1
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Schroth FN, Xu Y, Chen R, Rong S, Shushakova N, Gueler F, Haller H, Limbourg FP. Validation of CSF-1 receptor (CD115) staining for analysis of murine monocytes by flow cytometry. J Leukoc Biol 2024; 115:573-582. [PMID: 38038378 DOI: 10.1093/jleuko/qiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Frauline Nicole Schroth
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Yuangao Xu
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Rongjun Chen
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
- Phenos GmbH, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| |
Collapse
|
2
|
Supino D, Minute L, Mariancini A, Riva F, Magrini E, Garlanda C. Negative Regulation of the IL-1 System by IL-1R2 and IL-1R8: Relevance in Pathophysiology and Disease. Front Immunol 2022; 13:804641. [PMID: 35211118 PMCID: PMC8861086 DOI: 10.3389/fimmu.2022.804641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs to a complex family including ligands with agonist activity, receptor antagonists, and an anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R) family, include signaling receptor complexes, decoy receptors, and negative regulators. Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a tight control of inflammatory responses, which ensures a balance between amplification of innate immunity and uncontrolled inflammation. IL-1 family members interact with innate immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid cells, contributing to their differentiation and functional polarization and plasticity. Here we will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their complex impact in pathology, ranging from infections and inflammatory responses, to cancer and neurologic disorders, as well as clinical implications and potential therapeutic exploitation will be presented.
Collapse
Affiliation(s)
- Domenico Supino
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Luna Minute
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Mariancini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Elena Magrini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
3
|
Huang QQ, Doyle R, Chen SY, Sheng Q, Misharin AV, Mao Q, Winter DR, Pope RM. Critical role of synovial tissue-resident macrophage niche in joint homeostasis and suppression of chronic inflammation. SCIENCE ADVANCES 2021; 7:7/2/eabd0515. [PMID: 33523968 PMCID: PMC7787490 DOI: 10.1126/sciadv.abd0515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/17/2020] [Indexed: 05/30/2023]
Abstract
Little is known about the mechanisms regulating the transition of circulating monocytes into pro- or anti-inflammatory macrophages in chronic inflammation. Here, we took advantage of our novel mouse model of rheumatoid arthritis, in which Flip is deleted under the control of a CD11c promoter (HUPO mice). During synovial tissue homeostasis, both monocyte-derived F4/80int and self-renewing F4/80hi tissue-resident, macrophage populations were identified. However, in HUPO mice, decreased synovial tissue-resident macrophages preceded chronic arthritis, opened a niche permitting the influx of activated monocytes, with impaired ability to differentiate into F4/80hi tissue-resident macrophages. In contrast, Flip-replete monocytes entered the vacated niche and differentiated into tissue-resident macrophages, which suppressed arthritis. Genes important in macrophage tissue residency were reduced in HUPO F4/80hi macrophages and in leukocyte-rich rheumatoid arthritis synovial tissue monocytes. Our observations demonstrate that the macrophage tissue-resident niche is necessary for suppression of chronic inflammation and may contribute to the pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Renee Doyle
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shang-Yang Chen
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qicong Sheng
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deborah R Winter
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Richard M Pope
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Sato Y, Ries S, Stenzel W, Fillatreau S, Matuschewski K. The Liver-Stage Plasmodium Infection Is a Critical Checkpoint for Development of Experimental Cerebral Malaria. Front Immunol 2019; 10:2554. [PMID: 31736970 PMCID: PMC6837997 DOI: 10.3389/fimmu.2019.02554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral malaria is a life-threatening complication of malaria in humans, and the underlying pathogenic mechanisms are widely analyzed in a murine model of experimental cerebral malaria (ECM). Here, we show abrogation of ECM by hemocoel sporozoite-induced infection of a transgenic Plasmodium berghei line that overexpresses profilin, whereas these parasites remain fully virulent in transfusion-mediated blood infection. We, thus, demonstrate the importance of the clinically silent liver-stage infection for modulating the onset of ECM. Even though both parasites triggered comparable splenic immune cell expansion and accumulation of antigen-experienced CD8+ T cells in the brain, infection with transgenic sporozoites did not lead to cerebral vascular damages and suppressed the recruitment of overall lymphocyte populations. Strikingly, infection with the transgenic strain led to maintenance of CD115+Ly6C+ monocytes, which disappear in infected animals prone to ECM. An early induction of IL-10, IL-12p70, IL-6, and TNF at the time when parasites emerge from the liver might lead to a diminished induction of hepatic immunity. Collectively, our study reveals the essential role of early host interactions in the liver that may dampen the subsequent pro-inflammatory immune responses and influence the occurrence of ECM, highlighting a novel checkpoint in this fatal pathology.
