1
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
2
|
Gonzales GA, Huang S, Wilkinson L, Nguyen JA, Sikdar S, Piot C, Naumenko V, Rajwani J, Wood CM, Dinh I, Moore M, Cedeño E, McKenna N, Polyak MJ, Amidian S, Ebacher V, Rosin NL, Carneiro MB, Surewaard B, Peters NC, Mody CH, Biernaskie J, Yates RM, Mahoney DJ, Canton J. The pore-forming apolipoprotein APOL7C drives phagosomal rupture and antigen cross-presentation by dendritic cells. Sci Immunol 2024; 9:eadn2168. [PMID: 39485861 DOI: 10.1126/sciimmunol.adn2168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Conventional dendritic cells (cDCs) generate protective cytotoxic T lymphocyte (CTL) responses against extracellular pathogens and tumors. This is achieved through a process known as cross-presentation (XP), and, despite its biological importance, the mechanism(s) driving XP remains unclear. Here, we show that a cDC-specific pore-forming protein called apolipoprotein L 7C (APOL7C) is up-regulated in response to innate immune stimuli and is recruited to phagosomes. Association of APOL7C with phagosomes led to phagosomal rupture and escape of engulfed antigens to the cytosol, where they could be processed via the endogenous MHC class I antigen processing pathway. Accordingly, mice deficient in APOL7C did not efficiently prime CD8+ T cells in response to immunization with bead-bound and cell-associated antigens. Together, our data indicate the presence of dedicated apolipoproteins that mediate the delivery of phagocytosed proteins to the cytosol of activated cDCs to facilitate XP.
Collapse
Affiliation(s)
- Gerone A Gonzales
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Song Huang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Liam Wilkinson
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Saif Sikdar
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | - Cécile Piot
- Immunobiology Laboratory, Francis Crick Institute, London, UK
| | - Victor Naumenko
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
| | - Jahanara Rajwani
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | - Cassandra M Wood
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Irene Dinh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Moore
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eymi Cedeño
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil McKenna
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria J Polyak
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Sara Amidian
- Cell Imaging Core, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nicole L Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matheus B Carneiro
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Bas Surewaard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Nathan C Peters
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Christopher H Mody
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Douglas J Mahoney
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
| | - Johnathan Canton
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Shimizu T. RNA recognition in toll-like receptor signaling. Curr Opin Struct Biol 2024; 88:102913. [PMID: 39168045 DOI: 10.1016/j.sbi.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
RNA, either from invading pathogens or within the hosts, is one of the principal PAMPs (pathogen-associated molecular patterns). Toll-like receptors (TLRs) and other receptors of the innate immune system exist that detect immunostimulatory RNA including double and single stranded RNA, and then induce cytokine-mediated antiviral and proinflammatory responses. Recent years have seen remarkable progress in biochemical, immunological, and structural biological studies on TLRs, opening new avenues for TLR signaling. In this review, we highlight our current understanding of RNA- sensing TLRs and discuss the regulatory mechanisms that normally prevent inappropriate responses to self.
Collapse
Affiliation(s)
- Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Miller M, Alvizo O, Baskerville S, Chintala A, Chng C, Dassie J, Dorigatti J, Huisman G, Jenne S, Kadam S, Leatherbury N, Lutz S, Mayo M, Mukherjee A, Sero A, Sundseth S, Penfield J, Riggins J, Zhang X. An engineered T7 RNA polymerase for efficient co-transcriptional capping with reduced dsRNA byproducts in mRNA synthesis. Faraday Discuss 2024; 252:431-449. [PMID: 38832894 DOI: 10.1039/d4fd00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Messenger RNA (mRNA) therapies have recently gained tremendous traction with the approval of mRNA vaccines for the prevention of SARS-CoV-2 infection. However, manufacturing challenges have complicated large scale mRNA production, which is necessary for the clinical viability of these therapies. Not only can the incorporation of the required 5' 7-methylguanosine cap analog be inefficient and costly, in vitro transcription (IVT) using wild-type T7 RNA polymerase generates undesirable double-stranded RNA (dsRNA) byproducts that elicit adverse host immune responses and are difficult to remove at large scale. To overcome these challenges, we have engineered a novel RNA polymerase, T7-68, that co-transcriptionally incorporates both di- and tri-nucleotide cap analogs with high efficiency, even at reduced cap analog concentrations. We also demonstrate that IVT products generated with T7-68 have reduced dsRNA content.
