1
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2025; 329:e13382. [PMID: 39158380 PMCID: PMC11744256 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
- Nexus Institute of Research and Innovation (NIRI)KathmanduNepal
| |
Collapse
|
2
|
Zhang Y, Xuan X, Ye D, Liu D, Song Y, Gao F, Lu S. The Role of the AIM2 Gene in Obesity-Related Glucose and Lipid Metabolic Disorders: A Recent Update. Diabetes Metab Syndr Obes 2024; 17:3903-3916. [PMID: 39465122 PMCID: PMC11512477 DOI: 10.2147/dmso.s488978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
Absent in melanoma 2 (AIM2) is a protein encoded by the AIM2 gene located on human chromosomes, AIM2 can recognize and bind to double stranded DNA (dsDNA), leading to the assembly of the AIM2 inflammasome. The AIM2 inflammasome plays important proinflammation role in many diseases, and can induce pyroptotic cell death. It has also been closely linked to the development and progression of metabolic diseases and can be activated in obesity, diabetes, nonalcoholic fatty liver disease, and atherosclerosis. In this article, we mainly review the role of AIM2 in glucose metabolism, especially in obesity-related disorders of glucose and lipid metabolism, and provide insights to better understand the role of AIM2 in the pathogenesis, and clinical treatment of metabolic disease.
Collapse
Affiliation(s)
- Yongjiao Zhang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Xiaolei Xuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Diwen Ye
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Dong Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Yufan Song
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Fei Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Sumei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
3
|
Gong Z, Dixit M, He Z, Poudel SB, Yildirim G, Yakar S, Muzumdar R. Deletion of absent in melanoma-2 (AIM2) drives bone marrow adipogenesis and impairs bone microarchitecture. GeroScience 2024:10.1007/s11357-024-01354-2. [PMID: 39348043 DOI: 10.1007/s11357-024-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
Absent in melanoma (AIM) 2, a gene induced by interferon, acts as a cytosolic sensor for double-stranded (ds) DNA. It forms the AIM2 inflammasome, producing interleukin (IL)-1β and IL-18. Our previous study demonstrated that mice lacking AIM2 exhibit spontaneous obesity, insulin resistance, and inflammation in adipose tissue. In this study, we aimed to explore the impact of AIM2 gene deletion on the bone marrow microenvironment and bone morphology in adult and aged mice. Utilizing micro-computed tomography (micro-CT), we discovered that female mice lacking AIM2 showed an increase in the total cross-sectional area at 5 months of age, accompanied by an increase in cortical thickness in the mid-diaphysis of the femur at both 5 and 15 months of age. At 15 months, the cortical bone mineral density (BMD) significantly decreased in AIM2 null females compared to wildtype (WT) mice. Trabecular bone volume and BMD at the distal metaphysis of the femur and the lumbar vertebra-4 were also significantly decreased in AIM2 null females. Histological examination of femurs from aged mice demonstrated increased bone marrow adiposity in AIM2 null mice, accompanied by a significant increase in CD45 - /CD31 - /Sca1 + /Pdgfa + adipogenic progenitor cells and a decrease in the ratio of CD45 - /CD31 - /Sca1 - /Pdgfa + osteogenic progenitor cells, as determined by flow cytometry of bone marrow cells. RNAseq analysis of the bone marrow revealed a significant increase in interferon-stimulated genes with Ifi202b as the top-upregulated gene in AIM2 null mice. Our findings suggest that AIM2 deficiency affects bone health by promoting adipogenesis in the bone marrow and inducing a pro-inflammatory environment, thereby contributing to decreased bone mineral density.
Collapse
Affiliation(s)
- Zhenwei Gong
- Division of Endocrinology and Diabetes, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Zhiming He
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Gozde Yildirim
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA.
| | - Radhika Muzumdar
- Division of Endocrinology and Diabetes, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| |
Collapse
|
4
|
Yang Y, Ren C, Xu X, Yang X, Shao W. Decoding the connection between SLE and DNA Sensors: A comprehensive review. Int Immunopharmacol 2024; 137:112446. [PMID: 38878488 DOI: 10.1016/j.intimp.2024.112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
Systemic lupus erythematosus (SLE) is recognized as a prevalent autoimmune disorder characterized by a multifaceted pathogenesis potentially influenced by a combination of environmental factors, genetic predisposition, and hormonal regulation. The continuous study of immune system activation is especially intriguing. Analysis of blood samples from individuals with SLE reveals an abnormal increase in interferon levels, along with the existence of anti-double-stranded DNA antibodies. This evidence suggests that the development of SLE may be initiated by innate immunity. The presence of abnormal dsDNA fragments can activate DNA sensors within cells, particularly immune cells, leading to the initiation of downstream signaling cascades that result in the upregulation of relevant cytokines and the subsequent initiation of adaptive immune responses, such as B cell differentiation and T cell activation. The intricate pathogenesis of SLE results in DNA sensors exhibiting a wide range of functions in innate immune responses that are subject to variation based on cell types, developmental processes, downstream effector signaling pathways and other factors. The review aims to reorganize how DNA sensors influence signaling pathways and contribute to the development of SLE according to current studies, with the aspiration of furnishing valuable insights for future investigations into the pathological mechanisms of SLE and potential treatment approaches.
Collapse
Affiliation(s)
- Yuxiang Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Changhuai Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China
| | - Xiaopeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China
| | - Xinyi Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China.
| |
Collapse
|
5
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
6
|
Gong Z, Dixit M, Poudel SB, Yildirim G, Yakar S, Muzumdar R. Deletion of absent in melanoma (AIM) 2 gene alters bone morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574199. [PMID: 38260661 PMCID: PMC10802368 DOI: 10.1101/2024.01.05.574199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Absent in Melanoma (AIM) 2 is a gene that is induced by interferon and acts as a cytosolic sensor for double-stranded (ds) DNA. It forms the AIM2 inflammasome, leading to the production of interleukin (IL)-1β and IL-18. Our previous research demonstrated that mice lacking AIM2 exhibit spontaneous obesity, insulin resistance, and inflammation in adipose tissue. In this study, we aimed to explore the impact of AIM2 gene deletion on bone structure in adult and aged mice. Utilizing micro-computed tomography (micro-CT), we discovered that female mice lacking AIM2 showed an increase in the total cross-sectional area at 5 months of age, accompanied by an increase in cortical thickness in the mid-diaphysis of the femur at both 5 and 15 months of age. At 15 months of age, the cortical bone mineral density (BMD) significantly decreased in AIM2 null females compared to wild-type (WT) mice. In AIM2 null mice, both trabecular bone volume and BMD at the distal metaphysis of the femur significantly decreased at 5 and 15 months of age. Similarly, micro-CT analysis of the L4 vertebra revealed significant decreases in trabecular bone volume and BMD in aged AIM2 null females compared to WT mice. Histological examination of femurs from aged mice demonstrated increased bone marrow adiposity in AIM2 null mice, accompanied by a significant increase in CD45-/CD31-/Sca1+/Pdgfa+ adipose progenitor cells, and a decrease in the ratio of CD31-/CD31+ osteogenic progenitor cells, as determined by flow cytometry of bone marrow cells. Our findings suggest that AIM2 deficiency affects bone health by promoting adipogenesis in bone marrow cells and inducing a pro-inflammatory environment, potentially contributing to the decreased bone mineral density.
Collapse
|
7
|
Wrublewsky S, Wilden C, Bickelmann C, Menger MD, Laschke MW, Ampofo E. Absent in Melanoma (AIM)2 Promotes the Outcome of Islet Transplantation by Repressing Ischemia-Induced Interferon (IFN) Signaling. Cells 2023; 13:16. [PMID: 38201220 PMCID: PMC10778091 DOI: 10.3390/cells13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Clinical islet transplantation is limited by ischemia-induced islet cell death. Recently, it has been reported that the absent in melanoma (AIM)2 inflammasome is upregulated by ischemic cell death due to recognition of aberrant cytoplasmic self-dsDNA. However, it is unknown whether AIM2 determines the outcome of islet transplantation. To investigate this, isolated wild type (WT) and AIM2-deficient (AIM2-/-) islets were exposed to oxygen-glucose deprivation to mimic ischemia, and their viability, endocrine function, and interferon (IFN) signaling were assessed. Moreover, the revascularization and endocrine function of grafted WT and AIM2-/- islets were analyzed in the mouse dorsal skinfold chamber model and the diabetic kidney capsule model. Ischemic WT and AIM2-/- islets did not differ in their viability. However, AIM2-/- islets exhibited a higher protein level of p202, a transcriptional regulator of IFN-β and IFN-γ gene expression. Accordingly, these cytokines were upregulated in AIM2-/- islets, resulting in a suppressed gene expression and secretion of insulin. Moreover, the revascularization of AIM2-/- islet grafts was deteriorated when compared to WT controls. Furthermore, transplantation of AIM2-/- islets in diabetic mice failed to restore physiological blood glucose levels. These findings indicate that AIM2 crucially determines the engraftment and endocrine function of transplanted islets by repressing IFN signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (S.W.)
