1
|
Foo ACY, Edin ML, Lin WC, Lih FB, Gabel SA, Uddin MN, Fessler MB, Zeldin DC, Mueller GA. Production and Release of Proinflammatory Mediators by the Cockroach Allergen Bla g 1 via a Shared Membrane-Destabilization Mechanism. Biochemistry 2024; 63:1730-1737. [PMID: 38915291 DOI: 10.1021/acs.biochem.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The cockroach allergen Bla g 1 encloses an exceptionally large hydrophobic cavity, which allows it to bind and deliver unsaturated fatty acid ligands. Bla g 1-mediated delivery of naturally occurring (nMix) ligands has been shown to destabilize lipid membranes, contributing to its digestive/antiviral functions within the source organism. However, the consequences of this activity on Bla g 1 allergenicity following human exposure remain unknown. In this work, we show that Bla g 1-mediated membrane disruption can induce a proinflammatory immune response in mammalian cells via two complementary pathways. At high concentrations, the cytotoxic activity of Bla g 1 induces the release of proinflammatory cytosolic contents including damage-associated molecular patterns (DAMPs) such as heat-shock Protein-70 (HSP70) and the cytokine interleukin-1 (IL-1β). Sublytic concentrations of Bla g 1 enhanced the ability of phospholipase A2 (PLA2) to extract and hydrolyze phospholipid substrates from cellular membranes, stimulating the production of free polyunsaturated fatty acids (PUFAs) and various downstream inflammatory lipid mediators. Both of these effects are dependent on the presence of Bla g 1's natural fatty-acid (nMix) ligands with CC50 values corresponding to the concentrations required for membrane destabilization reported in previous studies. Taken together, these results suggest that mechanisms through which Bla g 1-mediated lipid delivery and membrane destabilization could directly contribute to cockroach allergic sensitization.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Dept. of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Matthew L Edin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Wan-Chi Lin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Fred B Lih
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Mohammad N Uddin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Darryl C Zeldin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
2
|
Lu E, Hara A, Sun S, Hallmark B, Snider JM, Seeds MC, Watkins JC, McCall CE, Zhang HH, Yao G, Chilton FH. Temporal associations of plasma levels of the secreted phospholipase A 2 family and mortality in severe COVID-19. Eur J Immunol 2024:e2350721. [PMID: 38651231 DOI: 10.1002/eji.202350721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/25/2024]
Abstract
Previous research suggests that group IIA-secreted phospholipase A2 (sPLA2-IIA) plays a role in and predicts lethal COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal relationship between levels of several members of a family of sPLA2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA2 isoforms, sPLA2-IIA, sPLA2-V, sPLA2-X, sPLA2-IB, sPLA2-IIC, and sPLA2-XVI, increased over the first 7 ICU days in those who succumbed to the disease but attenuated over the same time period in survivors. In contrast, a reversed pattern in sPLA2-IID and sPLA2-XIIB levels over 7 days suggests a protective role of these two isoforms. Furthermore, decision tree models demonstrated that sPLA2-IIA outperformed top-ranked cytokines and chemokines as a predictor of patient outcome. Taken together, proteomic analysis revealed temporal sPLA2 patterns that reflect the critical roles of sPLA2 isoforms in severe COVID-19 disease.
Collapse
Affiliation(s)
- Eric Lu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Aki Hara
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Shudong Sun
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Brian Hallmark
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Michael C Seeds
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Charles E McCall
- Departments of Internal Medicine, Microbiology and Immunology, and Clinical and Translational Sciences Institute, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Hao Helen Zhang
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Hamu-Tanoue A, Takagi K, Taketomi Y, Miki Y, Nishito Y, Kano K, Aoki J, Matsuyama T, Kondo K, Dotake Y, Matsuyama H, Machida K, Murakami M, Inoue H. Group III secreted phospholipase A 2 -driven lysophospholipid pathway protects against allergic asthma. FASEB J 2024; 38:e23428. [PMID: 38236184 DOI: 10.1096/fj.202301976r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by recurrent episodes of airway obstruction, hyperresponsiveness, remodeling, and eosinophilia. Phospholipase A2 s (PLA2 s), which release fatty acids and lysophospholipids from membrane phospholipids, have been implicated in exacerbating asthma by generating pro-asthmatic lipid mediators, but an understanding of the association between individual PLA2 subtypes and asthma is still incomplete. Here, we show that group III-secreted PLA2 (sPLA2 -III) plays an ameliorating, rather than aggravating, role in asthma pathology. In both mouse and human lungs, sPLA2 -III was expressed in bronchial epithelial cells and decreased during the asthmatic response. In an ovalbumin (OVA)-induced asthma model, Pla2g3-/- mice exhibited enhanced airway hyperresponsiveness, eosinophilia, OVA-specific IgE production, and type 2 cytokine expression as compared to Pla2g3+/+ mice. Lipidomics analysis showed that the pulmonary levels of several lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidic acid (LPA), were decreased in OVA-challenged Pla2g3-/- mice relative to Pla2g3+/+ mice. LPA receptor 2 (LPA2 ) agonists suppressed thymic stromal lymphopoietin (TSLP) expression in bronchial epithelial cells and reversed airway hyperresponsiveness and eosinophilia in Pla2g3-/- mice, suggesting that sPLA2 -III negatively regulates allergen-induced asthma at least by producing LPA. Thus, the activation of the sPLA2 -III-LPA pathway may be a new therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Asako Hamu-Tanoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiyotaka Kondo
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Dotake
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromi Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Lu E, Hara A, Sun S, Hallmark B, Snider JM, Seeds MC, Watkins JC, McCall CE, Zhang HH, Yao G, Chilton FH. Temporal Associations of Plasma Levels of the Secreted Phospholipase A 2 Family and Mortality in Severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.21.22282595. [PMID: 36451888 PMCID: PMC9709788 DOI: 10.1101/2022.11.21.22282595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Previous research suggests that group IIA secreted phospholipase A 2 (sPLA 2 -IIA) plays a role in and predicts severe COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal (days 0, 3 and 7) relationship between the levels of several members of a family of sPLA 2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA 2 isoforms, sPLA 2 -IIA, sPLA 2 -V, sPLA 2 -X, sPLA 2 -IB, sPLA 2 -IIC, and sPLA 2 -XVI, increased over the first 7 ICU days in those who succumbed to the disease. sPLA 2 -IIA outperformed top ranked cytokines and chemokines as predictors of patient outcome. A decision tree corroborated these results with day 0 to day 3 kinetic changes of sPLA 2 -IIA that separated the death and severe categories from the mild category and increases from day 3 to day 7 significantly enriched the lethal category. In contrast, there was a time-dependent decrease in sPLA 2 -IID and sPLA 2 -XIIB in patients with severe or lethal disease, and these two isoforms were at higher levels in mild patients. Taken together, proteomic analysis revealed temporal sPLA 2 patterns that reflect the critical roles of sPLA 2 isoforms in severe COVID-19 disease.