Collapse
Affiliation(s)
- Mathew Miller
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Oscar Alvizo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | | | - Avinash Chintala
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | - Chinping Chng
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Justin Dassie
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | | | - Gjalt Huisman
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Stephan Jenne
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Supriya Kadam
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Neil Leatherbury
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | - Stefan Lutz
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Melissa Mayo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Arpan Mukherjee
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | - Antoinette Sero
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Stuart Sundseth
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | | | - James Riggins
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Xiyun Zhang
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| |
Collapse
|
5
|
Yao Z, Liang Z, Li M, Wang H, Ma Y, Guo Y, Chen C, Xue C, Sun B. Aluminum oxyhydroxide-Poly(I:C) combination adjuvant with balanced immunostimulatory potentials for prophylactic vaccines. J Control Release 2024; 372:482-493. [PMID: 38914205 DOI: 10.1016/j.jconrel.2024.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The development of high-purity antigens promotes the urgent need of novel adjuvant with the capability to trigger high levels of immune response. Polyinosinic-polycytidylic (Poly(I:C)) is a synthetic double-stranded RNA (dsRNA) that can engage Toll-like receptor 3 (TLR3) to initiate immune responses. However, the Poly(I:C)-induced toxicity and inefficient delivery prevent its applications. In our study, combination adjuvants are formulated by aluminum oxyhydroxide nanorods (AlOOH NRs) and Poly(I:C), named Al-Poly(I:C), and the covalent interaction between the two components is further demonstrated. Al-Poly(I:C) mediates enhanced humoral and cellular immune responses in three antigen models, i.e., HBsAg virus-like particles (VLPs), human papilloma virus (HPV) VLPs and varicella-zoster virus (VZV) glycoprotein E (gE). Further mechanistic studies demonstrate that the dose and molecular weight (MW) of Poly(I:C) determine the physicochemical properties and adjuvanticity of the Al-Poly(I:C) combination adjuvants. Al-Poly(I:C) with higher Poly(I:C) dose promotes antigen-bearing dendritic cells (DCs) recruitment and B cells proliferation in lymph nodes. Al-Poly(I:C) formulated with higher MW Poly(I:C) induces higher activation of helper T cells, B cells, and CTLs. This study demonstrates that Al-Poly(I:C) potentiates the humoral and cellular responses in vaccine formulations. It offers insights for adjuvant design to meet the formulation requirements in both prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Zhiying Yao
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Huiyang Wang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yubin Ma
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yiyang Guo
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
6
|
Dotta E, Maciola AK, Baccega T, Pasqual G. Dendritic cells steering antigen and leukocyte traffic in lymph nodes. FEBS Lett 2024. [PMID: 38997244 DOI: 10.1002/1873-3468.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Dendritic cells (DCs) play a central role in initiating and shaping the adaptive immune response, thanks to their ability to uptake antigens and present them to T cells. Once in the lymph node (LN), DCs can spread the antigen to other DCs, expanding the pool of cells capable of activating specific T-cell clones. Additionally, DCs can modulate the dynamics of other immune cells, by increasing naïve T-cell dwell time, thereby facilitating the scanning for cognate antigens, and by selectively recruiting other leukocytes. Here we discuss the role of DCs in orchestrating antigen and leukocyte trafficking within the LN, together with the implications of this trafficking on T-cell activation and commitment to effector function.
Collapse
Affiliation(s)
- Enrico Dotta
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Agnieszka Katarzyna Maciola
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Tania Baccega
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
7
|
Lenk R, Kleindienst W, Szabó GT, Baiersdörfer M, Boros G, Keller JM, Mahiny AJ, Vlatkovic I. Understanding the impact of in vitro transcription byproducts and contaminants. Front Mol Biosci 2024; 11:1426129. [PMID: 39050733 PMCID: PMC11266732 DOI: 10.3389/fmolb.2024.1426129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
Collapse
|
8
|
Hori A, Toyoura S, Fujiwara M, Taniguchi R, Kano Y, Yamano T, Hanayama R, Nakayama M. MHC class I-dressing is mediated via phosphatidylserine recognition and is enhanced by polyI:C. iScience 2024; 27:109704. [PMID: 38680663 PMCID: PMC11046299 DOI: 10.1016/j.isci.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/29/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
In addition to cross-presentation, cross-dressing plays an important role in the induction of CD8+ T cell immunity. In the process of cross-dressing, conventional dendritic cells (DCs) acquire major histocompatibility complex class I (MHCI) from other cells and subsequently prime CD8+ T cells via the pre-formed antigen-MHCI complexes without antigen processing. However, the mechanisms underlying the cross-dressing pathway, as well as the relative contributions of cross-presentation and cross-dressing to CD8+ T cell priming are not fully understood. Here, we demonstrate that DCs rapidly acquire MHCI-containing membrane fragments from dead cells via the phosphatidylserine recognition-dependent mechanism for cross-dressing. The MHCI dressing is enhanced by a TLR3 ligand polyinosinic-polycytidylic acid (polyI:C). Further, polyI:C promotes not only cross-presentation but also cross-dressing in vivo. Taken together, these results suggest that cross-dressing as well as cross-presentation is involved in inflammatory diseases associated with cell death and type I IFN production.