| |
Collapse
|
8
|
Shi W, Jin M, Chen H, Wu Z, Yuan L, Liang S, Wang X, Memon FU, Eldemery F, Si H, Ou C. Inflammasome activation by viral infection: mechanisms of activation and regulation. Front Microbiol 2023; 14:1247377. [PMID: 37608944 PMCID: PMC10440708 DOI: 10.3389/fmicb.2023.1247377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
Viral diseases are the most common problems threatening human health, livestock, and poultry industries worldwide. Viral infection is a complex and competitive dynamic biological process between a virus and a host/target cell. During viral infection, inflammasomes play important roles in the host and confer defense mechanisms against the virus. Inflammasomes are polymeric protein complexes and are considered important components of the innate immune system. These immune factors recognize the signals of cell damage or pathogenic microbial infection after activation by the canonical pathway or non-canonical pathway and transmit signals to the immune system to initiate the inflammatory responses. However, some viruses inhibit the activation of the inflammasomes in order to replicate and proliferate in the host. In recent years, the role of inflammasome activation and/or inhibition during viral infection has been increasingly recognized. Therefore, in this review, we describe the biological properties of the inflammasome associated with viral infection, discuss the potential mechanisms that activate and/or inhibit NLRP1, NLRP3, and AIM2 inflammasomes by different viruses, and summarize the reciprocal regulatory effects of viral infection on the NLRP3 inflammasome in order to explore the relationship between viral infection and inflammasomes. This review will pave the way for future studies on the activation mechanisms of inflammasomes and provide novel insights for the development of antiviral therapies.
Collapse
Affiliation(s)
- Wen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengyun Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hao Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | - Liuyang Yuan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Si Liang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaohan Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fareed Uddin Memon
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| |
Collapse
|
9
|
Baatarjav C, Komada T, Karasawa T, Yamada N, Sampilvanjil A, Matsumura T, Takahashi M. dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury. Cell Death Differ 2022; 29:2487-2502. [PMID: 35739254 PMCID: PMC9750976 DOI: 10.1038/s41418-022-01033-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/31/2023] Open
Abstract
Rhabdomyolysis is a severe condition that commonly leads to acute kidney injury (AKI). While double-stranded DNA (dsDNA) released from injured muscle can be involved in its pathogenesis, the exact mechanism of how dsDNA contributes to rhabdomyolysis-induced AKI (RIAKI) remains obscure. A dsDNA sensor, absent in melanoma 2 (AIM2), forms an inflammasome and induces gasdermin D (GSDMD) cleavage resulting in inflammatory cell death known as pyroptosis. In this study using a mouse model of RIAKI, we found that Aim2-deficiency led to massive macrophage accumulation resulting in delayed functional recovery and perpetuating fibrosis in the kidney. While Aim2-deficiency compromised RIAKI-induced kidney macrophage pyroptosis, it unexpectedly accelerated aberrant inflammation as demonstrated by CXCR3+CD206+ macrophage accumulation and activation of TBK1-IRF3/NF-κB. Kidney macrophages with intact AIM2 underwent swift pyroptosis without IL-1β release in response to dsDNA. On the other hand, dsDNA-induced Aim2-deficient macrophages escaped from swift pyroptotic elimination and instead engaged STING-TBK1-IRF3/NF-κB signalling, leading to aggravated inflammatory phenotypes. Collectively, these findings shed light on a hitherto unknown immunoregulatory function of macrophage pyroptosis. dsDNA-induced rapid macrophage cell death potentially serves as an anti-inflammatory program and determines the healing process of RIAKI.
Collapse
Affiliation(s)
- Chintogtokh Baatarjav
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Naoya Yamada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Ariunaa Sampilvanjil
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takayoshi Matsumura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
10
|
Xu Y, Li P, Li K, Li N, Liu H, Zhang X, Liu W, Liu Y. Pathological mechanisms and crosstalk among different forms of cell death in systemic lupus erythematosus. J Autoimmun 2022; 132:102890. [PMID: 35963809 DOI: 10.1016/j.jaut.2022.102890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by a profound immune dysregulation and the presence of a variety of autoantibodies. Aberrant activation of programmed cell death (PCD) signaling and accelerated cell death is critical in the immunopathogenesis of SLE. Accumulating cellular components from the dead cells and ineffective clearance of the dead cell debris, in particular the nucleic acids and nucleic acids-protein complexes, provide a stable source of self-antigens, which potently activate auto-reactive B cells and promote IFN-I responses in SLE. Different cell types display distinct susceptibility and characteristics to a certain type of cell death, while different PCDs in various cells have mutual and intricate connections to promote immune dysregulation and contribute to the development of SLE. In this review, we discuss the role of various cell death pathways and their interactions in the pathogenesis of SLE. An in depth understanding of the interconnections among various forms cell death in SLE will lead to a better understanding of disease pathogenesis, shedding light on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Ketian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huazhen Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yudong Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
11
|
Lu A, Meng G. Reply. Arthritis Rheumatol 2022; 74:1094-1095. [PMID: 35132820 DOI: 10.1002/art.42083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ailing Lu
- The Center for Microbes, Development and Health CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Shanghai, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
13
|
Xu WD, Huang AF. Absent in melanoma 2 in lupus: friend or foe? Arthritis Rheumatol 2022; 74:1093-1094. [PMID: 35133085 DOI: 10.1002/art.42084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Chung H, Komada T, Lau A, Chappellaz M, Platnich JM, de Koning HD, Petri B, Luque Y, Walker S, Benediktsson H, Mesnard L, Chun J, Muruve DA. AIM2 Suppresses Inflammation and Epithelial Cell Proliferation during Glomerulonephritis. THE JOURNAL OF IMMUNOLOGY 2021; 207:2799-2812. [PMID: 34740957 DOI: 10.4049/jimmunol.2100483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022]
Abstract
Absent in melanoma-2 (AIM2) is an inflammasome-forming innate immune sensor for dsDNA but also exhibits inflammasome-independent functions such as restricting cellular proliferation. AIM2 is expressed in the kidney, but its localization and function are not fully characterized. In normal human glomeruli, AIM2 localized to podocytes. In patients with glomerulonephritis, AIM2 expression increased in CD44+-activated parietal epithelial cells within glomerular crescents. To explore AIM2 effects in glomerular disease, studies in Aim2 -/- mice were performed. Aim2-/- glomeruli showed reduced expression of Wilm tumor gene-1 (WT1), WT1-driven podocyte genes, and increased proliferation in outgrowth assays. In a nephrotoxic serum (NTS)-induced glomerulonephritis model, Aim2-/- (B6) mice exhibited more severe glomerular crescent formation, tubular injury, inflammation, and proteinuria compared with wild-type controls. Inflammasome activation markers were absent in both Aim2 -/- and wild-type kidneys, despite an increased inflammatory transcriptomic signature in Aim2 -/- mice. Aim2 -/- mice also demonstrated dysregulated cellular proliferation and an increase in CD44+ parietal epithelial cells during glomerulonephritis. The augmented inflammation and epithelial cell proliferation in Aim2 -/- (B6) mice was not due to genetic background, as Aim2 -/- (B6.129) mice demonstrated a similar phenotype during NTS glomerulonephritis. The AIM2-like receptor (ALR) locus was necessary for the inflammatory glomerulonephritis phenotype observed in Aim2 -/- mice, as NTS-treated ALR -/- mice displayed equal levels of injury as wild-type controls. Podocyte outgrowth from ALR -/- glomeruli was still increased, however, confirming that the ALR locus is dispensable for AIM2 effects on epithelial cell proliferation. These results identify a noncanonical role for AIM2 in suppressing inflammation and epithelial cell proliferation during glomerulonephritis.