Collapse
Affiliation(s)
- Yuko Sato
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Stefanie Ries
- Immune Regulation Research Group, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Fillatreau
- Immune Regulation Research Group, Deutsches Rheuma-Forschungszentrum, Berlin, Germany.,Department of Immunology, Infectiology and Haematology (I2H), Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
5
|
Zhang M, Gillaspy AF, Gipson JR, Cassidy BR, Nave JL, Brewer MF, Stoner JA, Chen J, Drevets DA. Neuroinvasive Listeria monocytogenes Infection Triggers IFN-Activation of Microglia and Upregulates Microglial miR-155. Front Immunol 2018; 9:2751. [PMID: 30538705 PMCID: PMC6277692 DOI: 10.3389/fimmu.2018.02751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
MicroRNA (miR) miR-155 modulates microglial activation and polarization, but its role in activation of microglia during bacterial brain infection is unclear. We studied miR-155 expression in brains of C57BL/6 (B6.WT) mice infected i.p. with the neuro-invasive bacterial pathogen Listeria monocytogenes (L. monocytogenes). Infected mice were treated with ampicillin starting 2 days (d) post-infection (p.i.) and analyzed 3d, 7d, and 14d p.i. Virulent L. monocytogenes strains EGD and 10403s upregulated miR-155 in whole brain 7 d p.i. whereas infection with avirulent, non-neurotropic Δhly or ΔactA L. monocytogenes mutants did not. Similarly, infection with virulent but not mutated bacteria upregulated IFN-γ mRNA in the brain at 7 d p.i. Upregulation of miR-155 in microglia was confirmed by qPCR of flow cytometry-sorted CD45intCD11bpos brain cells. Subsequently, brain leukocyte influxes and gene expression in sorted microglia were compared in L. monocytogenes-infected B6.WT and B6.Cg-Mir155tm1.1Rsky/J (B6.miR-155−/−) mice. Brain influxes of Ly-6Chigh monocytes and upregulation of IFN-related genes in microglia were similar to B6.WT mice at 3 d p.i. In contrast, by d 7 p.i. expressions of microglial IFN-related genes, including markers of M1 polarization, were significantly lower in B6.miR-155−/− mice and by 14 d p.i., influxes of activated T-lymphocytes were markedly reduced. Notably, CD45highCD11bpos brain cells from B6.miR-155−/− mice isolated at 7 d p.i. expressed 2-fold fewer IFN-γ transcripts than did cells from B6.WT mice suggesting reduced IFN-γ stimulation contributed to dampened gene expression in B6.miR-155−/− microglia. Lastly, in vitro stimulation of 7 d p.i. brain cells with heat-killed L. monocytogenes induced greater production of TNF in B6.miR-155−/− microglia than in B6.WT microglia. Thus, miR-155 affects brain inflammation by multiple mechanisms during neuroinvasive L. monocytogenes infection. Peripheral miR-155 promotes brain inflammation through its required role in optimal development of IFN-γ-secreting lymphocytes that enter the brain and activate microglia. Microglial miR-155 promotes M1 polarization, and also inhibits inflammatory responses to stimulation by heat-killed L. monocytogenes, perhaps by targeting Tab2.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Allison F Gillaspy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jenny R Gipson
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Benjamin R Cassidy
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jessica L Nave
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Misty F Brewer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Julie A Stoner
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jie Chen
- Histology and Immunohistochemistry Core, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Douglas A Drevets
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Beshara R, Sencio V, Soulard D, Barthélémy A, Fontaine J, Pinteau T, Deruyter L, Ismail MB, Paget C, Sirard JC, Trottein F, Faveeuw C. Alteration of Flt3-Ligand-dependent de novo generation of conventional dendritic cells during influenza infection contributes to respiratory bacterial superinfection. PLoS Pathog 2018; 14:e1007360. [PMID: 30372491 PMCID: PMC6224179 DOI: 10.1371/journal.ppat.1007360] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/08/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections contribute to the excess morbidity and mortality of influenza A virus (IAV) infection. Disruption