Kim SH, Song DK, Shin M, Jin HK, Bae JS, Shrestha S, Hong CW. Extracellular vesicles from dHL-60 cells as delivery vehicles for diverse therapeutics. Sci Rep 2021; 11:8289. [PMID: 33859336 PMCID: PMC8050327 DOI: 10.1038/s41598-021-87891-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived heterogeneous vesicles that mediate intercellular communications. They have recently been considered as ideal vehicles for drug-delivery systems, and immune cells are suggested as a potential source for drug-loaded EVs. In this study, we investigated the possibility of neutrophils as a source for drug-loaded EVs. Neutrophil-like differentiated human promyelocytic leukemia cells (dHL-60) produced massive amounts of EVs within 1 h. The dHL-60 cells are also easily loaded with various cargoes such as antibiotics (penicillin), anticancer drug (paclitaxel), chemoattractant (MCP-1), miRNA, and Cas9. The EVs derived from the dHL-60 cells showed efficient incorporation of these cargoes and significant effector functions, such as bactericidal activity, monocyte chemotaxis, and macrophage polarization. Our results suggest that neutrophils or neutrophil-like promyelocytic cells could be an attractive source for drug-delivery EVs.
Collapse
Affiliation(s)
- Jun-Kyu Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Young-Jin Youn
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Yu-Bin Lee
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Sun-Hwa Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.,KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.,KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sanjeeb Shrestha
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.
| |
Collapse
|
14
|
Alcazar O, Hernandez LF, Nakayasu ES, Nicora CD, Ansong C, Muehlbauer MJ, Bain JR, Myer CJ, Bhattacharya SK, Buchwald P, Abdulreda MH. Parallel Multi-Omics in High-Risk Subjects for the Identification of Integrated Biomarker Signatures of Type 1 Diabetes. Biomolecules 2021; 11:383. [PMID: 33806609 PMCID: PMC7999903 DOI: 10.3390/biom11030383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biomarkers are crucial for detecting early type-1 diabetes (T1D) and preventing significant β-cell loss before the onset of clinical symptoms. Here, we present proof-of-concept studies to demonstrate the potential for identifying integrated biomarker signature(s) of T1D using parallel multi-omics. METHODS Blood from human subjects at high risk for T1D (and healthy controls; n = 4 + 4) was subjected to parallel unlabeled proteomics, metabolomics, lipidomics, and transcriptomics. The integrated dataset was analyzed using Ingenuity Pathway Analysis (IPA) software for disturbances in the at-risk subjects compared to controls. RESULTS The final quadra-omics dataset contained 2292 proteins, 328 miRNAs, 75 metabolites, and 41 lipids that were detected in all samples without exception. Disease/function enrichment analyses consistently indicated increased activation, proliferation, and migration of CD4 T-lymphocytes and macrophages. Integrated molecular network predictions highlighted central involvement and activation of NF-κB, TGF-β, VEGF, arachidonic acid, and arginase, and inhibition of miRNA Let-7a-5p. IPA-predicted candidate biomarkers were used to construct a putative integrated signature containing several miRNAs and metabolite/lipid features in the at-risk subjects. CONCLUSIONS Preliminary parallel quadra-omics provided a comprehensive picture of disturbances in high-risk T1D subjects and highlighted the potential for identifying associated integrated biomarker signatures. With further development and validation in larger cohorts, parallel multi-omics could ultimately facilitate the classification of T1D progressors from non-progressors.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Luis F. Hernandez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - James R. Bain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - Ciara J. Myer
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
15
|
Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B. New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice. Clin Rev Allergy Immunol 2021; 60:271-292. [PMID: 33405100 PMCID: PMC7985118 DOI: 10.1007/s12016-020-08824-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Calcium is the most abundant mineral in the human body and is central to many physiological processes, including immune system activation and maintenance. Studies continue to reveal the intricacies of calcium signalling within the immune system. Perhaps the most well-understood mechanism of calcium influx into cells is store-operated calcium entry (SOCE), which occurs via calcium release-activated channels (CRACs). SOCE is central to the activation of immune system cells; however, more recent studies have demonstrated the crucial role of other calcium channels, including transient receptor potential (TRP) channels. In this review, we describe the expression and function of TRP channels within the immune system and outline associations with murine models of disease and human conditions. Therefore, highlighting the importance of TRP channels in disease and reviewing potential. The TRP channel family is significant, and its members have a continually growing number of cellular processes. Within the immune system, TRP channels are involved in a diverse range of functions including T and B cell receptor signalling and activation, antigen presentation by dendritic cells, neutrophil and macrophage bactericidal activity, and mast cell degranulation. Not surprisingly, these channels have been linked to many pathological conditions such as inflammatory bowel disease, chronic fatigue syndrome and myalgic encephalomyelitis, atherosclerosis, hypertension and atopy.
Collapse
Affiliation(s)
- Saied Froghi
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK. .,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK. .,HCA Senior Clinical Fellow (HPB & Liver Transplant), Wellington Hospital, St Johns Wood, London, UK.
| | - Charlotte R Grant
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Radhika Tandon
- Sheffield Medical School, Beech Hill Road, Sheffield, UK, S10 2RX
| | - Alberto Quaglia
- Department of Pathology, Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Brian Davidson
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK.,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Barry Fuller
- Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| |
Collapse
|
16
|
Youn YJ, Shrestha S, Lee YB, Kim JK, Lee JH, Hur K, Mali NM, Nam SW, Kim SH, Lee S, Song DK, Jin HK, Bae JS, Hong CW. Neutrophil-derived trail is a proinflammatory subtype of neutrophil-derived extracellular vesicles. Am J Cancer Res 2021; 11:2770-2787. [PMID: 33456572 PMCID: PMC7806483 DOI: 10.7150/thno.51756] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Aims: Extracellular vesicles (EVs) are membrane-derived vesicles that mediate intercellular communications. Neutrophils produce different subtypes of EVs during inflammatory responses. Neutrophil-derived trails (NDTRs) are generated by neutrophils migrating toward inflammatory foci, whereas neutrophil-derived microvesicles (NDMVs) are thought to be generated by neutrophils that have arrived at the inflammatory foci. However, the physical and functional characteristics of neutrophil-derived EVs are incompletely understood. In this study, we aimed to investigate the differences between NDTRs and NDMVs. Methods: The generation of neutrophil-derived EVs were visualized by live-cell fluorescence images and the physical characteristics were further analyzed using nanotracking analysis assay, scanning electron microscopic analysis, and marker expressions. Functional characteristics of neutrophil-derived EVs were analyzed using assays for bactericidal activity, monocyte chemotaxis, phenotype polarization of macrophages, and miRNA sequencing. Finally, the effects of neutrophil-derived EVs on the acute and chronic inflammation were examined in vivo. Results: Both EVs share similar characteristics including stimulators, surface marker expression, bactericidal activity, and chemoattractive effect on monocytes via MCP-1. However, the integrin-mediated physical interaction was required for generation of NDTRs whereas NDMV generation was dependent on PI3K pathway. Interestingly, NDTRs contained proinflammatory miRNAs such as miR-1260, miR-1285, miR-4454, and miR-7975, while NDMVs contained anti-inflammatory miRNAs such as miR-126, miR-150, and miR-451a. Although both EVs were easily uptaken by monocytes, NDTRs enhanced proinflammatory macrophage polarization whereas NDMVs induced anti-inflammatory macrophage polarization. Moreover, NDTRs showed protective effects against lethality in a murine sepsis model and pathological changes in a murine chronic colitis model. Conclusion: These results suggest that NDTR is a proinflammatory subtype of neutrophil-derived EVs distinguished from NDMV.