Collapse
|
6
|
Taketomi Y, Murakami M. Regulatory Roles of Phospholipase A2 Enzymes and Bioactive Lipids in Mast Cell Biology. Front Immunol 2022; 13:923265. [PMID: 35833146 PMCID: PMC9271868 DOI: 10.3389/fimmu.2022.923265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Lipids play fundamental roles in life as an essential component of cell membranes, as a major source of energy, as a body surface barrier, and as signaling molecules that transmit intracellular and intercellular signals. Lipid mediators, a group of bioactive lipids that mediates intercellular signals, are produced via specific biosynthetic enzymes and transmit signals via specific receptors. Mast cells, a tissue-resident immune cell population, produce several lipid mediators that contribute to exacerbation or amelioration of allergic responses and also non-allergic inflammation, host defense, cancer and fibrosis by controlling the functions of microenvironmental cells as well as mast cell themselves in paracrine and autocrine fashions. Additionally, several bioactive lipids produced by stromal cells regulate the differentiation, maturation and activation of neighboring mast cells. Many of the bioactive lipids are stored in membrane phospholipids as precursor forms and released spatiotemporally by phospholipase A2 (PLA2) enzymes. Through a series of studies employing gene targeting and lipidomics, several enzymes belonging to the PLA2 superfamily have been demonstrated to participate in mast cell-related diseases by mobilizing unique bioactive lipids in multiple ways. In this review, we provide an overview of our current understanding of the regulatory roles of several PLA2-driven lipid pathways in mast cell biology.
Collapse
|
7
|
Knuplez E, Sturm EM, Marsche G. Emerging Role of Phospholipase-Derived Cleavage Products in Regulating Eosinophil Activity: Focus on Lysophospholipids, Polyunsaturated Fatty Acids and Eicosanoids. Int J Mol Sci 2021; 22:4356. [PMID: 33919453 PMCID: PMC8122506 DOI: 10.3390/ijms22094356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.
Collapse
Affiliation(s)
| | | | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (E.K.); (E.M.S.)
| |
Collapse
|
8
|
Murphy RC, Altemeier WA, Lai Y, Hallstrand TS. The Intricate Web of Phospholipase A 2s and Specific Features of Airway Hyperresponsiveness in Asthma. Am J Respir Cell Mol Biol 2020; 63:543-545. [PMID: 32484733 DOI: 10.1165/rcmb.2020-0131le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Ying Lai
- University of Washington, Seattle, Washington
| | | |
Collapse
|
9
|
Haggadone MD, Peters-Golden M. Microenvironmental Influences on Extracellular Vesicle-Mediated Communication in the Lung. Trends Mol Med 2018; 24:963-975. [DOI: 10.1016/j.molmed.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
|
10
|
Samuchiwal SK, Balestrieri B. Harmful and protective roles of group V phospholipase A 2: Current perspectives and future directions. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:819-826. [PMID: 30308324 DOI: 10.1016/j.bbalip.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Group V Phospholipase A2 (Pla2g5) is a member of the PLA2 family of lipid-generating enzymes. It is expressed in immune and non-immune cell types and is inducible during several pathologic conditions serving context-specific functions. In this review, we recapitulate the protective and detrimental functions of Pla2g5 investigated through preclinical and translational approaches. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Sachin K Samuchiwal
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Debeuf N, Lambrecht BN. Eicosanoid Control Over Antigen Presenting Cells in Asthma. Front Immunol 2018; 9:2006. [PMID: 30233591 PMCID: PMC6131302 DOI: 10.3389/fimmu.2018.02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
12
|
Yamaguchi M, Samuchiwal SK, Quehenberger O, Boyce JA, Balestrieri B. Macrophages regulate lung ILC2 activation via Pla2g5-dependent mechanisms. Mucosal Immunol 2018; 11:615-626. [PMID: 29346348 PMCID: PMC5976507 DOI: 10.1038/mi.2017.99] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/17/2017] [Indexed: 02/04/2023]
Abstract
Group V phospholipase A2 (Pla2g5) is a lipid-generating enzyme necessary for macrophage effector functions in pulmonary inflammation. However, the lipid mediators involved and their cellular targets have not been identified. Mice lacking Pla2g5 showed markedly reduced lung ILC2 activation and eosinophilia following repetitive Alternaria Alternata inhalation. While Pla2g5-null mice had Wt levels of immediate IL-33 release after one Alternaria dose, they failed to upregulate IL-33 in macrophages following repeated Alternaria administration. Unexpectedly, while adoptive transfer of bone marrow-derived (BM)-macrophages restored ILC2 activation and eosinophilia in Alternaria-exposed Pla2g5-null mice, exogenous IL-33 did not. Conversely, transfers of Pla2g5-null BM-macrophages reduced inflammation in Alternaria-exposed Wt mice. Mass spectrometry analysis of free fatty acids (FFAs) demonstrated significantly reduced FFAs (including linoleic acid (LA) and oleic acid (OA)) in lung and BM-macrophages lacking Pla2g5. Exogenous administration of LA or LA+OA to Wt mice sharply potentiated IL-33-induced lung eosinophilia and ILC2 expansion in vitro and in vivo. In contrast, OA potentiated IL-33-induced inflammation and ILC2 expansion in Pla2g5-null mice, but LA was inactive both in vivo and in vitro. Notably, Pla2g5-null ILC2s showed significantly reduced expression of the FFA-receptor-1 compared to Wt ILC2s. Thus, macrophage-associated Pla2g5 contributes significantly to type-2 immunity through regulation of IL-33 induction and FFA-driven ILC2 activation.