Collapse
Affiliation(s)
- Hyunjae Chung
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Takanori Komada
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Lau
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mona Chappellaz
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jaye M Platnich
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Heleen D de Koning
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Björn Petri
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yosu Luque
- Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Département de Néphrologie, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Inserm UMR_S1155, Sorbonne Université, Paris, France; and
| | - Simon Walker
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hallgrimur Benediktsson
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Laurent Mesnard
- Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Département de Néphrologie, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Inserm UMR_S1155, Sorbonne Université, Paris, France; and
| | - Justin Chun
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel A Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| |
Collapse
|
15
|
Zhu H, Zhao M, Chang C, Chan V, Lu Q, Wu H. The complex role of AIM2 in autoimmune diseases and cancers. Immun Inflamm Dis 2021; 9:649-665. [PMID: 34014039 PMCID: PMC8342223 DOI: 10.1002/iid3.443] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Absent in melanoma 2 (AIM2) is a novel member of interferon (IFN)-inducible PYHIN proteins. In innate immune cells, AIM2 servers as a cytoplasmic double-stranded DNA sensor, playing a crucial role in the initiation of the innate immune response as a component of the inflammasome. AIM2 expression is increased in patients with systemic lupus erythematosus (SLE), psoriasis, and primary Sjogren's syndrome, indicating that AIM2 might be involved in the pathogenesis of autoimmune diseases. Meanwhile, AIM2 also plays an antitumorigenesis role in an inflammasome independent-manner. In melanoma, AIM2 is initially identified as a tumor suppressor factor. However, AIM2 is also found to contribute to lung tumorigenesis via the inflammasome-dependent release of interleukin 1β and regulation of mitochondrial dynamics. Additionally, AIM2 reciprocally dampening the cGAS-STING pathway causes immunosuppression of macrophages and evasion of antitumor immunity during antibody treatment. To summarize the complicated effect and role of AIM2 in autoimmune diseases and cancers, herein, we provide an overview of the emerging research progress on the function and regulatory pathway of AIM2 in innate and adaptive immune cells, as well as tumor cells, and discuss its pathogenic role in autoimmune diseases, such as SLE, psoriasis, primary Sjogren's syndrome, and cancers, such as melanomas, non-small-cell lung cancer, colon cancer, hepatocellular carcinoma, renal carcinoma, and so on, hopefully providing potential therapeutic and diagnostic strategies for clinical use.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California at Davis School of MedicineDavisCaliforniaUSA
| | - Vera Chan
- Division of Rheumatology and Clinical Immunology, Department of MedicineThe University of Hong KongHong KongChina
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
16
|
Kumari P, Russo AJ, Shivcharan S, Rathinam VA. AIM2 in health and disease: Inflammasome and beyond. Immunol Rev 2020; 297:83-95. [PMID: 32713036 DOI: 10.1111/imr.12903] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Nucleic acid sensing is a critical mechanism by which the immune system monitors for pathogen invasion. A set of germline-encoded innate immune receptors detect microbial DNA in various compartments of the cell, such as endosomes, the cytosol, and the nucleus. Sensing of microbial DNA through these receptors stimulates, in most cases, interferon regulatory factor-dependent type I IFN synthesis followed by JAK/STAT-dependent interferon-stimulated gene expression. In contrast, the detection of DNA in the cytosol by AIM2 assembles a macromolecular complex called the inflammasome, which unleashes the proteolytic activity of a cysteine protease caspase-1. Caspase-1 cleaves and activates the pro-inflammatory cytokines such as IL-1β and IL-18 and a pore-forming protein, gasdermin D, which triggers pyroptosis, an inflammatory form of cell death. Research over the past decade has revealed that AIM2 plays essential roles not only in host defense against pathogens but also in inflammatory diseases, autoimmunity, and cancer in inflammasome-dependent and inflammasome-independent manners. This review discusses the latest advancements in our understanding of AIM2 biology and its functions in health and disease.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| | - Ashley J Russo
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| | - Sonia Shivcharan
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| |
Collapse
|
17
|
Gong Z, Zhang X, Su K, Jiang R, Sun Z, Chen W, Forno E, Goetzman ES, Wang J, Dong HH, Dutta P, Muzumdar R. Deficiency in AIM2 induces inflammation and adipogenesis in white adipose tissue leading to obesity and insulin resistance. Diabetologia 2019; 62:2325-2339. [PMID: 31511929 PMCID: PMC7210565 DOI: 10.1007/s00125-019-04983-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/11/2019] [Indexed: 01/23/2023]
Abstract
AIMS/HYPOTHESIS Absent in melanoma 2 (AIM2) is a cytosolic sensor for double-stranded DNA and a tumour suppressor. Binding of double-stranded DNA to AIM2 forms the AIM2 inflammasome, leading to activation of caspase-1 and production of IL-1β and IL-18. Although inflammasome-independent effects of AIM2 have been reported, its role in energy metabolism is unknown. We aimed to evaluate the effect of AIM2 in energy metabolism and glucose homeostasis. METHODS Male and female whole body Aim2 knockout (Aim2-/-) mice were used in the current study. Body weight, food intake, body composition, energy expenditure, fasting blood glucose levels, GTT and body temperature were measured at indicated time points. RNA sequencing was carried out on gonadal white adipose tissue (gWAT) in 14-month-old female mice. mRNA and protein levels in tissues were analysed by quantitative real-time PCR and immunoblot. Immune cell infiltration in gWAT was examined by flow cytometry. Stromal vascular fractions isolated from gWAT were used to investigate adipocyte differentiation. RESULTS Male and female Aim2-/- mice were obese compared with wild-type controls from 7 weeks of age until 51 weeks of age, with increased adiposity in both subcutaneous and visceral fat depots. While there were no differences in food intake, Aim2-/- mice demonstrated decreased energy expenditure and impaired brown adipose tissue function compared with wild-type controls. Fasting glucose and insulin levels were elevated, and Aim2-/- mice were glucose intolerant on intraperitoneal GTT. RNA sequencing revealed marked upregulation of the IFN-inducible gene Ifi202b, which encodes protein 202 (p202) and elevated inflammatory signalling in gWAT of Aim2-/- mice. Increased infiltration of total and Ly6Clow monocytes was noted at 8 weeks of age in gWAT, before the onset of obesity and insulin resistance. Ifi202b knockdown blocked adipogenesis in stromal vascular fractions and reduced inflammation in bone marrow-derived macrophages, demonstrating a key role of p202 in mediating the increased adipogenesis and inflammation in Aim2-/- mice. CONCLUSIONS/INTERPRETATION These results demonstrate a fundamental role for AIM2 in energy metabolism, inflammation and insulin resistance. Our studies establish a novel link between the innate immunity proteins, AIM2 and p202, and metabolism.
Collapse
Affiliation(s)
- Zhenwei Gong
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA.
| | - Xinyi Zhang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Su
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Ruihua Jiang
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Zhe Sun
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric S Goetzman
- Division of Genetics, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jieru Wang
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H Henry Dong
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Radhika Muzumdar
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
18
|
Choubey D. Type I interferon (IFN)-inducible Absent in Melanoma 2 proteins in neuroinflammation: implications for Alzheimer's disease. J Neuroinflammation 2019; 16:236. [PMID: 31771614 PMCID: PMC6880379 DOI: 10.1186/s12974-019-1639-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
Cumulative evidence indicates that activation of innate immune responses in the central nervous system (CNS) induces the expression of type 1 interferons (T1 IFNs), a family of cytokines. The T1 IFNs (IFN-α/β), through activation of the JAK/STAT-signaling in microglia, astrocytes, and neurons, induce the expression of IFN-inducible proteins, which mediate the pro- and anti-inflammatory functions of IFNs. Accordingly, T1 IFN-inducible Absent in Melanoma 2 proteins (murine Aim2 and human AIM2) negatively regulate the expression of TI IFNs and, upon sensing higher levels of cytosolic DNA, assemble the Aim2/AIM2 inflammasome, resulting in activation of caspase-1, pyroptosis, and the secretion of pro-inflammatory cytokines (e.g., IL-1β and IL-18). Of interest, studies have indicated a role for the Aim2/AIM2 proteins in neuroinflammation and neurodegenerative diseases, including Alzheimer's disease (AD). The ability of Aim2/AIM2 proteins to exert pro- and anti-inflammatory effects in CNS may depend upon age, sex hormones, cell-types, and the expression of species-specific negative regulators of the Aim2/AIM2 inflammasome. Therefore, we discuss the role of Aim2/AIM2 proteins in the development of AD. An improved understanding of the role of Absent in Melanoma 2 proteins in AD could identify new approaches to treat patients.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box 670056, Cincinnati, OH, 45267, USA.