Collapse
|
17
|
Lee HJ, Hong WG, Woo Y, Ahn JH, Ko HJ, Kim H, Moon S, Hahn TW, Jung YM, Song DK, Jung YJ. Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages. Mol Cells 2020; 43:989-1001. [PMID: 33250450 PMCID: PMC7772511 DOI: 10.14348/molcells.2020.0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimuriuminfected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPCtreated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.
Collapse
Affiliation(s)
- Hyo-Ji Lee
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Wan-Gi Hong
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 4341, Korea
| | - Yunseo Woo
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon 2441, Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 2441, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Hyeran Kim
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
| | - Sungjin Moon
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Tae-Wook Hahn
- Department of Veterinary Medicine, Kangwon National University, Chuncheon 231, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Yu-Jin Jung
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 4341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
18
|
Hu Y, Chen J, Xu Y, Zhou H, Huang P, Ma Y, Gao M, Cheng S, Zhou H, Lv Z. Alterations of Gut Microbiome and Metabolite Profiling in Mice Infected by Schistosoma japonicum. Front Immunol 2020; 11:569727. [PMID: 33162984 PMCID: PMC7580221 DOI: 10.3389/fimmu.2020.569727] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum (S. japonicum) is one of the etiological agents of schistosomiasis, a widespread zoonotic parasitic disease. However, the mechanism of the balanced co-existence between the host immune system and S. japonicum as well as their complex interaction remains unclear. In this study, 16S rRNA gene sequencing, combined with metagenomic sequencing approach as well as ultraperformance liquid chromatography–mass spectrometry metabolic profiling, was applied to demonstrate changes in the gut microbiome community structure during schistosomiasis progression, the functional interactions between the gut bacteria and S. japonicum infection in BALB/c mice, and the dynamic metabolite changes of the host. The results showed that both gut microbiome and the metabolites were significantly altered at different time points after the infection. Decrease in richness and diversity as well as differed composition of the gut microbiota was observed in the infected status when compared with the uninfected status. At the phylum level, the gut microbial communities in all samples were dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Deferribacteres, while at the genus level, Lactobacillus, Lachnospiraceae NK4A136 group, Bacteroides, Staphylococcus, and Alloprevotella were the most abundant. After exposure, Roseburia, and Ruminococcaceae UCG-014 decreased, while Staphylococcus, Alistipes, and Parabacteroides increased, which could raise the risk of infections. Furthermore, LEfSe demonstrated several bacterial taxa that could discriminate between each time point of S. japonicum infection. Besides that, metagenomic analysis illuminated that the AMP-activated protein kinase (AMPK) signaling pathway and the chemokine signaling pathway were significantly perturbed after the infection. Phosphatidylcholine and colfosceril palmitate in serum as well as xanthurenic acid, naphthalenesulfonic acid, and pimelylcarnitine in urine might be metabolic biomarkers due to their promising diagnostic potential at the early stage of the infection. Alterations of glycerophospholipid and purine metabolism were also discovered in the infection. The present study might provide further understanding of the mechanisms during schistosome infection in aspects of gut microbiome and metabolites, and facilitate the discovery of new targets for early diagnosis and prognostic purposes. Further validations of potential biomarkers in human populations are necessary, and the exploration of interactions among S. japonicum, gut microbiome, and metabolites is to be deepened in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiansong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Yiyue Xu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hongli Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ping Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yubin Ma
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Minzhao Gao
- Department of Gastroenterology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shaoyun Cheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Haiyun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
20
|
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 2020; 247:117443. [DOI: 10.1016/j.lfs.2020.117443] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|
21
|
Ahmad NS, Tan TL, Arifin KT, Ngah WZW, Yusof YAM. High sPLA2-IIA level is associated with eicosanoid metabolism in patients with bacterial sepsis syndrome. PLoS One 2020; 15:e0230285. [PMID: 32160261 PMCID: PMC7065791 DOI: 10.1371/journal.pone.0230285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to determine the association between secretory phospholipase A2 group IIA (sPLA2-IIA) and eicosanoid pathway metabolites in patients with bacterial sepsis syndrome (BSS). Levels of sPLA2-IIA, eicosanoids prostaglandin (PG)E2, PGD synthase were quantified in the sera from patients confirmed to have bacterial sepsis (BS; N = 45), bacterial severe sepsis/septic shock (BSS/SS; N = 35) and healthy subjects (N = 45). Cyclooxygenase (COX)-1 and COX-2 activities were analyzed from cell lysate. Serum levels of sPLA2-IIA, PGE2, and PGDS increased significantly in patients with BS and BSS/SS compared to healthy subjects (p<0.05). COX-2 activity was significantly increased in patients with BS compared to healthy subjects (p<0.05), but not COX-1 activity. Binary logistic regression analysis showed that sPLA2-IIA and PGE2 were independent factors predicting BSS severity. In conclusion, high level of sPLA2-IIA is associated with eicosanoid metabolism in patients with BSS.
Collapse
Affiliation(s)
- Nurul Saadah Ahmad
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
- Department of Emergency Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia Medical Centre, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Toh Leong Tan
- Department of Emergency Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia Medical Centre, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
- * E-mail:
| | - Khaizurin Tajul Arifin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Yasmin Anum Mohd Yusof
- Biochemistry Unit, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Qian X, Zhao H, Chen X, Li J. Disruption of transient receptor potential melastatin 2 decreases elastase release and bacterial clearance in neutrophils. Innate Immun 2019; 24:122-130. [PMID: 29495939 PMCID: PMC6830898 DOI: 10.1177/1753425918759181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elastase released by neutrophils is critical for eliminating Gram-negative
bacteria. Ca2+ influx plays a key role in elastase release and
bacterial clearance in neutrophils. Transient receptor potential melastatin 2
(TRPM2) is a Ca2+-permeable cation channel highly expressed in
neutrophils. Here, we explore the role and possible mechanism of TRPM2 in
bacterial clearance in TRPM2 knockout (TRPM2-KO) mice neutrophils. After
exposure to Escherichia coli, TRPM2–KO bone marrow
neutrophils (BMNs) had increased bacterial burden and decreased elastase
release. The same was observed for septic TRPM2-KO mice which also had decreased
survival rate. After stimulation with chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP), elastase release
was lower in TRPM2-KO BMNs than in wild type (WT) BMNs. Pre-treatment of WT BMNs
with p38 MAPK inhibitor reduced fMLP-induced elastase release. Compared with WT
BMNs, TRPM2-KO BMNs had decreased p38 MAPK phosphorylation after fMLP
stimulation. Removal of extracellular Ca2+ reduced fMLP-induced p38
MAPK phosphorylation and elastase release. The concentration of intracellular
Ca2+ decreased in TRPM2-KO BMNs compared with WT BMNs after fMLP
treatment. Hence, TRPM2 plays an important role in bacterial clearance in
neutrophils, possibly by regulating elastase release. TRPM2-mediated
Ca2+ influx regulates elastase release partially via p38 MAPK
phosphorylation in neutrophils.