Collapse
Affiliation(s)
- Munehiro Yamaguchi
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Sachin K. Samuchiwal
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Oswald Quehenberger
- Department of Medicine, Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Joshua A. Boyce
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
13
|
Nolin JD, Lai Y, Ogden HL, Manicone AM, Murphy RC, An D, Frevert CW, Ghomashchi F, Naika GS, Gelb MH, Gauvreau GM, Piliponsky AM, Altemeier WA, Hallstrand TS. Secreted PLA2 group X orchestrates innate and adaptive immune responses to inhaled allergen. JCI Insight 2017; 2:94929. [PMID: 29093264 PMCID: PMC5752296 DOI: 10.1172/jci.insight.94929] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/26/2017] [Indexed: 01/15/2023] Open
Abstract
Phospholipase A2 (PLA2) enzymes regulate the formation of eicosanoids and lysophospholipids that contribute to allergic airway inflammation. Secreted PLA2 group X (sPLA2-X) was recently found to be increased in the airways of asthmatics and is highly expressed in airway epithelial cells and macrophages. In the current study, we show that allergen exposure increases sPLA2-X in humans and in mice, and that global deletion of Pla2g10 results in a marked reduction in airway hyperresponsiveness (AHR), eosinophil and T cell trafficking to the airways, airway occlusion, generation of type-2 cytokines by antigen-stimulated leukocytes, and antigen-specific immunoglobulins. Further, we found that Pla2g10-/- mice had reduced IL-33 levels in BALF, fewer type-2 innate lymphoid cells (ILC2s) in the lung, less IL-33-induced IL-13 expression in mast cells, and a marked reduction in both the number of newly recruited macrophages and the M2 polarization of these macrophages in the lung. These results indicate that sPLA2-X serves as a central regulator of both innate and adaptive immune response to proteolytic allergen.
Collapse
Affiliation(s)
- James D. Nolin
- Department of Medicine, Division of Pulmonary and Critical Care
| | - Ying Lai
- Department of Medicine, Division of Pulmonary and Critical Care
| | | | | | - Ryan C. Murphy
- Department of Medicine, Division of Pulmonary and Critical Care
| | - Dowon An
- Department of Medicine, Division of Pulmonary and Critical Care
| | - Charles W. Frevert
- Department of Medicine, Division of Pulmonary and Critical Care
- Department of Comparative Medicine
| | | | | | - Michael H. Gelb
- Department of Chemistry, and
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | | |
Collapse
|
14
|
Nolin JD, Ogden HL, Lai Y, Altemeier WA, Frevert CW, Bollinger JG, Naika GS, Kicic A, Stick SM, Lambeau G, Henderson WR, Gelb MH, Hallstrand TS. Identification of Epithelial Phospholipase A 2 Receptor 1 as a Potential Target in Asthma. Am J Respir Cell Mol Biol 2017; 55:825-836. [PMID: 27448109 DOI: 10.1165/rcmb.2015-0150oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Secreted phospholipase A2s (sPLA2s) regulate eicosanoid formation and have been implicated in asthma. Although sPLA2s function as enzymes, some of the sPLA2s bind with high affinity to a C-type lectin receptor, called PLA2R1, which has functions in both cellular signaling and clearance of sPLA2s. We sought to examine the expression of PLA2R1 in the airway epithelium of human subjects with asthma and the function of the murine Pla2r1 gene in a model of asthma. Expression of PLA2R1 in epithelial brushings was assessed in two distinct cohorts of children with asthma by microarray and quantitative PCR, and immunostaining for PLA2R1 was conducted on endobronchial tissue and epithelial brushings from adults with asthma. C57BL/129 mice deficient in Pla2r1 (Pla2r1-/-) were characterized in an ovalbumin (OVA) model of allergic asthma. PLA2R1 was differentially overexpressed in epithelial brushings of children with atopic asthma in both cohorts. Immunostaining for PLA2R1 in endobronchial tissue localized to submucosal glandular epithelium and columnar epithelial cells. After OVA sensitization and challenge, Pla2r1-/- mice had increased airway hyperresponsiveness, as well as an increase in cellular trafficking of eosinophils to the peribronchial space and bronchoalveolar lavage fluid, and an increase in airway permeability. In addition, Pla2r1-/- mice had more dendritic cells in the lung, higher levels of OVA-specific IgG, and increased production of both type-1 and type-2 cytokines by lung leukocytes. PLA2R1 is increased in the airway epithelium in asthma, and serves as a regulator of airway hyperresponsiveness, airway permeability, antigen sensitization, and airway inflammation.
Collapse
Affiliation(s)
- James D Nolin
- From the 1 Division of Pulmonary and Critical Care and
| | - H Luke Ogden
- From the 1 Division of Pulmonary and Critical Care and
| | - Ying Lai
- From the 1 Division of Pulmonary and Critical Care and
| | | | - Charles W Frevert
- From the 1 Division of Pulmonary and Critical Care and.,2 Department of Comparative Medicine
| | | | | | - Anthony Kicic
- 4 The Telethon Kids Institute, Centre for Health Research, University of Western Australia, Nedlands, Western Australia, Australia.,5 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,6 School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia.,7 Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and
| | - Stephen M Stick
- 4 The Telethon Kids Institute, Centre for Health Research, University of Western Australia, Nedlands, Western Australia, Australia.,5 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,6 School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia.,7 Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and
| | - Gerard Lambeau
- 8 Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Michael H Gelb
- 3 Department of Chemistry, and.,10 Department of Biochemistry, University of Washington, Seattle, Washington
| | | |
Collapse
|
15
|
Garg AD, Elsen S, Krysko DV, Vandenabeele P, de Witte P, Agostinis P. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 2016; 6:26841-60. [PMID: 26314964 PMCID: PMC4694957 DOI: 10.18632/oncotarget.4754] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022] Open
Abstract
Immunogenic cell death (ICD) is a well-established instigator of ‘anti-cancer vaccination-effect (AVE)’. ICD has shown considerable preclinical promise, yet there remain subset of cancer patients that fail to respond to clinically-applied ICD inducers. Non-responsiveness to ICD inducers could be explained by the existence of cancer cell-autonomous, anti-AVE resistance mechanisms. However such resistance mechanisms remain poorly investigated. In this study, we have characterized for the first time, a naturally-occurring preclinical cancer model (AY27) that exhibits intrinsic anti-AVE resistance despite treatment with ICD inducers like mitoxantrone or hypericin-photodynamic therapy. Further mechanistic analysis revealed that this anti-AVE resistance was associated with a defect in exposing the important ‘eat me’ danger signal, surface-calreticulin (ecto-CRT/CALR). In an ICD setting, this defective ecto-CRT further correlated with severely reduced phagocytic clearance of AY27 cells as well as the failure of these cells to activate AVE. Defective ecto-CRT in response to ICD induction was a result of low endogenous CRT protein levels (i.e. CRTlow-phenotype) in AY27 cells. Exogenous reconstitution of ecto-rCRT (recombinant-CRT) improved the phagocytic removal of ICD inducer-treated AY27 cells, and importantly, significantly increased their AVE-activating ability. Moreover, we found that a subset of cancer patients of various cancer-types indeed possessed CALRlow or CRTlow-tumours. Remarkably, we found that tumoural CALRhigh-phenotype was predictive of positive clinical responses to therapy with ICD inducers (radiotherapy and paclitaxel) in lung and ovarian cancer patients, respectively. Furthermore, only in the ICD clinical setting, tumoural CALR levels positively correlated with the levels of various phagocytosis-associated genes relevant for phagosome maturation or processing. Thus, we reveal the existence of a cancer cell-autonomous, anti-AVE or anti-ICD resistance mechanism that has profound clinical implications for anticancer immunotherapy and cancer predictive biomarker analysis.