1
|
Gogoleva VS, Drutskaya MS, Vorontsov AI, Atretkhany KSN, Belogurov AA, Kruglov AA, Nedospasov SA. Lymphotoxins from distinct types of lymphoid cells differentially contribute to neuroinflammation. Eur J Immunol 2024; 54:e2350977. [PMID: 39210647 DOI: 10.1002/eji.202350977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Lymphotoxin α and lymphotoxin β (LTs), TNF superfamily members, are expressed in either soluble (LTα3) or membrane-bound (LTα1β2 or LTα2β1) forms. In the pathological context, LT-mediated signaling is known to exacerbate autoimmunity by perpetuating inflammation and promoting the formation of tertiary lymphoid organs. Despite this understanding, the exact roles of LTα and LTβ in the pathogenesis of the murine model of multiple sclerosis, and experimental autoimmune encephalomyelitis (EAE), remain controversial. Here, we employed a panel of gene-modified mice with cell-type restricted ablation of LTα (targeting both membrane-bound and soluble forms of LTs) to unravel the contributions of LTs from various lymphoid cells, namely T cells, type 3 innate lymphoid cells (ILC3) and B cells, in EAE. We found that the effects of LTα deletion were dependent on the cellular source. ILC3-derived lymphotoxins exerted a protective role in EAE by regulating the accumulation of IFN-ɣ- and GM-CSF-producing TH cells in the CNS. In contrast, T-cell-derived lymphotoxins promoted IL-17A- and GM-CSF-mediated TH responses in the periphery, whereas B-cell-derived lymphotoxins were pathogenic only in the autoantibody-mediated EAE model. Collectively, our findings unveil the multifaceted involvement of lymphotoxins in EAE pathogenesis and challenge the view that lymphotoxins play a solely pathogenic role in neuroinflammation.
Collapse
Affiliation(s)
- Violetta S Gogoleva
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Marina S Drutskaya
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasnodarsky Krai, 354349, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander I Vorontsov
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Kamar-Sulu N Atretkhany
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey A Kruglov
- AG Chronic Inflammation, German Rheumatism Research Center, a Leibniz Institute, Berlin, 10117, Germany
| | - Sergei A Nedospasov
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasnodarsky Krai, 354349, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
2
|
Jiang J, Cao Z, Li B, Ma X, Deng X, Yang B, Liu Y, Zhai F, Cheng X. Disseminated tuberculosis is associated with impaired T cell immunity mediated by non-canonical NF-κB pathway. J Infect 2024; 89:106231. [PMID: 39032519 DOI: 10.1016/j.jinf.2024.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES The mechanism that leads to disseminated tuberculosis in HIV-negative patients is still largely unknown. T cell subsets and signaling pathways that were associated with disseminated tuberculosis were investigated. METHODS Single-cell profiling of whole T cells was performed to identify T cell subsets and enriched signaling pathways that were associated with disseminated tuberculosis. Flow cytometric analysis and blocking experiment were used to investigate the findings obtained by transcriptome sequencing. RESULTS Patients with disseminated tuberculosis had depleted Th1, Tc1 and Tc17 cell subsets, and IFNG was the most down-regulated gene in both CD4 and CD8 T cells. Gene Ontology analysis showed that non-canonical NF-κB signaling pathway, including NFKB2 and RELB genes, was significantly down-regulated and was probably associated with disseminated tuberculosis. Expression of several TNF superfamily ligands and receptors, such as LTA and TNF genes, were suppressed in patients with disseminated tuberculosis. Blocking of TNF-α and soluble LTα showed that TNF-α was involved in IFN-γ production and LTα influenced TNF-α expression in T cells. CONCLUSIONS Impaired T cell IFN-γ response mediated by suppression of TNF and non-canonical NF-κB signaling pathways might be responsible for disseminated tuberculosis.