Collapse
Affiliation(s)
- XiaoWei Qian
- 1 Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, China.,2 Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children Hospital of Wenzhou Medical University, China
| | - Hang Zhao
- 3 Department of Anesthesiology, Yancheng Third People's Hospital, China
| | - XinZhong Chen
- 1 Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Jun Li
- 2 Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children Hospital of Wenzhou Medical University, China
| |
Collapse
|
23
|
Li HM, Jang JH, Jung JS, Shin J, Park CO, Kim YJ, Ahn WG, Nam JS, Hong CW, Lee J, Jung YJ, Chen JF, Ravid K, Lee HT, Huh WK, Kabarowski JH, Song DK. G2A Protects Mice against Sepsis by Modulating Kupffer Cell Activation: Cooperativity with Adenosine Receptor 2b. THE JOURNAL OF IMMUNOLOGY 2018; 202:527-538. [PMID: 30530591 DOI: 10.4049/jimmunol.1700783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
G2A is a GPCR abundantly expressed in immune cells. G2A-/- mice showed higher lethality, higher plasma cytokines, and an impaired bacterial clearance in response to a murine model of sepsis (cecal ligation and puncture), which were blocked by GdCl3, an inhibitor of Kupffer cells. Anti-IL-10 Ab reversed the impaired bacterial clearance in G2A-/- mice. Indomethacin effectively blocked both the increased i.p. IL-10 levels and the impaired bacterial clearance, indicating that disturbed PG system is the proximal cause of these phenomena. Stimulation with LPS/C5a induced an increase in Escherichia coli phagocytosis and intracellular cAMP levels in G2A+/+ peritoneal macrophages but not G2A-/- cells, which showed more PGE2/nitrite release and intracellular reactive oxygen species levels. Heterologous coexpression of G2A and adenosine receptor type 2b (A2bAR) induced a synergistic increase in cAMP signaling in a ligand-independent manner, with the evidence of physical interaction of G2A with A2bAR. BAY 60-6583, a specific agonist for A2bAR, increased intracellular cAMP levels in Kupffer cells from G2A+/+ but not from G2A-/- mice. Both G2A and A2bAR were required for antiseptic action of lysophosphatidylcholine. These results show inappropriate activation of G2A-/- Kupffer cells to septic insults due to an impaired cAMP signaling possibly by lack of interaction with A2bAR.
Collapse
Affiliation(s)
- Hong-Mei Li
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ji Hye Jang
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jun-Sub Jung
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jiseon Shin
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chul O Park
- Department of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yeon-Ja Kim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Won-Gyun Ahn
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ju-Suk Nam
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chang-Won Hong
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jongho Lee
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Katya Ravid
- Departments of Medicine and Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032; and
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Janusz H Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Dong-Keun Song
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea;
| |
Collapse
|
24
|
Wepy JA, Galligan JJ, Kingsley PJ, Xu S, Goodman MC, Tallman KA, Rouzer CA, Marnett LJ. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signaling. J Lipid Res 2018; 60:360-374. [PMID: 30482805 DOI: 10.1194/jlr.m087890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.
Collapse
Affiliation(s)
- James A Wepy
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - James J Galligan
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Philip J Kingsley
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Shu Xu
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Michael C Goodman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Keri A Tallman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Carol A Rouzer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 .,Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| |
Collapse
|
25
|
Tripathi JK, Sharma A, Sukumaran P, Sun Y, Mishra BB, Singh BB, Sharma J. Oxidant sensor cation channel TRPM2 regulates neutrophil extracellular trap formation and protects against pneumoseptic bacterial infection. FASEB J 2018; 32:fj201800605. [PMID: 29906250 PMCID: PMC6219830 DOI: 10.1096/fj.201800605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Neutrophil extracellular trap (NET) formation constitutes an important extracellular antimicrobial function of neutrophils that plays a protective role in bacterial pneumonia. Formation of reactive oxygen species (ROS) such as highly diffusible hydrogen peroxide (H2O2) is a hallmark of oxidative stress during inflammatory lung conditions including pneumonia. However, the impact of exogenous ROS on NET formation and the signaling pathway involved in the process is not completely understood. Here we demonstrate that the ROS-sensing, nonselective, calcium-permeable channel transient receptor potential melastatin 2 (TRPM2) is required for NET formation in response to exogenous H2O2. This TRPM2-dependent H2O2-mediated NET formation involved components of autophagy and activation of AMPK and p38 MAPK, but not PI3K and AKT. Primary neutrophils from Trpm2-/- mice fail to activate this pathway with a block in NET release and a concomitant decrease in their antimicrobial capacity. Consequently, Trpm2-/- mice were highly susceptible to pneumonic infection with Klebsiella pneumoniae owing to an impaired NET formation and high bacterial burden despite increased neutrophil infiltration in their lungs. These results identify a key role of TRPM2 in regulating NET formation by exogenous ROS via AMPK/p38 activation and autophagy machinery, as well as a protective antimicrobial role of TRPM2 in pneumonic bacterial infection.-Tripathi, J. K., Sharma, A., Sukumaran, P., Sun, Y., Mishra, B. B., Singh, B. B., Sharma, J. Oxidant sensor cation channel TRPM2 regulates neutrophil extracellular trap formation and protects against pneumoseptic bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | - Bibhuti Bhusan Mishra
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | | | - Jyotika Sharma
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
26
|
Forrest OA, Ingersoll SA, Preininger MK, Laval J, Limoli DH, Brown MR, Lee FE, Bedi B, Sadikot RT, Goldberg JB, Tangpricha V, Gaggar A, Tirouvanziam R. Frontline Science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis. J Leukoc Biol 2018; 104:665-675. [PMID: 29741792 DOI: 10.1002/jlb.5hi1117-454rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Recruitment of neutrophils to the airways, and their pathological conditioning therein, drive tissue damage and coincide with the loss of lung function in patients with cystic fibrosis (CF). So far, these key processes have not been adequately recapitulated in models, hampering drug development. Here, we hypothesized that the migration of naïve blood neutrophils into CF airway fluid in vitro would induce similar functional adaptation to that observed in vivo, and provide a model to identify new therapies. We used multiple platforms (flow cytometry, bacteria-killing, and metabolic assays) to characterize functional properties of blood neutrophils recruited in a transepithelial migration model using airway milieu from CF subjects as an apical chemoattractant. Similarly to neutrophils recruited to CF airways in vivo, neutrophils migrated into CF airway milieu in vitro display depressed phagocytic receptor expression and bacterial killing, but enhanced granule release, immunoregulatory function (arginase-1 activation), and metabolic activities, including high Glut1 expression, glycolysis, and oxidant production. We also identify enhanced pinocytic activity as a novel feature of these cells. In vitro treatment with the leukotriene pathway inhibitor acebilustat reduces the number of transmigrating neutrophils, while the metabolic modulator metformin decreases metabolism and oxidant production, but fails to restore bacterial killing. Interestingly, we describe similar pathological conditioning of neutrophils in other inflammatory airway diseases. We successfully tested the hypothesis that recruitment of neutrophils into airway milieu from patients with CF in vitro induces similar pathological conditioning to that observed in vivo, opening new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Osric A Forrest
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sarah A Ingersoll
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marcela K Preininger
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Dominique H Limoli
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Milton R Brown
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Frances E Lee
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Ruxana T Sadikot
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vin Tangpricha
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Tan CH, McNaughton PA. TRPM2 and warmth sensation. Pflugers Arch 2018; 470:787-798. [PMID: 29552700 PMCID: PMC5942353 DOI: 10.1007/s00424-018-2139-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/08/2023]
Abstract
The abilities to detect warmth and heat are critical for the survival of all animals, both in order to be able to identify suitable thermal environments for the many different activities essential for life and to avoid damage caused by extremes of temperature. Several ion channels belonging to the TRP family are activated by non-noxious warmth or by heat and are therefore plausible candidates for thermal detectors, but identifying those that actually regulate warmth and heat detection in intact animals has proven problematic. TRPM2 has recently emerged as a likely candidate for the detector of non-noxious warmth, as it is expressed in sensory neurons, and mice show deficits in the detection of warmth when TRPM2 is genetically deleted. TRPM2 is a chanzyme, containing a thermally activated TRP ion channel domain attached to a C-terminal motif, derived from a mitochondrial ADP ribose pyrophosphatase, that confers on the channel sensitivity to ADP ribose and reactive oxygen species such as hydrogen peroxide. Several open questions remain. Male mammals prefer cooler environments than female, but the molecular basis of this sex difference is unknown. TRPM2 plays a role in regulating body temperature, but are other warmth-detecting mechanisms also involved? TRPM2 is expressed in autonomic neurons, but does it confer a sensory function in addition to the well-known motor functions of autonomic neurons? TRPM2 is thought to play important roles in the immune system, in pain and in insulin secretion, but the mechanisms are unclear. TRPM2 has to date received less attention than many other members of the TRP family but is rapidly assuming importance both in normal physiology and as a key target in disease pathology.
