1
|
Flores-Gonzalez J, Chavez-Galan L, Falfán-Valencia R, Roldán IB, Fricke-Galindo I, Veronica-Aguilar A, Martínez-Morales A, Hernández-Zenteno RDJ, Guzmán-Guzmán IP, Pérez-Rubio G. Variant rs4986790 of toll-like receptor 4 affects the signaling and induces cell dysfunction in patients with severe COVID-19. Int J Infect Dis 2024; 138:102-109. [PMID: 38029833 DOI: 10.1016/j.ijid.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES We investigated the expression of toll-like receptor (TLR)-4 on the cell surface of innate and adaptive cells from patients with COVID-19 carrying the rs4986790 GG genotype in the TLR4 gene and the functional profile of these cells. METHODS We included 1169 hospitalized patients with COVID-19. The rs4986790 in TLR4 was identified by real-time polymerase chain reaction. Peripheral blood mononuclear cells were isolated and cultured to evaluate TLR-4 expression on immune cells. Supernatants recovered culture assays were stored, and we measured cytokines and cytotoxic molecules. RESULTS We showed that the rs4986790 (GG) was significantly associated (P = 0.0310) with severe COVID-19. Cells of patients with COVID-19 carrying the GG genotype have increased the frequency of monocytes and activated naïve and non-switched B cells positive to TLR-4 when cells are stimulated with lipopolysaccharide and with spike protein of SARS-CoV-2. Also, cells from patients with GG COVID-19 cannot produce pro-inflammatory cytokines after lipopolysaccharide stimulus, but they are high producers of cytotoxic molecules at baseline. CONCLUSIONS The rs4986790 GG genotype of the TLR4 is associated with the risk of COVID-19 and acute respiratory distress syndrome. Peripheral blood mononuclear cells of patients carrying the rs4986790 (TLR4) GG genotype had a limited delivery of pro-inflammatory cytokines compared to the AA and AG genotypes in which TLR-4 stimulation induces IL-10, IL-6, tumor necrosis factor-α, and Fas ligand production.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ivette Buendía Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Abigail Veronica-Aguilar
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Martínez-Morales
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Iris Paola Guzmán-Guzmán
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.
| |
Collapse
|
2
|
Vlk AM, Prantner D, Shirey KA, Perkins DJ, Buzza MS, Thumbigere-Math V, Keegan AD, Vogel SN. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023; 14:e0120823. [PMID: 37768050 PMCID: PMC10653841 DOI: 10.1128/mbio.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, impacts millions of individuals worldwide and severely impairs the quality of life for patients. Dysregulation of innate immune signaling pathways reduces barrier function and exacerbates disease progression. Macrophage (Mφ) signaling pathways are potential targets for IBD therapies. While multiple treatments are available for IBD, (i) not all patients respond, (ii) responses may diminish over time, and (iii) treatments often have undesirable side effects. Genetic studies have shown that the inheritance of two co-segregating SNPs expressed in the innate immune receptor, TLR4, is associated with human IBD. Mice expressing homologous SNPs ("TLR4-SNP" mice) exhibited more severe colitis than WT mice in a DSS-induced colonic inflammation/repair model. We identified a critical role for M2a "tissue repair" Mφ in the resolution of colitis. Our findings provide insight into potential development of novel therapies targeting Mφ signaling pathways that aim to alleviate the debilitating symptoms experienced by individuals with IBD.
Collapse
Affiliation(s)
- Alexandra M. Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Marguerite S. Buzza
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Silva MJA, Santana DS, de Oliveira LG, Monteiro EOL, Lima LNGC. The relationship between 896A/G (rs4986790) polymorphism of TLR4 and infectious diseases: A meta-analysis. Front Genet 2022; 13:1045725. [PMID: 36506333 PMCID: PMC9729345 DOI: 10.3389/fgene.2022.1045725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Toll-like Receptors (TLRs), such as the TLR4, are genes encoding transmembrane receptors of the same name, which induce a pro- or anti-inflammatory response according to their expression as the host's first line of defense against pathogens, such as infectious ones. Single nucleotide polymorphisms (SNPs) are the most common type of mutation in the human genome and can generate functional modification in genes. The aim of this article is to review in which infectious diseases there is an association of susceptibility or protection by the TLR4 SNP rs4986790. A systematic review and meta-analysis of the literature was conducted in the Science Direct, PUBMED, MEDLINE, and SciELO databases between 2011 and 2021 based on the dominant genotypic model of this SNP for general and subgroup analysis of infectious agent type in random effect. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated for genotypic comparison. I2 statistics were calculated to assess the presence of heterogeneity between studies and funnel plots were inspected for indication of publication bias. A total of 27 articles were included, all in English. Among the results achieved, the categories of diseases that were most associated with the SNP studied were in decreasing order of number of articles: infections by bacteria (29.63%); caused by viruses (22.23%); urinary tract infection-UTI (7.4%), while 11 studies (40.74%) demonstrated a nonsignificant association. In this meta-analysis, a total of 5599 cases and 5871 controls were finalized. The present meta-analysis suggests that there is no significant association between TLR4-rs4986790 SNP and infections (OR = 1,11; 95% CI: 0,75-1,66; p = 0,59), but in the virus subgroup it was associated with a higher risk (OR = 2,16; 95% CI: 1,09-4,30; p = 0,03). The subgroups of bacteria and parasites did not show statistical significance (OR = 0,86; 95% CI: 0,56-1,30; p = 0,47, and no estimate of effects, respectively). Therefore, it has been shown that a diversity of infectious diseases is related to this polymorphism, either by susceptibility or even severity to them, and the receptor generated is also crucial for the generation of cell signaling pathways and immune response against pathogens.
Collapse
Affiliation(s)
| | - Davi Silva Santana
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | | | | | | |
Collapse
|
4
|
Elloumi N, Tahri S, Fakhfakh R, Abida O, Mahfoudh N, Hachicha H, Marzouk S, Bahloul Z, Masmoudi H. Role of innate immune receptors TLR4 and TLR2 polymorphisms in systemic lupus erythematosus susceptibility. Ann Hum Genet 2022; 86:137-144. [PMID: 35128637 DOI: 10.1111/ahg.12458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/22/2023]
Abstract
AIM Through their recognition of various bacterial cell wall components, TLR2 and TLR4 participate in the innate response and modulate the activation of adaptive immunity. Therefore, the genetic background of these receptors might play a crucial role in autoimmune diseases such as systemic lupus erythematosus (SLE). In this study, we investigated the possible association between polymorphisms within TLR2 and TLR4 genes with SLE susceptibility. MATERIAL AND METHODS A total of 100 SLE patients and 200 unrelated healthy controls of the Tunisian population were enrolled in the study.TLR4rs4986790, TLR4rs4986791, and TLR2rs5743708 genotyping were performed using a polymerase chain reaction-restriction fragment length polymorphism method. The number of guanine-thymine (GT) repeat microsatellite in the intron 2 of TLR2 gene was analyzed by sequencing. RESULTS We reported a lack of allelic and genotypic association between SNPs of TLR4 and TLR2 genes and SLE pathogenesis. No correlation was found with any SLE features. However, SLE susceptibility was associated with the GT repeat microsatellite polymorphism in the human TLR2 gene. Further subclassification of alleles into three subclasses revealed a significant association between the long-sized repeats ((GT) >23) and SLE. CONCLUSION Though the results showed the absence of genetic association of TLR4 and TLR2 SNPs with the risk of developing SLE, we have identified a protective association between the microsatellite polymorphism in intron 2 of the TLR2 gene and SLE. Functionally, these (GT)n repeats may confer modifying effects or susceptibility to certain inflammatory conditions.