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanne Elsen
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Dmitri V Krysko
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Murakami M, Yamamoto K, Miki Y, Murase R, Sato H, Taketomi Y. The Roles of the Secreted Phospholipase A 2 Gene Family in Immunology. Adv Immunol 2016; 132:91-134. [PMID: 27769509 PMCID: PMC7112020 DOI: 10.1016/bs.ai.2016.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the phospholipase A2 (PLA2) family that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, secreted PLA2 (sPLA2) enzymes comprise the largest group containing 11 isoforms in mammals. Individual sPLA2s exhibit unique tissue or cellular distributions and enzymatic properties, suggesting their distinct biological roles. Although PLA2 enzymes, particularly cytosolic PLA2 (cPLA2α), have long been implicated in inflammation by driving arachidonic acid metabolism, the precise biological roles of sPLA2s have remained a mystery over the last few decades. Recent studies employing mice gene-manipulated for individual sPLA2s, in combination with mass spectrometric lipidomics to identify their target substrates and products in vivo, have revealed their roles in diverse biological events, including immunity and associated disorders, through lipid mediator-dependent or -independent processes in given microenvironments. In this review, we summarize our current knowledge of the roles of sPLA2s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- M Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - K Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Y Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - R Murase
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - H Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
17
|
Yamaguchi M, Zacharia J, Laidlaw TM, Balestrieri B. PLA2G5 regulates transglutaminase activity of human IL-4-activated M2 macrophages through PGE2 generation. J Leukoc Biol 2016; 100:131-41. [PMID: 26936936 DOI: 10.1189/jlb.3a0815-372r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/12/2016] [Indexed: 12/22/2022] Open
Abstract
Phospholipases A2 are enzymes that liberate membrane-bound lipids in a tissue and cell-specific fashion. Group V secretory phospholipase A2 is necessary for the development of M2 macrophages and their effector functions in a mouse model of the T-helper-2 allergic airway inflammation. However, the function of group V phospholipase A2 in human M2 activation and T-helper-2 inflammation is ill-defined. Transglutaminase-2, a protein cross-linking enzyme, is a newly identified marker of both human and mouse interleukin-4-activated M2 macrophages and is also found in the lungs of patients with asthma. We report that group V phospholipase A2 and transglutaminase-2 colocalized in macrophages of human nasal polyp tissue obtained from patients with T-helper-2 eosinophilic inflammation, and their coexpression positively correlated with the number of eosinophils in each tissue specimen. We demonstrate that in human monocyte-derived macrophages activated by interleukin-4, group V phospholipase A2 translocated and colocalized with transglutaminase-2 in the cytoplasm and on the membrane of macrophages. Moreover, knocking down group V phospholipase A2 with small interfering ribonucleic acid reduced macrophage transglutaminase activity, whereas mass spectrometry analysis of lipids also showed reduced prostaglandin E2 production. Finally, exogenous prostaglandin E2 restored transglutaminase activity of group V phospholipase A2-small interfering ribonucleic acid-treated macrophages. Thus, our study shows a novel function of group V phospholipase A2 in regulating the transglutaminase activity of human interleukin-4-activated M2 macrophages through prostaglandin E2 generation and suggests that group V phospholipase A2 is a functionally relevant enzyme that may have therapeutic value for the treatment of human T-helper-2 inflammatory disorders.
Collapse
Affiliation(s)
- Munehiro Yamaguchi
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jennifer Zacharia
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Mruwat R, Kivity S, Landsberg R, Yedgar S, Langier S. Phospholipase A2-dependent Release of Inflammatory Cytokines by Superantigen-Stimulated Nasal Polyps of Patients with Chronic Rhinosinusitis. Am J Rhinol Allergy 2015; 29:e122-8. [DOI: 10.2500/ajra.2015.29.4224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Chronic rhinosinusitis (CRS) is an inflammatory/allergic disease with unclear pathophysiology, but it has been linked to an imbalance in the production of eicosanoids, which are metabolites of arachidonic acid, and results from phospholipids hydrolysis by phospholipase A2 (PLA2). As of yet, the role of PLA2 in CRS has hardly been studied, except for a report that group II PLA2 expression is elevated in interleukin (IL) 1β or tumor necrosis factor α-stimulated CRS nasal tissues with and without polyps. The PLA2 families include extracellular (secretory) and intracellular isoforms, which are involved in the regulation of inflammatory processes in different ways. Here we comprehensively investigated the expression of PLA2s, particularly those reported to be involved in respiratory disorders, in superantigen (SAE)-stimulated nasal polyps from patients with CRS with polyps, and determined their role in inflammatory cytokine production by inhibition of PLA2 expression. Methods The release of IL-5, IL-13, IL-17, and interferon γ by nasal polyps dispersed cells (NPDC) was determined concomitantly with PLA2 messenger RNA expression, under SAE stimulation, with or without dexamethasone, as a regulator of PLA2 expression. Results Stimulation of NPDCs by SAE-induced cytokine secretion with enhanced expression of several secretory PLA2 and Ca2+-independent PLA2, while suppressing cytosolic PLA2 expression. All these were reverted to the level of unstimulated NPDCs on treatment with dexamethasone. Conclusion This study further supports the key role of secretory PLA2 in the pathophysiology of respiratory disorders and presents secretory PLA2 inhibition as a therapeutic strategy for the treatment of CRS and airway pathologies in general.