of lung integrity and impaired antibacterial immunity during IAV infection participate in colonization and dissemination of the bacteria out of the lungs. One key feature of IAV infection is the profound alteration of lung myeloid cells, characterized by the recruitment of deleterious inflammatory monocytes. We herein report that IAV infection causes a transient decrease of lung conventional dendritic cells (cDCs) (both cDC1 and cDC2) peaking at day 7 post-infection. While triggering emergency monopoiesis, IAV transiently altered the differentiation of cDCs in the bone marrow, the cDC1-biaised pre-DCs being particularly affected. The impaired cDC differentiation during IAV infection was independent of type I interferons (IFNs), IFN-γ, TNFα and IL-6 and was not due to an intrinsic dysfunction of cDC precursors. The alteration of cDC differentiation was associated with a drop of local and systemic production of Fms-like tyrosine kinase 3 ligand (Flt3-L), a critical cDC differentiation factor. Overexpression of Flt3-L during IAV infection boosted the cDC progenitors' production in the BM, replenished cDCs in the lungs, decreased inflammatory monocytes' infiltration and lowered lung damages. This was associated with partial protection against secondary pneumococcal infection, as reflected by reduced bacterial dissemination and prolonged survival. These findings highlight the impact of distal viral infection on cDC genesis in the BM and suggest that Flt3-L may have potential applications in the control of secondary infections.
Collapse
Affiliation(s)
- Ranin Beshara
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Valentin Sencio
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Daphnée Soulard
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Adeline Barthélémy
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Josette Fontaine
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Thibault Pinteau
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Lucie Deruyter
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Mohamad Bachar Ismail
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Christophe Paget
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christelle Faveeuw
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
7
|
Burkholderia pseudomallei-loaded cells act as a Trojan horse to invade the brain during endotoxemia. Sci Rep 2018; 8:13632. [PMID: 30206252 PMCID: PMC6134107 DOI: 10.1038/s41598-018-31778-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023] Open
Abstract
Neurologic melioidosis occurs in both human and animals; however, the mechanism by which the pathogen Burkholderia pseudomallei invades the central nervous system (CNS) remains unclear. B. pseudomallei-loaded Ly6C cells have been suggested as a putative portal; however, during melioidosis, lipopolysaccharide (LPS) can drive disruption of the blood-brain barrier (BBB). This study aims to test whether the Trojan horse-like mechanism occurs during endotoxemia. The expression levels of cerebral cytokines, chemokines and cell adhesion molecules; the activation of astrocytes, microglia and endothelial cells; and the increased vascular permeability and brain-infiltrating leukocytes were evaluated using B. pseudomallei, B. thailandensis, B. cenocepacia and B. multivorans LPS-induced brains. Accordingly, different degrees of BBB damage in those brains with endotoxemia were established. The B. multivorans LPS-induced brain exhibited the highest levels of disruptive BBB according to the above mediators/indicators. Into these distinct groups of endotoxemic mice, B. pseudomallei-loaded Ly6C cells or free B. pseudomallei were adoptively transferred at equal bacterial concentrations (103 CFU). The bacterial load and number of cases of meningeal neutrophil infiltration in the brains of animals treated with B. pseudomallei-loaded Ly6C cells were higher than those in brains induced by free B. pseudomallei in any of the endotoxemic groups. In particular, these results were reproducible in B. multivorans LPS-induced brains. We suggest that B. pseudomallei-loaded cells can act as a Trojan horse and are more effective than free B. pseudomallei in invading the CNS under septic or endotoxemic conditions even when there is a high degree of BBB disruption.