Collapse
Affiliation(s)
- Nesrine Elloumi
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Safa Tahri
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Raouia Fakhfakh
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Olfa Abida
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Nadia Mahfoudh
- Immunology Department, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Hend Hachicha
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Sameh Marzouk
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Zouhir Bahloul
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Hatem Masmoudi
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Richard K, Piepenbrink KH, Shirey KA, Gopalakrishnan A, Nallar S, Prantner DJ, Perkins DJ, Lai W, Vlk A, Toshchakov VY, Feng C, Fanaroff R, Medvedev AE, Blanco JCG, Vogel SN. A mouse model of human TLR4 D299G/T399I SNPs reveals mechanisms of altered LPS and pathogen responses. J Exp Med 2021; 218:211550. [PMID: 33216117 PMCID: PMC7685774 DOI: 10.1084/jem.20200675] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Two cosegregating single-nucleotide polymorphisms (SNPs) in human TLR4, an A896G transition at SNP rs4986790 (D299G) and a C1196T transition at SNP rs4986791 (T399I), have been associated with LPS hyporesponsiveness and differential susceptibility to many infectious or inflammatory diseases. However, many studies failed to confirm these associations, and transfection experiments resulted in conflicting conclusions about the impact of these SNPs on TLR4 signaling. Using advanced protein modeling from crystallographic data of human and murine TLR4, we identified homologous substitutions of these SNPs in murine Tlr4, engineered a knock-in strain expressing the D298G and N397I TLR4 SNPs homozygously, and characterized in vivo and in vitro responses to TLR4 ligands and infections in which TLR4 is implicated. Our data provide new insights into cellular and molecular mechanisms by which these SNPs decrease the TLR4 signaling efficiency and offer an experimental approach to confirm or refute human data possibly confounded by variables unrelated to the direct effects of the SNPs on TLR4 functionality.
Collapse
Affiliation(s)
- Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Kurt H Piepenbrink
- Department of Food Science and Technology, Department of Biochemistry, University of Nebraska, Lincoln, NE
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Archana Gopalakrishnan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Shreeram Nallar
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Daniel J Prantner
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Alexandra Vlk
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Vladimir Y Toshchakov
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Chiguang Feng
- Center for Vaccine Development, University of Maryland, School of Medicine, Baltimore, MD
| | - Rachel Fanaroff
- Department of Anatomical Pathology, University of Maryland Medical Center, Baltimore, MD
| | - Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, CT
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Huang WL, Xu Y, Wan SP. Association of Toll-like 4 receptor gene polymorphism (rs4986790, rs4986791) with the risk of urinary tract infection: A systematic review and meta-analysis. Kaohsiung J Med Sci 2019; 36:206-211. [PMID: 31749314 DOI: 10.1002/kjm2.12158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/28/2019] [Indexed: 11/06/2022] Open
Abstract
Recently published studies had shown that there may be a potential link between the Single nucleotide polymorphism (SNP) of Toll-like receptor-4 (TLR4), and the risk of urinary tract infection (UTI); however, no consensus was reached. To further understand the relationship between TLR SNPs and urinary tract infections, we searched for related studies published in PubMed, EMBASE, and Web of Science before October 30, 2018, for further systematic review and meta-analysis. Our study accrued 10 case-control studies, which included 1476 urinary tract infection patients and 1449 healthy controls in TLR4(rs4986790, rs4986791). R3.4.2 and Stata 15.0 software were used for the analysis. In general, there was no statistically significant association between rs4986790 and urinary tract infection in the four genetic models. However, in the subgroup analysis, the Asian population showed significantly difference in the allelic model (G vs A: OR = 1.88 [95% CI:1.42-2.49], P = .03). In addition, there were also significant differences in the dominant model (GG + AG vs AA OR = 1.97 [95% CI:1.46-2.66], P = .01). Due to the small number of available literatures, no meaningful conclusion can be drawn regarding the relationship between TLR4 (rs4986791) and the risk of urinary tract infections in general. Nevertheless, our meta-analysis shows that in Asian populations, TLR4 (rs4986790) may be associated with risk of urinary tract infection.
Collapse
Affiliation(s)
- Wen-Lin Huang
- Department of Urology, ZhuZhou Central Hospital, ZhuZhou, Hunan, China
| | - Yong Xu
- Department of Urology, ZhuZhou Central Hospital, ZhuZhou, Hunan, China
| | - Shaw-Pong Wan
- Department of Urology, The First People's Hospital of Xiaoshan, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Han K, Li YP. Prognostic predictive value of TLR4 polymorphisms in Han Chinese population with hypertrophic cardiomyopathy. Kaohsiung J Med Sci 2018; 34:569-575. [PMID: 30309485 DOI: 10.1016/j.kjms.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 10/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease and is an important cause of sudden death in patients of all ages. The aim of this study was to find out whether Toll-like receptor-4 (TLR4) polymorphism is associated with HCM. To explore the association between TLR4 gene polymorphisms and HCM, 486 HCM patients and 214 healthy controls were enrolled in a case-control study of Chinese Han population. Two single nucleotide polymorphisms (SNPs) in the promoter region of TLR4 gene, -728G > C (rs11536865) and -2081G > A (rs10983755), were genotyped by PCR restriction fragment length polymorphism (PCR-RFLP). The associations between TLR4 SNPs and overall survival (OS) of HCM patients were analyzed by the Kaplan-Meier estimation method and Cox proportional hazards regression analysis. Serum TLR4 level was determined by ELISA. Our results showed that the C allelic frequency of -728G > C and A allelic frequency of -2081G > A were higher in HCM patients than those in controls (P < 0.001). The ratios of genotype frequencies for both SNPs were associated with HCM susceptibility under three genetic models (P < 0.01). Two SNPs were also associated with the OS in HCM patients (P < 0.001). The CC genotype of -728G > C and AA genotype of -2081G > A were associated with poor prognosis of HCM (P < 0.001). Moreover, HCM patients had a higher serum TLR4 level compared with the controls (242.6 pg/ml versus 135.7 pg/ml, P = 0.027). In addition, significant associations were observed between CC genotype of -728G > C or AA genotype of -2081G > A and plasma TLR4 level (P < 0.01). The results of this study indicated that TLR4 polymorphisms may be a genetic susceptibility factor for HCM in the Han Chinese population.
Collapse
Affiliation(s)
- Ke Han
- Department of Cardiovascular Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Shandong Province, China.
| | - Yan-Ping Li
- Department of Infection Management, Yantai Affiliated Hospital of Binzhou Medical University, Shandong Province, China.
| |
Collapse
|
8
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
9
|
Anwar MA, Choi S. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis. Sci Rep 2017; 7:43807. [PMID: 28272553 PMCID: PMC5341570 DOI: 10.1038/srep43807] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
10
|
Polycarpou A, Holland MJ, Karageorgiou I, Eddaoudi A, Walker SL, Willcocks S, Lockwood DNJ. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination. Front Cell Infect Microbiol 2016; 6:72. [PMID: 27458573 PMCID: PMC4937034 DOI: 10.3389/fcimb.2016.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates “non-specific” protection to the human immune system.
Collapse
Affiliation(s)
- Anastasia Polycarpou
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Martin J Holland
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Ioannis Karageorgiou
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Ayad Eddaoudi
- Molecular and Cellular Immunology Unit, Institute of Child Health, University College London London, UK
| | - Stephen L Walker
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Sam Willcocks
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Diana N J Lockwood
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| |
Collapse
|
11
|
Su F, Bai F, Zhou H, Zhang Z. Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 55:166-178. [PMID: 27255539 DOI: 10.1016/j.bbi.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
12
|
Tokarz SA, DeValk J, Luo W, Pattnaik BR, Schrodi SJ, Pillers DAM. Cell line donor genotype and its influence on experimental phenotype: Toll-like receptor SNPs and potential variability in innate immunity. Mol Genet Metab 2016; 118:147-152. [PMID: 27324283 DOI: 10.1016/j.ymgme.2016.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
Cell lines are used to model a disease and provide valuable information regarding phenotype, mechanism, and response to novel therapies. Derived from individuals of diverse genetic backgrounds, the cell's genetic complement predicts the phenotype, and although some lines have been sequenced, little emphasis has been placed on genotyping. Toll-like receptors (TLRs) are essential in initiating the inflammatory cascade in response to infection. TLR single nucleotide polymorphism (SNP) alleles may predict an altered innate immune response: a SNP can affect TLR-dependent pathways and may alter experimental results. Thus, genotype variation may have far-reaching implications when using cell lines to model phenotypes. We recommend that cell lines be genotyped and cataloged in a fashion similar to that used for bacteria, with cumulative information being archived in an accessible central database to facilitate the understanding of SNP cell phenotypes reported in the literature.