Collapse
Affiliation(s)
- Rufayda Mruwat
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Roee Landsberg
- Ear Nose and Throat Department, Tel Aviv Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, lsrael
| | - Saul Yedgar
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
19
|
Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. A new era of secreted phospholipase A₂. J Lipid Res 2015; 56:1248-61. [PMID: 25805806 DOI: 10.1194/jlr.r058123] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Among more than 30 members of the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes represent the largest family, being Ca(2+)-dependent low-molecular-weight enzymes with a His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular distributions and enzymatic properties, suggesting their distinct biological roles. Recent studies using transgenic and knockout mice for nearly a full set of sPLA2 subtypes, in combination with sophisticated lipidomics as well as biochemical and cell biological studies, have revealed distinct contributions of individual sPLA2s to various pathophysiological events, including production of pro- and anti-inflammatory lipid mediators, regulation of membrane remodeling, degradation of foreign phospholipids in microbes or food, or modification of extracellular noncellular lipid components. In this review, we highlight the current understanding of the in vivo functions of sPLA2s and the underlying lipid pathways as revealed by a series of studies over the last decade.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
20
|
Murakami M, Taketomi Y. Secreted phospholipase A2 and mast cells. Allergol Int 2015; 64:4-10. [PMID: 25572553 DOI: 10.1016/j.alit.2014.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/24/2022] Open
Abstract
Phospholipase A2s (PLA2s) are a group of enzymes that hydrolyze the sn-2 position of phospholipids to release (typically unsaturated) fatty acids and lysophospholipids, which serve as precursors for a variety of bioactive lipid mediators. Among the PLA2 superfamily, secreted PLA2 (sPLA2) enzymes comprise the largest subfamily that includes 11 isoforms with a conserved His-Asp catalytic dyad. Individual sPLA2 enzymes exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting their distinct biological roles. Recent studies using transgenic and knockout mice for individual sPLA2 isofoms have revealed their involvement in various pathophysiological events. Here, we overview the current state of knowledge about sPLA2s, specifically their roles in mast cells (MCs) in the context of allergology. In particular, we highlight group III sPLA2 (PLA2G3) as an "anaphylactic sPLA2" that promotes MC maturation and thereby anaphylaxis through a previously unrecognized lipid-orchestrated circuit.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; CREST, Japan Science and Technology Agency, Saitama, Japan.
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
21
|
Claar D, Hartert TV, Peebles RS. The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev Respir Med 2014; 9:55-72. [PMID: 25541289 DOI: 10.1586/17476348.2015.992783] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostaglandins (PGs) are products of the COX pathway of arachidonic acid metabolism. There are five primary PGs, PGD₂, PGE₂, PGF₂, PGI₂ and thromboxane A₂, all of which signal through distinct seven transmembrane, G-protein coupled receptors. Some PGs may counteract the actions of others, or even the same PG may have opposing physiologic or immunologic effects, depending on the specific receptor through which it signals. In this review, we examine the effects of COX activity and the various PGs on allergic airway inflammation and physiology that is associated with asthma. We also highlight the potential therapeutic benefit of targeting PGs in allergic lung inflammation and asthma based on basic science, animal model and human studies.
Collapse
Affiliation(s)
- Dru Claar
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, T-1217 MCN Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | | | | |
Collapse
|
22
|
Murakami M, Taketomi Y, Miki Y, Sato H, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: the 3rd edition. Biochimie 2014; 107 Pt A:105-13. [PMID: 25230085 DOI: 10.1016/j.biochi.2014.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/05/2014] [Indexed: 12/19/2022]
Abstract
Within the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes comprise the largest family that contains 11 to 12 mammalian isoforms with a conserved His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting distinct biological roles. Individual sPLA2s are involved in diverse biological events through lipid mediator-dependent or -independent processes and act redundantly or non-redundantly in a given microenvironment. In the past few years, new biological aspects of sPLA2s have been clarified using their transgenic and knockout mouse lines in combination with mass spectrometric lipidomics to unveil their target substrates and products in vivo. In the 3rd edition of this review series, we highlight the newest understanding of the in vivo functions of sPLA2s in pathophysiological conditions in the context of immunity and metabolism. We will also describe the latest knowledge on PLA2R1, the best known sPLA2 receptor, which may serve either as a clearance or signaling receptor for sPLA2 or may even act independently of sPLA2 function.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Centre National de la Recherche Scientifique - Université Nice Sophia Antipolis, Valbonne 06560, France
| |
Collapse
|
23
|
The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity. Cell Metab 2014; 20:119-32. [PMID: 24910243 PMCID: PMC4079757 DOI: 10.1016/j.cmet.2014.05.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/19/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
Metabolic disorders, including obesity and insulin resistance, have their basis in dysregulated lipid metabolism and low-grade inflammation. In a microarray search of unique lipase-related genes whose expressions are associated with obesity, we found that two secreted phospholipase A2s (sPLA2s), PLA2G5 and PLA2G2E, were robustly induced in adipocytes of obese mice. Analyses of Pla2g5(-/-) and Pla2g2e(-/-) mice revealed distinct roles of these sPLA2s in diet-induced obesity. PLA2G5 hydrolyzed phosphatidylcholine in fat-overladen low-density lipoprotein to release unsaturated fatty acids, which prevented palmitate-induced M1 macrophage polarization. As such, PLA2G5 tipped the immune balance toward an M2 state, thereby counteracting adipose tissue inflammation, insulin resistance, hyperlipidemia, and obesity. PLA2G2E altered minor lipoprotein phospholipids, phosphatidylserine and phosphatidylethanolamine, and moderately facilitated lipid accumulation in adipose tissue and liver. Collectively, the identification of "metabolic sPLA2s" adds this gene family to a growing list of lipolytic enzymes that act as metabolic coordinators.
Collapse
|
24
|
The (G>A) rs11573191 polymorphism of PLA2G5 gene is associated with premature coronary artery disease in the Mexican Mestizo population: the genetics of atherosclerotic disease Mexican study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:931361. [PMID: 24959594 PMCID: PMC4052156 DOI: 10.1155/2014/931361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/02/2014] [Accepted: 05/04/2014] [Indexed: 11/20/2022]
Abstract
Coronary artery disease (CAD) is a multifactorial disorder that results from an excessive inflammatory response. Secretory phospholipase A2-V (sPLA2-V) encoded by PLA2G5 gene promotes diverse proinflammatory processes. The aim of the present study was to analyze if PLA2G5 gene polymorphisms are associated with premature CAD. Three PLA2G5 polymorphisms (rs11573187, rs2148911, and rs11573191) were analyzed in 707 patients with premature CAD and 749 healthy controls. Haplotypes were constructed after linkage disequilibrium analysis. Under dominant, recessive, and additive models, the rs11573191 polymorphism was associated with increased risk of premature CAD (OR = 1.51, Pdom = 3.5 × 10−3; OR = 2.95, Prec = 0.023; OR = 1.51, Padd = 1.2 × 10−3). According to the informatics software, this polymorphism had a functional effect modifying the affinity of the sequence by the MZF1 transcription factor. PLA2G5 polymorphisms were in linkage disequilibrium and the CGA haplotype was associated with increased risk of premature CAD (OR = 1.49, P = 0.0023) and with hypertension in these patients (OR = 1.75, P = 0.0072). Our results demonstrate the association of the PLA2G5 rs11573191 polymorphism with premature CAD. In our study, it was possible to distinguish one haplotype associated with increased risk of premature CAD and hypertension.