Collapse
Affiliation(s)
- Chun-Hsiang Tan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
28
|
The function of TRP channels in neutrophil granulocytes. Pflugers Arch 2018; 470:1017-1033. [PMID: 29717355 DOI: 10.1007/s00424-018-2146-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Neutrophil granulocytes are exposed to widely varying microenvironmental conditions when pursuing their physiological or pathophysiological functions such as fighting invading bacteria or infiltrating cancer tissue. Examples for harsh environmental challenges include among others mechanical shear stress during the recruitment from the vasculature or the hypoxic and acidotic conditions within the tumor microenvironment. Chemokine gradients, reactive oxygen species, pressure, matrix elasticity, and temperature can be added to the list of potential challenges. Transient receptor potential (TRP) channels serve as cellular sensors since they respond to many of the abovementioned environmental stimuli. The present review investigates the role of TRP channels in neutrophil granulocytes and their role in regulating and adapting neutrophil function to microenvironmental cues. Following a brief description of neutrophil functions, we provide an overview of the electrophysiological characterization of neutrophilic ion channels. We then summarize the function of individual TRP channels in neutrophil granulocytes with a focus on TRPC6 and TRPM2 channels. We close the review by discussing the impact of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on neutrophil granulocytes. Since neutrophil infiltration into PDAC tissue contributes to disease progression, we propose neutrophilic TRP channel blockade as a potential therapeutic option.
Collapse
|
29
|
Lee HJ, Ko HJ, Song DK, Jung YJ. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A-Phosphatidylinositol 3 Kinase-p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages. Front Immunol 2018; 9:920. [PMID: 29755479 PMCID: PMC5934435 DOI: 10.3389/fimmu.2018.00920] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb). Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs) isolated from G2A (a G protein-coupled receptor involved in some LPC actions) knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K)–p38 mitogen-activated protein kinase (MAPK)-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP) and phosphorylated glycogen synthase kinase 3 beta (GSK3β) in Mtb-infected macrophages. Protein kinase A (PKA)-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.
Collapse
Affiliation(s)
- Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Institute of Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Dong-Kun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
30
|
Berg E, Paukovits J, Axelband J, Trager J, Ryan D, Cichonski K, Kopnitsky M, Zweitzig D, Jeanmonod R. Measurement of a Novel Biomarker, Secretory Phospholipase A2 Group IIA as a Marker of Sepsis: A Pilot Study. J Emerg Trauma Shock 2018; 11:135-139. [PMID: 29937645 PMCID: PMC5994858 DOI: 10.4103/jets.jets_29_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction: Early identification of sepsis is critical as early treatment improves outcomes. We sought to identify threshold values of secretory phospholipase A2 (sPLA2)-IIA that predict sepsis and bacterial infection compared to nonseptic controls in an emergency department (ED) population. Materials and Methods: This is a prospective cohort of consenting adult patients who met two or more systemic inflammatory response syndrome (SIRS) criteria with clinical diagnosis of infectious source likely (septic patients). Controls were nonseptic consenting adults undergoing blood draw for other ED indications. Both groups had blood drawn, blind-coded, and sent to an outside laboratory for quantitative analysis of sPLA2-IIA levels. The study investigators reviewed patients’ inpatient medical record for laboratory, imaging, and microbiology results, as well as clinical course. Results: sPLA2-IIA levels were significantly lower in control patients as compared to septic patients (median = 0 ng/ml [interquartile range (IQR): 0–6.5] versus median = 123 ng/ml [IQR 44–507.75]; P < 0.0001). SPLA2-IIA levels were higher in patients with confirmed source (n = 28 patients, median = 186 ng/ml, 95% confidence interval = 115.1–516.8) as compared to those with no source identified or a viral source (n = 17, median = 68 ng/ml, 95% confidence interval = 38.1–122.7; P = 0.04). Using a cutoff value of 25 ng/ml, sPLA2-IIA had a sensitivity of 86.7% (confidence interval 72.5–94.5) and a specificity of 91.1% (confidence interval 77.9–97.1) in detecting sepsis. Conclusions: sPLA2-IIA shows potential as a biomarker distinguishing sepsis from other disease entities. Further study is warranted to identify predictive value of trends in sPLA-IIA during disease course in septic patients.
Collapse
Affiliation(s)
- Elena Berg
- Department of Emergency Medicine, St. Luke's University Health Network, Bethlehem, PA 18015, USA
| | - Janel Paukovits
- Department of Emergency Medicine, St. Luke's University Health Network, Bethlehem, PA 18015, USA
| | - Jennifer Axelband
- Department of Emergency Medicine, St. Luke's University Health Network, Bethlehem, PA 18015, USA
| | - Jonathan Trager
- Department of Emergency Medicine, St. Luke's University Health Network, Bethlehem, PA 18015, USA
| | - Dina Ryan
- Zeus Scientific Inc., Branchburg, NJ 08876, USA
| | | | | | | | - Rebecca Jeanmonod
- Department of Emergency Medicine, St. Luke's University Health Network, Bethlehem, PA 18015, USA
| |
Collapse
|
31
|
Pang B, Kim S, Li D, Ma Z, Sun B, Zhang X, Wu Z, Chen L. Glucagon-like peptide-1 potentiates glucose-stimulated insulin secretion via the transient receptor potential melastatin 2 channel. Exp Ther Med 2017; 14:5219-5227. [PMID: 29201240 DOI: 10.3892/etm.2017.5136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/22/2017] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel, a Ca2+ permeable channel activated by cAMP, is expressed on pancreatic β-cells and is responsible for the regulation of insulin secretion. It is known that glucose-stimulated insulin secretion (GSIS) can be potentiated by glucagon like peptide-1 (GLP-1), and that the changes in the extracellular glucose concentration alter the levels of intracellular adenosine ATP and cAMP. The present study hypothesized that TRPM2 mediates the modulatory effect of GLP-1 on insulin secretion. The results demonstrated that silencing of TRPM2 eliminated GLP-1-enhanced insulin secretion, indicating the involvement of TRPM2 in this process. In addition, the results of current recordings of TRPM2 and measurement of the resulting insulin secretion in β-cells in the presence of GLP-1 and various concentrations of glucose suggest that GLP-1 regulates GSIS via the TRPM2 channel. Furthermore, inhibiting the activity or expression of TRPM2 attenuated GLP-1-induced GSIS. By using specific activators or inhibitors, the present study demonstrated that the two primary downstream effectors of the GLP-1 receptor, exchange protein directly activated by cAMP and protein kinase A, differentially influence GSIS and GLP-1-potentiated GSIS. In conclusion, the present study revealed the role of TRPM2 in GLP-1-regulated insulin secretion. The results of the present study provide a novel avenue for the prevention and treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Bo Pang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Sungjoon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Daiqing Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zejun Ma
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiaona Zhang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhongming Wu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
32
|
Park SY, Shrestha S, Youn YJ, Kim JK, Kim SY, Kim HJ, Park SH, Ahn WG, Kim S, Lee MG, Jung KS, Park YB, Mo EK, Ko Y, Lee SY, Koh Y, Park MJ, Song DK, Hong CW. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis. Am J Respir Crit Care Med 2017; 196:577-589. [PMID: 28358992 DOI: 10.1164/rccm.201603-0596oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. OBJECTIVES We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. METHODS Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. MEASUREMENTS AND MAIN RESULTS Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. CONCLUSIONS These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.