Collapse
Affiliation(s)
- Sara A Tokarz
- Division of Neonatology & Newborn Nursery, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jessica DeValk
- Division of Neonatology & Newborn Nursery, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wenxiang Luo
- Division of Neonatology & Newborn Nursery, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bikash R Pattnaik
- Division of Neonatology & Newborn Nursery, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Steven J Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI 54449, USA
| | - De-Ann M Pillers
- Division of Neonatology & Newborn Nursery, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA; J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Thameem F, Puppala S, Farook VS, Kasinath BS, Blangero J, Duggirala R, Abboud HE. Genetic Variants in Toll-Like Receptor 4 Gene and Their Association Analysis with Estimated Glomerular Filtration Rate in Mexican American Families. Cardiorenal Med 2016; 6:301-6. [PMID: 27648011 DOI: 10.1159/000445754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 03/08/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Toll-like receptor 4 (TLR4) is one of the regulators of the innate immune response. Genetic variations in TLR4 have been associated with inflammatory diseases, including type 2 diabetes. However, to our knowledge, there are no reports on the role of variations in TLR4 in chronic kidney disease susceptibility. The objective of this study is to determine whether the genetic variants in TLR4 are associated with the estimated glomerular filtration rate (eGFR), a measure of renal function. METHODS To evaluate the association between TLR4 variants and eGFR, we used data obtained from 434 Mexican American participants from the San Antonio Family Diabetes/Gallbladder Study. GFR was estimated using the Modification of Diet in Renal Disease formula. The Asp(299)Gly (rs4986790) and Thr(399)Ile (rs4986791) variants of TLR4 were genotyped using the TaqMan assay. Association analyses between genotypes and eGFR were performed using the measured genotype approach. RESULTS Of the two genetic markers examined for association, only the Asp(299)Gly variant of TLR4 exhibited a nominally significant association with eGFR (p = 0.025) after accounting for the covariate effects of age and sex terms, diabetes, duration of diabetes, systolic blood pressure, body mass index, and antihypertensive treatment. Carriers of Gly299 had significantly decreased eGFR values. Although, the Thr(399)Ile variant failed to exhibit a statistically significant association with eGFR, the carriers of Ile399, however, showed a trend towards decrease in eGFR. CONCLUSION We show for the first time that Asp(299)Gly variants of TLR4 are associated with decrease in renal function in Mexican Americans.
Collapse
Affiliation(s)
- Farook Thameem
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Tex, USA; Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Sobha Puppala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Tex, USA
| | - Vidya S Farook
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Tex., and Edinburg, Tex., USA
| | - Balakuntalam S Kasinath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Tex, USA; South Texas Veterans Healthcare System, San Antonio, Tex, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Tex., and Edinburg, Tex., USA
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Tex., and Edinburg, Tex., USA
| | - Hanna E Abboud
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Tex, USA; South Texas Veterans Healthcare System, San Antonio, Tex, USA
| |
Collapse
|
14
|
Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, Park YR, Raychaudhuri S, Pouget JG, Hübenthal M, Folseraas T, Wang Y, Esko T, Metspalu A, Westra HJ, Franke L, Pers TH, Weersma RK, Collij V, D'Amato M, Halfvarson J, Jensen AB, Lieb W, Degenhardt F, Forstner AJ, Hofmann A, Schreiber S, Mrowietz U, Juran BD, Lazaridis KN, Brunak S, Dale AM, Trembath RC, Weidinger S, Weichenthal M, Ellinghaus E, Elder JT, Barker JNWN, Andreassen OA, McGovern DP, Karlsen TH, Barrett JC, Parkes M, Brown MA, Franke A. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016; 48:510-8. [PMID: 26974007 PMCID: PMC4848113 DOI: 10.1038/ng.3528] [Citation(s) in RCA: 512] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
We simultaneously investigated the genetic landscape of ankylosing spondylitis, Crohn's disease, psoriasis, primary sclerosing cholangitis and ulcerative colitis to investigate pleiotropy and the relationship between these clinically related diseases. Using high-density genotype data from more than 86,000 individuals of European ancestry, we identified 244 independent multidisease signals, including 27 new genome-wide significant susceptibility loci and 3 unreported shared risk loci. Complex pleiotropy was supported when contrasting multidisease signals with expression data sets from human, rat and mouse together with epigenetic and expressed enhancer profiles. The comorbidities among the five immune diseases were best explained by biological pleiotropy rather than heterogeneity (a subgroup of cases genetically identical to those with another disease, possibly owing to diagnostic misclassification, molecular subtypes or excessive comorbidity). In particular, the strong comorbidity between primary sclerosing cholangitis and inflammatory bowel disease is likely the result of a unique disease, which is genetically distinct from classical inflammatory bowel disease phenotypes.
Collapse
Affiliation(s)
- David Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Luke Jostins
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sarah L Spain
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Adrian Cortes
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jörn Bethune
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Buhm Han
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Yu Rang Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Rheumatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Yunpeng Wang
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia.,Division of Endocrinology, Boston Children's Hospital, Cambridge, Massachusetts, USA.,Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, Massachusetts, USA
| | | | - Harm-Jan Westra
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Rheumatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Tune H Pers
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, Massachusetts, USA.,Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Mauro D'Amato
- Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden.,BioCruces Health Research Institute and Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anders Boeck Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wolfgang Lieb
- Institute of Epidemiology, University Hospital Schleswig-Holstein, Kiel, Germany.,PopGen Biobank, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | | | | | | | | | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany.,Department of General Internal Medicine, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Ulrich Mrowietz
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian Albrechts University of Kiel, Kiel, Germany
| | - Brian D Juran
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| | - Konstantinos N Lazaridis
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders M Dale
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Stephan Weidinger
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian Albrechts University of Kiel, Kiel, Germany
| | - Michael Weichenthal
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian Albrechts University of Kiel, Kiel, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Jonathan N W N Barker
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Dermot P McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, California, USA.,Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Jeffrey C Barrett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Matthew A Brown
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, Queensland, Australia
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
15
|
Su F, Bai F, Zhou H, Zhang Z. Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 52:187-198. [PMID: 26526648 DOI: 10.1016/j.bbi.2015.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
16
|
Karody V, Reese S, Kumar N, Liedel J, Jarzembowski J, Sampath V. A toll-like receptor 9 (rs352140) variant is associated with placental inflammation in newborn infants. J Matern Fetal Neonatal Med 2015; 29:2210-6. [PMID: 26371589 DOI: 10.3109/14767058.2015.1081590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Chorioamnionitis contributes to premature birth and associated postnatal morbidity. The genetic basis of altered immune responses underlying placental inflammation (PI) remains understudied. The aim of this study was to evaluate the relationship among TLR signaling pathway polymorphisms and different patterns of PI. METHODS Prospective cohort study in infants involving cord blood collection and placental examination for PI. One hundred and fifty-nine infants enrolled in study out of which 28 were term (eight with PI) and 131 preterm (47 with PI). DNA from blood was genotyped for SNPs in TLR2, 4, 5, 9, NFKBI, NFKBIA, TIRAP, and IRAK1 genes using multiplexed single base extension assay. RESULTS While there were no differences in BW, GA, gender, race, and SPL among infants with or without PI, there was a higher incidence of PPROM, maternal smoking, drug use, and clinical chorioamnionitis among infants with PI. Out of nine TLR variants, only CT and/or TT genotypes of the TLR9 variant (rs352140) were significantly associated (p = 0.004) with any PI and maternal pattern of inflammation (p = 0.012) both by univariate analysis and logistic regression. CONCLUSIONS The presence of a variant T allele in a common SNP (rs352140) in the TLR9 gene whose product recognizes bacterial DNA is associated with increased PI.