Collapse
Affiliation(s)
- Arisa Hori
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Saori Toyoura
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Miyu Fujiwara
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ren Taniguchi
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yasutaka Kano
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tomoyoshi Yamano
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Rikinari Hanayama
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masafumi Nakayama
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Research Center for Animal Life Science, Shiga University of Medical Sciences, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
9
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589973. [PMID: 38659926 PMCID: PMC11042314 DOI: 10.1101/2024.04.17.589973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S. Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Abigail E. Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
10
|
Li M, Jiang A, Han H, Chen M, Wang B, Cheng Y, Zhang H, Wang X, Dai W, Yang W, Zhang Q, He B. A Trinity Nano-Vaccine System with Spatiotemporal Immune Effect for the Adjuvant Cancer Therapy after Radiofrequency Ablation. ACS NANO 2024; 18:4590-4612. [PMID: 38047809 DOI: 10.1021/acsnano.3c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cancer vaccine gains great attention with the advances in tumor immunology and nanotechnology, but its long-term efficacy is restricted by the unsustainable immune activity after vaccination. Here, we demonstrate the vaccine efficacy is negatively correlated with the tumor burden. To maximum the vaccine-induced immunity and prolong the time-effectiveness, we design a priming-boosting vaccination strategy by combining with radiofrequency ablation (RFA), and construct a bisphosphonate nanovaccine (BNV) system. BNV system consists of nanoparticulated bisphosphonates with dual electric potentials (BNV(+&-)), where bisphosphonates act as the immune adjuvant by blocking mevalonate metabolism. BNV(+&-) exhibits the spatial and temporal heterogeneity in lymphatic delivery and immune activity. As the independent components of BNV(+&-), BNV(-) is drained to the lymph nodes, and BNV(+) is retained at the injection site. The alternately induced immune responses extend the time-effectiveness of antitumor immunity and suppress the recurrence and metastasis of colorectal cancer liver metastases after RFA. As a result, this trinity system integrated with RFA therapy, bisphosphonate adjuvant, and spatiotemporal immune effect provides an orientation for the sustainable regulation and precise delivery of cancer vaccines.
Collapse
Affiliation(s)
- Minghui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Anna Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Dobrovolskienė N, Balevičius R, Mlynska A, Žilionytė K, Aleksander Krasko J, Strioga M, Lieknina I, Pjanova D, Pašukonienė V. Immunomodulatory properties of bacteriophage derived dsRNA of different size and their use as anticancer vaccine adjuvants. Vaccine 2024; 42:512-521. [PMID: 38184395 DOI: 10.1016/j.vaccine.2023.12.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Dendritic cell (DC) based immunotherapy is one of the strategies to combat cancer invoking a patient's immune system. This form of anticancer immunotherapy employs adjuvants to enhance the immune response, triggering mechanisms of innate immunity and thus increase immunotherapeutic efficiency. A conventional adjuvant for DCs maturation during production of anticancer vaccines is bacterial LPS. Nevertheless, synthetic dsRNAs were also shown to stimulate different receptors on innate immune cells and to activate immune responses through induction of cytokines via toll-like receptors. In our study we investigated the potential of Larifan as dsRNA of natural origin to stimulate maturation of DCs with proinflammatory (possible antitumoral) activity and to compare these immunostimulatory properties between Larifan's fractions with different molecular lengths. To explore the suitability of this product for therapy, it is necessary to study the properties of its different fractions and compare them to standard adjuvants. We investigated the effect of Larifan's fractions on immune system stimulation in vivo by monitoring the survival time of tumor-bearing mice. Murine DCs produced in vitro using Larifan and its fractions together with tumor antigens during production were also characterized. All Larifan fractions resulted in inducing high expression of immunogenic markers CD40, CD80, CD86, CCR7, MHC II and lower secretion of the immunosuppressive cytokine IL-10, compared to the maturation with LPS in mDCs. The lowest expression of tolerogenic gene Ido1 and highest expression of the immunogenic genes Clec7a, Tnf, Icosl, Il12rb2, Cd209a were characteristic to the unfractionated dsRNA and short fraction FR15. In the mouse model the best overall survival rate was observed in mice treated with medium-length FR9 and FR15. We can state that both Larifan and its fractions were superior to LPS as vaccine adjuvants in stimulating phenotype and functional activity of mature DCs. DCs maturation using these factors induces a valuable anticancer immune response.