Collapse
|
25
|
Mruwat R, Yedgar S, Lavon I, Ariel A, Krimsky M, Shoseyov D. Phospholipase A2 in experimental allergic bronchitis: a lesson from mouse and rat models. PLoS One 2013; 8:e76641. [PMID: 24204651 PMCID: PMC3812210 DOI: 10.1371/journal.pone.0076641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 11/26/2022] Open
Abstract
Background Phospholipases A2 (PLA2) hydrolyzes phospholipids, initiating the production of inflammatory lipid mediators. We have previously shown that in rats, sPLA2 and cPLA2 play opposing roles in the pathophysiology of ovalbumin (OVA)-induced experimental allergic bronchitis (OVA-EAB), an asthma model: Upon disease induction sPLA2 expression and production of the broncho-constricting CysLTs are elevated, whereas cPLA2 expression and the broncho-dilating PGE2 production are suppressed. These were reversed upon disease amelioration by treatment with an sPLA2 inhibitor. However, studies in mice reported the involvement of both sPLA2 and cPLA2 in EAB induction. Objectives To examine the relevance of mouse and rat models to understanding asthma pathophysiology. Methods OVA-EAB was induced in mice using the same methodology applied in rats. Disease and biochemical markers in mice were compared with those in rats. Results As in rats, EAB in mice was associated with increased mRNA of sPLA2, specifically sPLA2gX, in the lungs, and production of the broncho-constricting eicosanoids CysLTs, PGD2 and TBX2 in bronchoalveolar lavage (BAL). In contrast, EAB in mice was associated also with elevated cPLA2 mRNA and PGE2 production. Yet, treatment with an sPLA2 inhibitor ameliorated the EAB concomitantly with reverting the expression of both cPLA2 and sPLA2, and eicosanoid production. Conclusions In both mice and rats sPLA2 is pivotal in OVA-induced EAB. Yet, amelioration of asthma markers in mouse models, and human tissues, was observed also upon cPLA2 inhibition. It is plausible that airway conditions, involving multiple cell types and organs, require the combined action of more than one, essential, PLA2s.
Collapse
MESH Headings
- Animals
- Arachidonate 5-Lipoxygenase/immunology
- Arachidonate 5-Lipoxygenase/metabolism
- Arginase/genetics
- Arginase/immunology
- Arginase/metabolism
- Asthma/genetics
- Asthma/immunology
- Asthma/metabolism
- Blotting, Western
- Bronchitis/genetics
- Bronchitis/immunology
- Bronchitis/metabolism
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/immunology
- Chitinases/genetics
- Chitinases/immunology
- Chitinases/metabolism
- Cysteine/immunology
- Cysteine/metabolism
- Dinoprostone/immunology
- Dinoprostone/metabolism
- Disease Models, Animal
- Female
- Group X Phospholipases A2/genetics
- Group X Phospholipases A2/immunology
- Group X Phospholipases A2/metabolism
- Humans
- Leukotrienes/immunology
- Leukotrienes/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Ovalbumin/immunology
- Phospholipases A2, Cytosolic/genetics
- Phospholipases A2, Cytosolic/immunology
- Phospholipases A2, Cytosolic/metabolism
- Phospholipases A2, Secretory/genetics
- Phospholipases A2, Secretory/immunology
- Phospholipases A2, Secretory/metabolism
- Prostaglandin D2/immunology
- Prostaglandin D2/metabolism
- Rats
- Receptors, Leukotriene/immunology
- Receptors, Leukotriene/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Box Domain Proteins/immunology
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Rufayda Mruwat
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel
| | - Saul Yedgar
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel
- * E-mail:
| | - Iris Lavon
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Miron Krimsky
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
- Pediatric Department, Hadassah University Hospital, Jerusalem, Israel
| | - David Shoseyov
- Pediatric Department, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
26
|
Ohta S, Imamura M, Xing W, Boyce JA, Balestrieri B. Group V secretory phospholipase A2 is involved in macrophage activation and is sufficient for macrophage effector functions in allergic pulmonary inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5927-38. [PMID: 23650617 PMCID: PMC3939699 DOI: 10.4049/jimmunol.1203202] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We reported that Pla2g5-null mice lacking group V secretory phospholipase A2 (gV-sPLA2) showed reduced eosinophilic pulmonary inflammation and Th2 cytokine generation when challenged with an extract from house dust mite Dermatophagoides farinae, compared with wild-type (WT) controls. Adoptive transfer studies suggested that gV-sPLA2 in dendritic cells was necessary for sensitization of Pla2g5-null mice, but was not sufficient to induce the effector phase of pulmonary inflammation. In this study, we demonstrate that gV-sPLA2 is inducibly expressed in mouse and human macrophages (M) activated by IL-4 and is required for the acquisition of M effector functions that facilitate the effector phase of pulmonary inflammation. We demonstrate that gV-sPLA2 expression in M is sufficient for the development of pulmonary inflammation, even when inflammation is induced by intrapulmonary administration of IL-4. The concentrations of CCL22/CCL17 and effector T cell recruitment are severely impaired in Pla2g5-null mice. Intratracheal transfers of enriched CD68(+) cells isolated from the lungs of D. farinae-challenged WT donor mice induce eosinophilia, chemokine production, and recruitment of T cells into the lungs of Pla2g5-null recipients previously sensitized by WT D. farinae-loaded dendritic cells. Our studies identified a unique function of gV-sPLA2 in activation of M and in their capacity to recruit T cells to amplify the effector phase of pulmonary inflammation.