Collapse
|
8
|
Probst K, Stermann J, von Bomhard I, Etich J, Pitzler L, Niehoff A, Bluhm B, Xu HC, Lang PA, Chmielewski M, Abken H, Blissenbach B, Machova A, Papadopoulou N, Brachvogel B. Depletion of Collagen IX Alpha1 Impairs Myeloid Cell Function. Stem Cells 2018; 36:1752-1763. [DOI: 10.1002/stem.2892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/06/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Jacek Stermann
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Inga von Bomhard
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Lena Pitzler
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics; German Sport University Cologne; Cologne Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB); University of Cologne; Cologne Germany
| | - Björn Bluhm
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Haifeng C. Xu
- Department of Molecular Medicine II, Medical Faculty; Heinrich Heine University; Düsseldorf Germany
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty; Heinrich Heine University; Düsseldorf Germany
| | - Markus Chmielewski
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne Germany
- Department I Internal Medicine, Medical Faculty; Cologne Germany
- RCI, Chair Gene-Immunotherapy; University Hospital Regensburg; Regensburg Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne Germany
- Department I Internal Medicine, Medical Faculty; Cologne Germany
- RCI, Chair Gene-Immunotherapy; University Hospital Regensburg; Regensburg Germany
| | - Birgit Blissenbach
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty; University of Cologne; Cologne Germany
| | - Alzbeta Machova
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty; University of Cologne; Cologne Germany
| | - Nikoletta Papadopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty; University of Cologne; Cologne Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| |
Collapse
|
9
|
Molgora M, Supino D, Mantovani A, Garlanda C. Tuning inflammation and immunity by the negative regulators IL-1R2 and IL-1R8. Immunol Rev 2018; 281:233-247. [PMID: 29247989 DOI: 10.1111/imr.12609] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) are key players in immunity and inflammation and are tightly regulated at different levels. Most cell types, including cells of the innate and adaptive immune system express ILRs and TLRs. In addition, IL-1 family members are emerging as key players in the differentiation and function of innate and adaptive lymphoid cells. IL-1R2 and IL-1R8 (also known as TIR8 or SIGIRR) are members of the ILR family acting as negative regulators of the IL-1 system. IL-1R2 binds IL-1 and the accessory protein IL-1RAcP without activating signaling and can be released as a soluble form (sIL-1R2), thus modulating IL-1 availability for the signaling receptor. IL-1R8 dampens ILR- and TLR-mediated cell activation and it is a component of the receptor recognizing human IL-37. Here, we summarize our current understanding of the structure and function of IL-1R2 and IL-1R8, focusing on their role in different pathological conditions, ranging from infectious and sterile inflammation, to autoimmunity and cancer-related inflammation. We also address the emerging evidence regarding the role of IL-1R8 as a crucial checkpoint molecule in NK cells in anti-cancer and antiviral activity and the potential therapeutic implications of IL-1R8 blockade in specific pathological contexts.
Collapse
Affiliation(s)
- Martina Molgora
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Domenico Supino
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Pieve Emanuele (Milano), Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Pieve Emanuele (Milano), Italy
| |
Collapse
|
10
|
Affiliation(s)
- Felipe H. Santiago-Tirado
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
11
|
Baba M, Batanova T, Kitoh K, Takashima Y. Adhesion of Toxoplasma gondii tachyzoite-infected vehicle leukocytes to capillary endothelial cells triggers timely parasite egression. Sci Rep 2017; 7:5675. [PMID: 28720868 PMCID: PMC5515940 DOI: 10.1038/s41598-017-05956-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intracellular pathogens have numerous strategies for effective dissemination within the host. Many intracellular pathogens first infect leukocytes, which they use as a vehicle to transport them to target organs. Once at the target organ, intracellular parasite Toxoplasma gondii can cross the capillary wall in extracellular form by infecting endothelial cells. However, after egression from leukocytes, extracellular parasites face the risk of host immune attack. In this study, observation of infected mouse organs, using a method that renders tissue transparent, revealed that adhesion of tachyzoite-infected leukocytes to endothelial cells triggers immediate egression of the parasite. This signal enables the parasite to time egression from its vehicle leukocyte to coincide with arrival at a target organ, minimizing the opportunity for immune attack during the transition from a vehicle leukocyte to capillary endothelial cells.