Collapse
Affiliation(s)
- Vijender Karody
- a Department of Pediatrics , Medical College of Wisconsin and Children's Hospital of Wisconsin , Milwaukee , WI , USA
| | - Shawn Reese
- b Department of Pediatrics , Wheaton Franciscan Healthcare , Milwaukee , WI , USA
| | - Navin Kumar
- c Department of Neonatology , Hurley Medical Center , Flint , MI , USA
| | - Jennifer Liedel
- d Department of Pediatric Critical Care , The Children's Hospital of Montefiore , Bronx , NY , USA .,e Department of Pediatrics , Albert Einstein College of Medicine , Bronx , NY , USA , and
| | - Jason Jarzembowski
- f Department of Pathology , Medical College of Wisconsin and Children's Hospital of Wisconsin , Milwaukee , WI , USA
| | - Venkatesh Sampath
- a Department of Pediatrics , Medical College of Wisconsin and Children's Hospital of Wisconsin , Milwaukee , WI , USA
| |
Collapse
|
17
|
Iwalokun BA, Oluwadun A, Iwalokun SO, Agomo P. Toll-like receptor (TLR4) Asp299Gly and Thr399Ile polymorphisms in relation to clinical falciparum malaria among Nigerian children: a multisite cross-sectional immunogenetic study in Lagos. Genes Environ 2015; 37:3. [PMID: 27350800 PMCID: PMC4910769 DOI: 10.1186/s41021-015-0002-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/06/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION This study determined the association of TLR4 Asp299Gly and Thr399Ile with uncomplicated and severe malaria among Nigerian children of similar ethnic background in Lagos. The association of these SNPs with high parasite density, malnutrition, hyperpyrexia and anaemia was also investigated. METHODS Genomic DNA of the study participants was screened for the genotypes of TLR4 Asp299Gly and Thr399Ile by PCR-RFLP. Anthropometric measurement was performed on the Pf infected children stratified into asymptomatic malaria (control), uncomplicated and severe malaria (case). Parasites were detected by light microscopy and Hardy Weinberg Equilibrium (HWE) of SNP genotypes was also determined. RESULTS A total of 279 children comprising 182 children (62.1 % male; mean ± SEM age, 57.3 ± 1.7 months) with clinical falciparum malaria and 97 children (55.7 % male; mean ± SEM age, 55.6 ± 2.5 years) with asymptomatic falciparum malaria were enrolled. All the genotypes of both TLR4 SNPs were found in the study population with their minor alleles: 299Gly and 399Ile, found to be 17.6 % and 14.7 % in severe malaria children. Unlike in asymptomatic population, the genotype distribution of TLR4 Asp299Gly SNP was not in HWE in the clinical malaria group but did not condition susceptibility. However, Asp299Gly and Thr399Ile polymorphisms were found to increase the risk of severe malaria 3-fold and 8-fold respectively (P < 0.05). They also increased the risk of severe anaemia, high parasite density and severe malnutrition 3.8 -5.3-fold, 3.3 - 4.4-fold and 4-fold respectively. CONCLUSIONS Based on the above findings, we conclude that TLR4 Asp299Gly and Thr399Ile polymorphisms may modulate susceptibility to severe malaria among Nigerian children of Yoruba ethnic background.
Collapse
Affiliation(s)
- Bamidele Abiodun Iwalokun
- />Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba. PMB. 2013, Lagos, Nigeria
- />Department of Medical Microbiology & Parasitology, Olabisi Onabanjo University, Sagamu, Ogun State Nigeria
| | - Afolabi Oluwadun
- />Department of Medical Microbiology & Parasitology, Olabisi Onabanjo University, Sagamu, Ogun State Nigeria
| | | | - Philip Agomo
- />Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba. PMB. 2013, Lagos, Nigeria
| |
Collapse
|
18
|
Omrane I, Benammar-Elgaaied A. The immune microenvironment of the colorectal tumor: Involvement of immunity genes and microRNAs belonging to the TH17 pathway. Biochim Biophys Acta Rev Cancer 2015; 1856:28-38. [PMID: 25911397 DOI: 10.1016/j.bbcan.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 12/17/2022]
Abstract
Colorectal cancer is a complex and multifactorial disease. Various factors such as genetic, immunological, epigenetic and environmental constitute minor risk factors with their additive effects contributing to the advent of colorectal cancer. In order to evaluate the role of innate and adaptive immunity in the susceptibility, the presentation and the development of colorectal cancer, we considered an immunogenetic approach on polymorphisms in the TLR4 gene and NOD2/CARD15 gene (receptors of innate immunity) as well as in cytokine genes of the TH17 pathway IL17A, IL17F and cytokine receptor IL23R. Then, we evaluated the expression of microRNAs regulated by TLR4 and NOD2/CARD15 or targeting TLR4, IL17 and proinflammatory cytokines (IL-6, TNF) induced by IL17. Through a case-control study, we showed that the polymorphism of IL17A is associated with its susceptibility to colorectal cancer. Considering the tumor location, we found that the mutated alleles of IL17A, IL17F and IL23R are rather associated with colon cancer and not with rectum cancer. This result confirms that the colon and rectum are two different physiological entities. This study shows that TLR4, IL17A/F and IL23R polymorphisms are involved in the presentation of the disease with regard to tumor architecture, histology, and differentiation, advanced stage of the disease and lymph node and metastasis. Overall, these polymorphisms are associated with a poor prognosis of the disease. Furthermore, in order to evaluate the involvement of epigenetic mechanisms in the occurrence of colorectal cancer, we aimed at analyzing the tumor compared to a normal adjacent tissue and the expression of miRNAs (miR21, miR146a, miR135a, miR147b and miR155) that regulate immunity genes especially the cytokines of the TH17 pathway. This research has shown that microRNAs 21, 135a and 146a are associated with colorectal cancer. Indeed, these three miRs are overexpressed in cancer tissue compared to healthy tissue. These results clearly confirm the involvement of epigenetics in colorectal cancer. In other words, this study reveals the importance of immunity and specifically the TH17 pathway in the development and presentation of colorectal cancer. These results suggest that TLR4, IL17A, IL17F and IL23R polymorphisms as well as the expression of microRNAs that regulate inflammation and the TH17 pathway are associated with the evolution and progression of the colorectal tumor that could be considered as biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Inés Omrane
- Laboratoire de Génétique Immunologie et Pathologie Humaine, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Tunisia.
| | - Amel Benammar-Elgaaied
- Laboratoire de Génétique Immunologie et Pathologie Humaine, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Tunisia
| |
Collapse
|
19
|
Gioannini TL, Teghanemt A, Zhang D, Esparza G, Yu L, Weiss J. Purified monomeric ligand.MD-2 complexes reveal molecular and structural requirements for activation and antagonism of TLR4 by Gram-negative bacterial endotoxins. Immunol Res 2015; 59:3-11. [PMID: 24895101 DOI: 10.1007/s12026-014-8543-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major focus of work in our laboratory concerns the molecular mechanisms and structural bases of Gram-negative bacterial endotoxin recognition by host (e.g., human) endotoxin-recognition proteins that mediate and/or regulate activation of Toll-like receptor (TLR) 4. Here, we review studies of wild-type and variant monomeric endotoxin.MD-2 complexes first produced and characterized in our laboratories. These purified complexes have provided unique experimental reagents, revealing both quantitative and qualitative determinants of TLR4 activation and antagonism. This review is dedicated to the memory of Dr. Theresa L. Gioannini (1949-2014) who played a central role in many of the studies and discoveries that are reviewed.
Collapse
Affiliation(s)
- Theresa L Gioannini
- The Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2501 Crosspark Rd, Coralville, IA, 52241, USA
| | | | | | | | | | | |
Collapse
|
20
|
Nieto JC, Sánchez E, Román E, Vidal S, Oliva L, Guarner-Argente C, Poca M, Torras X, Juárez C, Guarner C, Soriano G. Cytokine production in patients with cirrhosis and TLR4 polymorphisms. World J Gastroenterol 2014; 20:17516-17524. [PMID: 25516666 PMCID: PMC4265613 DOI: 10.3748/wjg.v20.i46.17516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the cytokine production by peripheral blood cells from cirrhotic patients with and without TLR4 D299G and/or T399I polymorphisms.
METHODS: The study included nine patients with cirrhosis and TLR4 D299G and/or T399I polymorphisms, and 10 wild-type patients matched for age, sex and degree of liver failure. TLR4 polymorphisms were determined by sequence-based genotyping. Cytokine production by peripheral blood cells was assessed spontaneously and also after lipopolysaccharide (LPS) and lipoteichoic acid (LTA) stimulation.