Collapse
Affiliation(s)
- Jing Jiang
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihong Cao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Binyu Li
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xihui Ma
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xianping Deng
- Department of Laboratory Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Bingfen Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yanhua Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Zhai
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoxing Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Mo W, Cui Z, Zhao J, Xian X, Huang M, Liu J. The predictive value of TNF family for pulmonary tuberculosis: a pooled causal effect analysis of multiple datasets. Front Immunol 2024; 15:1398403. [PMID: 38835752 PMCID: PMC11148272 DOI: 10.3389/fimmu.2024.1398403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Objective Despite extensive research on the relationship between pulmonary tuberculosis (PTB) and inflammatory factors, more robust causal evidence has yet to emerge. Therefore, this study aims to screen for inflammatory proteins that may contribute to the susceptibility to PTB in different populations and to explain the diversity of inflammatory and immune mechanisms of PTB in different ethnicity. Methods The inverse variance weighted (IVW) model of a two-sample Mendelian Randomization (MR) study was employed to conduct causal analysis on data from a genome-wide association study (GWAS). This cohort consisting PTB GWAS datasets from two European and two East Asian populations, as well as 91 human inflammatory proteins collected from 14,824 participants. Colocalization analysis aimed to determine whether the input inflammatory protein and PTB shared the same causal single nucleotide polymorphisms (SNPs) variation within the fixed region, thereby enhancing the robustness of the MR Analysis. Meta-analyses were utilized to evaluate the combined causal effects among different datasets. Results In this study, we observed a significant negative correlation between tumor necrosis factor-beta levels (The alternative we employ is Lymphotoxin-alpha, commonly referred to as LT) (P < 0.05) and tumor necrosis factor receptor superfamily member 9 levels (TNFRSF9) (P < 0.05). These two inflammatory proteins were crucial protective factors against PTB. Additionally, there was a significant positive correlation found between interleukin-20 receptor subunit alpha levels (IL20Ra) (P < 0.05), which may elevate the risk of PTB. Colocalization analysis revealed that there was no overlap in the causal variation between LT and PTB SNPs. A meta-analysis further confirmed the significant combined effect of LT, TNFRSF9, and IL20Ra in East Asian populations (P < 0.05). Conclusions Levels of specific inflammatory proteins may play a crucial role in triggering an immune response to PTB. Altered levels of LT and TNFRSF9 have the potential to serve as predictive markers for PTB development, necessitating further clinical validation in real-world settings to ascertain the impact of these inflammatory proteins on PTB.
Collapse
Affiliation(s)
- Wenxiu Mo
- School of Public Health and Management, Youjiang Medical University for Nationalities, Baise, China
| | - Zhezhe Cui
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, China
| | - Jingming Zhao
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, China
| | - Xiaomin Xian
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Minying Huang
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, China
| | - Jun Liu
- Department of Neurosurgery, Liuzhou People’s Hospital, Liuzhou, China
| |
Collapse
|
4
|
Basile JI, Liu R, Mou W, Gao Y, Carow B, Rottenberg ME. Mycobacteria-Specific T Cells Are Generated in the Lung During Mucosal BCG Immunization or Infection With Mycobacterium tuberculosis. Front Immunol 2020; 11:566319. [PMID: 33193338 PMCID: PMC7643023 DOI: 10.3389/fimmu.2020.566319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023] Open
Abstract
Specific T cell responses are central for protection against infection with M. tuberculosis. Here we show that mycobacteria-specific CD4 and CD8 T cells accumulated in the lung but not in the mediastinal lymph node (MLN) at different time points after M. tuberculosis infection or BCG immunization. Proliferating specific T cells were found in the lung after infection and immunization. Pulmonary, but not MLN-derived CD4 and CD8 T cells, from M. tuberculosis-infected mice secreted IFN-γ after stimulation with different mycobacterial peptides. Mycobacteria-specific resident memory CD4 and CD8 T cells (TRM) expressing PD-1 accumulated in the lung after aerosol infection and intratracheal (i.t.) -but not subcutaneous (s.c.)- BCG immunization. Chemical inhibition of recirculation indicated that TRM were generated in the lung after BCG i.t. immunization. In summary, mycobacteria specific-TRM accumulate in the lung during i.t. but not s.c. immunization or M. tuberculosis infection. Collectively our data suggests that priming, accumulation and/or expansion of specific T cells during BCG immunization and M. tuberculosis infection occurs in the lung.