Collapse
Affiliation(s)
- Minami Baba
- Department of Veterinary Parasitology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Tatiana Batanova
- Department of Veterinary Parasitology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Katsuya Kitoh
- Department of Veterinary Parasitology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yasuhiro Takashima
- Department of Veterinary Parasitology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
12
|
The role of monocytes in models of infection by protozoan parasites. Mol Immunol 2017; 88:174-184. [PMID: 28704704 DOI: 10.1016/j.molimm.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
The confirmation of developmental differences between tissue macrophages and peripheral monocytes has changed our view of the functions and dynamics of these two important components of the innate immune system. It has been demonstrated conclusively that homeostasis of tissue resident macrophages is maintained by a low proliferative turn over. During an inflammatory response, bone marrow derived monocytes enter the tissue in large numbers and take part in the defense against the pathogens. After the destruction of invading pathogens, these cells disappear and tissue resident macrophages can be detected again. This new appreciation of the innate immune response has not only answered many outstanding questions regarding the role of the different myeloid cell types in inflammation, but also opened up new areas of research relating to the tissue- and pathogen-specific fate of the inflammatory macrophages or dendritic cells (DCs), and the transfer of this knowledge from mouse models to the human immune system. Nevertheless, there is still confusion in infection models, and especially in studies of human infections, as to what extent these recent observations and findings influence previous interpretations of data. This review will focus on insights from mouse models, summarize the literature on the ontogeny of macrophages and monocytes, explain the role of frequently used monocyte markers and effector molecules, and finally, discuss the role of inflammatory monocytes/macrophages/DCs in two experimental parasitic diseases.
Collapse
|
13
|
Jones GS, D'Orazio SEF. Monocytes Are the Predominant Cell Type Associated with Listeria monocytogenes in the Gut, but They Do Not Serve as an Intracellular Growth Niche. THE JOURNAL OF IMMUNOLOGY 2017; 198:2796-2804. [PMID: 28213502 DOI: 10.4049/jimmunol.1602076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
Abstract
After foodborne transmission of the facultative intracellular bacterial pathogen Listeria monocytogenes, most of the bacterial burden in the gut is extracellular. However, we previously demonstrated that intracellular replication in an as yet unidentified cell type was essential for dissemination and systemic spread of L. monocytogenes In this article, we show that the vast majority of cell-associated L. monocytogenes in the gut were adhered to Ly6Chi monocytes, a cell type that inefficiently internalized L. monocytogenes With bone marrow-derived in vitro cultures, high multiplicity of infection or the use of opsonized bacteria enhanced uptake of L. monocytogenes in CD64- monocytes, but very few bacteria reached the cell cytosol. Surprisingly, monocytes that had upregulated CD64 expression in transition toward becoming macrophages fully supported intracellular growth of L. monocytogenes In contrast, inflammatory monocytes that had increased CD64 expression in the bone marrow of BALB/c/By/J mice prior to L. monocytogenes exposure in the gut did not support L. monocytogenes growth. Thus, contrary to the perception that L. monocytogenes can infect virtually all cell types, neither naive nor inflammatory Ly6Chi monocytes served as a productive intracellular growth niche for L. monocytogenes. These results have broad implications for innate immune recognition of L. monocytogenes in the gut and highlight the need for additional studies on the interaction of extracellular, adherent L. monocytogenes with the unique subsets of myeloid-derived inflammatory cells that infiltrate sites of infection.
Collapse
Affiliation(s)
- Grant S Jones
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536
| |
Collapse
|
14
|
Bonecchi R, Garlanda C, Mantovani A, Riva F. Cytokine decoy and scavenger receptors as key regulators of immunity and inflammation. Cytokine 2016; 87:37-45. [PMID: 27498604 DOI: 10.1016/j.cyto.2016.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022]
Abstract
IL-1R2 was the first decoy receptor to be described. Subsequently receptors which act as pure decoys or scavengers or trigger dampening of cytokine signaling have been described for cytokines and chemokines. Here we review the current understanding of the mode of action and significance in pathology of the chemokine atypical receptor ACKR2, the IL-1 decoy receptor IL-1R2 and the atypical IL-1 receptor family IL-1R8. Decoy and scavenger receptors with no or atypical signaling have emerged as a general strategy conserved in evolution to tune the action of cytokines, chemokines and growth factors.