Collapse
Affiliation(s)
- Neringa Dobrovolskienė
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania.
| | - Ramojus Balevičius
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania.
| | - Karolina Žilionytė
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania.
| | - Jan Aleksander Krasko
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania.
| | - Marius Strioga
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania
| | - Ilva Lieknina
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia.
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia; Riga Stradins University, Ratsupites street 5., Riga LV-1067, Latvia.
| | - Vita Pašukonienė
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania.
| |
Collapse
|
14
|
Jenika D, Pounraj S, Wibowo D, Flaxl LM, Rehm BHA, Mintern JD. In vivo assembly of epitope-coated biopolymer particles that induce anti-tumor responses. NPJ Vaccines 2024; 9:18. [PMID: 38263169 PMCID: PMC10805745 DOI: 10.1038/s41541-023-00787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/02/2023] [Indexed: 01/25/2024] Open
Abstract
There is an unmet need for antigen delivery systems that elicit efficient T cell priming to prevent infectious diseases or for treatment of cancers. Here, we explored the immunogenic potential of biologically assembled biopolymer particles (BPs) that have been bioengineered to display the antigenic MHC I and MHC II epitopes of model antigen ovalbumin (OVA). Purified dendritic cells (DCs) captured BP-OVA and presented the associated antigenic epitopes to CD4+ T cells and CD8+ T cells. Vaccination with BP-OVA in the absence of adjuvant elicited antigen presentation to OVA-specific CD8+ and CD4+ T cells and cross-primed effective cytotoxic T lymphocyte (CTL) killers. BP-OVA induction of CTL killing did not require CD4+ T cell help, with active CTLs generated in BP-OVA vaccinated I-Ab-/- and CD40-/- mice. In contrast, IL-15 and type I IFN were required, with abrogated CTL activity in vaccinated IL-15-/- and IFNAR1-/- mice. cDC1 and/or CD103+ DCs were not essential for BP-OVA specific CTL with immunization eliciting responses in Batf3-/- mice. Poly I:C, but not LPS or CpG, co-administered as an adjuvant with BP-OVA boosted CTL responses. Finally, vaccination with BP-OVA protected against B16-OVA melanoma and Eμ-myc-GFP-OVA lymphoma inoculation. In summary, we have demonstrated that epitope-displaying BPs represent an antigen delivery platform exhibiting a unique mechanism to effectively engage T cell immune responses.
Collapse
Affiliation(s)
- Devi Jenika
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, 3010, Australia
| | - Saranya Pounraj
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Leonhard M Flaxl
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, 3010, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4215, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, 3010, Australia.
| |
Collapse
|
15
|
Sobral MC, Mooney DJ. Materials-Based Approaches for Cancer Vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:179-187. [PMID: 38166245 DOI: 10.4049/jimmunol.2300482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic cancer vaccines offer the promise of stimulating the immune system to specifically eradicate tumor cells and establish long-term memory to prevent tumor recurrence. However, despite showing benign safety profiles and the ability to generate Ag-specific cellular responses, cancer vaccines have been hampered by modest clinical efficacy. Lessons learned from these studies have led to the emergence of innovative materials-based strategies that aim to boost the clinical activity of cancer vaccines. In this Brief Review, we provide an overview of the key elements needed for an effective vaccine-induced antitumor response, categorize current approaches to therapeutic cancer vaccination, and explore recent advances in materials-based strategies to potentiate cancer vaccines.