| |
Collapse
|
19
|
Tartey S, Kanneganti TD. Inflammasomes in the pathophysiology of autoinflammatory syndromes. J Leukoc Biol 2019; 107:379-391. [PMID: 31608507 DOI: 10.1002/jlb.3mir0919-191r] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are a specialized group of intracellular sensors that are key components of the host innate immune system. Autoinflammatory diseases are disorders of the innate immune system that are characterized by recurrent inflammation and serious complications. Dysregulation of the inflammasome is associated with the onset and progression of several autoinflammatory and autoimmune diseases, including cryopyrin-associated periodic fever syndrome, familial Mediterranean fever, rheumatoid arthritis, and systemic lupus erythematosus. In this review, we discuss the involvement of various inflammasome components in the regulation of autoinflammatory disorders and describe the manifestations of these autoinflammatory diseases caused by inflammasome activation.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
20
|
Manoochehrabadi S, Arsang-Jang S, Mazdeh M, Inoko H, Sayad A, Taheri M. Analysis of STAT1, STAT2 and STAT3 mRNA expression levels in the blood of patients with multiple sclerosis. Hum Antibodies 2019; 27:91-98. [PMID: 30412483 DOI: 10.3233/hab-180352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is the most common chronic, inflammatory, autoimmune disease of the central nervous system (CNS) maintained by the secretion of a large number of cytokines [1]. The signal transducer and activator of transcription (STAT) family has an essential role in transmitting many of the cytokine-mediated signals and failure in the signaling process contributes to the etiopathogenesis of MS. METHODS This study aimed to assess STAT1, STAT2 and STAT3 gene expression in the blood of 50 relapsing-remitting MS (RR-MS) patients and 50 healthy controls by TaqMan Quantitative Real-Time PCR. RESULTS The results showed that STAT1 gene expression was significantly up-regulated (p= 0.023), whereas STAT2 gene expression was significantly down-regulated (p< 0.0001) in MS patients compared to controls. On the other hand, there was no significant difference between MS patients and controls for STAT3 gene expression (p= 0.837). In addition, there was no significant correlation between the expression of STAT1, STAT2, STAT3 genes and clinical findings, such as the level of physical disability in MS patients (according to the Kurtzke Expanded Disability Status Scale (EDSS) criterion) and disease duration. CONCLUSION A significant positive correlation was demonstrated between STAT1 and STAT2 and also between STAT1 and STAT3. This study shows for the first time that a comparison of the relative quantitative expression of three different STAT genes in the blood cells of MS patients compared to controls revealed marked differences in the expression of the STAT family genes that might reflect their different roles in the pathogenesis of MS. These transcripts might be useful biomarkers for evaluating the efficacy of IFN treatment of the MS patients.
Collapse
Affiliation(s)
- Saba Manoochehrabadi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan.,Genodive Pharma Inc., Atsugi, Japan
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Roles of Inflammasomes in Inflammatory Kidney Diseases. Mediators Inflamm 2019; 2019:2923072. [PMID: 31427885 PMCID: PMC6679869 DOI: 10.1155/2019/2923072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The immune system has a central role in eliminating detrimental factors, by frequently launching inflammatory responses towards pathogen infection and inner danger signal outbreak. Acute and chronic inflammatory responses are critical determinants for consequences of kidney diseases, in which inflammasomes were inevitably involved. Inflammasomes are closely linked to many kidney diseases such as acute kidney injury and chronic kidney diseases. Inflammasomes are macromolecules consisting of multiple proteins, and their formation initiates the cleavage of procaspase-1, resulting in the activation of gasdermin D as well as the maturation and release of interleukin-1β and IL-18, leading to pyroptosis. Here, we discuss the mechanism in which inflammasomes occur, as well as their roles in inflammatory kidney diseases, in order to shed light for discovering new therapeutical targets for the prevention and treatment of inflammatory kidney diseases and consequent end-stage renal disease.
Collapse
|
22
|
Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, Shin M, Cho S, Kim TH, Park S, Jeon BY, Jeong H, Lee K, Kang K, Oh M, Lee H, Lee S, Kwon Y, Oh GH, Kronbichler A. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun 2019; 103:102299. [PMID: 31326231 DOI: 10.1016/j.jaut.2019.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes are a multi-protein platform forming a part of the innate immune system. Inflammasomes are at standby status and can be activated when needed. Inflammasome activation is an important mechanism for the production of active interleukin (IL)-1β and IL-18, which have important roles to instruct adaptive immunity. Active forms of inflammasomes trigger a series of inflammatory cascades and lead to the differentiation and polarization of naïve T cells and secretion of various cytokines, which can induce various kinds of autoimmune and rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), gout, Sjögren's syndrome, Behçet's disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgA vasculitis (former Henoch-Schönlein purpura ). In this review, we summarize studies published on inflammasomes and review their roles in various autoimmune diseases. Understanding of the role of inflammasomes may facilitate the diagnosis of autoimmune diseases and the development of tailored therapies in the future.
Collapse
Affiliation(s)
- Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea
| | - Yo Han Joo
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon M Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Jaewook Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jae Jung
- Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyue Shin
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seobum Cho
- Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hwan Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyuk Park
- Yonsei University College of Medicine, Seoul, South Korea
| | - Bong Yeol Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunwoo Jeong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kangto Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kyutae Kang
- Yonsei University College of Medicine, Seoul, South Korea
| | - Myungsuk Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hansang Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seungchul Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yeji Kwon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Geun Ho Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Choubey D, Panchanathan R. Interferon (IFN)-inducible Absent in Melanoma 2 proteins in the negative regulation of the type I IFN response: Implications for lupus nephritis. Cytokine 2019; 132:154682. [PMID: 30904426 DOI: 10.1016/j.cyto.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that exhibits a strong female bias (female-to-male ratio 9:1) in patients. Further, 40-60% SLE patients develop lupus nephritis (LN), which significantly increases the mortality rates. The failure of current therapies to adequately treat LN in patients reflects an incomplete understanding of the disease pathogenesis. Notably, a chronic increase in serum interferon-α (IFN-α) activity is a heritable risk factor to develop SLE. Accordingly, blood cells from most SLE patients with an active disease exhibit an increase in the expression of the type I IFN (IFN-α/β)-stimulated genes (ISGs, also referred to as "IFN-signature"), a type I IFN response. Further, LN patients during renal flares also exhibit an "IFN-signature" in renal biopsies. Therefore, an improved understanding of the regulation of type I IFNs expression is needed. Basal levels of the IFN-β through "priming" of IFN-α producing cells augment the expression of the IFN-α genes. Of interest, recent studies have indicated a role for the type I IFN-inducible Absent in Melanoma 2 proteins (the murine Aim2 and human AIM2) in the negative regulation of the type I IFN response through inflammasome-dependent and independent mechanisms. Further, an increase in the expression of Aim2 and AIM2 proteins in kidney and renal macrophages associated with the development of nephritis. Therefore, we discuss the role of Aim2/AIM2 proteins in the regulation of type I IFNs and LN. An improved understanding of the mechanisms by which the Absent in Melanoma 2 proteins suppress the type I IFN response and modulate nephritis is key to identify novel therapeutic targets to treat a group of LN patients.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P.O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States.
| | - Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P.O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States
| |
Collapse
|
24
|
Shi X, Wang L, Ren L, Li J, Li S, Cui Q, Li S. Dihydroartemisinin, an antimalarial drug, induces absent in melanoma 2 inflammasome activation and autophagy in human hepatocellular carcinoma HepG2215 cells. Phytother Res 2019; 33:1413-1425. [PMID: 30873702 DOI: 10.1002/ptr.6332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022]
Abstract
As an effective antimalarial drug, Dihydroartemisinin (DHA) is readily isolated from the traditional Chinese medicine of Artemisia annua. DHA is not only an autophagy promoter but also a substance with strong antitumor efficiency. The relationship between autophagy and inflammasomes has been suggested in hepatocellular carcinoma (HCC). However, there are few reports describing relationships between inflammasomes and autophagy in HCC therapy. The present study demonstrated that DHA suppressed cell proliferation in HepG2215 cells in a dose- and time-dependent manner. The inhibitory activity is mediated by autophagy, in which reactive oxygen species (ROS) production induced nuclear and mitochondrial DNA damage. Then, DHA were first shown to promote AIM2/caspase-1 inflammasome. Compared with the DHA group, the autophagy inhibitor 3-MA significantly inhibited the expressions of activated Caspase-1, a pyroptotic marker proteins. Meanwhile, repression of mTOR by rapamycin promoted autophagy and AIM2/caspase-1 activation. The caspase-1 inhibitor Z-YVAD-FMK also notably blocked autophagy cell death characterized by the downexpression of Beclin-1 and LC3-II. Additionally, the study demonstrated that DHA suppressed pseudopodium formation and cell mobility. Therefore, we first reveal a novel mechanism that DHA promotes AIM2/caspase-1 inflammasome, which contributes to autophagy in HepG2215 cells. Moreover, nuclear and mitochondrial DNA damage was also involved in this process via ROS production.