Collapse
Affiliation(s)
- Raffaella Bonecchi
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| | - Cecilia Garlanda
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy.
| | - Federica Riva
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Milan, Italy
| |
Collapse
|
15
|
Ziegler-Heitbrock L. Blood Monocytes and Their Subsets: Established Features and Open Questions. Front Immunol 2015; 6:423. [PMID: 26347746 PMCID: PMC4538304 DOI: 10.3389/fimmu.2015.00423] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 01/20/2023] Open
Abstract
In contrast to the past reliance on morphology, the identification and enumeration of blood monocytes are nowadays done with monoclonal antibodies and flow cytometry and this allows for subdivision into classical, intermediate, and non-classical monocytes. Using specific cell surface markers, dendritic cells in blood can be segregated from these monocytes. While in the past, changes in monocyte numbers as determined in standard hematology counters have not had any relevant clinical impact, the subset analysis now has uncovered informative changes that may be used in management of disease.
Collapse
|
16
|
Drevets DA, Canono BP, Campbell PA. Measurement of Bacterial Ingestion and Killing by Macrophages. ACTA ACUST UNITED AC 2015; 109:14.6.1-14.6.17. [DOI: 10.1002/0471142735.im1406s109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Douglas A. Drevets
- Department of Medicine, University of Oklahoma Health Sciences Center and the Veterans Affairs Medical Center Oklahoma City Oklahoma
| | - Beth P. Canono
- Central Translational Research Center, National Jewish Health Denver Colorado
| | | |
Collapse
|
17
|
Bieber K, Autenrieth SE. Insights how monocytes and dendritic cells contribute and regulate immune defense against microbial pathogens. Immunobiology 2014; 220:215-26. [PMID: 25468558 DOI: 10.1016/j.imbio.2014.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
Abstract
The immune system protects from infections primarily by detecting and eliminating invading pathogens. Beside neutrophils, monocytes and dendritic cells (DCs) have been recently identified as important sentinels and effectors in combating microbial pathogens. In the steady state mononuclear phagocytes like monocytes and DCs patrol the blood and the tissues. Mammalian monocytes contribute to antimicrobial defense by supplying tissues with macrophage and DC precursors. DCs recognize pathogens and are essential in presenting antigens to initiate antigen-specific adaptive immune responses, thereby bridging the innate and adaptive immune systems. Both, monocytes and DCs play distinct roles in the shaping of immune response. In this review we will focus on the contributions of monocytes and lymphoid organ DCs to immune defense against microbial pathogens in the mouse and their dynamic regulation from steady state to infection.
Collapse
Affiliation(s)
- Kristin Bieber
- Department of Internal Medicine II, University of Tübingen, Germany
| | | |
Collapse
|
18
|
Abstract
The IL-1 family of ligands and receptors has a central role in both innate and adaptive immune responses and is tightly controlled by antagonists, decoy receptors, scavengers, dominant negative molecules, miRNAs and other mechanisms, acting extracellularly or intracellularly. During evolution, the development of multiple mechanisms of negative regulation reveals the need for tight control of the biological consequences of IL-1 family ligands in order to balance local and systemic inflammation and limit immunopathology. Indeed, studies with gene targeted mice for negative regulators and genetic studies in humans provide evidence for their non-redundant role in controlling inflammation, tissue damage and adaptive responses. In addition, studies have revealed the need of negative regulation of the IL-1 family not only in disease, but also in homeostatic conditions. In this review, the negative regulation mediated by decoy receptors are presented and include IL-1R2 and IL-IL-18BP as well as atypical receptors, which include TIR8/SIGIRR, IL-1RAcPb, TIGIRR-1 and IL-1RAPL. Particular emphasis is given to IL-1R2, since its discovery is the basis for the formulation of the decoy paradigm, now considered a general strategy to counter the primary inflammatory activities of cytokines and chemokines. Emphasis is also given to TIR8, a prototypical negative regulatory receptor having non-redundant roles in limiting inflammation and adaptive responses.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy.