Collapse
Affiliation(s)
- Juan I Basile
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Ruining Liu
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Wenjun Mou
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Calender A, Weichhart T, Valeyre D, Pacheco Y. Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts. J Clin Med 2020; 9:E2633. [PMID: 32823753 PMCID: PMC7465171 DOI: 10.3390/jcm9082633] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Sarcoidosis is a complex disease that belongs to the vast group of autoinflammatory disorders, but the etiological mechanisms of which are not known. At the crosstalk of environmental, infectious, and genetic factors, sarcoidosis is a multifactorial disease that requires a multidisciplinary approach for which genetic research, in particular, next generation sequencing (NGS) tools, has made it possible to identify new pathways and propose mechanistic hypotheses. Codified treatments for the disease cannot always respond to the most progressive forms and the identification of new genetic and metabolic tracks is a challenge for the future management of the most severe patients. Here, we review the current knowledge regarding the genes identified by both genome wide association studies (GWAS) and whole exome sequencing (WES), as well the connection of these pathways with the current research on sarcoidosis immune-related disorders.
Collapse
Affiliation(s)
- Alain Calender
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominique Valeyre
- INSERM UMR 1272, Department of Pulmonology, Avicenne Hospital, University Sorbonne Paris Nord, Saint Joseph Hospital, AP-HP, 75014 Paris, France;
| | - Yves Pacheco
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| |
Collapse
|
6
|
Fang L, Lin W, Jia H, Gao X, Sui X, Guo X, Hou S, Jiang Y, Zhu L, Zhu H, Ding J, Jiang L, Xin T. Potential Diagnostic Value of the Peripheral Blood Mononuclear Cell Transcriptome From Cattle With Bovine Tuberculosis. Front Vet Sci 2020; 7:295. [PMID: 32528988 PMCID: PMC7266948 DOI: 10.3389/fvets.2020.00295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 11/23/2022] Open
Abstract
Bovine tuberculosis (bTB) is a chronic disease of cattle caused by Mycobacterium bovis. During early-stage infection, M. bovis-infected cattle shed mycobacteria through nasal secretions, which can be detected via nested-polymerase chain reaction (PCR) experiments. Little research has focused on immune responses in nested PCR-positive (bTB PCR-P) or nested PCR-negative (bTB PCR-N) M. bovis-infected cattle. Here, we investigated the transcriptomes of peripheral blood mononuclear cells (PBMCs), with or without stimulation by purified protein derivative of bovine tuberculin (PPD-B), among bTB PCR-P, bTB PCR-N, and healthy cattle using RNA-Seq. We also explored the potential value of PBMC transcripts as novel biomarkers for diagnosing bTB. Numerous differentially expressed genes were identified following pair-wise comparison of different groups, with or without PPD-B stimulation (adjusted p < 0.05). Compared with healthy cattle, bTB PCR-P, and bTB PCR-N cattle shared 5 significantly dysregulated biological pathways, including Cytokine-cytokine receptor interaction, NF-kappa B signaling pathway, Hematopoietic cell lineage, Osteoclast differentiation and HTLV-I infection. Notably, dysregulated biological pathways of bTB PCR-P and bTB PCR-N cattle were associated with cell death and phagocytosis, respectively. Lymphotoxin alpha and interleukin-8 could potentially differentiate M. bovis-infected and healthy cattle upon stimulation with PPD-B, with area-under-the-curve (AUC) values of 0.9991 and 0.9343, respectively. B cell lymphoma 2 and chitinase 3-like 1 might enable differentiation between bTB PCR-P and bTB PCR-N upon stimulation with PPD-B, with AUC values of 0.9100 and 0.8893, respectively. Thus, the PBMC transcriptome revealed the immune responses in M. bovis-infected cattle (bTB PCR-P and bTB PCR-N) and may provide a novel sight in bTB diagnosis.
