1
|
Wasik A, Podhorska-Okolow M, Dziegiel P, Piotrowska A, Kulus MJ, Kmiecik A, Ratajczak-Wielgomas K. Correlation between Periostin Expression and Pro-Angiogenic Factors in Non-Small-Cell Lung Carcinoma. Cells 2024; 13:1406. [PMID: 39272978 PMCID: PMC11394527 DOI: 10.3390/cells13171406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The role of periostin (POSTN) in remodeling the microenvironment surrounding solid tumors and its effect on the tumor cells in non-small-cell lung carcinoma (NSCLC) have not yet been fully understood. The aim of this study was to determine the relationship between POSTN expression (in tumor cells [NSCLC cells] and the tumor stroma) and pro-angiogenic factors (CD31, CD34, CD105, and VEGF-A) and microvascular density (MVD) in NSCLC. In addition, these associations were analyzed in individual histological subtypes of NSCLC (SCC, AC, and LCC) and their correlations with clinicopathological factors and prognosis were examined. Immunohistochemistry using tissue microarrays (TMAs) was used to assess the expression of POSTN (in tumor cells and cancer-associated fibroblasts [CAFs]) and the pro-angiogenic factors. A significant positive correlation was found between the expression of POSTN (in cancer cells/CAFs) and the expression of the analyzed pro-angiogenic factors (CD31, CD34, CD105, and VEGF-A) and MVD in the entire population of patients with NSCLC and individual histological subtypes (AC, SCC). In addition, this study found that POSTN expression (in tumor cells/CAFs) increased with tumor size (pT), histopathological grade (G), and lymph-node involvement (pN). In addition, a high expression of POSTN (in tumor cells and CAFs) was associated with shorter survival among patients with NSCLC. In conclusion, a high expression of POSTN (in cancer cells and CAFs) may be crucial for angiogenesis and NSCLC progression and can constitute an independent prognostic factor for NSCLC.
Collapse
Affiliation(s)
- Adrian Wasik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Michal Jerzy Kulus
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
2
|
Striz I, Golebski K, Strizova Z, Loukides S, Bakakos P, Hanania N, Jesenak M, Diamant Z. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond) 2023; 137:727-753. [PMID: 37199256 PMCID: PMC10195992 DOI: 10.1042/cs20190281] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) or without (CRSsNP) are chronic respiratory diseases. These two disorders often co-exist based on common anatomical, immunological, histopathological, and pathophysiological basis. Usually, asthma with comorbid CRSwNP is driven by type 2 (T2) inflammation which predisposes to more severe, often intractable, disease. In the past two decades, innovative technologies and detection techniques in combination with newly introduced targeted therapies helped shape our understanding of the immunological pathways underlying inflammatory airway diseases and to further identify several distinct clinical and inflammatory subsets to enhance the development of more effective personalized treatments. Presently, a number of targeted biologics has shown clinical efficacy in patients with refractory T2 airway inflammation, including anti-IgE (omalizumab), anti-IL-5 (mepolizumab, reslizumab)/anti-IL5R (benralizumab), anti-IL-4R-α (anti-IL-4/IL-13, dupilumab), and anti-TSLP (tezepelumab). In non-type-2 endotypes, no targeted biologics have consistently shown clinical efficacy so far. Presently, multiple therapeutical targets are being explored including cytokines, membrane molecules and intracellular signalling pathways to further expand current treatment options for severe asthma with and without comorbid CRSwNP. In this review, we discuss existing biologics, those under development and share some views on new horizons.
Collapse
Affiliation(s)
- Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Subdivision of Allergology and Clinical Immunology, Institute for Postgraduate Education in Medicine, Prague, Czech Republic
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Zuzana Strizova
- Institute of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stelios Loukides
- Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- First Respiratory Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Clinical Immunology and Allergology, University Hospital in Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Belgium
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
The Multiple Roles of Periostin in Non-Neoplastic Disease. Cells 2022; 12:cells12010050. [PMID: 36611844 PMCID: PMC9818388 DOI: 10.3390/cells12010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Periostin, identified as a matricellular protein and an ECM protein, plays a central role in non-neoplastic diseases. Periostin and its variants have been considered to be normally involved in the progression of most non-neoplastic diseases, including brain injury, ocular diseases, chronic rhinosinusitis, allergic rhinitis, dental diseases, atopic dermatitis, scleroderma, eosinophilic esophagitis, asthma, cardiovascular diseases, lung diseases, liver diseases, chronic kidney diseases, inflammatory bowel disease, and osteoarthrosis. Periostin interacts with protein receptors and transduces signals primarily through the PI3K/Akt and FAK two channels as well as other pathways to elicit tissue remodeling, fibrosis, inflammation, wound healing, repair, angiogenesis, tissue regeneration, bone formation, barrier, and vascular calcification. This review comprehensively integrates the multiple roles of periostin and its variants in non-neoplastic diseases, proposes the utility of periostin as a biological biomarker, and provides potential drug-developing strategies for targeting periostin.
Collapse
|
4
|
Wasik A, Ratajczak-Wielgomas K, Badzinski A, Dziegiel P, Podhorska-Okolow M. The Role of Periostin in Angiogenesis and Lymphangiogenesis in Tumors. Cancers (Basel) 2022; 14:cancers14174225. [PMID: 36077762 PMCID: PMC9454705 DOI: 10.3390/cancers14174225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancers are common diseases that affect people of all ages worldwide. For this reason, continuous attempts are being made to improve current therapeutic options. The formation of metastases significantly decreases patient survival. Therefore, understanding the mechanisms that are involved in this process seems to be crucial for effective cancer therapy. Cancer dissemination occurs mainly through blood and lymphatic vessels. As a result, many scientists have conducted a number of studies on the formation of new vessels. Many studies have shown that proangiogenic factors and the extracellular matrix protein, i.e., periostin, may be important in tumor angio- and lymphangiogenesis, thus contributing to metastasis formation and worsening of the prognosis. Abstract Periostin (POSTN) is a protein that is part of the extracellular matrix (ECM) and which significantly affects the control of intracellular signaling pathways (PI3K-AKT, FAK) through binding integrin receptors (αvβ3, αvβ5, α6β4). In addition, increased POSTN expression enhances the expression of VEGF family growth factors and promotes Erk phosphorylation. As a result, this glycoprotein controls the Erk/VEGF pathway. Therefore, it plays a crucial role in the formation of new blood and lymphatic vessels, which may be significant in the process of metastasis. Moreover, POSTN is involved in the proliferation, progression, migration and epithelial-mesenchymal transition (EMT) of tumor cells. Its increased expression has been detected in many cancers, including breast cancer, ovarian cancer, non-small cell lung carcinoma and glioblastoma. Many studies have shown that this protein may be an independent prognostic and predictive factor in many cancers, which may influence the choice of optimal therapy.
Collapse
Affiliation(s)
- Adrian Wasik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Arkadiusz Badzinski
- Silesian Nanomicroscopy Center, Silesia LabMed: Research and Implementation Center, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Marzenna Podhorska-Okolow
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
5
|
Janulaityte I, Januskevicius A, Rimkunas A, Palacionyte J, Vitkauskiene A, Malakauskas K. Asthmatic Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells and Pulmonary Fibroblasts. Int J Mol Sci 2022; 23:4086. [PMID: 35456903 PMCID: PMC9031271 DOI: 10.3390/ijms23084086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-β. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF. A total of 34 study subjects were recruited: 14 with allergic asthma (AA), 9 with severe non-allergic eosinophilic asthma (SNEA), and 11 healthy subjects (HS). All AA patients underwent bronchial allergen challenge with D. pteronyssinus. The peripheral blood eosinophils were isolated using high-density centrifugation and magnetic separation. The individual cell cultures were made using hTERT ASMC and MRC-5 cell lines and the subjects' eosinophils. The gene expression of ECM and the TGF-β signaling pathway was analyzed using qRT-PCR. We found that asthmatic eosinophils significantly promoted collagen I, fibronectin, versican, tenascin C, decorin, vitronectin, periostin, vimentin, MMP-9, ADAM33, TIMP-1, and TIMP-2 gene expression in ASMC and collagen I, collagen III, fibronectin, elastin, decorin, MMP-2, and TIMP-2 gene expression in PF compared with the HS eosinophil effect. The asthmatic eosinophils significantly increased the gene expression of several canonical and non-canonical TGF-β signaling pathway components in ASMC and PF compared with the HS eosinophil effect. The allergen-activated AA and SNEA eosinophils had a greater effect on these changes. In conclusion, asthmatic eosinophils, especially SNEA and allergen-activated eosinophils, imbalanced the gene expression of ECM proteins and their degradation-regulating proteins. These changes were associated with increased gene expression of TGF-β signaling pathway molecules in ASMC and PF.
Collapse
Affiliation(s)
- Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
6
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Periostin in Allergy and Inflammation. Front Immunol 2021; 12:722170. [PMID: 34512647 PMCID: PMC8429843 DOI: 10.3389/fimmu.2021.722170] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Matricellular proteins are involved in the crosstalk between cells and their environment and thus play an important role in allergic and inflammatory reactions. Periostin, a matricellular protein, has several documented and multi-faceted roles in health and disease. It is differentially expressed, usually upregulated, in allergic conditions, a variety of inflammatory diseases as well as in cancer and contributes to the development and progression of these diseases. Periostin has also been shown to influence tissue remodelling, fibrosis, regeneration and repair. In allergic reactions periostin is involved in type 2 immunity and can be induced by IL-4 and IL-13 in bronchial cells. A variety of different allergic diseases, among them bronchial asthma and atopic dermatitis (AD), have been shown to be connected to periostin expression. Periostin is commonly expressed in fibroblasts and acts on epithelial cells as well as fibroblasts involving integrin and NF-κB signalling. Also direct signalling between periostin and immune cells has been reported. The deposition of periostin in inflamed, often fibrotic, tissues is further fuelling the inflammatory process. There is increasing evidence that periostin is also expressed by epithelial cells in several of the above-mentioned conditions as well as in cancer. Augmented periostin expression has also been associated with chronic inflammation such as in inflammatory bowel disease (IBD). Periostin can be expressed in a variety of different isoforms, whose functions have not been elucidated yet. This review will discuss potential functions of periostin and its different isoforms in allergy and inflammation.