RESULTS: Patients with TLR4 polymorphisms had a higher incidence of previous hepatic encephalopathy than wild-type patients (78% vs 20%, P = 0.02). Spontaneous production of interleukin (IL)-6 and IL-10 was lower in patients with TLR4 polymorphisms than in wild-type patients [IL-6: 888.7 (172.0-2119.3) pg/mL vs 5540.4 (1159.2-26053.9) pg/mL, P < 0.001; IL-10: 28.7 (6.5-177.1) pg/mL vs 117.8 (6.5-318.1) pg/mL, P = 0.02]. However, the production of tumor necrosis factor-α, IL-6 and IL-10 after LPS and LTA stimulation was similar in the two groups.
CONCLUSION: TLR4 polymorphisms were associated with a distinctive pattern of cytokine production in cirrhotic patients, suggesting that they play a role in the development of cirrhosis complications.
Collapse
|
21
|
Singh K, Kant S, Singh VK, Agrawal NK, Gupta SK, Singh K. Toll-like receptor 4 polymorphisms and their haplotypes modulate the risk of developing diabetic retinopathy in type 2 diabetes patients. Mol Vis 2014; 20:704-13. [PMID: 24883015 PMCID: PMC4037533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/24/2014] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Persistent inflammation and impaired neovascularization in type 2 diabetes mellitus (T2DM) patients may lead to development of macro- and microvascular complications. Diabetic retinopathy (DR) is one of the secondary microvascular complications of T2DM. Improper activation of the innate immune system may be an important contributor in the pathophysiology of DR. Toll-like receptor 4 (TLR4) is an important mediator of innate immunity, and genetic alterations in TLR4 support inflammation in the hyperglycemic condition. The present work was designed to investigate whether the TLR4 single nucleotide polymorphisms (SNPs) rs4986790, rs4986791, rs10759931, rs1927911, and rs1927914 are associated with DR in a north Indian population. METHODS The study group of 698 individuals (128 DR, 250 T2DM, 320 controls) was genotyped by PCR-RFLP. Haplotype and linkage disequilibrium between SNPs were determined using Haploview software. RESULTS Combined risk genotypes of TLR4 SNPs rs10759931 (odds ratio [OR] 1.50, p = 0.05) and rs1927914 (OR 1.48, p = 0.05) were found to be significantly associated with pathogenesis of DR. A total of 14 haplotypes with frequency >1% were obtained using Haploview software. Haplotypes ACATC (37.5%) and ACATT (14.8%) were the two most common haplotypes obtained. CONCLUSIONS Results of the present case-control study that included 698 north Indian subjects suggested that TLR4 SNPs rs10759931 and rs1927914 modulate the risk of DR in T2DM cases. Association analysis using haplotypes showed none of the haplotypes were associated with either susceptibility or resistance to DR in a north Indian population.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Shri Kant
- Department of Ophthalmology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vivek Kumar Singh
- Department of Mining Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Neeraj K. Agrawal
- Department of Endocrinology and Metabolism, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjeev K. Gupta
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
The Toll-like receptor 4 polymorphism Asp299Gly but not Thr399Ile influences TLR4 signaling and function. PLoS One 2014; 9:e93550. [PMID: 24695807 PMCID: PMC3973565 DOI: 10.1371/journal.pone.0093550] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/05/2014] [Indexed: 11/19/2022] Open
Abstract
The common, co-segregating Toll-like receptor 4 (TLR4) non-synonymous single nucleotide polymorphisms (SNPs), Asp299Gly and Thr399Ile, are associated with hyporesponsiveness to inhaled lipopolysaccharide (LPS) and increased susceptibility to Gram negative pathogens in humans. The purpose of this study was to identify the relative contributions of the Asp299Gly and the Thr399Ile variants in inhibiting the function of TLR4. 293/hMD2-CD14 cell line was transfected with lentiviral constructs containing human wild type (WT) TLR4-EGFP or TLR4-EGFP with Asp299Gly, Thr399Ile or Asp299Gly/Thr399Ile complementary DNA (cDNA). Multiple stable cell lines were established for each construct: three for WT TLR4, Asp299Gly, and Thr399Ile, and only two for Asp299Gly/Thr399Ile mutants and EGFP control. We did not observe a significant effect of polymorphisms on cell surface and intracellular TLR4 expression nor were there any significant differences in TLR4 and EGFP protein levels assessed by Western blotting and confocal microscopy among the multiple cell lines of each of the constructs. All cell lines had a dose-dependent responsiveness to LPS stimulation. However, compared to the WT TLR4, cells expressing TLR4 with Asp299Gly but not Thr399Ile polymorphism produced significantly less (P<0.05) IL-8 following LPS stimulation. Similarly, cells expressing TLR4 Asp299Gly but not Thr399Ile allele had significantly lower percentage of phosphorylated and total NF-κB P65 following LPS stimulation. While we could not do statistics on the Asp299Gly/Thr399Ile group, we observed a reduced responsiveness to LPS compared to WT TLR4. Taken together, we observed that the TLR4 Asp299Gly variant, but not the Thr399Ile variant, is responsible for impaired responsiveness of TLR4 to LPS and corresponding activation of NF-κB.
Collapse
|
23
|
Ziakas PD, Prodromou ML, El Khoury J, Zintzaras E, Mylonakis E. The role of TLR4 896 A>G and 1196 C>T in susceptibility to infections: a review and meta-analysis of genetic association studies. PLoS One 2013; 8:e81047. [PMID: 24282567 PMCID: PMC3840016 DOI: 10.1371/journal.pone.0081047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/17/2013] [Indexed: 01/13/2023] Open
Abstract
Background Toll-like receptor 4 plays a role in pathogen recognition, and common polymorphisms may alter host susceptibility to infectious diseases. Purpose To review the association of two common polymorphisms (TLR4 896A>G and TLR4 1196C>T) with infectious diseases. Data Sources We searched PubMed and EMBASE up to March 2013 for pertinent literature in English, and complemented search with references lists of eligible studies. Study Selection We included all studies that: reported an infectious outcome; had a case-control design and reported the TLR4 896A>G and/or TLR4 1196C>T genotype frequencies; 59 studies fulfilled these criteria and were analyzed. Data Extraction Two authors independently extracted study data. Data Synthesis The generalized odds ratio metric (ORG) was used to quantify the impact of TLR4 variants on disease susceptibility. A meta-analysis was undertaken for outcomes reported in >1 study. Eleven of 37 distinct outcomes were significant. TLR4 896 A>G increased risk for all parasitic infections (ORG 1.59; 95%CI 1.05-2.42), malaria (1.31; 95%CI 1.04-1.66), brucellosis (2.66; 95%CI 1.66-4.27), cutaneous leishmaniasis (7.22; 95%CI 1.91-27.29), neurocysticercosis (4.39; 95%CI 2.53-7.61), Streptococcus pyogenes tonsillar disease (2.93; 95%CI 1.24-6.93) , typhoid fever (2.51; 95%CI 1.18-5.34) and adult urinary tract infections (1.98; 95%CI 1.04-3.98), but was protective for leprosy (0.36; 95%CI 0.22-0.60). TLR4 1196 C>T effects were similar to TLR4 896 A>G for brucellosis, cutaneous leishmaniasis, leprosy, typhoid fever and S. pyogenes tonsillar disease, and was protective for bacterial vaginosis in pregnancy (0.55; 95%CI 0.31-0.98) and Haemophilus influenzae tonsillar disease (0.42; 95%CI 0.17-1.00). The majority of significant associations were among predominantly Asian populations and significant associations were rare among European populations. Conclusions Depending on the type of infection and population, TLR4 polymorphisms are associated with increased, decreased or no difference in infectious disease. This may be due to differential functional expression of TLR4, the co-segregation of TLR4 variants or a favorable inflammatory response.