Collapse
Affiliation(s)
- Lichun Fang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Weidong Lin
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Molecular and Cellular Biology, Gembloux Agro-Bio Tech University of Liège (ULg), Gembloux, Belgium
| | - Hong Jia
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xintao Gao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiukun Sui
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiaoyu Guo
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shaohua Hou
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yitong Jiang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Liangquan Zhu
- Department of Inspection Technology Research, China Institute of Veterinary Drugs Control, Beijing, China
| | - Hongfei Zhu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jiabo Ding
- Department of Inspection Technology Research, China Institute of Veterinary Drugs Control, Beijing, China
| | - Lin Jiang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ting Xin
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
7
|
Arbués A, Brees D, Chibout SD, Fox T, Kammüller M, Portevin D. TNF-α antagonists differentially induce TGF-β1-dependent resuscitation of dormant-like Mycobacterium tuberculosis. PLoS Pathog 2020; 16:e1008312. [PMID: 32069329 PMCID: PMC7048311 DOI: 10.1371/journal.ppat.1008312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/28/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
TNF-α- as well as non-TNF-α-targeting biologics are prescribed to treat a variety of immune-mediated inflammatory disorders. The well-documented risk of tuberculosis progression associated with anti-TNF-α treatment highlighted the central role of TNF-α for the maintenance of protective immunity, although the rate of tuberculosis detected among patients varies with the nature of the drug. Using a human, in-vitro granuloma model, we reproduce the increased reactivation rate of tuberculosis following exposure to Adalimumab compared to Etanercept, two TNF-α-neutralizing biologics. We show that Adalimumab, because of its bivalence, specifically induces TGF-β1-dependent Mycobacterium tuberculosis (Mtb) resuscitation which can be prevented by concomitant TGF-β1 neutralization. Moreover, our data suggest an additional role of lymphotoxin-α–neutralized by Etanercept but not Adalimumab–in the control of latent tuberculosis infection. Furthermore, we show that, while Secukinumab, an anti-IL-17A antibody, does not revert Mtb dormancy, the anti-IL-12-p40 antibody Ustekinumab and the recombinant IL-1RA Anakinra promote Mtb resuscitation, in line with the importance of these pathways in tuberculosis immunity. Mycobacterium tuberculosis (Mtb) is the world’s leading infectious killer. Multi-cellular immune structures called granulomas may constitute a latent form of Mtb infection and a potential reservoir for future cases. Post-marketing surveillance data suggested that Mtb protective immunity is unequally impacted by different TNF-α-targeting drugs used to treat inflammatory disorders. We used an in-vitro granuloma model to reproduce these clinical observations and gain mechanistic insights and, in addition, to assess the risk of tuberculosis reactivation associated with the use of other immunomodulatory drugs. These results may inspire pharmacologists to design future drug-development strategies of biologics in particular, while immunologists and microbiologists will find a relevant experimental approach to disentangle the complex interactions involved in Mtb protective immunity and immunopathogenesis.
Collapse
Affiliation(s)
- Ainhoa Arbués
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dominique Brees
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Todd Fox
- Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail: (MK); (DP)
| | - Damien Portevin
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (MK); (DP)
| |
Collapse
|
8
|
Carow B, Hauling T, Qian X, Kramnik I, Nilsson M, Rottenberg ME. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat Commun 2019; 10:1823. [PMID: 31015452 PMCID: PMC6479067 DOI: 10.1038/s41467-019-09816-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Granulomas are the pathological hallmark of tuberculosis (TB) and the niche where bacilli can grow and disseminate or the immunological microenvironment in which host cells interact to prevent bacterial dissemination. Here we show 34 immune transcripts align to the morphology of lung sections from Mycobacterium tuberculosis-infected mice at cellular resolution. Colocalizing transcript networks at <10 μm in C57BL/6 mouse granulomas increase complexity with time after infection. B-cell clusters develop late after infection. Transcripts from activated macrophages are enriched at subcellular distances from M. tuberculosis. Encapsulated C3HeB/FeJ granulomas show necrotic centers with transcripts associated with immunosuppression (Foxp3, Il10), whereas those in the granuloma rims associate with activated T cells and macrophages. We see highly diverse networks with common interactors in similar lesions. Different immune landscapes of M. tuberculosis granulomas depending on the time after infection, the histopathological features of the lesion, and the proximity to bacteria are here defined.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Thomas Hauling
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Igor Kramnik
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
9
|
Sallin MA, Kauffman KD, Riou C, Du Bruyn E, Foreman TW, Sakai S, Hoft SG, Myers TG, Gardina PJ, Sher A, Moore R, Wilder-Kofie T, Moore IN, Sette A, Lindestam Arlehamn CS, Wilkinson RJ, Barber DL. Host resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression. Nat Microbiol 2018; 3:1198-1205. [DOI: 10.1038/s41564-018-0231-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/27/2018] [Indexed: 01/04/2023]
|
10
|
Tertiary Lymphoid Structures Among the World of Noncanonical Ectopic Lymphoid Organizations. Methods Mol Biol 2018; 1845:1-15. [PMID: 30141004 DOI: 10.1007/978-1-4939-8709-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tertiary lymphoid structures (TLOs), also known as ectopic lymphoid structures, are associated with chronic infections and inflammatory diseases. Despite their association with pathology, these structures are actually a normal, albeit transient, component of the immune system and facilitate local immune responses that are meant to mitigate inflammation and resolve infection. Many of the mechanisms controlling the formation and function of tertiary lymphoid structures have been identified, in part by experimentally triggering their formation using defined stimuli under controlled conditions. Here, we introduce the experimental and pathological conditions in which tertiary lymphoid tissues are formed, describe the mechanisms linked to their formation, and discuss their functions in the context of both infection and inflammation.