| | - Federica Riva
- Department of Veterinary Science and Public Health, University of Milan, Italy
| | - Eduardo Bonavita
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Rozzano (Milano), Italy
| |
Collapse
|
19
|
Riepsaame J, van Oudenaren A, den Broeder BJH, van Ijcken WFJ, Pothof J, Leenen PJM. MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells. Front Immunol 2013; 4:353. [PMID: 24198819 PMCID: PMC3812696 DOI: 10.3389/fimmu.2013.00353] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022] Open
Abstract
Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature DC. MicroRNA-22, -34a, and -155 are up-regulated in mature MHCIIhi CD86hi DC and mediate Csf1r mRNA and protein down-regulation. Experimental inhibition of Csf1r-targeting microRNAs in vitro results not only in sustained high level M-CSFR protein expression but also in impaired DC maturation upon stimulation by LPS. Accordingly, over-expression of Csf1r in GM-DC inhibits terminal differentiation. Taken together, these results show that developmentally regulated microRNAs control Csf1r expression, supplementing previously identified mechanisms that regulate its transcription and protein surface expression. Furthermore, our data indicate a novel function for Csf1r in mouse monocyte-derived DC, showing that down-regulation of M-CSFR expression is essential for final DC maturation.
Collapse
Affiliation(s)
- Joey Riepsaame
- Department of Immunology, Erasmus University Medical Center , Rotterdam , Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Martin P, Palmer G, Vigne S, Lamacchia C, Rodriguez E, Talabot-Ayer D, Rose-John S, Chalaris A, Gabay C. Mouse neutrophils express the decoy type 2 interleukin-1 receptor (IL-1R2) constitutively and in acute inflammatory conditions. J Leukoc Biol 2013; 94:791-802. [PMID: 23817563 DOI: 10.1189/jlb.0113035] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The proinflammatory activities of IL-1 are tightly controlled at different levels. IL-1R2 acts as a decoy receptor and has been shown to regulate the biological effects of IL-1 in vitro and in vivo. However, little is known about its natural expression in the mouse in physiologic and pathologic conditions. In this study, we examined IL-1R2 mRNA and protein expression in isolated cells and tissues in response to different stimulatory conditions. Data obtained using ex vivo CD11b(+)Ly6G(+) peripheral blood cells and in vitro-differentiated CD11b(+)Ly6G(+) BMG indicated that neutrophils are the major source of constitutively expressed IL-1R2 in the mouse. The expression of IL-1R2 on BMG and ex vivo Ly6G(+) peripheral blood cells was highly up-regulated by HC. IL-1R2 pull-down experiments showed that mouse rIL-1β binds to BMG IL-1R2, whereas binding of IL-1Ra could not be detected. Furthermore, LPS treatment induced shedding of IL-1R2 from the neutrophil membrane in vitro and in vivo, executed mainly by ADAM17. Finally, in in vivo models of inflammation, including thioglycolate-induced acute peritonitis and acute lung injury, infiltrating Ly6G(+) neutrophils, expressed IL-1R2. Our data show that in the mouse, neutrophils mainly express the decoy receptor IL-1R2 under naïve and inflammatory conditions. These data suggest that neutrophils may contribute to the resolution of acute inflammation.
Collapse
Affiliation(s)
- Praxedis Martin
- 1.University Hospitals of Geneva, 26 Avenue Beau-Séjour, 1206 Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Helmersson S, Sundstedt A, Deronic A, Leanderson T, Ivars F. Amelioration of experimental autoimmune encephalomyelitis by the quinoline-3-carboxamide paquinimod: reduced priming of proinflammatory effector CD4(+) T cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1671-80. [PMID: 23506849 DOI: 10.1016/j.ajpath.2013.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/26/2023]
Abstract
Quinoline-3-carboxamide compounds (Q compounds) have demonstrated efficacy in treating autoimmune disease in both humans and mice. However, the mode of action of these compounds is poorly understood. Here, we show that preventive treatment with the Q compound paquinimod (ABR-215757) during the first 5 days after induction of experimental autoimmune encephalomyelitis is sufficient to significantly ameliorate disease symptoms. Parallel cell-depletion experiments demonstrated that Ly6C(hi) inflammatory monocytes play an essential role in this phase. The paquinimod-induced amelioration correlated with reduced priming of antigen-specific CD4(+) T cells and reduced frequency of IFN-γ- and IL-17-producing cells in draining lymph nodes. Importantly, the treatment did not inhibit T-cell division per se. In mice with established experimental autoimmune encephalomyelitis, the numbers of Ly6C(hi) CD115(+) inflammatory monocytes and CD11b(+)CD11c(+) dendritic cells (DCs) were reduced in spleen, but not in bone marrow or draining lymph nodes of treated mice. Inflammatory monocyte-derived DCs and CD4(+) T cells were also reduced in the brain. In contrast, there was no decrease in DC subsets previously shown to be critical for effector CD4(+) T-cell development in lymph nodes. Taken together, these data indicate that preventive treatment with paquinimod ameliorates experimental autoimmune encephalomyelitis by reducing effector T-cell priming and, on prolonged treatment, displays a selective effect by decreasing distinct subpopulations of splenic CD11b(+) myeloid cells.