Collapse
Affiliation(s)
- So Young Park
- 1 Department of Pulmonary and Critical Care Medicine, KyungHee University Medical Center, Seoul, Republic of Korea
| | | | | | - Jun-Kyu Kim
- 3 Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | - Hyun Jung Kim
- 4 Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - So-Hee Park
- 5 Department of Pulmonary and Critical Care Medicine, KyungHee University Hospital at Gangdong, Seoul, Republic of Korea
| | | | - Shin Kim
- 6 Department of Immunology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Myung Goo Lee
- 7 Lung Research Institute of Hallym University, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,8 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Ki-Suck Jung
- 7 Lung Research Institute of Hallym University, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,9 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Yong Bum Park
- 7 Lung Research Institute of Hallym University, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,10 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea; and
| | - Eun-Kyung Mo
- 7 Lung Research Institute of Hallym University, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,10 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea; and
| | - Yousang Ko
- 7 Lung Research Institute of Hallym University, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,10 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea; and
| | - Suh-Young Lee
- 7 Lung Research Institute of Hallym University, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,8 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Younsuck Koh
- 11 Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Myung Jae Park
- 1 Department of Pulmonary and Critical Care Medicine, KyungHee University Medical Center, Seoul, Republic of Korea
| | | | - Chang-Won Hong
- 3 Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
33
|
TRPM2 contributes to LPC-induced intracellular Ca 2+ influx and microglial activation. Biochem Biophys Res Commun 2017; 485:301-306. [PMID: 28223219 DOI: 10.1016/j.bbrc.2017.02.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 12/29/2022]
Abstract
Microglia are the resident immune cells which become activated in some pathological conditions in central nervous system (CNS). Lysophosphatidylcholine (LPC), an endogenous inflammatory phospholipid, is implicated in immunomodulatory function of glial cells in the CNS. Although several studies uncovered that LPC induces intracellular Ca2+ influx and morphologic change in microglia, there is still no direct evidence showing change of phosphorylation of mitogen-activated protein kinase (MAPK) p38 (p-p38), a widely used microglia activation marker, by LPC. Furthermore, the cellular mechanism of LPC-induced microglia activation remains unknown. In this study, we found that LPC induced intracellular Ca2+ increase in primary cultured microglia, which was blocked in the presence of Gd3+, non-selective transient receptor potential (TRP) channel blocker. RT-PCR and whole cell patch clamp recordings revealed molecular and functional expression of TRP melastatin 2 (TRPM2) in microglia. Using western blotting, we also observed that LPC increased phosphorylation of p38 MAPK, and the increase of p-p38 expression is also reversed in TRPM2-knockout (KO) microglia. Moreover, LPC induced membrane trafficking of TRPM2 and intrathecal injection of LPC increased Iba-1 immunoreactivity in the spinal cord, which were significantly reduced in KO mice. In addition, LPC-induced intracellular Ca2+ increase and inward currents were abolished in TRPM2-KO microglia. Taken together, our results suggest that LPC induces intracellular Ca2+ influx and increases phosphorylation of p38 MAPK via TRPM2, which in turn activates microglia.
Collapse
|
34
|
Assunção LS, Magalhães KG, Carneiro AB, Molinaro R, Almeida PE, Atella GC, Castro-Faria-Neto HC, Bozza PT. Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARγ dependent mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:246-254. [DOI: 10.1016/j.bbalip.2016.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
|
35
|
He M, Peng A, Huang XZ, Shi DC, Wang JC, Zhao Q, Lin H, Kuang DM, Ke PF, Lao XM. Peritumoral stromal neutrophils are essential for c-Met-elicited metastasis in human hepatocellular carcinoma. Oncoimmunology 2016; 5:e1219828. [PMID: 27853643 DOI: 10.1080/2162402x.2016.1219828] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a component of tumor progression mechanisms. Neutrophils are a common inflammatory infiltrate in many tumors, but their regulation and functions in neoplasia are not understood. Here, we showed, in detailed studies of c-Met molecule in 225 untreated patients with hepatocellular carcinoma (HCC), that high infiltration of neutrophils in HCC tissues determined malignant cell c-Met-associated clinical outcome of patients. High infiltration of neutrophils in HCCs determined malignant cell c-Met-associated clinical outcome of patients. Neutrophils were enriched predominantly in invading tumor edge of HCCs; the accumulated neutrophils were the major source of c-Met ligand HGF in HCCs. Exposure to HCC environments resulted in neutrophil activation and the following HGF production. Inhibiting the activities of Erk1/2, p38, and NF-κB, but not the phosphorylation of AKT or JNK, successfully attenuated the neutrophil HGF production induced by HCC environments. Further investigation revealed that GM-CSF was an important determinant in malignant cell-elicited neutrophil HGF production in vitro and in vivo. Moreover, we demonstrated that tumor neutrophils, via HGF/c-Met interaction, actively enhanced the metastasis of malignant cells in vitro and in vivo. These data provide direct evidence supporting the critical role of neutrophils in human tumor progression and reveal a fine-tuned collaborative action between cancer cells and immune cells in tumor milieu, which reroutes the immune activation into a tumor-promoting direction.
Collapse
Affiliation(s)
- Min He
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Anping Peng
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Xian-Zhang Huang
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Dai-Chao Shi
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou, P.R. China
| | - Jun-Cheng Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou, P.R. China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, P.R. China
| | - Haibiao Lin
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Dong-Ming Kuang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou, P.R. China
| | - Pei-Feng Ke
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou, P.R. China
| |
Collapse
|
36
|
Awasthi D, Nagarkoti S, Kumar A, Dubey M, Singh AK, Pathak P, Chandra T, Barthwal MK, Dikshit M. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radic Biol Med 2016; 93:190-203. [PMID: 26774674 DOI: 10.1016/j.freeradbiomed.2016.01.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
Neutrophil extracellular traps (NETs) formation was initially linked with host defence and extracellular killing of pathogens. However, recent studies have highlighted their inflammatory potential. Oxidized low density lipoprotein (oxLDL) has been implicated as an independent risk factor in various acute or chronic inflammatory diseases including systemic inflammatory response syndrome (SIRS). In the present study we investigated effect of oxLDL on NETs formation and elucidated the underlying signalling mechanism. Treatment of oxLDL to adhered PMNs led to a time and concentration dependent ROS generation and NETs formation. OxLDL induced free radical formation and NETs release were significantly prevented in presence of NADPH oxidase (NOX) inhibitors suggesting role of NOX activation in oxLDL induced NETs release. Blocking of both toll like receptor (TLR)-2 and 6 significantly reduced oxLDL induced NETs formation indicating requirement of both the receptors. We further identified Protein kinase C (PKC), Interleukin-1 receptor associated kinase (IRAKs), mitogen-activated protein kinase (MAPK) pathway as downstream intracellular signalling mediators involved in oxLDL induced NETs formation. OxLDL components such as oxidized phospholipids (lysophosphatidylcholine (LPC) and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC)) were most potent NETs inducers and might be crucial for oxLDL mediating NETs release. Other components like, oxysterols, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were however less potent as compared to oxidized phospholipids. This study thus demonstrates for the first time that treatment of human PMNs with oxLDL or its various oxidized phopholipid component mediated NETs release, implying their role in the pathogenesis of inflammatory diseases such as SIRS.