Collapse
Affiliation(s)
- Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; and Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; and Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| |
Collapse
|
16
|
Lee SH, Choi YH, Kang SM, Lee MG, Debin A, Perouzel E, Hong SB, Kim DH. The Defined TLR3 Agonist, Nexavant, Exhibits Anti-Cancer Efficacy and Potentiates Anti-PD-1 Antibody Therapy by Enhancing Immune Cell Infiltration. Cancers (Basel) 2023; 15:5752. [PMID: 38136298 PMCID: PMC10741573 DOI: 10.3390/cancers15245752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Nexavant was reported as an alternative to the TLR3 agonist of Poly(I:C) and its derivatives. The physicochemical properties, signaling pathways, anti-cancer effects, and mechanisms of Nexavant were investigated. The distinctive characteristics of Nexavant compared to that of Poly(I:C) were demonstrated by precise quantification, enhanced thermostability, and increased resistance to RNase A. Unlike Poly(I:C), which activates TLR3, RIG-I, and MDA5, Nexavant stimulates signaling through TLR3 and RIG-I but not through MDA5. Compared to Poly(I:C), an intratumoral Nexavant treatment led to a unique immune response, immune cell infiltration, and suppression of tumor growth in various animal cancer models. Nexavant therapy outperformed anti-PD-1 antibody treatment in all the tested models and showed a synergistic effect in combinational therapy, especially in well-defined cold tumor models. The effect was similar to that of nivolumab in a humanized mouse model. Intranasal instillation of Nexavant led to the recruitment of immune cells (NK, CD4+ T, and CD8+ T) to the lungs, suppressing lung metastasis and improving animal survival. Our study highlighted Nexavant's defined nature for clinical use and unique signaling pathways and its potential as a standalone anti-cancer agent or in combination with anti-PD-1 antibodies.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Young-Ho Choi
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Soon Myung Kang
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Min-Gyu Lee
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Arnaud Debin
- InvivoGen SAS, 5 Rue Jean Rodier, 31400 Toulouse, France
| | - Eric Perouzel
- InvivoGen Ltd., Hong Kong Science and Technology Parks, Unit 307, 8W, Hong Kong, China
| | - Seung-Beom Hong
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Dong-Ho Kim
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| |
Collapse
|
17
|
Kong LZ, Kim SM, Wang C, Lee SY, Oh SC, Lee S, Jo S, Kim TD. Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 2023; 55:2320-2331. [PMID: 37945923 PMCID: PMC10689850 DOI: 10.1038/s12276-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleic acid sensing is involved in viral infections, immune response-related diseases, and therapeutics. Based on the composition of nucleic acids, nucleic acid sensors are defined as DNA or RNA sensors. Pathogen-associated nucleic acids are recognized by membrane-bound and intracellular receptors, known as pattern recognition receptors (PRRs), which induce innate immune-mediated antiviral responses. PRR activation is tightly regulated to eliminate infections and prevent abnormal or excessive immune responses. Nucleic acid sensing is an essential mechanism in tumor immunotherapy and gene therapies that target cancer and infectious diseases through genetically engineered immune cells or therapeutic nucleic acids. Nucleic acid sensing supports immune cells in priming desirable immune responses during tumor treatment. Recent studies have shown that nucleic acid sensing affects the efficiency of gene therapy by inhibiting translation. Suppression of innate immunity induced by nucleic acid sensing through small-molecule inhibitors, virus-derived proteins, and chemical modifications offers a potential therapeutic strategy. Herein, we review the mechanisms and regulation of nucleic acid sensing, specifically covering recent advances. Furthermore, we summarize and discuss recent research progress regarding the different effects of nucleic acid sensing on therapeutic efficacy. This study provides insights for the application of nucleic acid sensing in therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea.
- Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
18
|
Yang W, Pang Y, Wang X, Lai Z, Lu Y, Zheng S, Wang W. A novel CTLA-4 blocking strategy based on nanobody enhances the activity of dendritic cell vaccine-stimulated antitumor cytotoxic T lymphocytes. Cell Death Dis 2023; 14:406. [PMID: 37419930 PMCID: PMC10328924 DOI: 10.1038/s41419-023-05914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Despite the great success of CTLA-4 blocking in cancer treatment, the use of anti-CTLA-4 monoclonal antibodies still faces many limitations. Now, immune checkpoint blocking coupled with adoptive cell therapy is gaining much attention. In this paper, we reported a strategy on the basis of anti-CTLA-4 nanobody (Nb)-modified liposomes to improve these obstacles. An Nb36/liposome complex was constructed and utilized as a blocker of the CTLA-4/B7 signal pathway in a combination with dendritic cell (DC)/tumor fusion vaccine to enhance the CD8+ T cell cytokine secretion, activation, proliferation, as well as specific cytotoxicity. Moreover, the CD8+ T cells induced by LPS-Nb36 and DC/tumor fusion vaccine led to higher CD8+ T cell effector function in vivo, which significantly retarded tumor growth and lengthened survival of tumor-bearing mice (HepG2, A549, and MGC-803). Our data demonstrate that the anti-CTLA-4 Nb-modified liposomes in connection with DC/tumor fusion vaccines enhance the CD8+ T cell antitumor activity in vitro and in vivo, and is expected to be an alternative therapy for patients with malignancies that have T cell dysfunction or have poor treatment against anti-CTLA-4 mAb.