Collapse
Affiliation(s)
- Eva Sonnenberg-Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| | - Michaela Miehe
- Department of Biological and Chemical Engineering – Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
8
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Lee Y, Quoc QL, Park HS. Biomarkers for Severe Asthma: Lessons From Longitudinal Cohort Studies. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:375-389. [PMID: 33733634 PMCID: PMC7984946 DOI: 10.4168/aair.2021.13.3.375] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/24/2021] [Indexed: 12/16/2022]
Abstract
Severe asthma (SA) is a heterogeneous disease characterized by uncontrolled symptoms, frequent exacerbations, and lung function decline. The discovery of phenotypes and endotypes of SA significantly improves our understanding of its pathophysiology and allows the advent of biologics blocking multiple molecular targets. The advances have mainly been made in type 2-high asthma associated with elevated type 2 inflammatory biomarkers such as immunoglobulin E (IgE), interleukins (IL)-4, IL-5, and IL-13. Previous clinical trials have demonstrated that type 2 biomarkers, including blood/sputum eosinophils and the fraction of exhaled nitric oxide (FeNO), were correlated to severe airway inflammation, persistent symptoms, frequent exacerbations, and the clinical efficacy of these biomarkers in predicting treatment outcomes of type 2-targeting biologics. However, it is well known that type 2 inflammation is partially attributable to the pathogenesis of SA. Although some recent studies have suggested that type 2-low and mixed phenotypes of asthma are important contributors to the heterogeneity of SA, many questions about these non-type 2 asthma phenotypes remain to be solved. Consequently, many efforts to investigate and find novel biomarkers for SA have also made in their methods. Many cross-sectional experimental studies in large-scale cohorts and randomized clinical trials have proved their value in understanding SA. More recently, real-world cohort studies have been in the limelight for SA research, which is unbiased and expected to give us an answer to the unmet needs of the heterogeneity of SA.
Collapse
Affiliation(s)
- Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
10
|
Sobkowiak P, Narożna B, Wojsyk-Banaszak I, Bręborowicz A, Szczepankiewicz A. Expression of proteins associated with airway fibrosis differs between children with allergic asthma and allergic rhinitis. Int J Immunopathol Pharmacol 2021; 35:2058738421990493. [PMID: 33626956 PMCID: PMC7922620 DOI: 10.1177/2058738421990493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Allergic rhinitis (AR) and allergic asthma (AA) exhibit similar inflammatory
response in the airways. However, the remodelling is more extensive in the lower
airways, suggesting that the inflammation itself is not sufficient for allergic
phenotype. We aimed to analyse whether the expression of selected 27
inflammatory and fibrosis-related proteins may be altered in AR and AA in the
paediatric population and whether the expression pattern is either similar (due
to the inflammation) or disease-specific (due to the remodelling). We analysed
80 paediatric subjects: 39 with AA, 21 with AR and 20 healthy children. The
diagnosis of AR and AA was based on clinical manifestation, lung function,
positive skin prick tests and increased immunoglobulin E levels. Serum levels of
selected inflammatory proteins were measured with custom Magnetic Luminex Assay.
Statistical analysis was performed in Statistica v.13. CCL2/MCP1, GM-CSF, gp130
and periostin concentrations were significantly lower, whereas IL-5 levels were
higher in AA compared to the control group. CD-40L, CHI3L1/YKL-40, EGF, GM-CSF
and periostin levels were significantly decreased in patients with AR than in
the control group. Comparison of AA and AR patients revealed significant changes
in CHI3L1/YKL-40 (P = 0.021), IL-5
(P = 0.036), periostin (P = 0.013) and VEGFα
(P = 0.046). Significantly altered proteins were good
predictors to distinguish between AA and AR (P < 0.001, OR
46.00, accuracy 88.57%). Our results suggest that the expression of four
fibrotic proteins was significantly altered between AA and AR, suggesting
possible differences in airway remodelling between upper and lower airways.
Collapse
Affiliation(s)
- Paulina Sobkowiak
- Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Irena Wojsyk-Banaszak
- Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Bręborowicz
- Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Burgess JK, Jonker MR, Berg M, Ten Hacken NTH, Meyer KB, van den Berge M, Nawijn MC, Heijink IH. Periostin: contributor to abnormal airway epithelial function in asthma? Eur Respir J 2021; 57:13993003.01286-2020. [PMID: 32907887 DOI: 10.1183/13993003.01286-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/17/2020] [Indexed: 11/05/2022]
Abstract
Periostin (POSTN) may serve as a biomarker for Type-2 mediated eosinophilic airway inflammation in asthma. We hypothesised that a Type-2 cytokine, interleukin (IL)-13, induces airway epithelial expression of POSTN, which in turn contributes to epithelial changes observed in asthma.We studied the effect of IL-13 on POSTN expression in BEAS-2B and air-liquid interface differentiated primary bronchial epithelial cells (PBECs). Additionally, the effects of recombinant human POSTN on epithelial-to-mesenchymal transition (EMT) markers and mucin genes were assessed. POSTN single cell gene expression and protein levels were analysed in bronchial biopsies and induced sputum from asthma patients and healthy controls.IL-13 increased POSTN expression in both cell types and this was accompanied by EMT-related features in BEAS-2B. In air-liquid interface differentiated PBECs, IL-13 increased POSTN basolateral and apical release. Apical administration of POSTN increased the expression of MMP-9, MUC5B and MUC5AC In bronchial biopsies, POSTN expression was mainly confined to basal epithelial cells, ionocytes, endothelial cells and fibroblasts, showing higher expression in basal epithelial cells from asthma patients versus those from controls. A higher level of POSTN protein expression in epithelial and subepithelial layers was confirmed in bronchial biopsies from asthma patients when compared to healthy controls. Although sputum POSTN levels were not higher in asthma, levels correlated with eosinophil numbers and with the coughing-up of mucus.POSTN expression is increased by IL-13 in bronchial epithelial cells and is higher in bronchial biopsies from asthma patients. This may have important consequences, as administration of POSTN increases epithelial expression of mucin genes, supporting the relationship of POSTN with Type-2 mediated asthma and mucus secretion.
Collapse
Affiliation(s)
- Janette K Burgess
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marnix R Jonker
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marijn Berg
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Nick T H Ten Hacken
- Dept of Pulmonology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Maarten van den Berge
- GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Martijn C Nawijn
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Izuhara K, Nunomura S, Nanri Y, Ono J, Takai M, Kawaguchi A. Periostin: An emerging biomarker for allergic diseases. Allergy 2019; 74:2116-2128. [PMID: 30964557 DOI: 10.1111/all.13814] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
Periostin is a matricellular protein as well as an extracellular matrix (ECM) protein belonging to the fasciclin family. Periostin plays important roles as a matricellular protein in the setting of allergic diseases by binding to several integrins on various cells. Since periostin is induced mainly by IL-4 and IL-13, signature type 2 cytokines, and it is highly expressed in the subepithelial regions of many chronic allergic diseases, periostin has emerged as a novel biomarker reflecting type 2 inflammation in allergic diseases. It has, moreover, been revealed that periostin has characteristics different from other type 2 biomarkers such as eosinophil count and fractional exhaled nitric oxide (FeNO), reflecting fibrosis or tissue remodeling. From this, we may say that serum periostin is a "chronic" type 2 biomarker, whereas FeNO and possibly the eosinophil count are "acute" type 2 biomarkers. In contrast, it is still uncertain how we can apply periostin measurement to the use of biologics for allergic diseases. By examining the roles of periostin in allergy and the utility and potential of periostin in developing diagnostics against allergic diseases, it is hoped that in the near future, we can develop a new strategy to treat allergic patients.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
| | - Junya Ono
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
- Shino‐Test Corporation Sagamihara Japan
| | - Masayuki Takai
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
- Shino‐Test Corporation Sagamihara Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine Saga Medical School Saga Japan
| |
Collapse
|
13
|
Wu AC, Kiley JP, Noel PJ, Amur S, Burchard EG, Clancy JP, Galanter J, Inada M, Jones TK, Kropski JA, Loyd JE, Nogee LM, Raby BA, Rogers AJ, Schwartz DA, Sin DD, Spira A, Weiss ST, Young LR, Himes BE. Current Status and Future Opportunities in Lung Precision Medicine Research with a Focus on Biomarkers. An American Thoracic Society/National Heart, Lung, and Blood Institute Research Statement. Am J Respir Crit Care Med 2019; 198:e116-e136. [PMID: 30640517 DOI: 10.1164/rccm.201810-1895st] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Thousands of biomarker tests are either available or under development for lung diseases. In many cases, adoption of these tests into clinical practice is outpacing the generation and evaluation of sufficient data to determine clinical utility and ability to improve health outcomes. There is a need for a systematically organized report that provides guidance on how to understand and evaluate use of biomarker tests for lung diseases. METHODS We assembled a diverse group of clinicians and researchers from the American Thoracic Society and leaders from the National Heart, Lung, and Blood Institute with expertise in various aspects of precision medicine to review the current status of biomarker tests in lung diseases. Experts summarized existing biomarker tests that are available for lung cancer, pulmonary arterial hypertension, idiopathic pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, sepsis, acute respiratory distress syndrome, cystic fibrosis, and other rare lung diseases. The group identified knowledge gaps that future research studies can address to efficiently translate biomarker tests into clinical practice, assess their cost-effectiveness, and ensure they apply to diverse, real-life populations. RESULTS We found that the status of biomarker tests in lung diseases is highly variable depending on the disease. Nevertheless, biomarker tests in lung diseases show great promise in improving clinical care. To efficiently translate biomarkers into tests used widely in clinical practice, researchers need to address specific clinical unmet needs, secure support for biomarker discovery efforts, conduct analytical and clinical validation studies, ensure tests have clinical utility, and facilitate appropriate adoption into routine clinical practice. CONCLUSIONS Although progress has been made toward implementation of precision medicine for lung diseases in clinical practice in certain settings, additional studies focused on addressing specific unmet clinical needs are required to evaluate the clinical utility of biomarkers; ensure their generalizability to diverse, real-life populations; and determine their cost-effectiveness.