Collapse
Affiliation(s)
- Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Megha Dubey
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
37
|
Tan TL, Ahmad NS, Nasuruddin DN, Ithnin A, Tajul Arifin K, Zaini IZ, Wan Ngah WZ. CD64 and Group II Secretory Phospholipase A2 (sPLA2-IIA) as Biomarkers for Distinguishing Adult Sepsis and Bacterial Infections in the Emergency Department. PLoS One 2016; 11:e0152065. [PMID: 27003588 PMCID: PMC4803226 DOI: 10.1371/journal.pone.0152065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/08/2016] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Early diagnosis of sepsis and bacterial infection is imperative as treatment relies on early antibiotic administration. There is a need to develop new biomarkers to detect patients with sepsis and bacterial infection as early as possible, thereby enabling prompt antibiotic treatment and improving the survival rate. METHODS Fifty-one adult patients with suspected bacterial sepsis on admission to the Emergency Department (ED) of a teaching hospital were included into the study. All relevant cultures and serology tests were performed. Serum levels for Group II Secretory Phospholipase A2 (sPLA2-IIA) and CD64 were subsequently analyzed. RESULTS AND DISCUSSION Sepsis was confirmed in 42 patients from a total of 51 recruited subjects. Twenty-one patients had culture-confirmed bacterial infections. Both biomarkers were shown to be good in distinguishing sepsis from non-sepsis groups. CD64 and sPLA2-IIA also demonstrated a strong correlation with early sepsis diagnosis in adults. The area under the curve (AUC) of both Receiver Operating Characteristic curves showed that sPLA2-IIA was better than CD64 (AUC = 0.93, 95% confidence interval (CI) = 0.83-0.97 and AUC = 0.88, 95% CI = 0.82-0.99, respectively). The optimum cutoff value was 2.13μg/l for sPLA2-IIA (sensitivity = 91%, specificity = 78%) and 45 antigen bound cell (abc) for CD64 (sensitivity = 81%, specificity = 89%). In diagnosing bacterial infections, sPLA2-IIA showed superiority over CD64 (AUC = 0.97, 95% CI = 0.85-0.96, and AUC = 0.95, 95% CI = 0.93-1.00, respectively). The optimum cutoff value for bacterial infection was 5.63μg/l for sPLA2-IIA (sensitivity = 94%, specificity = 94%) and 46abc for CD64 (sensitivity = 94%, specificity = 83%). CONCLUSIONS sPLA2-IIA showed superior performance in sepsis and bacterial infection diagnosis compared to CD64. sPLA2-IIA appears to be an excellent biomarker for sepsis screening and for diagnosing bacterial infections, whereas CD64 could be used for screening bacterial infections. Both biomarkers either alone or in combination with other markers may assist in decision making for early antimicrobial administration. We recommend incorporating sPLA2-IIA and CD64 into the diagnostic algorithm of sepsis in ED.
Collapse
Affiliation(s)
- Toh Leong Tan
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Saadah Ahmad
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Dian Nasriana Nasuruddin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azlin Ithnin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khaizurin Tajul Arifin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ida Zarina Zaini
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 2016; 173:953-69. [PMID: 26603538 DOI: 10.1111/bph.13392] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
A complex network of many interacting mechanisms orchestrates immune and inflammatory responses. Among these, the cation channels of the transient receptor potential (TRP) family expressed by resident tissue cells, inflammatory and immune cells and distinct subsets of primary sensory neurons, have emerged as a novel and interrelated system to detect and respond to harmful agents. TRP channels, by means of their direct effect on the intracellular levels of cations and/or through the indirect modulation of a large series of intracellular pathways, orchestrate a range of cellular processes, such as cytokine production, cell differentiation and cytotoxicity. The contribution of TRP channels to the transition of inflammation and immune responses from a defensive early response to a chronic and pathological condition is also emerging as a possible underlying mechanism in various diseases. This review discusses the roles of TRP channels in inflammatory and immune cell function and provides an overview of the effects of inflammatory and immune TRP channels on the pathogenesis of human diseases.
Collapse
Affiliation(s)
- A Parenti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - F De Logu
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - P Geppetti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - S Benemei
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Paoletti L, Domizi P, Marcucci H, Montaner A, Krapf D, Salvador G, Banchio C. Lysophosphatidylcholine Drives Neuroblast Cell Fate. Mol Neurobiol 2015; 53:6316-6331. [DOI: 10.1007/s12035-015-9528-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 12/31/2022]
|
40
|
Shrestha S, Noh JM, Kim SY, Ham HY, Kim YJ, Yun YJ, Kim MJ, Kwon MS, Song DK, Hong CW. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype. Oncoimmunology 2015; 5:e1067744. [PMID: 26942086 DOI: 10.1080/2162402x.2015.1067744] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/18/2015] [Accepted: 06/25/2015] [Indexed: 01/13/2023] Open
Abstract
Tumor microenvironments polarize neutrophils to protumoral phenotypes. Here, we demonstrate that the angiotensin converting enzyme inhibitors (ACEis) and angiotensin II type 1 receptor (AGTR1) antagonist attenuate tumor growth via polarization of neutrophils toward an antitumoral phenotype. The ACEis or AGTR1 antagonist enhanced hypersegmentation of human neutrophils and increased neutrophil cytotoxicity against tumor cells. This neutrophil hypersegmentation was dependent on the mTOR pathway. In a murine tumor model, ACEis and AGTR1 antagonist attenuated tumor growth and enhanced neutrophil hypersegmentation. ACEis inhibited tumor-induced polarization of neutrophils to a protumoral phenotype. Neutrophil depletion reduced the antitumor effect of ACEi. Together, these data suggest that the modulation of Ang II pathway attenuates tumor growth via polarization of neutrophils to an antitumoral phenotype.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Pharmacology, College of Medicine, Hallym University , Chuncheon, Gangwon-do Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University , Seoul, Republic of Korea
| | - Shin-Yeong Kim
- Department of Pharmacology, College of Medicine, Hallym University , Chuncheon, Gangwon-do Republic of Korea
| | - Hwa-Yong Ham
- Department of Pharmacology, College of Medicine, Hallym University , Chuncheon, Gangwon-do Republic of Korea
| | - Yeon-Ja Kim
- Department of Pharmacology, College of Medicine, Hallym University , Chuncheon, Gangwon-do Republic of Korea
| | - Young-Jin Yun
- Department of Pharmacology, College of Medicine, Hallym University , Chuncheon, Gangwon-do Republic of Korea
| | - Min-Ju Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University , Chuncheon, Gangwon-do Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, CHA university , Seongnam, Kyeon-ki do, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University , Chuncheon, Gangwon-do Republic of Korea
| | - Chang-Won Hong
- Department of Pharmacology, College of Medicine, Hallym University , Chuncheon, Gangwon-do Republic of Korea
| |
Collapse
|
41
|