Collapse
Affiliation(s)
- Wenli Yang
- Public Research Center of Hainan Medical University, Hainan Medical University, Haikou, 570100, China
- Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
- Department of Anatomy, Zunyi Medical University, Zunyi, 563006, China
| | - Yanyang Pang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, 530021, China
| | - Xi Wang
- Department of Anesthesiology, Haikou Third People's Hospital, Haikou, 570100, China
| | - Zhiheng Lai
- Department of Anorectal, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Yanda Lu
- Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Shaojiang Zheng
- Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China.
| | - Wu Wang
- Public Research Center of Hainan Medical University, Hainan Medical University, Haikou, 570100, China.
| |
Collapse
|
19
|
Thierry S, Maadadi S, Berton A, Dimier L, Perret C, Vey N, Ourfali S, Saccas M, Caron S, Boucard-Jourdin M, Colombel M, Werle B, Bonnin M. TL-532, a novel specific Toll-like receptor 3 agonist rationally designed for targeting cancers: discovery process and biological characterization. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:117-132. [PMID: 37275475 PMCID: PMC10236204 DOI: 10.15698/mic2023.06.797] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023]
Abstract
Toll-like receptor 3 (TLR3) is an innate immune receptor that recognizes double-stranded RNA (dsRNA) and induces inflammation in immune and normal cells to initiate anti-microbial responses. TLR3 acts also as a death receptor only in cancer cells but not in their normal counterparts, making it an attractive target for cancer therapies. To date, all of the TLR3-activating dsRNAs used at preclinical or clinical stages have major drawbacks such as structural heterogeneity, toxicity, and lack of specificity and/or efficacy. We conducted the discovery process of a new family of TLR3 agonists that are chemically manufactured on solid-phase support and perfectly defined in terms of sequence and size. A stepwise discovery process was performed leading to the identification of TL-532, a 70 base pair dsRNA that is potent without transfection reagent and is highly specific for TLR3 without activating other innate nucleic sensors such as RIG-I/MDA5, TLR7, TLR8, and TLR9. TL-532 induces inflammation in murine RAW264.7 myeloid macrophages, in human NCI-H292 lung cancer cells, and it promotes immunogenic apoptosis in tumor cells in vitro and ex vivo without toxicity towards normal primary cells. In conclusion, we identified a novel TLR3 agonist called TL-532 that has promising anticancer properties.
Collapse
Affiliation(s)
- Sylvain Thierry
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Sarah Maadadi
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Aurore Berton
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Laura Dimier
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Clémence Perret
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Nelly Vey
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Saïd Ourfali
- Service d'Urologie et Chirurgie de la Transplantation, Hospices Civils de Lyon, Lyon, France. Université Claude Bernard Lyon 1; TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Mathilde Saccas
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Solène Caron
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Mathilde Boucard-Jourdin
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marc Colombel
- Service d'Urologie et Chirurgie de la Transplantation, Hospices Civils de Lyon, Lyon, France; Univ Lyon, Université Claude Bernard Lyon 1
| | - Bettina Werle
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marc Bonnin
- TOLLYS SAS, 60F avenue Rockefeller, Lyon, France; Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
20
|
Seya T, Shingai M, Kawakita T, Matsumoto M. Two Modes of Th1 Polarization Induced by Dendritic-Cell-Priming Adjuvant in Vaccination. Cells 2023; 12:1504. [PMID: 37296625 PMCID: PMC10252737 DOI: 10.3390/cells12111504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Viral infections are usually accompanied by systemic cytokinemia. Vaccines need not necessarily mimic infection by inducing cytokinemia, but must induce antiviral-acquired immunity. Virus-derived nucleic acids are potential immune-enhancers and particularly good candidates as adjuvants in vaccines in mouse models. The most important nucleic-acid-sensing process involves the dendritic cell (DC) Toll-like receptor (TLR), which participates in the pattern recognition of foreign DNA/RNA structures. Human CD141+ DCs preferentially express TLR3 in endosomes and recognize double-stranded RNA. Antigen cross-presentation occurs preferentially in this subset of DCs (cDCs) via the TLR3-TICAM-1-IRF3 axis. Another subset, plasmacytoid DCs (pDCs), specifically expresses TLR7/9 in endosomes. They then recruit the MyD88 adaptor, and potently induce type I interferon (IFN-I) and proinflammatory cytokines to eliminate the virus. Notably, this inflammation leads to the secondary activation of antigen-presenting cDCs. Hence, the activation of cDCs via nucleic acids involves two modes: (i) with bystander effect of inflammation and (ii) without inflammation. In either case, the acquired immune response finally occurs with Th1 polarity. The level of inflammation and adverse events depend on the TLR repertoire and the mode of response to their agonists in the relevant DC subsets, and could be predicted by assessing the levels of cytokines/chemokines and T cell proliferation in vaccinated subjects. The main differences in the mode of vaccine sought in infectious diseases and cancer are defined by whether it is prophylactic or therapeutic, whether it can deliver sufficient antigens to cDCs, and how it behaves in the microenvironment of the lesion. Adjuvant can be selected on a case-to-case basis.