Collapse
|
11
|
Bachmann M, Waibler Z, Pleli T, Pfeilschifter J, Mühl H. Type I Interferon Supports Inducible Nitric Oxide Synthase in Murine Hepatoma Cells and Hepatocytes and during Experimental Acetaminophen-Induced Liver Damage. Front Immunol 2017; 8:890. [PMID: 28824623 PMCID: PMC5534483 DOI: 10.3389/fimmu.2017.00890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Cytokine regulation of high-output nitric oxide (NO) derived from inducible NO synthase (iNOS) is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN) as potential regulator of hepatic iNOS in vitro and in vivo. In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammatory interleukin-β/tumor necrosis factor-α and immunoregulatory IFNβ as detected by analysis of iNOS expression and nitrite release. Upregulation of iNOS by IFNβ coincided with enhanced binding of signal transducer and activator of transcription-1 to a regulatory region at the murine iNOS promoter known to support target gene expression in response to this signaling pathway. Synergistic iNOS induction under the influence of IFNβ was confirmed in alternate murine Hepa56.1D hepatoma cells and primary hepatocytes. To assess iNOS regulation by type I IFN in vivo, murine acetaminophen (APAP)-induced sterile liver inflammation was investigated. In this model of acute liver injury, excessive necroinflammation drives iNOS expression in diverse liver cell types, among others hepatocytes. Herein, we demonstrate impaired iNOS expression in type I IFN receptor-deficient mice which associated with diminished APAP-induced liver damage. Data presented indicate a vital role of type I IFN within the inflamed liver for fine-tuning pathological processes such as overt iNOS expression.
Collapse
Affiliation(s)
- Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Zoe Waibler
- Junior Research Group "Novel Vaccination Strategies Early Immune Responses", Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas Pleli
- Department of Medicine I, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Chavez-Galan L, Vesin D, Segueni N, Prasad P, Buser-Llinares R, Blaser G, Pache JC, Ryffel B, Quesniaux VFJ, Garcia I. Tumor Necrosis Factor and Its Receptors Are Crucial to Control Mycobacterium bovis Bacillus Calmette-Guerin Pleural Infection in a Murine Model. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2364-77. [PMID: 27456129 DOI: 10.1016/j.ajpath.2016.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
Tumor necrosis factor (TNF) is crucial to control Mycobacterium tuberculosis infection, which remains a leading cause of morbidity and mortality worldwide. TNF blockade compromises host immunity and may cause reactivation of latent infection, resulting in overt pulmonary, pleural, and extrapulmonary tuberculosis. Herein, we investigate the roles of TNF and TNF receptors in the control of Mycobacterium bovis bacillus Calmette-Guerin (BCG) pleural infection in a murine model. As controls, wild-type mice and those with a defective CCR5, a receptor that is crucial for control of viral infection but not for tuberculosis, were used. BCG-induced pleural infection was uncontrolled and progressive in absence of TNF or TNF receptor 1 (TNFR1)/TNFR2 (TNFR1R2) with increased inflammatory cell recruitment and bacterial load in the pleural cavity, and heightened levels of pleural and serum proinflammatory cytokines and chemokines, compared to wild-type control mice. The visceral pleura was thickened with chronic inflammation, which was prominent in TNF(-/-) and TNFR1R2(-/-) mice. The parietal pleural of TNF(-/-) and TNFR1R2(-/-) mice exhibited abundant inflammatory nodules containing mycobacteria, and these mice developed nonresolving inflammation and succumbed from disseminated BCG infection. By contrast, CCR5(-/-) mice survived and controlled pleural BCG infection as wild-type control mice. In conclusion, BCG-induced pleurisy was uncontrolled in the absence of TNF or TNF receptors with exacerbated inflammatory response, impaired bacterial clearance, and defective mesothelium repair, suggesting a critical role of TNF to control mycobacterial pleurisy.