Li XF, Chen DP, Ouyang FZ, Chen MM, Wu Y, Kuang DM, Zheng L. Increased autophagy sustains the survival and pro-tumourigenic effects of neutrophils in human hepatocellular carcinoma. J Hepatol 2015; 62:131-9. [PMID: 25152203 DOI: 10.1016/j.jhep.2014.08.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 07/26/2014] [Accepted: 08/07/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Neutrophils are common cells of the inflammatory infiltrate and are predominantly enriched in many cancers. We recently found that neutrophils are accumulated in human hepatocellular carcinoma (HCC), where they promote disease progression by releasing matrix metalloproteinase-9 (MMP9). The underlying mechanisms, however, that allow tumour microenvironments to educate neutrophils are largely unknown. METHODS Neutrophils were purified from HCC patients and healthy donors. Immunohistochemistry and immunoblotting were used for the evaluation of autophagy in neutrophils. The regulation and function of increased neutrophil autophagy were assessed by both in vitro and ex vivo studies. RESULTS Most neutrophils in HCC intratumoural regions, in contrast to those located in the paired non-tumoural areas and within tumour vessels, substantially expressed autophagy-specific protein LC3. Soluble factors derived from hepatoma, including hyaluronan fragments, triggered a considerable increase of functional LC3 and autophagosomes in neutrophils, but this was unrelated to the deactivation of mTOR signalling. Inhibiting the activation of Erk1/2, p38, and NF-κB signals could significantly attenuate such tumour-elicited autophagy. These neutrophils, undergoing autophagy, exhibited long-lived phenotypes with retained Mcl-1 and significantly more intact mitochondria as well as low cleaved caspase-3, which could be abolished by inhibiting the initiation of autophagy. Moreover, increased neutrophil autophagy also correlated with sustained production of pro-metastatic oncostatin M and MMP9 and advanced migration of cancer cells. CONCLUSIONS Increased autophagy in neutrophils may represent a novel mechanism that links the innate response to neoplastic progression in humans. Studying the mechanisms that selectively modulate neutrophil autophagy will provide a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Xue-Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Dong-Ping Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Fang-Zhu Ouyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Min-Min Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yan Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Dong-Ming Kuang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Limin Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
42
|
Miyake T, Shirakawa H, Kusano A, Sakimoto S, Konno M, Nakagawa T, Mori Y, Kaneko S. TRPM2 contributes to LPS/IFNγ-induced production of nitric oxide via the p38/JNK pathway in microglia. Biochem Biophys Res Commun 2014; 444:212-7. [DOI: 10.1016/j.bbrc.2014.01.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/11/2014] [Indexed: 11/30/2022]
|
43
|
Abstract
TRPM2 (transient receptor potential melastatin 2) is a non-selective Ca2+-permeable cation channel activated by ADPR (adenosine diphosphoribose) and H2O2. It is widely expressed in mammalian cells and plays an important role in the regulation of various cell functions. However, the mechanisms of TRPM2 channel activation are not fully understood. Previously, we reported that TRPM2 channel activation is induced by high intracellular Cl- concentration. In the present study, we investigated the functional role of Lys1110 in the membrane-proximal C-terminal region by site-directed mutagenesis. Replacement of the positively charged amino acid lysine (Lys1110) with the neutrally charged amino acid asparagine (K1110N) or the negatively charged amino acid glutamic acid (K1110E) generated mutants that failed to induce an increase in free cytosolic calcium concentration ([Ca2+]i) not only by intracellular injection of Cl-, but also by H2O2 or ADPR. However, a mutant generated by replacing the lysine residue with a positively charged amino acid arginine (K1110R) displayed channel activity similar to wild-type TRPM2. Interestingly, in the K1107N/K1110N double-point mutant, the impaired function of the K1110N mutant in response to ADPR and H2O2, but not to Cl-, was recovered. There were no changes in protein expression, membrane trafficking and oligomerization of the mutant channels. The extent of [Ca2+]i increase by H2O2 in HEK (human embryonic kidney)-293 cells expressing TRPM2 mutants was well correlated with the degree of susceptibility to H2O2-induced cell death. These results display the crucial role of a positively charged amino acid residue at position 1110 for TRPM2 channel activity.
Collapse
|
44
|
Abstract
TRPM2 is the second member of the transient receptor potential melastatin-related (TRPM) family of cation channels. The protein is widely expressed including in the brain, immune system, endocrine cells, and endothelia. It embodies both ion channel functionality and enzymatic ADP-ribose (ADPr) hydrolase activity. TRPM2 is a Ca(2+)-permeable nonselective cation channel embedded in the plasma membrane and/or lysosomal compartments that is primarily activated in a synergistic fashion by intracellular ADP-ribose (ADPr) and Ca(2+). It is also activated by reactive oxygen and nitrogen species (ROS/NOS) and enhanced by additional factors, such as cyclic ADPr and NAADP, while inhibited by permeating protons (acidic pH) and adenosine monophosphate (AMP). Activation of TRPM2 leads to increases in intracellular Ca(2+) levels, which can serve signaling roles in inflammatory and secretory cells through release of vesicular mediators (e.g., cytokines, neurotransmitters, insulin) and in extreme cases can induce apoptotic and necrotic cell death under oxidative stress.
Collapse
Affiliation(s)
- Malika Faouzi
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl Street, Honolulu, HI, 96813, USA,
| | | |
Collapse
|
45
|
Johnson MB, Criss AK. Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils. Cell Microbiol 2013; 15:1323-40. [PMID: 23374609 PMCID: PMC3713093 DOI: 10.1111/cmi.12117] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/11/2013] [Accepted: 01/27/2013] [Indexed: 12/21/2022]
Abstract
Symptomatic infection with Neisseria gonorrhoeae (Gc) promotes inflammation driven by polymorphonuclear leucocytes (PMNs, neutrophils), yet some Gc survive PMN exposure during infection. Here we report a novel mechanism of gonococcal resistance to PMNs: Gc phagosomes avoid maturation into phagolysosomes by delayed fusion with primary (azurophilic) granules, which contain antimicrobial components including serine proteases. Reduced phagosome-primary granule fusion was observed in gonorrheal exudates and human PMNs infected ex vivo. Delayed phagosome-granule fusion could be overcome by opsonizing Gc with immunoglobulin. Using bacterial viability dyes along with antibodies to primary granules revealed that Gc survival in PMNs correlated with early residence in primary granule-negative phagosomes. However, when Gc was killed prior to PMN exposure, dead bacteria were also found in primary granule-negative phagosomes. These results suggest that Gc surface characteristics, rather than active bacterial processes, influence phagosome maturation and that Gc death inside PMNs occurs after phagosome-granule fusion. Ectopically increasing primary granule-phagosome fusion, by immunoglobulin opsonization or PMN treatment with lysophosphatidylcholine, reduced intracellular Gc viability, which was attributed in part to serine protease activity. We conclude that one method for Gc to avoid PMN clearance in acute gonorrhoea is by delaying primary granule-phagosome fusion, thus preventing formation of a degradative phagolysosome.
Collapse
Affiliation(s)
- M. Brittany Johnson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
46
|
Ayala G, Morello M, Frolov A, You S, Li R, Rosati F, Bartolucci G, Danza G, Adam RM, Thompson TC, Lisanti MP, Freeman MR, Vizio DD. Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. J Pathol 2013; 231:77-87. [PMID: 23729330 DOI: 10.1002/path.4217] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 12/14/2022]
Abstract
Levels of caveolin-1 (Cav-1) in tumour epithelial cells increase during prostate cancer progression. Conversely, Cav-1 expression in the stroma can decline in advanced and metastatic prostate cancer. In a large cohort of 724 prostate cancers, we observed significantly decreased levels of stromal Cav-1 in concordance with increased Gleason score (p = 0.012). Importantly, reduced expression of Cav-1 in the stroma correlated with reduced relapse-free survival (p = 0.009), suggesting a role for stromal Cav-1 in inhibiting advanced disease. Silencing of Cav-1 by shRNA in WPMY-1 prostate fibroblasts resulted in up-regulation of Akt phosphorylation, and significantly altered expression of genes involved in angiogenesis, invasion, and metastasis, including a > 2.5-fold increase in TGF-β1 and γ-synuclein (SNCG) gene expression. Moreover, silencing of Cav-1 induced migration of prostate cancer cells when stromal cells were used as attractants. Pharmacological inhibition of Akt caused down-regulation of TGF-β1 and SNCG, suggesting that loss of Cav-1 in the stroma can influence Akt-mediated signalling in the tumour microenvironment. Cav-1-depleted stromal cells exhibited increased levels of intracellular cholesterol, a precursor for androgen biosynthesis, steroidogenic enzymes, and testosterone. These findings suggest that loss of Cav-1 in the tumour microenvironment contributes to the metastatic behaviour of tumour cells by a mechanism that involves up-regulation of TGF-β1 and SNCG through Akt activation. They also suggest that intracrine production of androgens, a process relevant to castration resistance, may occur in the stroma.