Collapse
|
14
|
Sterzyńska K, Kaźmierczak D, Klejewski A, Świerczewska M, Wojtowicz K, Nowacka M, Brązert J, Nowicki M, Januchowski R. Expression of Osteoblast-Specific Factor 2 (OSF-2, Periostin) Is Associated with Drug Resistance in Ovarian Cancer Cell Lines. Int J Mol Sci 2019; 20:ijms20163927. [PMID: 31412536 PMCID: PMC6719218 DOI: 10.3390/ijms20163927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
One of the main obstacles to the effective treatment of ovarian cancer patients continues to be the drug resistance of cancer cells. Osteoblast-Specific Factor 2 (OSF-2, Periostin) is a secreted extracellular matrix protein (ECM) expressed in fibroblasts during bone and teeth development. Expression of OSF-2 has been also related to the progression and drug resistance of different tumors. The present study investigated the role of OSF-2 by evaluating its expression in the primary serous ovarian cancer cell line, sensitive (W1) and resistant to doxorubicin (DOX) (W1DR) and methotrexate (MTX) (W1MR). The OSF-2 transcript (real-time PCR analysis), protein expression in cell lysates and cell culture medium (western blot), and expression of the OSF-2 protein in cell lines (immunofluorescence) were investigated in this study. Increased expression of OSF-2 mRNA was observed in drug-resistant cells and followed by increased protein expression in cell culture media of drug-resistant cell lines. A subpopulation of ALDH1A1-positive cells was noted for W1DR and W1MR cell lines; however, no direct co-expression with OSF-2 was demonstrated. Both drugs induced OSF-2 expression after a short period of exposure of the drug-sensitive cell line to DOX and MTX. The obtained results indicate that OSF-2 expression might be associated with the development of DOX and MTX resistance in the primary serous W1 ovarian cancer cell line.
Collapse
Affiliation(s)
- Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Dominika Kaźmierczak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznań, Poland
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Jacek Brązert
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Radosław Januchowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| |
Collapse
|
15
|
Matsumoto H. Roles of Periostin in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:145-159. [PMID: 31037633 DOI: 10.1007/978-981-13-6657-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Periostin is a matricellular protein that is deeply involved in type-2/eosinophilic airway inflammation and remodeling in asthma. While its expression in airway epithelial cells is correlated with the thickness of airway basement membrane, more importantly, periostin can be detected stably in blood with little variability, reflecting airway type-2 inflammation and remodeling. As for a result, serum periostin can serve as a valuable marker to identify patients with type-2 severe asthma who are insensitive to inhaled corticosteroids, and consequently have the excess decline of pulmonary function with asthma exacerbations. Serum periostin may significantly help to improve management of patients with severe asthma.
Collapse
Affiliation(s)
- Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
16
|
Al-Aaraji A, Al-Qaysi S, Baay A. Role of periostin in Iraqi asthmatic patients. MEDICAL JOURNAL OF BABYLON 2019. [DOI: 10.4103/mjbl.mjbl_39_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, Lin J, Zhang Z, Qiu D, Liu Q, Shen H, Xiang AP, Zhang Q. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis 2018; 9:691. [PMID: 29880866 PMCID: PMC5992143 DOI: 10.1038/s41419-018-0734-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease that is difficult to treat. However, previous preclinical and clinical studies have shown that mesenchymal stromal cells (MSCs) are a promising therapeutic approach, whereas the exact underlying molecular mechanisms of MSCs in treating CD remain unclear. Furthermore, the heterogeneity of MSCs, as well as the in vivo microenvironments may influence the therapeutic efficacy. In our previous study, we found that a subpopulation of mouse MSCs with a high expression of matrix Gla protein (MGP), one of the members of vitamin K-dependent protein family, possessed better immunoregulatory properties. Therefore, in this study we investigate whether the abundant MSCs-derived MGP participate in the therapeutic mechanisms for MSCs treating CD. Obvious suppression of cell proliferation and cytokine production in T cells were observed in vitro through MSCs-derived MGP. Moreover, MGP alleviated the clinical and histopathological severity of colonic inflammation in mouse experimental colitis models to a remarkable degree. Our results indicate that MGP might be a novel important mediator of MSCs-mediated immunomodulation in treating CD.
Collapse
Affiliation(s)
- Yuan Feng
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Liao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cong Du
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyi Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhongyuan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Dongbo Qiu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Jones AC, Troy NM, White E, Hollams EM, Gout AM, Ling KM, Kicic A, Stick SM, Sly PD, Holt PG, Hall GL, Bosco A. Persistent activation of interlinked type 2 airway epithelial gene networks in sputum-derived cells from aeroallergen-sensitized symptomatic asthmatics. Sci Rep 2018; 8:1511. [PMID: 29367592 PMCID: PMC5784090 DOI: 10.1038/s41598-018-19837-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023] Open
Abstract
Atopic asthma is a persistent disease characterized by intermittent wheeze and progressive loss of lung function. The disease is thought to be driven primarily by chronic aeroallergen-induced type 2-associated inflammation. However, the vast majority of atopics do not develop asthma despite ongoing aeroallergen exposure, suggesting additional mechanisms operate in conjunction with type 2 immunity to drive asthma pathogenesis. We employed RNA-Seq profiling of sputum-derived cells to identify gene networks operative at baseline in house dust mite-sensitized (HDMS) subjects with/without wheezing history that are characteristic of the ongoing asthmatic state. The expression of type 2 effectors (IL-5, IL-13) was equivalent in both cohorts of subjects. However, in HDMS-wheezers they were associated with upregulation of two coexpression modules comprising multiple type 2- and epithelial-associated genes. The first module was interlinked by the hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3 and mucociliary clearance genes. Our findings provide new insight into the molecular mechanisms operative at baseline in the airway mucosa in atopic asthmatics undergoing natural aeroallergen exposure, and suggest that susceptibility to asthma amongst these subjects involves complex interactions between type 2- and epithelial-associated gene networks, which are not operative in equivalently sensitized/exposed atopic non-asthmatics.
Collapse
Affiliation(s)
- Anya C Jones
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Perth, Australia
| | - Niamh M Troy
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Perth, Australia
| | - Elisha White
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Elysia M Hollams
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Alexander M Gout
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Anthony Kicic
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Perth, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, Australia
| | - Stephen M Stick
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Perth, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Graham L Hall
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.,School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia.,Centre of Child Health Research, The University of Western Australia, Perth, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| |
Collapse
|
19
|
Pavord ID, Afzalnia S, Menzies-Gow A, Heaney LG. The current and future role of biomarkers in type 2 cytokine-mediated asthma management. Clin Exp Allergy 2017; 47:148-160. [PMID: 28134501 DOI: 10.1111/cea.12881] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Assessment and management of asthma is complicated by the heterogeneous pathophysiological mechanisms that underlie its clinical presentation, which are not necessarily reflected in standardized management paradigms and which necessitate an individualized approach to treatment. This is particularly important with the emerging availability of a variety of targeted forms of therapy that may only be appropriate for use in particular patient subgroups. The identification of biomarkers can potentially aid diagnosis and inform prognosis, help guide treatment decisions and allow clinicians to predict and monitor response to treatment. Biomarkers for asthma have been identified from a variety of sources, including airway, exhaled breath and blood. Biomarkers from exhaled breath include fractional exhaled nitric oxide, measurement of which can help identify patients most likely to benefit from inhaled corticosteroids and targeted anti-immunoglobulin E therapy. Biomarkers measured in blood are relatively non-invasive and technically more straightforward than those measured from exhaled breath or directly from the airway. The most well established of these are the blood eosinophil count and serum periostin, both of which have demonstrated utility in identifying patients most likely to benefit from targeted anti-interleukin and anti-immunoglobulin E therapies, and in monitoring subsequent treatment response. For example, serum periostin appears to be a biomarker for responsiveness to inhaled corticosteroid therapy and may help identify patients as suitable candidates for anti-IL-13 treatment. The use of biomarkers can therefore potentially help avoid unnecessary morbidity from high-dose corticosteroid therapy and allow the most appropriate and cost-effective use of targeted therapies. Ongoing clinical trials are helping to further elucidate the role of established biomarkers in routine clinical practice, and a range of other circulating novel potential biomarkers are currently being investigated in the research setting.
Collapse
Affiliation(s)
- I D Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - S Afzalnia
- Roche Products Ltd, Welwyn Garden City, Hertfordshire, UK
| | | | - L G Heaney
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
20
|
Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, Hanania NA, Nair P. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 2017; 47:161-175. [PMID: 28036144 DOI: 10.1111/cea.12880] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a complex respiratory disorder characterized by marked heterogeneity in individual patient disease triggers and response to therapy. Several asthma phenotypes have now been identified, each defined by a unique interaction between genetic and environmental factors, including inflammatory, clinical and trigger-related phenotypes. Endotypes further describe the functional or pathophysiologic mechanisms underlying the patient's disease. type 2-driven asthma is an emerging nomenclature for a common subtype of asthma and is characterized by the release of signature cytokines IL-4, IL-5 and IL-13 from cells of both the innate and adaptive immune systems. A number of well-recognized biomarkers have been linked to mechanisms involved in type 2 airway inflammation, including fractional exhaled nitric oxide, serum IgE, periostin, and blood and sputum eosinophils. These type 2 cytokines are targets for pharmaceutical intervention, and a number of therapeutic options are under clinical investigation for the management of patients with uncontrolled severe asthma. Anticipating and understanding the heterogeneity of asthma and subsequent improved characterization of different phenotypes and endotypes must guide the selection of treatment to meet individual patients' needs.