Collapse
Affiliation(s)
- Panayiotis D. Ziakas
- Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Michael L. Prodromou
- Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts,United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Elias Zintzaras
- Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, United States of America
- Department of Biomathematics, School of Medicine, University of Thessaly, Larissa, Greece
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
24
|
Guinan EC, Palmer CD, Mancuso CJ, Brennan L, Stoler-Barak L, Kalish LA, Suter EE, Gallington LC, Huhtelin DP, Mansilla M, Schumann RR, Murray JC, Weiss J, Levy O. Identification of single nucleotide polymorphisms in hematopoietic cell transplant patients affecting early recognition of, and response to, endotoxin. Innate Immun 2013; 20:697-711. [PMID: 24107515 DOI: 10.1177/1753425913505122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hematopoietic cell transplant (HCT) is a life-saving therapy for many malignant and non-malignant bone marrow diseases. Associated morbidities are often due to transplant-related toxicities and infections, exacerbated by regimen-induced immune suppression and systemic incursion of bacterial products. Patients undergoing myeloablative conditioning for HCT become endotoxemic and display blood/plasma changes consistent with lipopolysaccharide (LPS)-induced systemic innate immune activation. Herein, we addressed whether patients scheduled for HCT display differences in recognition/response to LPS ex vivo traceable to specific single nucleotide polymorphisms (SNPs). Two SNPs of LPS binding protein (LBP) were associated with changes in plasma LBP levels, with one LBP SNP also associating with differences in efficiency of extraction and transfer of endotoxin to myeloid differentiation factor-2 (MD-2), a step needed for activation of TLR4. None of the examined SNPs of CD14, bactericidal/permeability-increasing protein (BPI), TLR4 or MD-2 were associated with corresponding protein plasma levels or endotoxin delivery to MD-2, but CD14 and BPI SNPs significantly associated with differences in LPS-induced TNF-α release ex vivo and infection frequency, respectively. These findings suggest that specific LBP, CD14 and BPI SNPs might be contributory assessments in studies where clinical outcome may be affected by host response to endotoxin and bacterial infection.
Collapse
Affiliation(s)
- Eva C Guinan
- Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christine D Palmer
- Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, MA, USA
| | | | | | | | - Leslie A Kalish
- Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| | | | | | - David P Huhtelin
- University of Iowa and Veterans' Administration Medical Center, Coralville, Iowa City, IA, USA
| | - Maria Mansilla
- Department of Pediatrics, University of Iowa, IA, Iowa City, USA
| | - Ralf R Schumann
- Institute for Microbiology, Charité-University Medical Center, Berlin, Germany
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, IA, Iowa City, USA
| | - Jerrold Weiss
- University of Iowa and Veterans' Administration Medical Center, Coralville, Iowa City, IA, USA
| | - Ofer Levy
- Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Positive link between variant Toll-like receptor 4 (Asp299Gly and Thr399Ile) and colorectal cancer patients with advanced stage and lymph node metastasis. Tumour Biol 2013; 35:545-51. [PMID: 23949880 DOI: 10.1007/s13277-013-1075-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/05/2013] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are considered as major endotoxin-signaling receptor and as crucial sensors of innate immunity. TLRs recognize pathogen-associated molecular patterns; induce effectors genes involving inflammatory cytokines and therefore initiation of adaptative immune responses against pathogens. Recently, it has been shown that TLRs are involved in tumor progression. In fact, increased level of TLR4 is associated with progression of colon malignancies. Even, TLR4 polymorphism has been shown associated with susceptibility to have colorectal cancer. Our study aimed to investigate an association between TLR4 Asp299Gly (D299G) and Thr399Ile (T399I) polymorphisms in Tunisian patients with colorectal cancer. Using a primer extension method (SNaPshot), we genotyped two variants of TLR4 D299G and T399I in 100 patients with colorectal cancer and 140 healthy controls in Tunisian population. Interesting, we noted a significant association between T399I polymorphism and tumor differentiation (p = 0.027) and tumor architecture (p = 0.02) in colorectal cancer (CRC) patients. We also showed a significant association of D299G with an increased risk of advanced stage (p = 0.03). Finally, we observed a positive link between D299G and T399I polymorphisms and CRC patients with lymph node (p = 0.00024; p = 0.0005, respectively) and metastasis (p = 0.001; p = 0.002, respectively). However, we found no evidence to support a significant association between TLR4 D299G and T399I polymorphisms and colorectal cancer susceptibility. Our findings suggest that TLR4 D299G and T399I polymorphisms are significantly associated with clinical features variables. TLR4 polymorphisms may serve as biomarker of disease progression. Therefore, our results need confirmation in even larger studies.
Collapse
|
26
|
Association of Toll-like receptor 4 polymorphisms with diabetic foot ulcers and application of artificial neural network in DFU risk assessment in type 2 diabetes patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:318686. [PMID: 23936790 PMCID: PMC3725976 DOI: 10.1155/2013/318686] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023]
Abstract
The Toll-Like receptor 4 (TLR4) plays an important role in immunity, tissue repair, and regeneration. The objective of the present work was to evaluate the association of TLR4 single nucleotide polymorphisms (SNPs) rs4986790, rs4986791, rs11536858 (merged into rs10759931), rs1927911, and rs1927914 with increased diabetic foot ulcer (DFU) risk in patients with type 2 diabetes mellitus (T2DM). PCR-RFLP was used for genotyping TLR4 SNPs in 125 T2DM patients with DFU and 130 controls. The haplotypes and linkage disequilibrium between the SNPs were determined using Haploview software. Multivariate linear regression (MLR) and artificial neural network (ANN) modeling was done to observe their predictability for the risk of DFU in T2DM patients. Risk genotypes of all SNPs except rs1927914 were significantly associated with DFU. Haplotype ACATC (P value = 9.3E − 5) showed strong association with DFU risk. Two haplotypes ATATC (P value = 0.0119) and ATGTT (P value = 0.0087) were found to be protective against DFU. In conclusion TLR4 SNPs and their haplotypes may increase the risk of impairment of wound healing in T2DM patients. ANN model (83%) is found to be better than the MLR model (76%) and can be used as a tool for the DFU risk assessment in T2DM patients.
Collapse
|
27
|
Medvedev AE. Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer. J Interferon Cytokine Res 2013; 33:467-84. [PMID: 23675778 DOI: 10.1089/jir.2012.0140] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptors (TLRs) are germ-line-encoded innate immune sensors that recognize conserved microbial structures and host alarmins and signal expression of MHC proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These processes activate immediate and early mechanisms of innate host defense, as well as initiate and orchestrate adaptive immune responses. Several single-nucleotide polymorphisms (SNPs) within the TLR genes have been associated with altered susceptibility to infectious, inflammatory, and allergic diseases, and have been found to play a role in tumorigenesis. Critical advances in our understanding of innate immune functions and genome-wide association studies (GWAS) have uncovered complex interactions of genetic polymorphisms within TLRs and environmental factors. However, conclusions obtained in the course of such analyses are restricted by limited power of many studies that is likely to explain controversial findings. Further, linkages to certain ethnic backgrounds, gender, and the presence of multigenic effects further complicate the interpretations of how the TLR SNPs affect immune responses. For many TLRs, the molecular mechanisms by which SNPs impact receptor functions remain unknown. In this review, I have summarized current knowledge about the TLR polymorphisms, their impact on TLR signaling, and associations with various inflammatory, infectious, allergic diseases and cancers, and discussed the directions of future scientific research.