Collapse
Affiliation(s)
- Xinli Shi
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Clinical Laboratory, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Laifeng Ren
- Department of Immunology, Affiliated Cancer Hospital of Shanxi Medical University and Shanxi Cancer Hospital, Taiyuan, China
| | - Jianchun Li
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Clinical Laboratory, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Shenghao Li
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qingzhuo Cui
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Sheng Li
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
25
|
Sex Differences in Correlation with Gene Expression Levels between Ifi200 Family Genes and Four Sets of Immune Disease-Relevant Genes. J Immunol Res 2018; 2018:1290814. [PMID: 30246031 PMCID: PMC6136564 DOI: 10.1155/2018/1290814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 01/04/2023] Open
Abstract
Background The HIN-200 family genes in humans have been linked to several autoimmune diseases—particularly to systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Recently, its human counterpart gene cluster, the Ifi200 family in mice, has been linked to spontaneous arthritis disease (SAD). However, many immune-mediated diseases (including RA and SLE) show gender difference. Understanding whether or not and how these genes play a role in sex difference in immune-mediated diseases is essential for diagnosis/treatment. Methods This study takes advantage of the whole genome gene expression profiles of recombinant inbred (RI) strain populations from female and male mice to analyze potential sex differences in a variety of genes in disease pathways. Expression levels and regulatory QTL of Ifi200 family genes between female and male mice were first examined in a large mouse population, including RI strains derived from C57BL/6J, DBA/2J (BXD), and classic inbred strains. Sex similarities and differences were then analyzed for correlations with gene expression levels between genes in the Ifi200 family and four selected gene sets: known immune Ifi200 pathway-related genes, lupus-relevant genes, osteoarthritis- (OA-) and RA-relevant genes, and sex hormone-related genes. Results The expression level of Ifi202b showed the most sex difference in correlation with known immune-related genes (the P value for Ifi202b is 0.0004). Ifi202b also showed gender difference in correlation with selected sex hormone genes, with a P value of 0.0243. When comparing coexpression levels between Ifi200 genes and lupus-relevant genes, Ifi203 and Ifi205 showed significant sex difference (P values: 0.0303 and 0.002, resp.). Furthermore, several key genes (e.g., Csf1r, Ifnb1, IL-20, IL-22, IL-24, Jhdm1d, Csf1r, Ifnb1, IL-20, IL-22, IL-24, and Tgfb2 that regulate sex differences in immune diseases) were discovered. Conclusions Different genes in the Ifi200 family play different roles in sex difference among dissimilar pathways of these four gene groups.
Collapse
|
26
|
Wang PH, Ye ZW, Deng JJ, Siu KL, Gao WW, Chaudhary V, Cheng Y, Fung SY, Yuen KS, Ho TH, Chan CP, Zhang Y, Kok KH, Yang W, Chan CP, Jin DY. Inhibition of AIM2 inflammasome activation by a novel transcript isoform of IFI16. EMBO Rep 2018; 19:embr.201845737. [PMID: 30104205 DOI: 10.15252/embr.201845737] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 12/28/2022] Open
Abstract
Mouse p202 is a disease locus for lupus and a dominant-negative inhibitor of AIM2 inflammasome activation. A human homolog of p202 has not been identified so far. Here, we report a novel transcript isoform of human IFI16-designated IFI16-β, which has a domain architecture similar to that of mouse p202. Like p202, IFI16-β contains two HIN domains, but lacks the pyrin domain. IFI16-β is ubiquitously expressed in various human tissues and cells. Its mRNA levels are also elevated in leukocytes of patients with lupus, virus-infected cells, and cells treated with interferon-β or phorbol ester. IFI16-β co-localizes with AIM2 in the cytoplasm, whereas IFI16-α is predominantly found in the nucleus. IFI16-β interacts with AIM2 to impede the formation of a functional AIM2-ASC complex. In addition, IFI16-β sequesters cytoplasmic dsDNA and renders it unavailable for AIM2 sensing. Enforced expression of IFI16-β inhibits the activation of AIM2 inflammasome, whereas knockdown of IFI16-β augments interleukin-1β secretion triggered by dsDNA but not dsRNA Thus, cytoplasm-localized IFI16-β is functionally equivalent to mouse p202 that exerts an inhibitory effect on AIM2 inflammasome.
Collapse
Affiliation(s)
- Pei-Hui Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zi-Wei Ye
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian-Jun Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei-Wei Gao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vidyanath Chaudhary
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ting-Hin Ho
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ching-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yan Zhang
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wanling Yang
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
27
|
Yi YS. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 22:1-15. [PMID: 29302207 PMCID: PMC5746506 DOI: 10.4196/kjpp.2018.22.1.1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023]
Abstract
Inflammasomes are intracellular multiprotein complexes that coordinate anti-pathogenic host defense during inflammatory responses in myeloid cells, especially macrophages. Inflammasome activation leads to activation of caspase-1, resulting in the induction of pyroptosis and the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Although the inflammatory response is an innate host defense mechanism, chronic inflammation is the main cause of rheumatic diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and Sjögren's syndrome (SS). Since rheumatic diseases are inflammatory/autoimmune disorders, it is reasonable to hypothesize that inflammasomes activated during the inflammatory response play a pivotal role in development and progression of these diseases. Indeed, previous studies have provided important observations that inflammasomes are actively involved in the pathogenesis of inflammatory/autoimmune rheumatic diseases. In this review, we summarize the current knowledge on several types of inflammasomes during macrophage-mediated inflammatory responses and discuss recent research regarding the role of inflammasomes in the pathogenesis of inflammatory/autoimmune rheumatic diseases. This avenue of research could provide new insights for the development of promising therapeutics to treat inflammatory/autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Korea
| |
Collapse
|
28
|
Ringel-Scaia VM, McDaniel DK, Allen IC. The Goldilocks Conundrum: NLR Inflammasome Modulation of Gastrointestinal Inflammation during Inflammatory Bowel Disease. Crit Rev Immunol 2017; 36:283-314. [PMID: 28322135 DOI: 10.1615/critrevimmunol.2017019158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances have revealed significant insight into inflammatory bowel disease (IBD) pathobiology. Ulcerative colitis and Crohn's disease, the chronic relapsing clinical manifestations of IBD, are complex disorders with genetic and environmental influences. These diseases are associated with the dysregulation of immune tolerance, excessive inflammation, and damage to the epithelial cell barrier. Increasing evidence indicates that pattern recognition receptors, including Toll-like receptors (TLRs) and nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs), function to maintain immune system homeostasis, modulate the gastrointestinal microbiome, and promote proper intestinal epithelial cell regeneration and repair. New insights have revealed that NLR family members are essential components in maintaining this immune system homeostasis. To date, the vast majority of studies associated with NLRs have focused on family members that form a multiprotein signaling platform called the inflammasome. These signaling complexes are responsible for the cleavage and activation of the potent pleotropic cytokines IL-1β and IL-18, and they facilitate a unique form of cell death defined as pyroptosis. In this review, we summarize the current paradigms associated with NLR inflammasome maintenance of immune system homeostasis in the gastrointestinal system. New concepts related to canonical and noncanonical inflammasome signaling, as well as the implications of classical and alternative inflammasomes in IBD pathogenesis, are also reviewed.
Collapse
Affiliation(s)
- Veronica M Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Dylan K McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061; Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
29
|
Liu F, Niu Q, Fan X, Liu C, Zhang J, Wei Z, Hou W, Kanneganti TD, Robb ML, Kim JH, Michael NL, Sun J, Soong L, Hu H. Priming and Activation of Inflammasome by Canarypox Virus Vector ALVAC via the cGAS/IFI16-STING-Type I IFN Pathway and AIM2 Sensor. THE JOURNAL OF IMMUNOLOGY 2017; 199:3293-3305. [PMID: 28947539 DOI: 10.4049/jimmunol.1700698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023]
Abstract
Viral vectors derived from different virus families, including poxvirus (canarypox virus vector ALVAC) and adenovirus (human Ad5 vector), have been widely used in vaccine development for a range of human diseases including HIV/AIDS. Less is known about the mechanisms underlying the host innate response to these vectors. Increasing evidence from clinical vaccine trials testing different viral vectors has suggested the importance of understanding basic elements of host-viral vector interactions. In this study, we investigated the innate interactions of APCs with two commonly used HIV vaccine vectors, ALVAC and Ad5, and identified AIM2 as an innate sensor for ALVAC, triggering strong inflammasome activation in both human and mouse APCs. Microarray and comprehensive gene-knockout analyses (CRISPR/Cas9) identified that ALVAC stimulated the cGAS/IFI16-STING-type I IFN pathway to prime AIM2, which was functionally required for ALVAC-induced inflammasome activation. We also provided evidence that, in contrast to ALVAC, the Ad5 vector itself was unable to induce inflammasome activation, which was related to its inability to stimulate the STING-type I IFN pathway and to provide inflammasome-priming signals. In preconditioned APCs, the Ad5 vector could stimulate inflammasome activation through an AIM2-independent mechanism. Therefore, our study identifies the AIM2 inflammasome and cGAS/IFI16-STING-type I IFN pathway as a novel mechanism for host innate immunity to the ALVAC vaccine vector.