Collapse
Affiliation(s)
- D Robinson
- Department of Respiratory Medicine, Severe Asthma Service, UCLH NHS Trust, London, UK
| | - M Humbert
- Service de Pneumologie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, University Paris-Sud, Université Paris-Saclay, INSERM U999, Le Kremlin-Bicêtre, France
| | - R Buhl
- Pulmonary Department, Mainz University Hospital, Mainz, Germany
| | - A A Cruz
- ProAR-Center of Excellence in Asthma, Federal University of Bahia School of Medicine, Salvador, Brazil
| | - H Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - S Korom
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - N A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - P Nair
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Abstract
Biomarkers have been critical for studies of disease pathogenesis and the development of new therapies in severe asthma. In particular, biomarkers of type 2 inflammation have proven valuable for endotyping and targeting new biological agents. Because of these successes in understanding and marking type 2 inflammation, lack of knowledge regarding non-type 2 inflammatory mechanisms in asthma will soon be the major obstacle to the development of new treatments and management strategies in severe asthma. Biomarkers can play a role in these investigations as well by providing insight into the underlying biology in human studies of patients with severe asthma.
Collapse
|
22
|
Zhao J, Minami Y, Etling E, Coleman JM, Lauder SN, Tyrrell V, Aldrovandi M, O'Donnell V, Claesson HE, Kagan V, Wenzel S. Preferential Generation of 15-HETE-PE Induced by IL-13 Regulates Goblet Cell Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2017; 57:692-701. [PMID: 28723225 DOI: 10.1165/rcmb.2017-0031oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 μM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.
Collapse
Affiliation(s)
- Jinming Zhao
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoshinori Minami
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emily Etling
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John M Coleman
- 2 Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sarah N Lauder
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Victoria Tyrrell
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Maceler Aldrovandi
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Valerie O'Donnell
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Valerian Kagan
- 5 Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sally Wenzel
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Izuhara K, Nunomura S, Nanri Y, Ogawa M, Ono J, Mitamura Y, Yoshihara T. Periostin in inflammation and allergy. Cell Mol Life Sci 2017; 74:4293-4303. [PMID: 28887633 PMCID: PMC11107676 DOI: 10.1007/s00018-017-2648-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/26/2022]
Abstract
We found for the first time that IL-4 and IL-13, signature type 2 cytokines, are able to induce periostin expression. We and others have subsequently shown that periostin is highly expressed in chronic inflammatory diseases-asthma, atopic dermatitis, eosinophilc chronic sinusitis/chronic rhinosinusitis with nasal polyp, and allergic conjunctivitis-and that periostin plays important roles in the pathogenesis of these diseases. The epithelial/mesenchymal interaction via periostin is important for the onset of allergic inflammation, in which periostin derived from fibroblasts acts on epithelial cells or fibroblasts, activating their NF-κB. Moreover, the immune cell/non-immune cell interaction via periostin may be also involved. Now the significance of periostin has been expanded into other inflammatory or fibrotic diseases such as scleroderma and pulmonary fibrosis. The cross-talk of periostin with TGF-β or pro-inflammatory cytokines is important for the underlying mechanism of these diseases. Because of its pathogenic importance and broad expression, diagnostics or therapeutic drugs can be potentially developed to target periostin as a means of treating these diseases.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501, Japan.
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Masahiro Ogawa
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Junya Ono
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501, Japan
- Shino-Test Corporation, 2-29-14, Oonodai, Sagamihara, 229-0011, Japan
| | - Yasutaka Mitamura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Tomohito Yoshihara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
24
|
O'Dwyer DN, Moore BB. The role of periostin in lung fibrosis and airway remodeling. Cell Mol Life Sci 2017; 74:4305-4314. [PMID: 28918442 DOI: 10.1007/s00018-017-2649-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
Abstract
Periostin is a protein that plays a key role in development and repair within the biological matrix of the lung. As a matricellular protein that does not contribute to extracellular matrix structure, periostin interacts with other extracellular matrix proteins to regulate the composition of the matrix in the lung and other organs. In this review, we discuss the studies exploring the role of periostin to date in chronic respiratory diseases, namely asthma and idiopathic pulmonary fibrosis. Asthma is a major health problem globally affecting millions of people worldwide with significant associated morbidity and mortality. Periostin is highly expressed in the lungs of asthmatic patients, contributes to mucus secretion, airway fibrosis and remodeling and is recognized as a biomarker of Th2 high inflammation. Idiopathic pulmonary fibrosis is a fatal interstitial lung disease characterized by progressive aberrant fibrosis of the lung matrix and respiratory failure. It predominantly affects adults over 50 years of age and its incidence is increasing worldwide. Periostin is also highly expressed in the lungs of idiopathic pulmonary fibrosis patients. Serum levels of periostin may predict clinical progression in this disease and periostin promotes myofibroblast differentiation and type 1 collagen production to contribute to aberrant lung fibrosis. Studies to date suggest that periostin is a key player in several pathogenic mechanisms within the lung and may provide us with a useful biomarker of clinical progression in both asthma and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- David N O'Dwyer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, 4053 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, 4053 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Izuhara K, Conway SJ, Moore BB, Matsumoto H, Holweg CTJ, Matthews JG, Arron JR. Roles of Periostin in Respiratory Disorders. Am J Respir Crit Care Med 2017; 193:949-56. [PMID: 26756066 DOI: 10.1164/rccm.201510-2032pp] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Periostin is a matricellular protein that has been implicated in many disease states. It interacts with multiple signaling cascades to modulate the expression of downstream genes that regulate cellular interactions within the extracellular matrix. This review focuses on the role of periostin in respiratory diseases, including asthma and idiopathic pulmonary fibrosis, and its potential to help guide treatment or assess prognosis. Epithelial injury is a common feature of many respiratory diseases, resulting in the secretion, among others, of periostin, which is subsequently involved in airway remodeling and other aspects of pulmonary pathophysiology. In asthma, periostin is recognized as a biomarker of type 2 inflammation; POSTN gene expression is up-regulated in bronchial epithelial cells by IL-13 and IL-4. Serum periostin has been evaluated for the identification of patients with increased clinical benefit from treatment with anti-IL-13 (lebrikizumab, tralokinumab) and anti-IgE (omalizumab) therapy and may be prognostic for increased risk of asthma exacerbations and progressive lung function decline. Furthermore, in asthma, periostin may regulate subepithelial fibrosis and mucus production and may serve as a systemic biomarker of eosinophilic airway inflammation. Periostin is also highly expressed in the lungs of patients with idiopathic pulmonary fibrosis, and its serum levels may predict clinical progression. Overall, periostin contributes to multiple pathogenic processes across respiratory diseases, and peripheral blood levels of periostin may have utility as a biomarker of treatment response and disease progression.
Collapse
Affiliation(s)
- Kenji Izuhara
- 1 Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Simon J Conway
- 2 Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bethany B Moore
- 3 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and.,4 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Hisako Matsumoto
- 5 Department of Respiratory Medicine, Kyoto University, Kyoto, Japan; and
| | - Cecile T J Holweg
- 6 Genentech Inc. (a member of the Roche Group), South San Francisco, California
| | - John G Matthews
- 6 Genentech Inc. (a member of the Roche Group), South San Francisco, California
| | - Joseph R Arron
- 6 Genentech Inc. (a member of the Roche Group), South San Francisco, California
| |
Collapse
|
26
|
Ruiz-Campillo MT, Molina Hernandez V, Escamilla A, Stevenson M, Perez J, Martinez-Moreno A, Donnelly S, Dalton JP, Cwiklinski K. Immune signatures of pathogenesis in the peritoneal compartment during early infection of sheep with Fasciola hepatica. Sci Rep 2017; 7:2782. [PMID: 28584245 PMCID: PMC5459796 DOI: 10.1038/s41598-017-03094-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022] Open
Abstract
Immune signatures of sheep acutely-infected with Fasciola hepatica, an important pathogen of livestock and humans were analysed within the peritoneal compartment to investigate early infection. Within the peritoneum, F. hepatica antibodies coincided with an intense innate and adaptive cellular immune response, with infiltrating leukocytes and a marked eosinophilia (49%). However, while cytokine qPCR analysis revealed IL-10, IL-12, IL-13, IL-23 and TGFβ were elevated, these were not statistically different at 18 days post-infection compared to uninfected animals indicating that the immune response is muted and not yet skewed to a Th2 type response that is associated with chronic disease. Proteomic analysis of the peritoneal fluid identified infection-related proteins, including several structural proteins derived from the liver extracellular matrix, connective tissue and epithelium, and proteins related to the immune system. Periostin and vascular cell adhesion protein 1 (VCAM-1), molecules that mediate leukocyte infiltration and are associated with inflammatory disorders involving marked eosinophilia (e.g. asthma), were particularly elevated in the peritoneum. Immuno-histochemical studies indicated that the source of periostin and VCAM-1 was the inflamed sheep liver tissue. This study has revealed previously unknown aspects of the immunology and pathogenesis associated with acute fascioliasis in the peritoneum and liver.