Collapse
Affiliation(s)
- Tsukasa Seya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| | - Masashi Shingai
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Division of Biologics Development, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomomi Kawakita
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Misako Matsumoto
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| |
Collapse
|
21
|
Loan Young T, Chang Wang K, James Varley A, Li B. Clinical Delivery of Circular RNA: Lessons Learned from RNA Drug Development. Adv Drug Deliv Rev 2023; 197:114826. [PMID: 37088404 DOI: 10.1016/j.addr.2023.114826] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Circular RNAs (circRNA) represent a distinct class of covalently closed-loop RNA molecules, which play diverse roles in regulating biological processes and disease states. The enhanced stability of synthetic circRNAs compared to their linear counterparts has recently garnered considerable research interest, paving the way for new therapeutic applications. While clinical circRNA technology is still in its early stages, significant advancements in mRNA technology offer valuable insights into its potential future applications. Two primary obstacles that must be addressed are the development of efficient production methods and the optimization of delivery systems. To expedite progress in this area, this review aims to provide an overview of the current state of knowledge on circRNA structure and function, outline recent techniques for synthesizing circRNAs, highlight key delivery strategies and applications, and discuss the current challenges and future prospects in the field of circRNA-based therapeutics.
Collapse
Affiliation(s)
- Tiana Loan Young
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Andrew James Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3M2, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada.
| |
Collapse
|
22
|
Preet Kaur A, Alice A, Crittenden MR, Gough MJ. The role of dendritic cells in radiation-induced immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:61-104. [PMID: 37438021 DOI: 10.1016/bs.ircmb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.
Collapse
Affiliation(s)
- Aanchal Preet Kaur
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States; The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
23
|
Meng L, Wei Y, Xiao Y. Chemo-immunoablation of solid tumors: A new concept in tumor ablation. Front Immunol 2023; 13:1057535. [PMID: 36713427 PMCID: PMC9878389 DOI: 10.3389/fimmu.2022.1057535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
Chemical ablation was designed to inject chemical agents directly into solid tumors to kill cells and is currently only used clinically for the palliative treatment of tumors. The application and combination of different drugs, from anhydrous ethanol, and glacial acetic acid to epi-amycin, have been clinically tested for a long time. The effectiveness is unsatisfactory due to chemical agents' poor diffusion and concentration. Immunotherapy is considered a prospective oncologic therapeutic. Still, the clinical applications were limited by the low response rate of patients to immune drugs and the immune-related adverse effects caused by high doses. The advent of intratumoral immunotherapy has well addressed these issues. However, the efficacy of intratumoral immunotherapy alone is uncertain, as suggested by the results of preclinical and clinical studies. In this study, we will focus on the research of immunosuppressive tumor microenvironment with chemoablation and intratumoral immunotherapy, the synergistic effect between chemotherapeutic drugs and immunotherapy. We propose a new concept of intratumoral chemo-immunoablation. The concept opens a new perspective for tumor treatment from direct killing of tumor cells while, enhancing systemic anti-tumor immune response, and significantly reducing adverse effects of drugs.
Collapse
Affiliation(s)
- Liangliang Meng
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Radiology, Chinese PAP Hospital of Beijing, Beijing, China
| | - Yingtian Wei
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yueyong Xiao
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yueyong Xiao,
| |
Collapse
|
24
|
TLR3 forms a laterally aligned multimeric complex along double-stranded RNA for efficient signal transduction. Nat Commun 2023; 14:164. [PMID: 36631495 PMCID: PMC9834221 DOI: 10.1038/s41467-023-35844-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is a member of the TLR family, which plays an important role in the innate immune system and is responsible for recognizing viral double-stranded RNA (dsRNA). Previous biochemical and structural studies have revealed that a minimum length of approximately 40-50 base pairs of dsRNA is necessary for TLR3 binding and dimerization. However, efficient TLR3 activation requires longer dsRNA and the molecular mechanism underlying its dsRNA length-dependent activation remains unknown. Here, we report cryo-electron microscopy analyses of TLR3 complexed with longer dsRNA. TLR3 dimers laterally form a higher multimeric complex along dsRNA, providing the basis for cooperative binding and efficient signal transduction.