Collapse
Affiliation(s)
- Fengliang Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Qingli Niu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Connie Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan 430070, China
| | | | - Merlin L Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Jerome H Kim
- International Vaccine Institute, Seoul 08826, Republic of Korea; and
| | - Nelson L Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; .,Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
30
|
Choubey D, Panchanathan R. Absent in Melanoma 2 proteins in SLE. Clin Immunol 2017; 176:42-48. [PMID: 28062222 DOI: 10.1016/j.clim.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
Type I interferons (IFN-α/β)-inducible PYRIN and HIN domain-containing protein family includes Absent in Melanoma 2 (murine Aim2 and human AIM2), murine p202, and human PYRIN-only protein 3 (POP3). The generation of Aim2-deficient mice indicated that the Aim2 protein is essential for inflammasome activation, resulting in the secretion of interleukin-1β (IL-1β) and IL-18 and cell death by pyroptosis. Further, Aim2-deficiency also increased constitutive expression of the IFN-β and expression of the p202 protein. Notably, an increased expression of p202 protein in female mice associated with the development of systemic lupus erythematosus (SLE). SLE in patients is characterized by a constitutive increase in serum levels of IFN-α and an increase in the expression IFN-stimulated genes. Recent studies indicate that p202 and POP3 proteins inhibit activation of the Aim2/AIM2 inflammasome and promote IFN-β expression. Therefore, we discuss the role of Aim2/AIM2 proteins in the suppression of type I IFNs production and lupus susceptibility.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States.
| | - Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States
| |
Collapse
|
31
|
Choubey D. Absent in melanoma 2 proteins in the development of cancer. Cell Mol Life Sci 2016; 73:4383-4395. [PMID: 27328971 PMCID: PMC11108365 DOI: 10.1007/s00018-016-2296-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
Abstract
Recent studies utilizing chemical-induced colitis-associated and sporadic colon cancer in mouse models indicated a protective role for absent in melanoma 2 (Aim2) in colon epithelial cells. Accordingly, mutations in the human AIM2 gene have been found in colorectal cancer (CRC), and reduced expression of AIM2 in CRC is associated with its progression. Furthermore, the overexpression of AIM2 protein in human cancer cell lines inhibits cell proliferation. Interferon-inducible Aim2 and AIM2 are members of the PYHIN (PYRIN and HIN domain-containing) protein family and share ~57 % amino acid identity. The family also includes murine p202, human PYRIN-only protein 3, and IFI16, which negatively regulate Aim2/AIM2 functions. Because the CRC incidence and mortality rates are higher among men compared with women and the expression of Aim2/AIM2 proteins and their regulators is dependent upon age, gender, and sex hormones, we discuss the potential roles of Aim2/AIM2 in the development of cancer. An improved understanding of the biological functions of the AIM2 in the development of CRC will likely identify new therapeutic approaches to treat patients.
Collapse
Affiliation(s)
- Divaker Choubey
- Research Service, Cincinnati VA Medical Center, 3200 Vine Street, ML-151, Cincinnati, OH, 45220, USA.
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box-670056, Cincinnati, OH, 45267, USA.
| |
Collapse
|
32
|
Gray EE, Winship D, Snyder JM, Child SJ, Geballe AP, Stetson DB. The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA. Immunity 2016; 45:255-66. [PMID: 27496731 DOI: 10.1016/j.immuni.2016.06.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/22/2016] [Accepted: 05/05/2016] [Indexed: 11/27/2022]
Abstract
Detection of intracellular DNA triggers activation of the STING-dependent interferon-stimulatory DNA (ISD) pathway, which is essential for antiviral responses. Multiple DNA sensors have been proposed to activate this pathway, including AIM2-like receptors (ALRs). Whether the ALRs are essential for activation of this pathway remains unknown. To rigorously explore the function of ALRs, we generated mice lacking all 13 ALR genes. We found that ALRs are dispensable for the type I interferon (IFN) response to transfected DNA ligands, DNA virus infection, and lentivirus infection. We also found that ALRs do not contribute to autoimmune disease in the Trex1(-/-) mouse model of Aicardi-Goutières Syndrome. Finally, CRISPR-mediated disruption of the human AIM2-like receptor IFI16 in primary fibroblasts revealed that IFI16 is not essential for the IFN response to human cytomegalovirus infection. Our findings indicate that ALRs are dispensable for the ISD response and suggest that alternative functions for these receptors should be explored.
Collapse
Affiliation(s)
- Elizabeth E Gray
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Damion Winship
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Stephanie J Child
- Departments of Microbiology and Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adam P Geballe
- Departments of Microbiology and Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
33
|
Furrer A, Hottiger MO, Valaperti A. Absent in Melanoma 2 (AIM2) limits pro-inflammatory cytokine transcription in cardiomyocytes by inhibiting STAT1 phosphorylation. Mol Immunol 2016; 74:47-58. [PMID: 27148820 DOI: 10.1016/j.molimm.2016.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/29/2016] [Accepted: 04/14/2016] [Indexed: 01/01/2023]
Abstract
Interferon (IFN)-γ is highly upregulated during heart inflammation and enhances the production of pro-inflammatory cytokines. Absent in Melanoma 2 (AIM2) is an IFN-inducible protein implicated as a component of the inflammasome. Here we seek to determine the role of AIM2 during inflammation in cardiac cells. We found that the presence of AIM2, but not of the other inflammasome components Nod-like receptor (NLR) NLRP3 or NLRC4, specifically limited the transcription of the pro-inflammatory cytokines interleukin (IL)-6, IP-10, and tumor necrosis factor (TNF)-α in HL-1 mouse cardiomyocytes stimulated with IFN-γ and lipopolysaccharides (LPS). Similarly, AIM2 reduced pro-inflammatory cytokine transcription in primary mouse neonatal cardiomyocytes (MNC), but not in primary mouse neonatal cardiac fibroblasts (MNF). Interestingly, AIM2-dependent reduction of pro-inflammatory cytokines in cardiomyocytes was independent of Caspase-1. Mechanistically, AIM2 reduced pro-inflammatory cytokine transcription in cardiomyocytes by interacting with and inhibiting the phosphorylation of STAT1. In AIM2-depleted cardiomyocytes, increased STAT1 phosphorylation enhanced the NF-κB pathway by promoting NF-κB p65 phosphorylation and acetylation. These results show for the first time that AIM2 plays an important anti-inflammatory, yet inflammasome-independent function in cardiomyocytes. Our findings will help to further understand how the various heart cell types differently react to inflammatory stimuli.
Collapse
Affiliation(s)
- Antonia Furrer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alan Valaperti
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
34
|
Corrales L, Woo SR, Williams JB, McWhirter SM, Dubensky TW, Gajewski TF. Antagonism of the STING Pathway via Activation of the AIM2 Inflammasome by Intracellular DNA. THE JOURNAL OF IMMUNOLOGY 2016; 196:3191-8. [PMID: 26927800 DOI: 10.4049/jimmunol.1502538] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/21/2016] [Indexed: 12/12/2022]
Abstract
Recent evidence has indicated that innate immune sensing of cytosolic DNA in dendritic cells via the host STING pathway is a major mechanism leading to spontaneous T cell responses against tumors. However, the impact of the other major pathway triggered by intracellular DNA, the absent in melanoma 2 (AIM2) inflammasome, on the functional output from the stimulator of IFN genes (STING) pathway is poorly understood. We found that dendritic cells and macrophages deficient in AIM2, apoptosis-associated specklike protein, or caspase-1 produced markedly higher IFN-β in response to DNA. Biochemical analyses showed enhanced generation of cyclic GMP-AMP, STING aggregation, and TANK-binding kinase 1 and IFN regulatory factor 3 phosphorylation in inflammasome-deficient cells. Induction of pyroptosis by the AIM2 inflammasome was a major component of this effect, and inhibition of caspase-1 reduced cell death, augmenting phosphorylation of TANK-binding kinase 1/IFN regulatory factor 3 and production of IFN-β. Our data suggest that in vitro activation of the AIM2 inflammasome in murine macrophages and dendritic cells leads to reduced activation of the STING pathway, in part through promoting caspase-1-dependent cell death.