Collapse
Affiliation(s)
- Shin Ohta
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Mitsuru Imamura
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Wei Xing
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Joshua A. Boyce
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Internal Medicine, Division of Allergy and Respiratory Medicine, Showa University, School of Medicine, Tokyo, Japan
| | - Barbara Balestrieri
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
27
|
Miki Y, Yamamoto K, Taketomi Y, Sato H, Shimo K, Kobayashi T, Ishikawa Y, Ishii T, Nakanishi H, Ikeda K, Taguchi R, Kabashima K, Arita M, Arai H, Lambeau G, Bollinger JM, Hara S, Gelb MH, Murakami M. Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators. ACTA ACUST UNITED AC 2013; 210:1217-34. [PMID: 23690440 PMCID: PMC3674707 DOI: 10.1084/jem.20121887] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PLA2G2D ameliorates skin inflammation through mobilizing pro-resolving lipid mediators. Resolution of inflammation is an active process that is mediated in part by antiinflammatory lipid mediators. Although phospholipase A2 (PLA2) enzymes have been implicated in the promotion of inflammation through mobilizing lipid mediators, the molecular entity of PLA2 subtypes acting upstream of antiinflammatory lipid mediators remains unknown. Herein, we show that secreted PLA2 group IID (PLA2G2D) is preferentially expressed in CD11c+ dendritic cells (DCs) and macrophages and displays a pro-resolving function. In hapten-induced contact dermatitis, resolution, not propagation, of inflammation was compromised in skin and LNs of PLA2G2D-deficient mice (Pla2g2d−/−), in which the immune balance was shifted toward a proinflammatory state over an antiinflammatory state. Bone marrow-derived DCs from Pla2g2d−/− mice were hyperactivated and elicited skin inflammation after intravenous transfer into mice. Lipidomics analysis revealed that PLA2G2D in the LNs contributed to mobilization of a pool of polyunsaturated fatty acids that could serve as precursors for antiinflammatory/pro-resolving lipid mediators such as resolvin D1 and 15-deoxy-Δ12,14-prostaglandin J2, which reduced Th1 cytokine production and surface MHC class II expression in LN cells or DCs. Altogether, our results highlight PLA2G2D as a “resolving sPLA2” that ameliorates inflammation through mobilizing pro-resolving lipid mediators and points to a potential use of this enzyme for treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Henderson WR, Ye X, Lai Y, Ni Z, Bollinger JG, Tien YT, Chi EY, Gelb MH. Key role of group v secreted phospholipase A2 in Th2 cytokine and dendritic cell-driven airway hyperresponsiveness and remodeling. PLoS One 2013; 8:e56172. [PMID: 23451035 PMCID: PMC3581544 DOI: 10.1371/journal.pone.0056172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 11/23/2022] Open
Abstract
Background Previous work has shown that disruption of the gene for group X secreted phospholipase A2 (sPLA2-X) markedly diminishes airway hyperresponsiveness and remodeling in a mouse asthma model. With the large number of additional sPLA2s in the mammalian genome, the involvement of other sPLA2s in the asthma model is possible – in particular, the group V sPLA2 (sPLA2-V) that like sPLA2-X is highly active at hydrolyzing membranes of mammalian cells. Methodology and Principal Findings The allergen-driven asthma phenotype was significantly reduced in sPLA2-V-deficient mice but to a lesser extent than observed previously in sPLA2-X-deficient mice. The most striking difference observed between the sPLA2-V and sPLA2-X knockouts was the significant impairment of the primary immune response to the allergen ovalbumin (OVA) in the sPLA2-V−/− mice. The impairment in eicosanoid generation and dendritic cell activation in sPLA2-V−/− mice diminishes Th2 cytokine responses in the airways. Conclusions This paper illustrates the diverse roles of sPLA2s in the immunopathogenesis of the asthma phenotype and directs attention to developing specific inhibitors of sPLA2-V as a potential new therapy to treat asthma and other allergic disorders.
Collapse
Affiliation(s)
- William R Henderson
- Center for Allergy and Inflammation, UW Medicine at South Lake Union, Department of Medicine, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Emerging roles of secreted phospholipase A2 enzymes: An update. Biochimie 2013; 95:43-50. [DOI: 10.1016/j.biochi.2012.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/11/2012] [Indexed: 01/18/2023]
|
30
|
Perrin-Cocon L, Diaz O, André P, Lotteau V. Modified lipoproteins provide lipids that modulate dendritic cell immune function. Biochimie 2012; 95:103-8. [PMID: 22959067 DOI: 10.1016/j.biochi.2012.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022]
Abstract
Both physiological and pathological situations can result in biochemical changes of low-density lipoproteins (LDL). Because they can deliver signals to dendritic cells (DC), these modified lipoproteins now appear as regulators of the immune response. Among these modified lipoproteins, oxidized LDL (oxLDL) that accumulate during inflammatory conditions have been extensively studied. Numerous studies have shown that oxLDL induce the maturation of DC, enhancing their ability to activate IFNγ secretion by T cells. LDL treated by secreted phospholipase A(2) also promote DC maturation. Among the bioactive lipids generated by oxidation or phospholipase treatment of LDL, lysophosphatidylcholine (LPC) and some saturated fatty acids induce DC maturation whereas some unsaturated fatty acids or oxidized derivatives have opposite effects. Among other factors, the nuclear receptor peroxisome-proliferator activated receptor γ (PPARγ) plays a crucial role in this regulation. Non-modified lipoproteins also contribute to the regulation of DC function, suggesting that the balance between native and modified lipoproteins, as well as the biochemical nature of the LDL modifications, can regulate the activation threshold of DC. Here we discuss two pathological situations in which the impact of LDL modifications on inflammation and immunity could play an important role. During atherosclerosis, modified LDL accumulating in the arterial intima may interfere with DC maturation and function, promoting a Th1 immune response and a local inflammation favoring the development of the pathology. In patients chronically infected, the hepatitis C virus (HCV) interferes with lipoprotein metabolism resulting in the production of infectious modified lipoproteins. These lipo-viral-particles (LVP) are modified low-density lipoproteins containing viral material that can alter DC maturation and affect specific toll-like receptor signaling. In conclusion, lipoprotein modifications play an important role in the regulation of immunity by delivering signals of danger to DC and modulating their function.
Collapse
|
31
|
Atout R, Karabina SA, Dollet S, Carreras M, Payré C, André P, Lambeau G, Lotteau V, Ninio E, Perrin-Cocon L. Human group X secreted phospholipase A2 induces dendritic cell maturation through lipoprotein-dependent and -independent mechanisms. Atherosclerosis 2012; 222:367-74. [DOI: 10.1016/j.atherosclerosis.2012.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/25/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
32
|
Induction of group IVC phospholipase A2 in allergic asthma: transcriptional regulation by TNFα in bronchoepithelial cells. Biochem J 2012; 442:127-37. [PMID: 22082005 DOI: 10.1042/bj20111269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Airway inflammation in allergen-induced asthma is associated with eicosanoid release. These bioactive lipids exhibit anti- and pro-inflammatory activities with relevance to pulmonary pathophysiology. We hypothesized that sensitization/challenge using an extract from the ubiquitous fungus Aspergillus fumigatus in a mouse model of allergic asthma would result in altered phospholipase gene expression, thus modulating the downstream eicosanoid pathway. We observed the most significant induction in the group IVC PLA2 (phospholipase A2) [also known as cPLA2γ (cytosolic PLA2γ) or PLA2G4C]. Our results infer that A. fumigatus extract can induce cPLA2γ levels directly in eosinophils, whereas induction in lung epithelial cells is most likely to be a consequence of TNFα (tumour necrosis factor α) secretion by A. fumigatus-activated macrophages. The mechanism of TNFα-dependent induction of cPLA2γ gene expression was elucidated through a combination of promoter deletions, ChIP (chromatin immunoprecipitation) and overexpression studies in human bronchoepithelial cells, leading to the identification of functionally relevant CRE (cAMP-response element), NF-κB (nuclear factor κB) and E-box promoter elements. ChIP analysis demonstrated that RNA polymerase II, ATF-2 (activating transcription factor 2)-c-Jun, p65-p65 and USF (upstream stimulating factor) 1-USF2 complexes are recruited to the cPLA2γ enhancer/promoter in response to TNFα, with overexpression and dominant-negative studies implying a strong level of co-operation and interplay between these factors. Overall, our results link cytokine-mediated alterations in cPLA2γ gene expression with allergic asthma and outline a complex regulatory mechanism.