Collapse
Affiliation(s)
- Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| |
Collapse
|
28
|
Teghanemt A, Weiss JP, Gioannini TL. Radioiodination of an endotoxin·MD-2 complex generates a novel sensitive, high-affinity ligand for TLR4. Innate Immun 2013; 19:545-60. [PMID: 23439691 DOI: 10.1177/1753425913475688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A purified complex of metabolically labeled [(3)H]lipooligosaccharide (LOS) and recombinant human myeloid differentiation factor 2 (MD-2), [(3)H]LOS·MD-2, has been used to demonstrate pM affinity binding interactions with soluble TLR4 ectodomain (TLR4ecd). For measurement of the binding parameters of membrane-bound TLR4, we took advantage of the stability of endotoxin·MD-2 and tyrosine(s) present on the surface of MD-2 to radioiodinate LOS·MD-2. Radioiodinated LOS·MD-2 generated a reagent with an estimated 1:1 molar ratio of [(125)I] to sMD-2 with 20-fold higher specific radioactivity and TLR4-activating properties comparable to metabolically-labeled LOS·MD-2. LOS·MD-2[(125)I] and [(3)H]LOS·MD-2 have similar affinities for soluble (FLAG) TLR4ecd and for membrane-bound TLR4 in HEK293T/TLR4 cells. In a similar dose-dependent manner, sMD-2 and LOS·MD-2 inhibit LOS·MD-2[(125)I] binding to TLR4 indicating the pM affinity binding of LOS·MD-2[(125)I] is agonist-independent. LOS·MD-2[(125)I] allowed measurement of low levels of cell-surface human or murine TLR4 expressed by stable cell lines (2000-3000 sites/cell) and quantitatively measures low levels of 'MD-2-free' TLR4 (est. 250 molecules/cell) in cells co-expressing TLR4 and MD-2. Occupation of 50-100 TLR4/cell by LOS·MD-2 is sufficient to trigger measurable TLR4-dependent cell activation. LOS·MD-2[(125)I] provides a powerful reagent to measure quantitatively functional human and murine cell-surface TLR4, including in cells where surface TLR4 is potentially functionally significant but not detectable by other methods.
Collapse
Affiliation(s)
- Athmane Teghanemt
- 1Inflammation Program, Department of Internal Medicine, Roy A. and Lucille J. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
29
|
Manolakis AC, Kapsoritakis AN, Kapsoritaki A, Tiaka EK, Oikonomou KA, Lotis V, Vamvakopoulou D, Davidi I, Vamvakopoulos N, Potamianos SP. Readressing the role of Toll-like receptor-4 alleles in inflammatory bowel disease: colitis, smoking, and seroreactivity. Dig Dis Sci 2013; 58:371-80. [PMID: 22918682 DOI: 10.1007/s10620-012-2348-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/28/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Toll-like receptor (TLR) polymorphisms, and especially TLR-4 Asp299Gly and TLR-4 Thr399Ile, have been linked with Crohn's disease (CD) and to a lesser extent with ulcerative colitis (UC), CD behavior, and compromised seroreactivity to microbial antigens. Available data, however, are conflicting. AIMS To address these issues, the distribution of TLR-4 polymorphic alleles was assessed in patients with UC, CD, and healthy controls (HC), considering patient and disease characteristics as well as related serological markers. METHODS TLR-4 Asp299Gly and TLR-4 Thr399Ile polymorphisms were determined in 187 UC and 163 CD patients and 274 randomly selected HC. C reactive protein, anti-Saccharomyces cerevisiae mannan antibodies, anti-mannobioside carbohydrate antibodies, anti-laminariobioside carbohydrate antibodies IgG, and anti-chitobioside carbohydrate antibodies (ACCA) IgA levels were also assessed. RESULTS UC and especially pancolitis patients carried the mutant alleles more frequently compared to CD patients and HC or UC patients with different disease extents (P = 0.002 and P < 0.0001, respectively). Involvement of the colon was more frequent in CD patients with mutant TLR-4 compared to those with wild-type alleles (P = 0.004). Levels and positivity rates of ACCA IgA were lower in inflammatory bowel disease (IBD) patients carrying the mutant compared to those with wild-type alleles (0.075 < P < 0.05). Despite the mutant TLR-4 predisposition for UC pancolitis, smoking was associated with more limited disease (P < 0.001). CONCLUSIONS The presence of TLR-4 Asp299Gly and TLR-4 Thr399Ile polymorphisms is related to UC pancolitis, involvement of the colon in CD, and lower ACCA IgA levels. Smoking reduces the extent of UC, even in the presence of mutant alleles.
Collapse
Affiliation(s)
- Anastassios C Manolakis
- Department of Gastroenterology, University Hospital of Larissa, University of Thessaly, School of Medicine, 41110, Larissa, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ohto U, Yamakawa N, Akashi-Takamura S, Miyake K, Shimizu T. Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I. J Biol Chem 2012; 287:40611-7. [PMID: 23055527 DOI: 10.1074/jbc.m112.404608] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND TLR4 polymorphism replacing Asp-299 with Gly and Thr-399 with Ile (D299G/T399I) causes LPS hyporesponsiveness. RESULTS TLR4(SNPs)·MD-2·LPS exhibits an agonistic 2:2:2 architecture. Local structural differences were observed around D299G, but not around T399I, SNP site. CONCLUSION These local differences cause the modulation of surface properties of TLR4, which may affect ligand binding. SIGNIFICANCE This study provides structural evidence of the functionality of the mutant TLR4 carrying the SNPs. Toll-like receptor 4 (TLR4) and its coreceptor MD-2 recognize bacterial lipopolysaccharide (LPS) and signal the innate immune response. Two single nucleotide polymorphisms (SNPs) of human TLR4, D299G and T399I, have been identified and suggested to be associated with LPS hyporesponsiveness. Moreover, the SNPs have been proposed to be associated with a variety of infectious and noninfectious diseases. However, how the SNPs affect the function of TLR4 remains largely unknown. Here, we report the crystal structure of the human TLR4 (D299G/T399I)·MD-2·LPS complex at 2.4 Å resolution. The ternary complex exhibited an agonistic "m"-shaped 2:2:2 architecture that was similar to that of the human wild type TLR4·MD-2·LPS complex. Local structural differences that might affect the binding of the ligands were observed around D299G, but not around T399I, SNP site.
Collapse
Affiliation(s)
- Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
31
|
Yamakawa N, Ohto U, Akashi-Takamura S, Takahashi K, Saitoh SI, Tanimura N, Suganami T, Ogawa Y, Shibata T, Shimizu T, Miyake K. Human TLR4 polymorphism D299G/T399I alters TLR4/MD-2 conformation and response to a weak ligand monophosphoryl lipid A. Int Immunol 2012; 25:45-52. [DOI: 10.1093/intimm/dxs084] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
32
|
Figueroa L, Xiong Y, Song C, Piao W, Vogel SN, Medvedev AE. The Asp299Gly polymorphism alters TLR4 signaling by interfering with recruitment of MyD88 and TRIF. THE JOURNAL OF IMMUNOLOGY 2012; 188:4506-15. [PMID: 22474023 DOI: 10.4049/jimmunol.1200202] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asp(299)Gly (D299G) and, to a lesser extent, Thr(399)Ile (T399I) TLR4 polymorphisms have been associated with gram-negative sepsis and other infectious diseases, but the mechanisms by which they affect TLR4 signaling are unclear. In this study, we determined the impact of the D299G and T399I polymorphisms on TLR4 expression, interactions with myeloid differentiation factor 2 (MD2), LPS binding, and LPS-mediated activation of the MyD88- and Toll/IL-1R resistance domain-containing adapter inducing IFN-β (TRIF) signaling pathways. Complementation of human embryonic kidney 293/CD14/MD2 transfectants with wild-type (WT) or mutant yellow fluorescent protein-tagged TLR4 variants revealed comparable total TLR4 expression, TLR4-MD2 interactions, and LPS binding. FACS analyses with anti-TLR4 Ab showed only minimal changes in the cell-surface levels of the D299G TLR4. Cells transfected with D299G TLR4 exhibited impaired LPS-induced phosphorylation of p38 and TANK-binding kinase 1, activation of NF-κB and IFN regulatory factor 3, and induction of IL-8 and IFN-β mRNA, whereas T399I TLR4 did not cause statistically significant inhibition. In contrast to WT TLR4, expression of the D299G mutants in TLR4(-/-) mouse macrophages failed to elicit LPS-mediated induction of TNF-α and IFN-β mRNA. Coimmunoprecipitation revealed diminished LPS-driven interaction of MyD88 and TRIF with the D299G TLR4 species, in contrast to robust adapter recruitment exhibited by WT TLR4. Thus, the D299G polymorphism compromises recruitment of MyD88 and TRIF to TLR4 without affecting TLR4 expression, TLR4-MD2 interaction, or LPS binding, suggesting that it interferes with TLR4 dimerization and assembly of intracellular docking platforms for adapter recruitment.