Collapse
Affiliation(s)
| | - Veronica Molina Hernandez
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | | | - Michael Stevenson
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Jose Perez
- School of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | | | - Sheila Donnelly
- The i3 Institute & School of Life Sciences, University of Technology, Sydney, Australia
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Krystyna Cwiklinski
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
27
|
Johansson MW, Khanna M, Bortnov V, Annis DS, Nguyen CL, Mosher DF. IL-5-stimulated eosinophils adherent to periostin undergo stereotypic morphological changes and ADAM8-dependent migration. Clin Exp Allergy 2017; 47:1263-1274. [PMID: 28378503 DOI: 10.1111/cea.12934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/28/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND IL-5 causes suspended eosinophils to polarize with filamentous (F)-actin and granules at one pole and the nucleus in a specialized uropod, the "nucleopod," which is capped with P-selectin glycoprotein ligand-1 (PSGL-1). IL-5 enhances eosinophil adhesion and migration on periostin, an extracellular matrix protein upregulated in asthma by type 2 immunity mediators. OBJECTIVE Determine how the polarized morphology evolves to foster migration of IL-5-stimulated eosinophils on a surface coated with periostin. METHODS Blood eosinophils adhering to adsorbed periostin were imaged at different time points by fluorescent microscopy, and migration of eosinophils on periostin was assayed. RESULTS After 10 minutes in the presence of IL-5, adherent eosinophils were polarized with PSGL-1 at the nucleopod tip and F-actin distributed diffusely at the opposite end. After 30-60 minutes, the nucleopod had dissipated such that PSGL-1 was localized in a crescent or ring away from the cell periphery, and F-actin was found in podosome-like structures. The periostin layer, detected with monoclonal antibody Stiny-1, shown here to recognize the FAS1 4 module, was cleared in wide areas around adherent eosinophils. Clearance was attenuated by metalloproteinase inhibitors or antibodies to disintegrin metalloproteinase 8 (ADAM8), a major eosinophil metalloproteinase previously implicated in asthma pathogenesis. ADAM8 was not found in podosome-like structures, which are associated with proteolytic activity in other cell types. Instead, immunoblotting demonstrated proteoforms of ADAM8 that lack the cytoplasmic tail in the supernatant. Anti-ADAM8 inhibited migration of IL-5-stimulated eosinophils on periostin. CONCLUSIONS AND CLINICAL RELEVANCE Migrating IL-5-activated eosinophils on periostin exhibit loss of nucleopodal features and appearance of prominent podosomes along with clearance of the Stiny-1 periostin epitope. Migration and epitope clearance are both attenuated by inhibitors of ADAM8. We propose, therefore, that eosinophils remodel and migrate on periostin-rich extracellular matrix in the asthmatic airway in an ADAM8-dependent manner, making ADAM8 a possible therapeutic target.
Collapse
Affiliation(s)
- M W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - M Khanna
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - V Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - D S Annis
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - C L Nguyen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - D F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA.,Department of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
28
|
Kim DY, Kim JH, Lee KH, Hong SC, Lee HS, Kang JW. Serum periostin level is not associated with allergic rhinitis or allergic sensitization in Korean children. Int J Pediatr Otorhinolaryngol 2017; 93:24-29. [PMID: 28109493 DOI: 10.1016/j.ijporl.2016.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Periostin is a matricellular protein, synthesized in the airway epithelium and induced by interleukin (IL)-4 and IL-13. The significance of periostin as a biomarker of T helper type 2 cell (Th2)-induced airway inflammation, and as a measure of the response to Th2-targeted therapy, has recently been highlighted. We explored the relationship between serum periostin and allergic rhinitis in Korean children. METHODS Data for fifth and sixth grade children from six randomly selected elementary schools located in Jeju and Seogwipo City, Korea, were investigated. Serum periostin levels were determined by enzyme-linked immunosorbent assay. Sex, school grade, body mass index, and presence of allergic nasal symptoms were obtained via a self-reported survey and skin prick testing was performed. RESULTS There were no significant differences between groups, when stratification was applied according to sex, grade, presence of atopy, and presence of allergic nasal symptoms. Sex and body mass index were significantly associated with serum periostin levels in multivariate linear regression analysis. However, allergic rhinitis was not associated with serum periostin levels. CONCLUSION Allergic rhinitis or allergic sensitization in Korean children did not influence serum periostin levels. Further studies are required to investigate the significance of serum periostin levels in pediatric allergic rhinitis.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Otorhinolaryngology, Jeju National University School of Medicine, Jeju, South Korea
| | - Jeong Hong Kim
- Department of Otorhinolaryngology, Jeju National University School of Medicine, Jeju, South Korea; The Environmental Health Center (Atopic Dermatitis and Allergic Rhinitis), Jeju National University School of Medicine, Jeju, South Korea
| | - Keun-Hwa Lee
- The Environmental Health Center (Atopic Dermatitis and Allergic Rhinitis), Jeju National University School of Medicine, Jeju, South Korea
| | - Seong-Chul Hong
- The Environmental Health Center (Atopic Dermatitis and Allergic Rhinitis), Jeju National University School of Medicine, Jeju, South Korea
| | - Hye-Sook Lee
- The Environmental Health Center (Atopic Dermatitis and Allergic Rhinitis), Jeju National University School of Medicine, Jeju, South Korea
| | - Ju Wan Kang
- Department of Otorhinolaryngology, Jeju National University School of Medicine, Jeju, South Korea; Department of Medicine, Yonsei University Graduate School, Seoul, South Korea.
| |
Collapse
|
29
|
Izuhara K, Ohta S, Ono J. Using Periostin as a Biomarker in the Treatment of Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:491-8. [PMID: 27582399 PMCID: PMC5011048 DOI: 10.4168/aair.2016.8.6.491] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 01/22/2023]
Abstract
Periostin acts both as an extracellular matrix protein belonging to the fasciclin family and as a matricellular protein functioning in cell activation by binding to its receptors on the cell surface. It has been established that periostin is a downstream molecule of interleukin (IL)-13, a signature type 2 cytokine, and that periostin plays an important role in the pathogenesis of allergic diseases, including asthma. Based on these findings, much attention has been paid to periostin as a biomarker useful in the treatment of asthma. Periostin is a surrogate biomarker for type 2 immunity; it has been shown that serum periostin can predict the efficacy of anti-IL-13 antibodies (lebrikizumab) and anti-IgE antibodies (omalizumab), and that this usefulness can be potentially expanded to other type 2 antagonists. Moreover, it has been shown that periostin is not a simple surrogate biomarker for type 2 immunity; periostin-high asthma patients have several unique characteristics, including eosinophilia, high fraction of nitric oxide, aspirin intolerance, nasal disorders, and late onset. These characteristics are likely to be correlated with the involvement of periostin in the tissue remodeling of asthma. Periostin is also associated with hyporesponsiveness to inhaled corticosteroids, probably reflecting tissue remodeling. Thus, periostin has 2 characteristics as a biomarker for early diagnosis of asthma: surrogate biomarkers for type 2 immunity and tissue remodeling. Based on these characteristics, we will be able to apply serum periostin to treatment of asthma.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| | - Shoichiro Ohta
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Junya Ono
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.,Shino-test Co. Ltd., Sagamihara, Japan
| |
Collapse
|
30
|
Meng J, Xin X, Liu Z, Li H, Huang B, Huang Y, Zhao J. Propofol inhibits T-helper cell type-2 differentiation by inducing apoptosis via activating gamma-aminobutyric acid receptor. J Surg Res 2016; 206:442-450. [PMID: 27884341 DOI: 10.1016/j.jss.2016.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/02/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Propofol has been shown to attenuate airway hyperresponsiveness in asthma patients. Our previous study showed that it may alleviate lung inflammation in a mouse model of asthma. Given the critical role of T-helper cell type-2 (Th2) differentiation in asthma pathology and the immunomodulatory role of the gamma-aminobutyric acid type A (GABAA) receptor, we hypothesized that propofol could alleviate asthma inflammation by inhibiting Th2 cell differentiation via the GABA receptor. METHODS For in vivo testing, chicken ovalbumin-sensitized and challenged asthmatic mice were used to determine the effect of propofol on Th2-type asthma inflammation. For in vitro testing, Th2-type cytokines as well as the cell proliferation and apoptosis were measured to assess the effects of propofol on Th2 cell differentiation and determine the underlying mechanisms. RESULTS We found that propofol significantly decreased inflammatory cell counts and interleukin-4 and inflammation score in vivo. Propofol, but not intralipid, significantly reduced the Th2-type cytokine interleukin-5 secretion and caused Th2 cell apoptosis without obvious inhibition of proliferation in vitro. A GABA receptor agonist simulated the effect of propofol, whereas pretreatment with an antagonist reversed this effect. CONCLUSIONS This study demonstrates that the antiinflammatory effects of propofol on Th2-type asthma inflammation in mice are mediated by inducing apoptosis without compromising proliferation during Th2 cell differentiation via activation of the GABA receptor.
Collapse
Affiliation(s)
- Jingxia Meng
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Xin
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Liu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- Department of Anesthesiology, Beijing Aerospace General Hospital, Beijing, China
| | - Bo Huang
- Department of Immunology, Institute of Basic Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Knowlden SA, Hillman SE, Chapman TJ, Patil R, Miller DD, Tigyi G, Georas SN. Novel Inhibitory Effect of a Lysophosphatidic Acid 2 Agonist on Allergen-Driven Airway Inflammation. Am J Respir Cell Mol Biol 2016; 54:402-9. [PMID: 26248018 DOI: 10.1165/rcmb.2015-0124oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid signaling molecule associated with asthma pathobiology. LPA elicits its effects by binding to at least six known cell surface G protein-coupled receptors (LPA1-6) that are expressed in the lung in a cell type-specific manner. LPA2 in particular has emerged as an attractive therapeutic target in asthma because it appears to transduce inhibitory or cell-protective signals. We studied a novel and specific small molecule LPA2 agonist (2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl] benzoic acid [DBIBB]) in a mouse model of house dust mite-induced allergic airway inflammation. Mice injected with DBIBB developed significantly less airway and lung inflammation compared with vehicle-treated controls. Levels of lung Th2 cytokines were also significantly attenuated by DBIBB. We conclude that pharmacologic activation of LPA2 attenuates Th2-driven allergic airway inflammation in a mouse model of asthma. Targeting LPA receptor signaling holds therapeutic promise in allergic asthma.
Collapse
Affiliation(s)
- Sara A Knowlden
- 1 Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Sara E Hillman
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Timothy J Chapman
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Renukadevi Patil
- 3 Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and.,4 Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- 4 Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gabor Tigyi
- 3 Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Steve N Georas
- 1 Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
32
|
Teoh CM, Tan SSL, Tran T. Integrins as Therapeutic Targets for Respiratory Diseases. Curr Mol Med 2016; 15:714-34. [PMID: 26391549 PMCID: PMC5427774 DOI: 10.2174/1566524015666150921105339] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/09/2015] [Accepted: 09/19/2015] [Indexed: 01/14/2023]
Abstract
Integrins are a large family of transmembrane heterodimeric proteins that constitute the main receptors for extracellular matrix components. Integrins were initially thought to be primarily involved in the maintenance of cell adhesion and tissue integrity. However, it is now appreciated that integrins play important roles in many other biological processes such as cell survival, proliferation, differentiation, migration, cell shape and polarity. Lung cells express numerous combinations and permutations of integrin heterodimers. The complexity and diversity of different integrin heterodimers being implicated in different lung diseases present a major challenge for drug development. Here we provide a comprehensive overview of the current knowledge of integrins from studies in cell culture to integrin knockout mouse models and provide an update of results from clinical trials for which integrins are therapeutic targets with a focus on respiratory diseases (asthma, emphysema, pneumonia, lung cancer, pulmonary fibrosis and sarcoidosis).