Collapse
Affiliation(s)
- Sofia Helmersson
- Immunology Group, Section for Immunology, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
22
|
Grothusen C, Schuett H, Hillmer A, Lumpe S, Grote K, Ballmaier M, Bleich A, Glage S, Tietge UJF, Luchtefeld M, Schieffer B. Role of suppressor of cytokine signaling-1 in murine atherosclerosis. PLoS One 2012; 7:e51608. [PMID: 23300554 PMCID: PMC3531439 DOI: 10.1371/journal.pone.0051608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/02/2012] [Indexed: 01/26/2023] Open
Abstract
Background While the impact of inflammation as the substantial driving force of atherosclerosis has been investigated in detail throughout the years, the influence of negative regulators of pro-atherogenic pathways on plaque development has remained largely unknown. Suppressor of cytokine signaling (SOCS)-1 potently restricts transduction of various inflammatory signals and, thereby modulates T-cell development, macrophage activation and dendritic cell maturation. Its role in atherogenesis, however has not been elucidated so far. Methods and Results Loss of SOCS-1 in the low-density lipoprotein receptor deficient murine model of atherosclerosis resulted in a complex, systemic and ultimately lethal inflammation with increased generation of Ly-6Chi monocytes and activated macrophages. Even short-term exposure of these mice to high-cholesterol dieting caused enhanced atherosclerotic plaque development with accumulation of M1 macrophages, Ly-6C positive cells and neutrophils. Conclusion Our data not only imply that SOCS-1 is athero-protective but also emphasize the fundamental, regulatory importance of SOCS-1 in inflammation-prone organisms.
Collapse
Affiliation(s)
- Christina Grothusen
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Harald Schuett
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anja Hillmer
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Stefan Lumpe
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Karsten Grote
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Matthias Ballmaier
- Department of Pediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Uwe J. F. Tietge
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Maren Luchtefeld
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Bernhard Schieffer
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
23
|
Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol Cell Biol 2011; 90:429-40. [PMID: 21727904 DOI: 10.1038/icb.2011.58] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is recent interest in the role of monocyte/macrophage subpopulations in pathology. How the hemopoietic growth factors, macrophage-colony stimulating factor (M-CSF or CSF-1) and granulocyte macrophage (GM)-CSF, regulate their in vivo development and function is unclear. A comparison is made here on the effect of CSF-1 receptor (CSF-1R) and GM-CSF blockade/depletion on such subpopulations, both in the steady state and during inflammation. In the steady state, administration of neutralizing anti-CSF-1R monoclonal antibody (mAb) rapidly (within 3-4 days) lowered, specifically, the number of the more mature Ly6C(lo) peripheral blood murine monocyte population and resident peritoneal macrophages; it also reduced the accumulation of murine exudate (Ly6C(lo)) macrophages in two peritonitis models and alveolar macrophages in lung inflammation, consistent with a non-redundant role for CSF-1 (or interleukin-34) in certain inflammatory reactions. A neutralizing mAb to GM-CSF also reduced inflammatory macrophage numbers during antigen-induced peritonitis and lung inflammation. In GM-CSF gene-deficient mice, a detailed kinetic analysis of monocyte/macrophage and neutrophil dynamics in antigen-induced peritonitis suggested that GM-CSF was acting, in part, systemically to maintain the inflammatory reaction. A model is proposed in which CSF-1R signaling controls the development of the macrophage lineage at a relatively late stage under steady state conditions and during certain inflammatory reactions, whereas in inflammation, GM-CSF can be required to maintain the response by contributing to the prolonged extravasation of immature monocytes and neutrophils. A correlation has been observed between macrophage numbers and the severity of certain inflammatory conditions, and it could be that CSF-1 and GM-CSF contribute to the control of these numbers in the ways proposed.
Collapse
|