Collapse
|
33
|
Abstract
Phospholipids are present in all living organisms. They are a major component of all biological membranes, along with glycolipids and cholesterol. Enzymes aimed at cleaving the various bonds in phospholipids, namely phospholipases, are consequently widespread in nature, playing very diverse roles from aggression in snake venom to signal transduction, lipid mediators production, and digestion in humans. Although all phospholipases target phospholipids as substrates, they vary in the site of action on the phospholipids molecules, physiological function, mode of action, and their regulation. Significant studies on phospholipases characterization, physiological role, and industrial potential have been conducted worldwide. Some of them have been directed for biotechnological advances, such as gene discovery and functional enhancement by protein engineering. Others reported phospholipases as virulence factors and major causes of pathophysiological effects. In this introductory chapter, we provide brief details of different phospholipases.
Collapse
Affiliation(s)
- Ahmed Aloulou
- National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
34
|
Sergouniotis P, Davidson A, Mackay D, Lenassi E, Li Z, Robson A, Yang X, Kam J, Isaacs T, Holder G, Jeffery G, Beck J, Moore A, Plagnol V, Webster A. Biallelic mutations in PLA2G5, encoding group V phospholipase A2, cause benign fleck retina. Am J Hum Genet 2011; 89:782-91. [PMID: 22137173 DOI: 10.1016/j.ajhg.2011.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022] Open
Abstract
Flecked-retina syndromes, including fundus flavimaculatus, fundus albipunctatus, and benign fleck retina, comprise a group of disorders with widespread or limited distribution of yellow-white retinal lesions of various sizes and configurations. Three siblings who have benign fleck retina and were born to consanguineous parents are the basis of this report. A combination of homozygosity mapping and exome sequencing helped to identify a homozygous missense mutation, c.133G>T (p.Gly45Cys), in PLA2G5, a gene encoding a secreted phospholipase (group V phospholipase A(2)). A screen of a further four unrelated individuals with benign fleck retina detected biallelic variants in the same gene in three patients. In contrast, no loss of function or common (minor-allele frequency>0.05%) nonsynonymous PLA2G5 variants have been previously reported (EVS, dbSNP, 1000 Genomes Project) or were detected in an internal database of 224 exomes (from subjects with adult onset neurodegenerative disease and without a diagnosis of ophthalmic disease). All seven affected individuals had fundoscopic features compatible with those previously described in benign fleck retina and no visual or electrophysiological deficits. No medical history of major illness was reported. Levels of low-density lipoprotein were mildly elevated in two patients. Optical coherence tomography and fundus autofluorescence findings suggest that group V phospholipase A(2) plays a role in the phagocytosis of photoreceptor outer-segment discs by the retinal pigment epithelium. Surprisingly, immunohistochemical staining of human retinal tissue revealed localization of the protein predominantly in the inner and outer plexiform layers.
Collapse
|
35
|
Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011; 150:233-55. [PMID: 21746768 DOI: 10.1093/jb/mvr088] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
36
|
Giannattasio G, Ohta S, Boyce JR, Xing W, Balestrieri B, Boyce JA. The purinergic G protein-coupled receptor 6 inhibits effector T cell activation in allergic pulmonary inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:1486-95. [PMID: 21724990 DOI: 10.4049/jimmunol.1003669] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We show that the P2Y(6) receptor, a purinergic G protein-coupled receptor with a high affinity for the nucleotide uridine diphosphate, is an important endogenous inhibitor of T cell function in allergic pulmonary inflammation. Mice conditionally deficient in P2Y(6) receptors [p2ry6 (flox/flox);cre/+ mice] exhibited severe airway and tissue pathology relative to P2Y(6)-sufficient [p2ry6 (flox/flox)] littermates (+/+ mice) when treated intranasally with an extract of the dust mite Dermatophagoides farinae (Df). P2Y(6) receptors were inducibly expressed by lung, lymph node, and splenic CD4(+) and CD8(+) T cells of Df-treated +/+ mice. Df-restimulated P2Y(6)-deficient lymph node cells produced higher levels of Th1 and Th2 cytokines, and polyclonally stimulated P2Y(6)-deficient CD4(+) T cells proliferated faster than comparably stimulated P2Y(6)-sufficient cells. The absence of P2Y(6) receptors on CD4(+) cells, but not APCs, was sufficient to amplify cytokine generation. Thus, P2Y(6) receptors protect the lung against exuberant allergen-induced pulmonary inflammation by inhibiting the activation of effector T cells.
Collapse
|
37
|
Murakami M, Sato H, Taketomi Y, Yamamoto K. Integrated lipidomics in the secreted phospholipase A(2) biology. Int J Mol Sci 2011; 12:1474-95. [PMID: 21673902 PMCID: PMC3111613 DOI: 10.3390/ijms12031474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022] Open
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A(2)s (PLA(2)s) or related enzymes, which are subdivided into several subgroups based on their structures, catalytic mechanisms, localizations and evolutionary relationships. More than one third of the PLA(2) enzymes belong to the secreted PLA(2) (sPLA(2)) family, which consists of low-molecular-weight, Ca(2+)-requiring extracellular enzymes, with a His-Asp catalytic dyad. Individual sPLA(2) isoforms exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Recent studies using transgenic and knockout mice for several sPLA(2) isoforms, in combination with lipidomics approaches, have revealed their distinct contributions to various biological events. Herein, we will describe several examples of sPLA(2)-mediated phospholipid metabolism in vivo, as revealed by integrated analysis of sPLA(2) transgenic/knockout mice and lipid mass spectrometry. Knowledge obtained from this approach greatly contributes to expanding our understanding of the sPLA(2) biology and pathophysiology.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| |
Collapse
|