Collapse
Affiliation(s)
| | | | - T Tran
- Department of Physiology, MD9, 2 Medical Drive, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
33
|
Assessing biomarkers in a real-world severe asthma study (ARIETTA). Respir Med 2016; 115:7-12. [PMID: 27215497 DOI: 10.1016/j.rmed.2016.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/22/2022]
Abstract
The prognostic value of asthma biomarkers in routine clinical practice is not fully understood. ARIETTA (NCT02537691) is an ongoing, prospective, longitudinal, international, multicentre real-world study designed to assess the relationship between asthma biomarkers and disease-related health outcomes. The trial aims to enrol and follow for 52 weeks approximately 1200 severe asthma patients from approximately 160 sites in more than 20 countries. Severe asthmatics, treated with daily inhaled corticosteroid (≥500 μg of fluticasone propionate or equivalent) and at least 1 second controller medication are to be included. In this real-world study, patients will be treated according to the investigator's routine clinical practices and no treatment regimen will be implemented as part of the trial. At baseline and again at 26 and 52 weeks, FEV1, FeNO, serum periostin, blood eosinophil count and serum IgE will be measured. Asthma-related symptom and quality of life questionnaires will be administered at the visits and during telephone interviews at Weeks 13 and 39. Data about medication use, asthma exacerbation data, asthma-related healthcare utilization and events raising safety concerns will also be collected. This study design, unique in both its scope and scale, will address fundamental unanswered questions regarding asthma biomarkers and their interrelationship, as well as predict deviations in the course of asthma in a real-world setting.
Collapse
|
34
|
Izuhara K, Matsumoto H, Ohta S, Ono J, Arima K, Ogawa M. Recent developments regarding periostin in bronchial asthma. Allergol Int 2015; 64 Suppl:S3-10. [PMID: 26344077 DOI: 10.1016/j.alit.2015.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/22/2015] [Indexed: 12/28/2022] Open
Abstract
Although it is currently recognized that bronchial asthma is not a single disease but a syndrome, we have not yet made use of our new understanding of this heterogeneity as we treat asthma patients. To increase the efficacy of anti-asthma drugs and to decrease costs, it is important to stratify asthma patients into subgroups and to develop therapeutic strategies for each subgroup. Periostin has recently emerged as a biomarker for bronchial asthma, unique in that it is useful not in diagnosis but in categorizing asthma patients. We first found that periostin is a novel component of subepithelial fibrosis in bronchial asthma downstream of IL-13 signals. Thereafter, it was shown that periostin can be a surrogate biomarker of type 2 immune responses, the basis of the notion that a detection system of serum periostin is potentially a companion diagnostic for type 2 antagonists. Furthermore, we have recently shown that serum periostin can predict resistance or hyporesponsiveness to inhaled corticosteroids, based on its contribution to tissue remodeling or fibrosis in bronchial asthma. Thus, serum periostin has two characteristics as a biomarker for bronchial asthma: it is both a surrogate biomarker of type 2 immune responses and a biomarker reflecting tissue remodeling or fibrosis. We can take advantage of these characteristics to develop stratified medicine in bronchial asthma.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga, Japan
| | - Junya Ono
- Shino-Test Corporation, Kanagawa, Japan
| | - Kazuhiko Arima
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Masahiro Ogawa
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
35
|
Mosher DF, Johansson MW, Gillis ME, Annis DS. Periostin and TGF-β-induced protein: Two peas in a pod? Crit Rev Biochem Mol Biol 2015; 50:427-39. [PMID: 26288337 DOI: 10.3109/10409238.2015.1069791] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Periostin (PN) and TGF-β-induced protein (βig-h3) are paralogs that contain a single emilin and four fasciclin-1 modules and are secreted from cells. PN receives attention because of its up-regulation in cancer and degenerative and allergic diseases. βig-h3 is highly enriched in cornea and best known for harboring mutations in humans associated with corneal dystrophies. Both proteins are expressed widely, and many functions, some over-lapping, have been attributed to PN and βig-h3 based on biochemical, cell culture, and whole animal experiments. We attempt to organize this knowledge so as to facilitate research on these interesting and incompletely understood proteins. We focus particularly on whether PN and βig-h3 are modified by vitamin K-dependent γ-glutamyl carboxylation, a question of considerable importance given the profound effects of γ-carboxylation on structure and function of other proteins. We consider the roles of PN and βig-h3 in formation of extracellular matrix and as ligands for integrin receptors. We attempt to reconcile the contradictory results that have arisen concerning the role of PN, which has emerged as a marker of TH2 immunity, in murine models of allergic asthma. Finally, when possible we compare and contrast the structures and functions of the two proteins.
Collapse
Affiliation(s)
- Deane F Mosher
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , USA
| | - Mats W Johansson
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , USA
| | - Mary E Gillis
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , USA
| | - Douglas S Annis
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
36
|
Li W, Gao P, Zhi Y, Xu W, Wu Y, Yin J, Zhang J. Periostin: its role in asthma and its potential as a diagnostic or therapeutic target. Respir Res 2015; 16:57. [PMID: 25981515 PMCID: PMC4437675 DOI: 10.1186/s12931-015-0218-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/14/2015] [Indexed: 03/18/2023] Open
Abstract
Accumulating evidence shows that periostin, a matricellular protein, is involved in many fundamental biological processes such as cell proliferation, cell invasion, and angiogenesis. Changes in periostin expression are commonly detected in various cancers and pre-cancerous conditions, and periostin may be involved in regulating a diverse set of cancer cell activities that contribute to tumorigenesis, cancer progression, and metastasis. Periostin has also been shown to be involved in many aspects of allergic inflammation, such as eosinophil recruitment, airway remodeling, development of a Th2 phenotype, and increased expression of inflammatory mediators. In an in vivo model, bronchoalveolar lavage (BAL) fluid obtained from ovalbumin-challenged mice was found to contain significantly higher levels of periostin compared to BAL samples from control mice. To date, the molecular mechanisms involving periostin in relation to asthma in humans have not been fully elucidated. This review will focus on what is known about periostin and its role in the pathophysiological mechanisms that mediate asthma in order to evaluate the potential for periostin to serve as a biomarker and therapeutic target for the detection and treatment of asthma, respectively.
Collapse
Affiliation(s)
- Wei Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Yue Zhi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Wei Xu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Yanfeng Wu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Jinzhi Yin
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
37
|
Batrla R, Jordan BWM. Personalized health care beyond oncology: new indications for immunoassay-based companion diagnostics. Ann N Y Acad Sci 2015; 1346:71-80. [PMID: 25866164 PMCID: PMC4744740 DOI: 10.1111/nyas.12754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Personalized health care (PHC) is an evolving field of medicine aimed at providing the right therapy to the right patient at the right time. This approach often incorporates the use of companion diagnostics (CDx) assays that provide information essential for the safe and effective use of the corresponding drug. In addition to oncology, many other therapy areas, such as cardiovascular, neurological, and infectious and inflammatory diseases, may benefit from PHC, owing to disease complexity and heterogeneity. Furthermore, although most U.S. Food and Drug Administration–approved CDx are based on molecular‐based technologies, immunoassays can provide a significant contribution to the evolution of CDx in patient management. In this review we discuss how the incorporation of biomarker immunoassays into routine diagnostic testing may allow early and definitive detection of Alzheimer's disease and enable population enrichment in clinical trials. In addition, we will describe how biomarker‐based CDx immunoassays have potential utility for stratifying patients with asthma based on their potential response to therapy and for selecting treatment according to phenotypic profile. Continued research into the underlying disease pathology and development of accurate and reliable diagnostic assays may ensure that PHC becomes the future standard for many indications.
Collapse
Affiliation(s)
- Richard Batrla
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | | |
Collapse
|
38
|
Laury AM, Hilgarth R, Nusrat A, Wise SK. Periostin and receptor activator of nuclear factor κ-B ligand expression in allergic fungal rhinosinusitis. Int Forum Allergy Rhinol 2014; 4:716-24. [PMID: 25060295 DOI: 10.1002/alr.21367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Allergic fungal rhinosinusitis (AFRS) is a disease demonstrating substantial eosinophilic inflammation and characteristic radiographic bony erosion/expansion. Periostin is an extracellular matrix protein associated with eosinophil accumulation in eosinophilic esophagitis, allergic asthma mucus production, and chronic rhinosinusitis (CRS) polyp formation. Receptor activator of nuclear factor κ-B ligand (RANKL) is an osteoclast activator present in osteoporosis and periodontal disease. We sought to evaluate periostin and RANKL expression in AFRS and correlate these levels with radiographic scales of disease severity. METHODS Thirty sinus tissue specimens were intraoperatively collected from 3 patient groups: AFRS; CRS without nasal polyps (CRSsNP); and controls (n = 10 per group). Specimens were analyzed by semiquantitative reverse-transcription polymerase chain reaction (sq-RT-PCR) and immunofluorescence (IF) labeling/confocal microscopy for the presence of both periostin and RANKL. Immunofluorescence staining intensity was quantified by pixel density analysis. Preoperative computed tomography (CT) scans from each patient were scored using both the Lund-Mackay and CT bone erosion scoring systems. RESULTS Periostin was significantly elevated in AFRS sinus tissue compared to CRSsNP and controls, as demonstrated by IF (p < 0.001) and PCR (p = 0.011). RANKL was not detected in sinus tissue by IF or PCR. Periostin levels positively correlated with radiographic indices of disease severity for both soft tissue and bone, using Lund-Mackay (r = 0.926 [PCR] and r = 0.581 [IF]) and CT bone erosion (r = 0.672 [PCR] and r = 0.616 [IF]) scoring systems, respectively. CONCLUSION Periostin is increased in AFRS tissue compared to CRSsNP and controls. Periostin levels positively correlate with radiologic disease severity scores. The increased levels of periostin in AFRS are possibly tied to its intense eosinophilic inflammatory etiology.