Collapse
Affiliation(s)
- Leslie Chavez-Galan
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland; Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City, Mexico
| | - Dominique Vesin
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland
| | - Noria Segueni
- Experimental Molecular Immunology and Neurogenetics (UMR7355), University of Orléans and CNRS, Orléans, France
| | - Pritha Prasad
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland
| | - Raphaële Buser-Llinares
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland
| | - Guillaume Blaser
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland
| | - Jean-Claude Pache
- Division of Clinical Pathology, University Hospital, Geneva, Switzerland
| | - Bernhard Ryffel
- Experimental Molecular Immunology and Neurogenetics (UMR7355), University of Orléans and CNRS, Orléans, France
| | - Valérie F J Quesniaux
- Experimental Molecular Immunology and Neurogenetics (UMR7355), University of Orléans and CNRS, Orléans, France
| | - Irene Garcia
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
13
|
Innate myeloid cell TNFR1 mediates first line defence against primary Mycobacterium tuberculosis infection. Sci Rep 2016; 6:22454. [PMID: 26931771 PMCID: PMC4773807 DOI: 10.1038/srep22454] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022] Open
Abstract
TNF is crucial for controlling Mycobacterium tuberculosis infection and
understanding how will help immunomodulating the host response. Here we assessed the
contribution of TNFR1 pathway from innate myeloid versus T cells. We first
established the prominent role of TNFR1 in haematopoietic cells for controlling
M. tuberculosis in TNFR1 KO chimera mice. Further, absence of TNFR1
specifically on myeloid cells (M-TNFR1 KO) recapitulated the uncontrolled M.
tuberculosis infection seen in fully TNFR1 deficient mice, with increased
bacterial burden, exacerbated lung inflammation, and rapid death. Pulmonary IL-12p40
over-expression was attributed to a prominent CD11b+
Gr1high cell population in infected M-TNFR1 KO mice. By contrast,
absence of TNFR1 on T-cells did not compromise the control of M. tuberculosis
infection over 6-months. Thus, the protective TNF/TNFR1 pathway essential for
controlling primary M. tuberculosis infection depends on innate macrophage
and neutrophil myeloid cells, while TNFR1 pathway in T cells is dispensable.
Collapse
|
14
|
Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF. Infect Immun 2015; 83:3612-23. [PMID: 26123801 DOI: 10.1128/iai.00743-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF.
Collapse
|
15
|
Allie N, Grivennikov SI, Keeton R, Hsu NJ, Bourigault ML, Court N, Fremond C, Yeremeev V, Shebzukhov Y, Ryffel B, Nedospasov SA, Quesniaux VFJ, Jacobs M. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci Rep 2013; 3:1809. [PMID: 23657146 PMCID: PMC3648802 DOI: 10.1038/srep01809] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/19/2013] [Indexed: 01/13/2023] Open
Abstract
Tumour Necrosis Factor (TNF) is critical for host control of M. tuberculosis, but the relative contribution of TNF from innate and adaptive immune responses during tuberculosis infection is unclear. Myeloid versus T-cell-derived TNF function in tuberculosis was investigated using cell type-specific TNF deletion. Mice deficient for TNF expression in macrophages/neutrophils displayed early, transient susceptibility to M. tuberculosis but recruited activated, TNF-producing CD4+ and CD8+ T-cells and controlled chronic infection. Strikingly, deficient TNF expression in T-cells resulted in early control but susceptibility and eventual mortality during chronic infection with increased pulmonary pathology. TNF inactivation in both myeloid and T-cells rendered mice critically susceptible to infection with a phenotype resembling complete TNF deficient mice, indicating that myeloid and T-cells are the primary TNF sources collaborating for host control of tuberculosis. Thus, while TNF from myeloid cells mediates early immune function, T-cell derived TNF is essential to sustain protection during chronic tuberculosis infection.