Collapse
Affiliation(s)
- Leticia Corrales
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Seng-Ryong Woo
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Jason B Williams
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | | | | | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL 60637; Section of Hematology/Oncology 2, Department of Medicine, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
35
|
Targeting the inflammasome in rheumatic diseases. Transl Res 2016; 167:125-37. [PMID: 26118952 PMCID: PMC4487391 DOI: 10.1016/j.trsl.2015.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022]
Abstract
Activation of the inflammasome, a protein complex responsible for many cellular functions, including the activation of the proinflammatory cytokines interleukin (IL)-1β and IL-18, has been identified as a key participant in many rheumatic diseases including autoimmune, inflammatory, and autoinflammatory syndromes. This review will discuss the recent advances in understanding the role of this complex in various rheumatic diseases. Furthermore, it will focus on available therapies, which directly and indirectly target the inflammasome and its downstream cytokines to quiet inflammation and possibly dampen autoimmune processes.
Collapse
|
36
|
Sester DP, Stacey KJ. Response to Comment on “Deficient NLRP3 and AIM2 Inflammasome Function in Autoimmune NZB Mice”. THE JOURNAL OF IMMUNOLOGY 2015; 195:4552-3. [DOI: 10.4049/jimmunol.1501930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Song F, Ma Y, Bai XY, Chen X. The Expression Changes of Inflammasomes in the Aging Rat Kidneys. J Gerontol A Biol Sci Med Sci 2015. [PMID: 26219846 DOI: 10.1093/gerona/glv078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Inflammasomes are important components of innate immune system in the body. However, the function of inflammasomes and their underlying mechanisms in renal aging remain unclear. In this study, for the first time, we systematically investigated the role of the inflammasomes and the inflammatory responses activated by inflammasomes during kidney aging. We found that during kidney aging, the expression levels of the molecules associated with the activation of inflammasomes, including toll-like receptor-4 and interleukin-1 receptor (IL-1R), were significantly increased; their downstream signaling pathway molecule interleukin-1 receptor-associated kinase-4 (IRAK4) was markedly activated (Phospho-IRAK4 was obviously increased); the nuclear factor-κB (NF-κB) signaling pathway was activated (the activated NF-κB pathway molecules Phospho-IKKβ, Phospho-IκBα, and Phospho-NF-κBp65 were significantly elevated); the levels of the inflammasome components NOD-like receptor P3 (NLRP3), NLRC4, and pro-caspase-1 were prominently upregulated; and the proinflammatory cytokines IL-1β and IL-18 were notably increased in the kidneys of 24-month-old (elderly group) rats. These results showed that inflammasomes are markedly activated during the renal aging process and might induce inflamm-aging by promoting the maturation and secretion of the proinflammatory cytokines IL-1β and IL-18.
Collapse
Affiliation(s)
- Fei Song
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Yuxiang Ma
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China. Department of Internal Medicine, Beijing Chuiyangliu Hospital, Beijing 100022, China
| | - Xue-Yuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| |
Collapse
|
38
|
Host responses to the pathogen Mycobacterium avium subsp. paratuberculosis and beneficial microbes exhibit host sex specificity. Appl Environ Microbiol 2015; 80:4481-90. [PMID: 24814797 DOI: 10.1128/aem.01229-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differences between microbial pathogenesis in male and female hosts are well characterized in disease conditions connected to sexual transmission. However, limited biological insight is available on variances attributed to sex specificity in host-microbe interactions, and it is most often a minimized variable outside these transmission events. In this work, we studied two gut microbes-a pathogen, Mycobacterium avium subsp. paratuberculosis, and a probiotic, Lactobacillus animalis NP-51-and the interaction between each agent and the male and female gastrointestinal systems. This trial was conducted in BALB/c mice (n=5 per experimental group and per sex at a given time point), with analysis at four time points over 180 days. Host responses to M.avium subsp. paratuberculosis and L. animalis were sensitive to sex. Cytokines that were significantly different (P ≤ 0.05) betweenthe sexes included interleukin-1α/β (IL-1α/β), IL-17, IL-6, IL-10, IL-12, and gamma interferon (IFN-) and were dependent on experimental conditions. However, granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and IL-13/23 showed no sex specificity. A metabolomics study indicated a 0.5- to 2.0-fold (log2 scale) increase in short-chain fatty acids (butyrate and acetate) in males and greater increases in o-phosphocholine or histidine from female colon tissues; variances distinct to each sex were observed with age or long-term probiotic consumption. Two genera, Staphylococcus and Roseburia, were consistently overrepresented in females compared to males; other species were specific to one sex but fluctuated depending on experimental conditions. The differences observed suggest that male and female gut tissues and microbiota respond to newly introduced microorganisms differently and that gut-associated microorganisms with host immune system responses and metabolic activity are supported by biology distinct to the host sex.
Collapse
|
39
|
Jakobs C, Perner S, Hornung V. AIM2 Drives Joint Inflammation in a Self-DNA Triggered Model of Chronic Polyarthritis. PLoS One 2015; 10:e0131702. [PMID: 26114879 PMCID: PMC4482750 DOI: 10.1371/journal.pone.0131702] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
Mice lacking DNase II display a polyarthritis-like disease phenotype that is driven by translocation of self-DNA into the cytoplasm of phagocytic cells, where it is sensed by pattern recognition receptors. While pro-inflammatory gene expression is non-redundantly linked to the presence of STING in these mice, the contribution of the inflammasome pathway has not been explored. To this end, we studied the role of the DNA-sensing inflammasome receptor AIM2 in this self-DNA driven disease model. Arthritis-prone mice lacking AIM2 displayed strongly decreased signs of joint inflammation and associated histopathological findings. This was paralleled with a reduction of caspase-1 activation and pro-inflammatory cytokine production in diseased joints. Interestingly, systemic signs of inflammation that are associated with the lack of DNase II were not dependent on AIM2. Taken together, these data suggest a tissue-specific role for the AIM2 inflammasome as a sensor for endogenous DNA species in the course of a ligand-dependent autoinflammatory condition.
Collapse
Affiliation(s)
- Christopher Jakobs
- Institute of Molecular Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sven Perner
- Department of Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology Köln/Bonn, University Hospital Bonn, Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
40
|
The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr Opin Rheumatol 2015; 26:475-81. [PMID: 24992143 DOI: 10.1097/bor.0000000000000088] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The role of innate immunity in systemic lupus erythematosus (SLE) has been a rapidly expanding area of research over the last decade. Included in this rubric is the concept that activation of the inflammasome, a molecular complex that activates caspase-1 and in turn the cytokines IL-1β and IL-18, is important in lupus pathogenesis. This review will summarize the recent discoveries exploring the role of the inflammasome machinery in SLE. RECENT FINDINGS Immune complexes can activate the NLRP3 inflammasome, and SLE-derived macrophages are hyper-responsive to innate immune stimuli, leading to enhanced activation of the inflammasome and production of inflammatory cytokines. Work in several murine models suggests an important role for the NLRP3 inflammasome in mediating lupus nephritis. Caspase-1, the central enzyme of the inflammasome, is essential for the development of type I interferon responses, autoantibody production, and nephritis in the pristane model of lupus. The absence of melanoma 2 inflammasome may have protective and pathogenic roles in SLE. SUMMARY Recent evidence suggests that the inflammasome machinery is dysregulated in SLE, plays an important role in promotion of organ damage, and may mediate cross-talk between environmental triggers and the development of lupus. Further research should focus on whether inhibition of inflammasome components may serve as a viable target for therapeutic development in SLE.