Collapse
Affiliation(s)
- Gustavo Ayala
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Matteo Morello
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Frolov
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Sungyong You
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rile Li
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Fabiana Rosati
- Endocrine Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Pharmaceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Giovanna Danza
- Endocrine Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Rosalyn M Adam
- The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, Unit 18-3, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael P Lisanti
- Breast Oncology and Institute of Cancer Sciences, Paterson Institute of Cancer Research, The University of Manchester, Manchester, UK
| | - Michael R Freeman
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Surgery and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Dolores Di Vizio
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Bréchard S, Plançon S, Tschirhart EJ. New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 2013; 18:661-76. [PMID: 22867131 PMCID: PMC3549206 DOI: 10.1089/ars.2012.4773] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SIGNIFICANCE Reactive oxygen species, produced by the phagosomal NADPH oxidase of neutrophils, play a significant physiological role during normal defense. Their role is not only to kill invading pathogens, but also to act as modulators of global physiological functions of phagosomes. Given the importance of NADPH oxidase in the immune system, its activity has to be decisively controlled by distinctive mechanisms to ensure appropriate regulation at the phagosome. RECENT ADVANCES Here, we describe the signal transduction pathways that regulate phagosomal NADPH oxidase in neutrophils, with an emphasis on the role of lipid metabolism and intracellular Ca(2+) mobilization. CRITICAL ISSUES The potential involvement of Ca(2+)-binding S100A8 and S100A9 proteins, known to interact with the plasma membrane NADPH oxidase, is also considered. FUTURE DIRECTIONS Recent technical progress in advanced live imaging microscopy will permit to focus more accurately on phagosomal rather than plasma membrane NADPH oxidase regulation during neutrophil phagocytosis.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Calcium Signaling and Inflammation Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | |
Collapse
|
48
|
Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. THE JOURNAL OF IMMUNOLOGY 2013; 190:1746-57. [PMID: 23319733 DOI: 10.4049/jimmunol.1201213] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Advanced age is associated with alterations in innate and adaptive immune responses, which contribute to an increased risk of infection in elderly patients. Coupled with this immune dysfunction, elderly patients demonstrate impaired wound healing with elevated rates of wound dehiscence and chronic wounds. To evaluate how advanced age alters the host immune response to cutaneous wound infection, we developed a murine model of cutaneous Staphylococcus aureus wound infection in young (3-4 mo) and aged (18-20 mo) BALB/c mice. Aged mice exhibit increased bacterial colonization and delayed wound closure over time compared with young mice. These differences were not attributed to alterations in wound neutrophil or macrophage TLR2 or FcγRIII expression, or age-related changes in phagocytic potential and bactericidal activity. To evaluate the role of chemotaxis in our model, we first examined in vivo chemotaxis in the absence of wound injury to KC, a neutrophil chemokine. In response to a s.c. injection of KC, aged mice recruited fewer neutrophils at increasing doses of KC compared with young mice. This paralleled our model of wound infection, where diminished neutrophil and macrophage recruitment was observed in aged mice relative to young mice despite equivalent levels of KC, MIP-2, and MCP-1 chemokine levels at the wound site. This reduced leukocyte accumulation was also associated with lower levels of ICAM-1 in wounds from aged mice at early time points. These age-mediated defects in early neutrophil recruitment may alter the dynamics of the inflammatory phase of wound healing, impacting macrophage recruitment, bacterial clearance, and wound closure.
Collapse
Affiliation(s)
- Aleah L Brubaker
- Burn and Shock Trauma Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
49
|
El Chemaly A, Demaurex N. Do Hv1 proton channels regulate the ionic and redox homeostasis of phagosomes? Mol Cell Endocrinol 2012; 353:82-7. [PMID: 22056415 DOI: 10.1016/j.mce.2011.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022]
Abstract
Recent work on animal models has revealed the important role played by the voltage-gated proton channel Hv1 during bacterial killing by innate immune cells. Studies from mice lacking Hv1 channels showed that Hv1 proton channels are required for high-level production of reactive oxygen species (ROS) by the NADPH oxidase of phagocytes (NOX2) in two ways. First, Hv1 channels maintain a physiological membrane potential during the respiratory burst of neutrophils by providing a compensating charge for the electrons transferred by NOX2 from NADPH to superoxide. Second, Hv1 channels maintain a physiological cytosolic pH by extruding the acid generated by the NOX2-dependent consumption of NADPH. The two mechanisms directly sustain the activity of the NOX2 enzyme and indirectly sustain other neutrophil functions by enhancing the driving force for the entry of calcium into cells, thereby boosting cellular calcium signals. The increased depolarization of Hv1-deficient neutrophils aborted calcium responses to chemoattractants and revealed adhesion and migration defects that were associated with an impaired depolymerization of the cortical actin cytoskeleton. Current research aims to transpose these findings to phagosomes, the phagocytic vacuoles where bacterial killing takes place. However, the mechanisms that control the phagosomal pH appear to vary greatly between phagocytes: phagosomes rapidly acidify in macrophages but remain neutral for several minutes in neutrophils following ingestion of solid particles, whereas in dendritic cells phagosomes alkalinize, a mechanism thought to promote antigen cross-presentation. In this review, we discuss how the knowledge gained on the role of Hv1 channels at the plasma membrane of neutrophils can be used to study the regulation of the phagosomal pH, ROS, membrane potential, and calcium fluxes in different phagocytic cells.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
50
|
Gastrin-releasing peptide receptor (GRPR) mediates chemotaxis in neutrophils. Proc Natl Acad Sci U S A 2011; 109:547-52. [PMID: 22203955 DOI: 10.1073/pnas.1110996109] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neutrophil migration to inflamed sites is crucial for both the initiation of inflammation and resolution of infection, yet these cells are involved in perpetuation of different chronic inflammatory diseases. Gastrin-releasing peptide (GRP) is a neuropeptide that acts through G protein coupled receptors (GPCRs) involved in signal transmission in both central and peripheral nervous systems. Its receptor, gastrin-releasing peptide receptor (GRPR), is expressed by various cell types, and it is overexpressed in cancer cells. RC-3095 is a selective GRPR antagonist, recently found to have antiinflammatory properties in arthritis and sepsis models. Here we demonstrate that i.p. injection of GRP attracts neutrophils in 4 h, and attraction is blocked by RC-3095. Macrophage depletion or neutralization of TNF abrogates GRP-induced neutrophil recruitment to the peritoneum. In vitro, GRP-induced neutrophil migration was dependent on PLC-β2, PI3K, ERK, p38 and independent of Gαi protein, and neutrophil migration toward synovial fluid of arthritis patients was inhibited by treatment with RC-3095. We propose that GRPR is an alternative chemotactic receptor that may play a role in the pathogenesis of inflammatory disorders.
Collapse
|