Collapse
Affiliation(s)
- Nasiema Allie
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mehra S, Golden NA, Stuckey K, Didier PJ, Doyle LA, Russell-Lodrigue KE, Sugimoto C, Hasegawa A, Sivasubramani SK, Roy CJ, Alvarez X, Kuroda MJ, Blanchard JL, Lackner AA, Kaushal D. The Mycobacterium tuberculosis stress response factor SigH is required for bacterial burden as well as immunopathology in primate lungs. J Infect Dis 2012; 205:1203-13. [PMID: 22402035 DOI: 10.1093/infdis/jis102] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sigma H (sigH) is a major Mycobacterium tuberculosis (Mtb) stress response factor. It is induced in response to heat, oxidative stress, cell wall damage, and hypoxia. Infection of macrophages with the Δ-sigH mutant generates more potent innate immune response than does infection with Mtb. The mutant is attenuated for pathology in mice. METHODS We used a nonhuman primate (NHP) model of acute tuberculosis, to better understand the phenotype of the Δ-sigH mutant in vivo. NHPs were infected with high doses of Mtb or the mutant, and the progression of tuberculosis was analyzed in both groups using clinical, pathological, microbiological, and immunological parameters. RESULTS Animals exposed to Mtb rapidly progressed to acute pulmonary tuberculosis as indicated by worsening clinical correlates, high lung bacterial burden, and granulomatous immunopathology. All the animals rapidly succumbed to tuberculosis. On the other hand, the NHPs exposed to the Mtb:Δ-sigH mutant did not exhibit acute tuberculosis, instead showing significantly blunted disease. These NHPs survived the entire duration of the study. CONCLUSIONS The Mtb:Δ-sigH mutant is completely attenuated for bacterial burden as well as immunopathology in NHPs. SigH and its regulon are required for complete virulence in primates. Further studies are needed to identify the molecular mechanism of this attenuation.
Collapse
Affiliation(s)
- Smriti Mehra
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cells of the innate immune system produce cytokines and lipid mediators that strongly influence the outcome of mycobacterial infection. In the case of Mycobacterium tuberculosis, the lung is a critical site for this interaction. Here, we review current information on the role of the major innate cytokine pathways both in controlling initial infection as well as in promoting and maintaining adaptive T-cell responses that mediate host resistance or immunopathology. Understanding this important feature of the host-pathogen interaction can provide major insights into the mechanisms of virulence and can lead to new approaches for immunological intervention in tuberculosis and other mycobacterial diseases.
Collapse
Affiliation(s)
- A M Cooper
- Trudeau Institute, Saranac Lake, New York, USA.
| | | | | |
Collapse
|
18
|
Sasindran SJ, Torrelles JB. Mycobacterium Tuberculosis Infection and Inflammation: what is Beneficial for the Host and for the Bacterium? Front Microbiol 2011; 2:2. [PMID: 21687401 PMCID: PMC3109289 DOI: 10.3389/fmicb.2011.00002] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/05/2011] [Indexed: 01/06/2023] Open
Abstract
Tuberculosis is still a major health problem in the world. Initial interactions between Mycobacterium tuberculosis and the host mark the pathway of infection and the subsequent host inflammatory response. This inflammatory response is tightly regulated by both the host and the bacterium during different stages of infection. As infection progresses, the initial intense pro-inflammatory response observed is regulated by suppressive mediators balancing inflammation. In this environment, M. tuberculosis battles to survive interfering with the host inflammatory response. In this review we discuss the major effector molecules involved in inflammation in relation to the different stages of M. tuberculosis infection.
Collapse
Affiliation(s)
- Smitha J. Sasindran
- Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State UniversityColumbus, OH, USA
| | - Jordi B. Torrelles
- Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|