Collapse
Affiliation(s)
- Adrienne M Laury
- Department of Otolaryngology-Head and Neck Surgery, Emory University, Atlanta, GA
| | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Asthma is a heterogeneous disease with multiple, overlapping phenotypes. Biomarkers are currently being investigated to better characterize the disease phenotypes and to identify the responders to specific targeted therapies. This review focuses on the emerging data surrounding the use of one such biomarker for T helper 2 (TH2)-driven asthma: periostin. RECENT FINDINGS Periostin is an extracellular matrix protein that is induced by interleukin (IL)-4 and IL-13 in airway epithelial cells and lung fibroblasts. It has proven to be an important biomarker of TH2-associated airway inflammation and a potential predictor of airway eosinophilia. It has also been shown to predict response to treatment with inhaled corticosteroids in patients with these characteristics. Furthermore, recent asthma clinical trials have established that serum periostin may have value in predicting the response to targeted therapy with biologic agents such as lebrikizumab and omalizumab. SUMMARY Emerging data suggest a role for periostin in refining asthma phenotypes and predicting the response to targeted therapy. Although early data are promising, further investigations are needed to confirm these findings and to identify other clinical applications in which periostin may be valuable.
Collapse
|
40
|
Bentley JK, Chen Q, Hong JY, Popova AP, Lei J, Moore BB, Hershenson MB. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol 2014; 134:1433-1442. [PMID: 24996263 DOI: 10.1016/j.jaci.2014.05.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Periostin, a secreted extracellular matrix protein, has been localized to deposits of subepithelial fibrosis in asthmatic patients, and periostin levels have been linked to increases in IL-13. OBJECTIVE We hypothesized that periostin is required for airway inflammatory responses to a physiologic aeroallergen, house dust mite (HDM). METHODS We studied F4-F6 B6;129-Postn(tm1Jmol)/J wild-type (Postn(+/+)) and null (Postn(-/-)) mice, as well as C57BL/6 mice treated with either IgM or OC-20 periostin neutralizing antibody. Mice were exposed to 5 doses of HDM intranasally over a 16-day period. RESULTS HDM increased airways responsiveness in Postn(+/+) but not Postn(-/-) mice. In addition, HDM-treated C57BL/6 mice injected with OC-20 had lower airways responsiveness than HDM-treated mice injected with IgM. Compared with Postn(+/+) mice, Postn(-/-) mice showed decreases in HDM-induced inflammation and mucous metaplasia, as well as reduced IL-4, IL-25, CD68, Gob5, and periostin mRNA expression. OC-20 antibody produced similar results. HDM exposure increased periostin expression in the airway epithelium, subepithelium, smooth muscle and inflammatory cells. OC-20 blocked the HDM-induced IgE response, and T cells incubated with dendritic cells (DCs) from Postn(-/-) mice or treated with OC-20 showed deficient DNA synthesis and IL-13 responses compared with T cells incubated with wild-type DCs. Finally, adoptive transfer of bone marrow-derived DCs from Postn(+/+) mice was sufficient to promote allergic responses in F6 Postn(-/-) littermates. CONCLUSIONS In mice, periostin is required for maximal airways hyperresponsiveness and inflammation after HDM sensitization and challenge. Periostin is required for maximal HDM-induced T-cell responses.
Collapse
Affiliation(s)
- J Kelley Bentley
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Mich
| | - Qiang Chen
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Mich
| | - Jun Young Hong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Mich
| | - Antonia P Popova
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Mich
| | - Jing Lei
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Mich
| | - Bethany B Moore
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Mich; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Mich.
| |
Collapse
|
41
|
Liu AY, Zheng H, Ouyang G. Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol 2014; 37:150-6. [DOI: 10.1016/j.matbio.2014.04.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
|
42
|
Ohta N, Ishida A, Kurakami K, Suzuki Y, Kakehata S, Ono J, Ikeda H, Okubo K, Izuhara K. Expressions and roles of periostin in otolaryngological diseases. Allergol Int 2014; 63:171-80. [PMID: 24759558 DOI: 10.2332/allergolint.13-rai-0673] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/05/2023] Open
Abstract
Periostin is a 90-kDa member of the fasciclin-containing family; it functions as part of matricellular proteins, and its production by airway epithelial cells is induced by IL-4 and IL-13. Periostin is secreted by fibroblasts and upregulated in the airway epithelia of patients with bronchial asthma; it is considered to contribute to remodeling under this pathological condition. However, despite many studies in diverse research areas, our overall understanding of this intriguing molecule is still inadequate. Here, we integrate the available evidence on periostin expression and its roles in otolaryngological diseases, including allergic rhinitis, chronic rhinosinusitis with nasal polyps, aspirin-induced asthma, organized hematoma, eosinophilic otitis media, and IgG4-related disease. Periostin might be involved as an important structural mediator in pathological processes such as insult and injury, Th2-driven inflammation, extracellular matrix restructuring, fibrosclerosis, tumor angiogenesis, and tissue remodeling.
Collapse
Affiliation(s)
- Nobuo Ohta
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Akihiro Ishida
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kazuya Kurakami
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yusuke Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Seiji Kakehata
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Junya Ono
- Shino-Test Corporation, Kanagawa, Japan
| | - Hiroki Ikeda
- Department of Otolaryngology, Japanese Red Cross Society, Wakayama Medical Center, Wakayama, Japan
| | - Kimihiro Okubo
- Department of Otolaryngology, Nippon Medical School, Tokyo, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Faculty of Medicine, Saga Medical School, Saga, Japan
| |
Collapse
|
43
|
Izuhara K, Arima K, Ohta S, Suzuki S, Inamitsu M, Yamamoto KI. Periostin in allergic inflammation. Allergol Int 2014; 63:143-151. [PMID: 24662806 DOI: 10.2332/allergolint.13-rai-0663] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 01/22/2023] Open
Abstract
Periostin, an extracellular matrix protein belonging to the fasciclin family, has been shown to play a critical role in the process of remodeling during tissue/organ development or repair. Periostin functions as a matricellular protein in cell activation by binding to their receptors on cell surface, thereby exerting its biological activities. After we found that periostin is a downstream molecule of interleukin (IL)-4 and IL-13, signature cytokines of type 2 immune responses, we showed that periostin is a component of subepithelial fibrosis in bronchial asthma, the first formal proof that periostin is involved in allergic inflammation. Subsequently, a great deal of evidence has accumulated demonstrating the significance of periostin in allergic inflammation. It is of note that in skin tissues, periostin is critical for amplification and persistence of allergic inflammation by communicating between fibroblasts and keratinocytes. Furthermore, periostin has been applied to development of novel diagnostics or therapeutic agents for allergic diseases. Serum periostin can reflect local production of periostin in inflamed lesions induced by Th2-type immune responses and also can predict the efficacy of Th2 antagonists against bronchial asthma. Blocking the interaction between periostin and its receptor, αv integrin, or down-regulating the periostin expression shows improvement of periostin-induced inflammation in mouse models or in in vitro systems. It is hoped that diagnostics or therapeutic agents targeting periostin will be of practical use in the near future.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kazuhiko Arima
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga, Japan
| | - Shoichi Suzuki
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Masako Inamitsu
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Ken-ichi Yamamoto
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
44
|
Nuzzo PV, Buzzatti G, Ricci F, Rubagotti A, Argellati F, Zinoli L, Boccardo F. Periostin: a novel prognostic and therapeutic target for genitourinary cancer? Clin Genitourin Cancer 2014; 12:301-11. [PMID: 24656869 DOI: 10.1016/j.clgc.2014.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/29/2014] [Accepted: 02/12/2014] [Indexed: 01/21/2023]
Abstract
Many of the cellular abnormalities present in solid tumors are structural in nature and involve the proteins of the extracellular matrix (ECM). Periostin is a protein produced and secreted by the fibroblasts as a component of the ECM where it is involved in regulating intercellular adhesion. The expression of periostin has an important physiological role during embryogenesis and growth, namely at the level of bone, dental, and cardiac tissues. Many studies indicate that periostin plays an important role for tumor progression in various types of cancer, such as colon, lung, head and neck, breast, ovarian, and prostate. To the best of our knowledge, a limited number of studies have investigated periostin expression in urogenital cancer, such as prostate, bladder, penile, and renal cancer, and no studies were performed in testis cancer. In this review article, we summarize the most recent knowledge of periostin, its genetic and protein structure, and the role of the different isoforms identified and sequenced so far. In particular, we focus our attention on the role of this protein in genitourinary tumors, trying to emphasize the role not only as a possible prognostic marker, but also as a possible target for the development of future anticancer therapies.