Collapse
|
41
|
Liang Y, Xu WD, Yang XK, Fang XY, Liu YY, Ni J, Qiu LJ, Hui P, Cen H, Leng RX, Pan HF, Ye DQ. Association of signaling transducers and activators of transcription 1 and systemic lupus erythematosus. Autoimmunity 2014; 47:141-5. [PMID: 24437638 DOI: 10.3109/08916934.2013.873415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is complex autoimmune disease which involves various facets of the immune system. Signaling transducers and activators of transcription 1 (STAT1) belongs to the family of STAT transcription factors that mediate various biological responses. Recently, studies in both experimental animal models of lupus and patients with SLE have revealed expression and activation of STAT1 is closely associated with the pathogenesis of SLE. Moreover, increased production of interferons (IFNs) and aberrant activation of IFNs signaling, which is mechanistically linked to increased level of STAT1, are crucial for the development of SLE. Therefore, we will focus on the association of STAT1 and SLE based on recent understandings to render more information about the mechanisms of STAT1 might perform in. Hopefully, the information obtained will lead to a better understanding of the development and pathogenesis of systemic autoimmune diseases, as well as its clinical implications and therapeutic potential.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University , Hefei, Anhui , PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ratsimandresy RA, Dorfleutner A, Stehlik C. An Update on PYRIN Domain-Containing Pattern Recognition Receptors: From Immunity to Pathology. Front Immunol 2013; 4:440. [PMID: 24367371 PMCID: PMC3856626 DOI: 10.3389/fimmu.2013.00440] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Cytosolic pattern recognition receptors (PRRs) sense a wide range of endogenous danger-associated molecular patterns as well as exogenous pathogen-associated molecular patterns. In particular, Nod-like receptors containing a pyrin domain (PYD), called NLRPs, and AIM2-like receptors (ALRs) have been shown to play a critical role in host defense by facilitating clearance of pathogens and maintaining a healthy gut microflora. NLRPs and ALRs both encode a PYD, which is crucial for relaying signals that result in an efficient innate immune response through activation of several key innate immune signaling pathways. However, mutations in these PRRs have been linked to the development of auto-inflammatory and autoimmune diseases. In addition, they have been implicated in metabolic diseases. In this review, we summarize the function of PYD-containing NLRPs and ALRs and address their contribution to innate immunity, host defense, and immune-linked diseases.
Collapse
Affiliation(s)
- Rojo A Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA ; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| |
Collapse
|
43
|
Panchanathan R, Liu H, Xin D, Choubey D. Identification of a negative feedback loop between cyclic di-GMP-induced levels of IFI16 and p202 cytosolic DNA sensors and STING. Innate Immun 2013; 20:751-9. [PMID: 24131791 DOI: 10.1177/1753425913507097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A host type I IFN response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP (c-di-GMP) by STING (stimulator of IFN genes). Because the STING, an adaptor protein, links the cytosolic detection of DNA by the cytosolic DNA sensors such as the IFN-inducible human IFI16 and murine p202 proteins to the TBK1/IRF3 axis, we investigated whether c-di-GMP-induced signaling could regulate expression of IFI16 and p202 proteins. Here, we report that activation of c-di-GMP-induced signaling in human and murine cells increased steady-state levels of IFI16 and p202 proteins. The increase was c-di-GMP concentration- and time-dependent. Unexpectedly, treatment of cells with type I IFN decreased levels of the adaptor protein STING. Therefore, we investigated whether the IFI16 or p202 protein could regulate the expression of STING and activation of the TBK1/IRF3 axis. We found that constitutive knockdown of IFI16 or p202 expression in cells increased steady-state levels of STING. Additionally, the knockdown of IFI16 resulted in activation of the TBK1/IRF3 axis. Accordingly, increased levels of the IFI16 or p202 protein in cells decreased STING levels. Together, our observations identify a novel negative feedback loop between c-di-GMP-induced levels of IFI16 and p202 cytosolic DNA sensors and the adaptor protein STING.
Collapse
Affiliation(s)
- Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, OH, USA Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Hongzhu Liu
- Department of Environmental Health, University of Cincinnati, OH, USA Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Duan Xin
- Department of Environmental Health, University of Cincinnati, OH, USA
| | - Divaker Choubey
- Department of Environmental Health, University of Cincinnati, OH, USA Cincinnati VA Medical Center, Cincinnati, OH, USA
| |
Collapse
|
44
|
Abstract
Systemic lupus erythematosus (SLE) is a severe multi-system autoimmune disease, whereas interferon regulatory factor (IRF) 5 belongs to the family of transcription factors that modulate immune system activities. Recently, many lines of investigations suggested that IRF5 gene polymorphisms are closely associated with the disease onset of SLE. Indeed, expressed in B cells, dendritic cells (DCs), monocytes and macrophages, IRF5 could significantly affect these immune cells participating in the pathogenesis of SLE, and numerous studies implied that this transcription factor is mechanistically linked to the disease progression. Here, we comprehensively review the updated evidence indicating the roles of IRF5 in autoimmune lupus. Hopefully, the information obtained will lead to a better understanding of the pathogenesis and development of novel therapeutic strategies for the systemic autoimmune disease.
Collapse
|
45
|
Panchanathan R, Liu H, Choubey D. Expression of murine Unc93b1 is up-regulated by interferon and estrogen signaling: implications for sex bias in the development of autoimmunity. Int Immunol 2013; 25:521-9. [PMID: 23728775 DOI: 10.1093/intimm/dxt015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endoplasmic reticulum transmembrane protein, Unc93b1, is essential for trafficking of endosomal TLRs from the endoplasmic reticulum to endosomes. A genetic defect in the human UNC93B1 gene is associated with immunodeficiency. However, systemic lupus erythematosus (SLE) patients express increased levels of the UNC93B1 protein in B cells. Because SLE in patients and certain mouse models exhibits a sex bias and increased serum levels of type I interferons in patients are associated with the disease activity, we investigated whether the female sex hormone estrogen (E2) or type I interferon signaling could up-regulate the expression of the murine Unc93b1 gene. We found that steady-state levels of Unc93b1 mRNA and protein were measurably higher in immune cells (CD3(+), B220(+), CD11b(+) and CD11c(+)) isolated from C57BL/6 (B6) females than age-matched males. Moreover, treatment of CD11b(+) and B220(+) cells with E2 or interferons (IFN-α, IFN-β or IFN-γ) significantly increased the levels of Unc93b1 mRNA and protein. Accordingly, a deficiency of estrogen receptor-α or STAT1 expression in immune cells decreased the expression levels of the Unc93b1 protein. Interestingly, levels of Unc93b1 protein were appreciably higher in B6.Nba2 lupus-prone female mice compared with age-matched B6 females. Furthermore, increased expression of the interferon- and E2-inducible p202 protein in a murine macrophage cell line (RAW264.7) increased the levels of the Unc93b1 protein, whereas knockdown of p202 expression reduced the levels. To our knowledge, our observations demonstrate for the first time that activation of interferon and estrogen signaling in immune cells up-regulates the expression of murine Unc93b1.
Collapse
Affiliation(s)
- Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, PO Box 670056, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
46
|
|
47
|
Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S. AIM2 Facilitates the Apoptotic DNA-induced Systemic Lupus Erythematosus via Arbitrating Macrophage Functional Maturation. J Clin Immunol 2013; 33:925-37. [DOI: 10.1007/s10875-013-9881-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
|
48
|
Jounai N, Kobiyama K, Takeshita F, Ishii KJ. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol 2013; 2:168. [PMID: 23316484 PMCID: PMC3539075 DOI: 10.3389/fcimb.2012.00168] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/13/2012] [Indexed: 01/22/2023] Open
Abstract
All mammalian cells are equipped with large numbers of sensors for protection from various sorts of invaders, who, in turn, are equipped with molecules containing pathogen-associated molecular patterns (PAMPs). Once these sensors recognize non-self antigens containing PAMPs, various physiological responses including inflammation are induced to eliminate the pathogens. However, the host sometimes suffers from chronic infection or continuous injuries, resulting in production of self-molecules containing damage-associated molecular patterns (DAMPs). DAMPs are also responsible for the elimination of pathogens, but promiscuous recognition of DAMPs through sensors against PAMPs has been reported. Accumulation of DAMPs leads to massive inflammation and continuous production of DAMPs; that is, a vicious circle leading to the development of autoimmune disease. From a vaccinological point of view, the accurate recognition of both PAMPs and DAMPs is important for vaccine immunogenicity, because vaccine adjuvants are composed of several PAMPs and/or DAMPs, which are also associated with severe adverse events after vaccination. Here, we review as the roles of PAMPs and DAMPs upon infection with pathogens or inflammation, and the sensors responsible for recognizing them, as well as their relationship with the development of autoimmune disease or the immunogenicity of vaccines.
Collapse
Affiliation(s)
- Nao Jounai
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation Osaka, Japan ; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University Osaka, Japan
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Mohamed Lamkanfi
- Department of Biochemistry, Ghent University, Ghent 9000, Belgium
- Department of Medical Protein Research, VIB, Ghent 9000, Belgium;
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, California 94080;
| |
Collapse
|
50
|
Ludigs K, Parfenov V, Du Pasquier RA, Guarda G. Type I IFN-mediated regulation of IL-1 production in inflammatory disorders. Cell Mol Life Sci 2012; 69:3395-418. [PMID: 22527721 PMCID: PMC11115130 DOI: 10.1007/s00018-012-0989-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/14/2012] [Accepted: 04/03/2012] [Indexed: 02/07/2023]
Abstract
Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.
Collapse
Affiliation(s)
- Kristina Ludigs
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | | | | | | |
Collapse
|