Collapse
Affiliation(s)
- Leandra Figueroa
- Department of Medical and Research Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
33
|
Young JL, Mora A, Cerny A, Czech MP, Woda B, Kurt-Jones EA, Finberg RW, Corvera S. CD14 deficiency impacts glucose homeostasis in mice through altered adrenal tone. PLoS One 2012; 7:e29688. [PMID: 22253759 PMCID: PMC3258240 DOI: 10.1371/journal.pone.0029688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 12/03/2011] [Indexed: 01/22/2023] Open
Abstract
The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis.
Collapse
Affiliation(s)
- James L. Young
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Interdisciplinary Graduate Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alfonso Mora
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anna Cerny
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Bruce Woda
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Evelyn A. Kurt-Jones
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert W. Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Eyking A, Ey B, Rünzi M, Roig AI, Reis H, Schmid KW, Gerken G, Podolsky DK, Cario E. Toll-like receptor 4 variant D299G induces features of neoplastic progression in Caco-2 intestinal cells and is associated with advanced human colon cancer. Gastroenterology 2011; 141:2154-65. [PMID: 21920464 PMCID: PMC3268964 DOI: 10.1053/j.gastro.2011.08.043] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 07/31/2011] [Accepted: 08/23/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The Toll-like receptor (TLR) 4 mediates homeostasis of the intestinal epithelial cell (IEC) barrier. We investigated the effects of TLR4-D299G on IEC functions. METHODS We engineered IECs (Caco-2) to stably overexpress hemagglutinin-tagged wild-type TLR4, TLR4-D299G, or TLR4-T399I. We performed gene expression profiling using DNA microarray analysis. Findings were confirmed by real-time, quantitative, reverse-transcriptase polymerase chain reaction, immunoblot, enzyme-linked immunosorbent assay, confocal immunofluorescence, and functional analyses. Tumorigenicity was tested using the CD1 nu/nu mice xenograft model. Human colon cancer specimens (N = 214) were genotyped and assessed for disease stage. RESULTS Caco-2 cells that expressed TLR4-D299G underwent the epithelial-mesenchymal transition and morphologic changes associated with tumor progression, whereas cells that expressed wild-type TLR4 or TLR4-T399I did not. Caco-2 cells that expressed TLR4-D299G had significant increases in expression levels of genes and proteins associated with inflammation and/or tumorigenesis compared with cells that expressed other forms of TLR4. The invasive activity of TLR4-D299G Caco-2 cells required Wnt-dependent activation of STAT3. In mice, intestinal xenograft tumors grew from Caco-2 cells that expressed TLR4-D299G, but not cells that expressed other forms of TLR4; tumor growth was blocked by a specific inhibitor of STAT3. Human colon adenocarcinomas from patients with TLR4-D299G were more frequently of an advanced stage (International Union Against Cancer [UICC] ≥III, 70% vs 46%; P = .0142) with metastasis (UICC IV, 42% vs 19%; P = .0065) than those with wild-type TLR4. Expression of STAT3 messenger RNA was higher among colonic adenocarcinomas with TLR4-D299G than those with wild-type TLR4. CONCLUSIONS TLR4-D299G induces features of neoplastic progression in intestinal epithelial Caco-2 cells and associates with aggressive colon cancer in humans, implying a novel link between aberrant innate immunity and colonic cancerogenesis.
Collapse
Affiliation(s)
- Annette Eyking
- Division of Gastroenterology & Hepatology, University Hospital of Essen, Medical School, University of Duisburg-Essen, Essen, Germany
| | - Birgit Ey
- Division of Gastroenterology & Hepatology, University Hospital of Essen, Medical School, University of Duisburg-Essen, Essen, Germany
| | - Michael Rünzi
- Division of Gastroenterology and Metabolic Diseases, Kliniken Essen-Süd, Essen, Germany
| | - Andres I. Roig
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Henning Reis
- Institute of Pathology and Neuropathology, University Hospital of Essen, Medical School, University of Duisburg-Essen, Essen, Germany
| | - Kurt W. Schmid
- Institute of Pathology and Neuropathology, University Hospital of Essen, Medical School, University of Duisburg-Essen, Essen, Germany
| | - Guido Gerken
- Division of Gastroenterology & Hepatology, University Hospital of Essen, Medical School, University of Duisburg-Essen, Essen, Germany
| | - Daniel K. Podolsky
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Elke Cario
- Division of Gastroenterology & Hepatology, University Hospital of Essen, Medical School, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
35
|
Esparza GA, Teghanemt A, Zhang D, Gioannini TL, Weiss JP. Endotoxin{middle dot}albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4. Innate Immun 2011; 18:478-91. [PMID: 21994253 DOI: 10.1177/1753425911422723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Response to Gram-negative bacteria (GNB) is partially mediated by the recognition of GNB-derived endotoxin by host cells. Potent host response to endotoxin depends on the sequential interaction of endotoxin with lipopolysaccharide binding protein (LBP), CD14, MD-2 and TLR4. While CD14 facilitates the efficient transfer of endotoxin monomers to MD-2 and MD-2·TLR4, activation of MD-2·TLR4 can occur in the absence of CD14 through an unknown mechanism. Here, we show that incubation of purified endotoxin (E) aggregates (E(agg), M ( r ) ≥ 20 million) in PBS with ≥ 0.1% albumin in the absence of divalent cations Ca(2+) and Mg(2+), yields E·albumin complexes (M ( r ) ∼70,000). E·albumin transfers E monomers to sMD-2 or sMD-2·TLR4 ectodomain (TLR4(ecd)) with a 'K (d)' of ∼4 nM and induces MD-2·TLR4-dependent, CD14-independent cell activation with a potency only 10-fold less than that of monomeric E·CD14 complexes. Our findings demonstrate, for the first time, a mechanistic basis for delivery of endotoxin monomers to MD-2 and for activation of TLR4 that is independent of CD14.
Collapse
Affiliation(s)
- Gregory A Esparza
- Immunology Program, University of Iowa Graduate College, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
36
|
Manolakis AC, Kapsoritakis AN, Tiaka EK, Sidiropoulos A, Gerovassili A, Satra M, Vamvakopoulou D, Tsiopoulos F, Papanas N, Skoularigis I, Potamianos SP, Vamvakopoulos N. TLR4 gene polymorphisms: evidence for protection against type 2 diabetes but not for diabetes-associated ischaemic heart disease. Eur J Endocrinol 2011; 165:261-7. [PMID: 21628510 DOI: 10.1530/eje-11-0280] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Several factors either predisposing or protecting from the onset of diabetes mellitus type 2 (DM2) have been proposed. Two specific polymorphisms of toll-like receptor 4 (TLR4; Asp299Gly and Thr399Ile) have recently been identified either as candidate protector genes against DM2 and associated neuropathy or risk alleles for the manifestation of diabetic retinopathy. The impact of these alleles on the risk for ischaemic heart disease (IHD) is controversial while their role in diabetes-associated IHD has never been studied. DESIGN AND METHODS In order to clarify the potential impact of TLR4 polymorphisms on the predisposition for DM2 as well as on diabetes-related IHD vulnerability, the distribution of the mutant TLR4 Asp299Gly and Thr399Ile alleles in 286 DM2 patients and 413 non-DM2 controls with or without IHD, was examined. RESULTS Mutant alleles were predominantly detected in 79/413 non-diabetic individuals versus 15/286 DM2 patients (P<0.0001). The rates of positivity for mutant alleles were similar among diabetic patients with or without IHD (7/142 vs 8/144, P>0.1), whereas they proved different among non-diabetic individuals with or without IHD (39/145 vs 40/268, P=0.004). Following multivariate analysis, the difference between diabetic and non-diabetic subjects, with regard to TLR4 mutations alone, remained significant (P=0.04). CONCLUSIONS Mutant TLR4 alleles confer protection against DM2. However, their presence does not seem to play any role, protective or aggravating, in the manifestation of IHD either in diabetic or in non-diabetic individuals.
Collapse
Affiliation(s)
- A C Manolakis
- Departments of Gastroenterology Molecular Biology and Genetics, School of Medicine, University of Thessaly, 41110 Mezourlo, Larissa, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|