Collapse
Affiliation(s)
- Pier Vitale Nuzzo
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy
| | - Giulia Buzzatti
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy
| | - Francesco Ricci
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy
| | - Alessandra Rubagotti
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy
| | - Francesca Argellati
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy
| | - Linda Zinoli
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy
| | - Francesco Boccardo
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy.
| |
Collapse
|
45
|
Kanemitsu Y, Matsumoto H, Izuhara K, Tohda Y, Kita H, Horiguchi T, Kuwabara K, Tomii K, Otsuka K, Fujimura M, Ohkura N, Tomita K, Yokoyama A, Ohnishi H, Nakano Y, Oguma T, Hozawa S, Nagasaki T, Ito I, Oguma T, Inoue H, Tajiri T, Iwata T, Izuhara Y, Ono J, Ohta S, Tamari M, Hirota T, Yokoyama T, Niimi A, Mishima M. Increased periostin associates with greater airflow limitation in patients receiving inhaled corticosteroids. J Allergy Clin Immunol 2013; 132:305-12.e3. [PMID: 23791506 DOI: 10.1016/j.jaci.2013.04.050] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Periostin, an extracellular matrix protein, contributes to subepithelial thickening in asthmatic airways, and its serum levels reflect airway eosinophilic inflammation. However, the relationship between periostin and the development of airflow limitation, a functional consequence of airway remodeling, remains unknown. OBJECTIVE We aimed to determine the relationship between serum periostin levels and pulmonary function decline in asthmatic patients on inhaled corticosteroid (ICS) treatment. METHODS Two hundred twenty-four asthmatic patients (average age, 62.3 years) treated with ICS for at least 4 years were enrolled. Annual changes in FEV1, from at least 1 year after the initiation of ICS treatment to the time of enrollment or later (average, 16.2 measurements over 8 years per individual), were assessed. At enrollment, clinical indices, biomarkers that included serum periostin, and periostin gene polymorphisms were examined. Associations between clinical indices or biomarkers and a decline in FEV1 of 30 mL or greater per year were analyzed. RESULTS High serum periostin levels (≥ 95 ng/mL) at enrollment, the highest treatment step, higher ICS daily doses, a history of admission due to asthma exacerbation, comorbid or a history of sinusitis, and ex-smoking were associated with a decline in FEV1 of 30 mL or greater per year. Multivariate analysis showed that high serum periostin, the highest treatment step, and ex-smoking were independent risk factors for the decline. Polymorphisms of periostin gene were related to higher serum periostin levels (rs3829365) and a decline in FEV1 of 30 mL or greater per year (rs9603226). CONCLUSIONS Serum periostin appears to be a useful biomarker for the development of airflow limitation in asthmatic patients on ICS.
Collapse
Affiliation(s)
- Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Johansson MW, Annis DS, Mosher DF. α(M)β(2) integrin-mediated adhesion and motility of IL-5-stimulated eosinophils on periostin. Am J Respir Cell Mol Biol 2013; 48:503-10. [PMID: 23306834 DOI: 10.1165/rcmb.2012-0150oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Periostin is an extracellular matrix protein that is up-regulated by T helper cell type 2 cytokines in the asthmatic airway and implicated in mouse studies as promoting eosinophil recruitment. We asked whether periostin modulates eosinophil adhesion and motility in vitro. Periostin adsorbed to polystyrene supported adhesion of purified human blood eosinophils stimulated by IL-5, IL-3, or granulocyte/macrophage colony-stimulating factor, but did not support adhesion of eosinophils treated with IL-4 or IL-13. The degree of adhesion depended on the concentrations of periostin during coating and activating cytokine during the adhesion assay. Both full-length periostin and alternatively spliced periostin, lacking C-terminal exons 17, 18, 19, and 21, supported adhesion. Adhesion was inhibited by monoclonal antibody to α(M) or β(2) integrin subunits, but not by antibodies to other eosinophil integrin subunits. Adsorbed periostin also supported α(M)β(2)-dependent random motility of IL-5-stimulated eosinophils with optimal movement at an intermediate coating concentration. In the presence of IL-5, eosinophils adherent on periostin formed punctate structures positive for filamentous actin, gelsolin, and phosphotyrosine. These structures fit the criteria for podosomes, highly dynamic adhesive contacts that are distinct from classical focal adhesions. The results establish α(M)β(2) (CD11b/CD18, Mac-1) as an adhesive and promigratory periostin receptor on cytokine-stimulated eosinophils, and suggest that periostin may function as a haptotactic stimulus able to guide eosinophils to areas of high periostin density in the asthmatic airway.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
47
|
Lauer S, Renz H. The Advance of Personalized and Stratified Therapies in Bronchial Asthma: Phenotypes - Endotypes - Biomarkers. EJIFCC 2013; 24:113-25. [PMID: 27683446 PMCID: PMC4975185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bronchial asthma (BA) is a chronic inflammatory condition with increasing incidence and prevalence worldwide. BA is currently the most prevalent chronic disease in pediatric patients. The majority of BA patients are therapeutically well controlled with guideline based anti-inflammatory therapies; however, there is also a clinically recognized proportion of patients who do not benefit from currently available medication for several reasons. This is the starting point for further investigation into the complexity of the inflammatory phenotype of BA. Recently, the heterogeneity in terms of cellular and molecular pathways underlying BA has been recognized and established. These different pathogenic mechanisms are defined as 'endotypes'. The best studied endotype so far is the association with T-helper type 2 (TH2) cell eosinophilic airway inflammation. Recently, a number of different therapeutic strategies have been clinically explored which target certain mediators of this pathway, including the interleukins IL-4, IL-5 and IL-13. It is now clear that patients with the TH2-endotype largely benefit from novel biologicals in this area. However, the challenge for diagnostics is to identify patients exhibiting this endotype, and this is the starting point for the search for new biomarkers. One biomarker that has recently been selected based on differential gene expression analysis, and which seems to be strongly associated with the TH2 endotype, is periostin. In this article we will provide a state of the art update on the definition of clinical phenotypes, pathogenetic endotypes and biomarker development for improving BA treatment.
Collapse
Affiliation(s)
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps-UniversitätMarburg, Germany
| |
Collapse
|
48
|
Ishida A, Ohta N, Suzuki Y, Kakehata S, Okubo K, Ikeda H, Shiraishi H, Izuhara K. Expression of pendrin and periostin in allergic rhinitis and chronic rhinosinusitis. Allergol Int 2012; 61:589-95. [PMID: 22918213 DOI: 10.2332/allergolint.11-oa-0370] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/13/2012] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pendrin and periostin are newly identified mediators of the inflammatory process. The expression of these proteins in human sinonasal tissue and their roles in allergic rhinitis and chronic rhinosinusitis remain to be elucidated. This study investigated the expression of pendrin and periostin in sinonasal tissue of patients with allergic rhinitis, chronic rhinosinusitis, and aspirin-induced asthma. Prospective control study conducted at Yamagata University, Japan. METHODS Surgical samples were investigated by means of real-time reverse transcription-polymerase chain reaction to evaluate the expression of pendrin and periostin mRNA. The presence and location of pendrin and periostin were determined by immunohistochemistry and Western blotting. RESULTS Pendrin and periostin production was significantly higher in patients with nasal disorders than in controls. Further significant increases in periostin expression were noted in patients with chronic rhinosinusitis with nasal polyps and in those with aspirin-induced asthma. Immunohistochemistry revealed positive staining for pendrin in epithelial cells and submucosal glands and for periostin in the basement membrane in all three disorders, and additionally for periostin in nasal polyp tissue in chronic rhinosinusitis and aspirin-induced asthma. CONCLUSIONS Production of pendrin and periostin is upregulated in allergic rhinitis, chronic rhinosinusitis with nasal polyps, and aspirin-induced asthma. These findings suggest that pendrin can induce mucus production and that periostin can induce tissue fibrosis and remodeling in the nasal mucosa. Therefore, these mediators may be therapeutic target candidates for allergic rhinitis, chronic rhinosinusitis with nasal polyps, and aspirin-induced asthma.
Collapse
Affiliation(s)
- Akihiro Ishida
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Yamagata University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S, Takeuchi S, Koike K, Ono J, Noshiro H, Furue M, Conway SJ, Narisawa Y, Izuhara K. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest 2012; 122:2590-600. [PMID: 22684102 DOI: 10.1172/jci58978] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/02/2012] [Indexed: 01/13/2023] Open
Abstract
Allergic inflammation triggered by exposure of an allergen frequently leads to the onset of chronic inflammatory diseases such as atopic dermatitis (AD) and bronchial asthma. The mechanisms underlying chronicity in allergic inflammation remain unresolved. Periostin, a recently characterized matricellular protein, interacts with several cell surface integrin molecules, providing signals for tissue development and remodeling. Here we show that periostin is a critical mediator for the amplification and persistence of allergic inflammation using a mouse model of skin inflammation. Th2 cytokines IL-4 and IL-13 stimulated fibroblasts to produce periostin, which interacted with αv integrin, a functional periostin receptor on keratinocytes, inducing production of proinflammatory cytokines, which consequently accelerated Th2-type immune responses. Accordingly, inhibition of periostin or αv integrin prevented the development or progression of allergen-induced skin inflammation. Thus, periostin sets up a vicious circle that links Th2-type immune responses to keratinocyte activation and plays a critical role in the amplification and chronicity of allergic skin inflammation.
Collapse
Affiliation(s)
- Miho Masuoka
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hur DG, Khalmuratova R, Ahn SK, Ha YS, Min YG. Roles of periostin in symptom manifestation and airway remodeling in a murine model of allergic rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2012; 4:222-30. [PMID: 22754716 PMCID: PMC3378929 DOI: 10.4168/aair.2012.4.4.222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 11/20/2022]
Abstract
PURPOSE Periostin was originally identified as a secreted factor during screening of a mouse osteoblastic library. In a recent study, periostin was found to directly regulate eosinophil accumulation in allergic mucosal inflammation. Chronic eosinophilic inflammation is related to the development of remodeling. The present study examined the expression of periostin and evaluated its role in the inflammatory process and remodeling associated with allergic rhinitis. METHODS A murine model of allergic rhinitis was established in periostin knockout mice. We analyzed the expression of periostin, manifestation of nasal symptoms, eosinophilic inflammation, and subepithelial fibrosis as well as the expression of MMP-2, TIMP-1, and type 1 collagen in nasal tissue. RESULTS Periostin was mainly distributed in the subepithelial tissue of the nasal mucosa. The subepithelial tissue was thinner in the knockout group than in the control group. No differences in the expression of MMP-2 or TIMP-1 were found in the knockout group. However, after a month of allergen challenge, type I collagen in the nasal tissue was lower in the knockout group than in the control group. The number of eosinophils and the symptom score were also lower in the knockout group. CONCLUSIONS Periostin is expressed in nasal tissues of murine models of allergic rhinitis. Periostin deficiency may affect the remodeling of nasal tissue with reduced subepithelial fibrosis, and lead to less eosinophilic inflammation.
Collapse
Affiliation(s)
- Dong Gu Hur
- Department of Otorhinolaryngology, School of Medicine, Gyeongsang National University, Jinju, Korea
| | | | | | | | | |
Collapse
|