Collapse
|
25
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
26
|
Lim CS, Jang YH, Lee GY, Han GM, Jeong HJ, Kim JW, Lee JO. TLR3 forms a highly organized cluster when bound to a poly(I:C) RNA ligand. Nat Commun 2022; 13:6876. [PMID: 36371424 PMCID: PMC9653405 DOI: 10.1038/s41467-022-34602-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
Toll-like Receptor 3 (TLR3) initiates a potent anti-viral immune response by binding to double-stranded RNA ligands. Previous crystallographic studies showed that TLR3 forms a homodimer when bound to a 46-base pair RNA ligand. However, this short RNA fails to initiate a robust immune response. To obtain structural insights into the length dependency of TLR3 ligands, we determine the cryo-electron microscopy structure of full-length TLR3 in a complex with a synthetic RNA ligand with an average length of ~400 base pairs. In the structure, the dimeric TLR3 units are clustered along the double-stranded RNA helix in a highly organized and cooperative fashion with a uniform inter-dimer spacing of 103 angstroms. The intracellular and transmembrane domains are dispensable for the clustering because their deletion does not interfere with the cluster formation. Our structural observation suggests that ligand-induced clustering of TLR3 dimers triggers the ordered assembly of intracellular signaling adaptors and initiates a robust innate immune response.
Collapse
Affiliation(s)
- Chan Seok Lim
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea
| | - Yoon Ha Jang
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea
| | - Ga Young Lee
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea
| | - Gu Min Han
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea
| | - Hye Jin Jeong
- grid.49100.3c0000 0001 0742 4007Institute of Membrane Proteins, POSTECH, Pohang, 37673 Korea
| | - Ji Won Kim
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea ,grid.49100.3c0000 0001 0742 4007Institute of Membrane Proteins, POSTECH, Pohang, 37673 Korea
| | - Jie-Oh Lee
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea ,grid.49100.3c0000 0001 0742 4007Institute of Membrane Proteins, POSTECH, Pohang, 37673 Korea
| |
Collapse
|
27
|
Titanium Surface Characteristics Induce the Specific Reprogramming of Toll-like Receptor Signaling in Macrophages. Int J Mol Sci 2022; 23:ijms23084285. [PMID: 35457102 PMCID: PMC9030374 DOI: 10.3390/ijms23084285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Most of the research on titanium-based dental implants (Ti-discs) is focused on how they are able to stimulate the formation of new tissue and/or cytotoxic studies, with very scarce data on their effects on functional responses by immunocompetent cells. In particular, the link between the rewiring of innate immune responses and surface biomaterials properties is poorly understood. To address this, we characterize the functional response of macrophage cultures to four different dental titanium surfaces (MA: mechanical abrasion; SB + AE: sandblasting plus etching; SB: sandblasting; AE: acid etching). We use different Toll-like receptor (TLR) ligands towards cell surface receptors (bacterial lipopolysaccharide LPS for TLR4; imiquimod for TLR7; synthetic bacterial triacylated lipoprotein for TLR2/TLR1) and endosomal membrane receptor (poly I:C for TLR3) to simulate bacterial (cell wall bacterial components) or viral infections (dsRNA and ssRNA). The extracellular and total LDH levels indicate that exposure to the different Ti-surfaces is not cytotoxic for macrophages under resting or TLR-stimulated conditions, although there is a tendency towards an impairment in macrophage proliferation, viability or adhesion under TLR4, TLR3 and TLR2/1 stimulations in SB discs cultures. The secreted IL-6 and IL-10 levels are not modified upon resting macrophage exposure to the Ti-surfaces studied as well as steady state levels of iNos or ArgI mRNA. However, macrophage exposure to MA Ti-surface do display an enhanced immune response to TLR4, TLR7 or TLR2/1 compared to other Ti-surfaces in terms of soluble immune mediators secreted and M1/M2 gene expression profiling. This change of characteristics in cellular phenotype might be related to changes in cellular morphology. Remarkably, the gene expression of Tlr3 is the only TLR that is differentially affected by distinct Ti-surface exposure. These results highlight the relevance of patterned substrates in dental implants to achieve a smart manipulation of the immune responses in the context of personalized medicine, cell-based therapies, preferential lineage commitment of precursor cells or control of tissue architecture in oral biology.
Collapse
|
28
|
Kang YG, Kim J, Lee K, Choe JY, Dua P, Lee DK. Retinoic Acid-Inducible Gene I-Mediated Innate Immune Stimulation by Chemically Synthesized Long Double-Stranded RNAs Is Structure and Sequence Dependent. Nucleic Acid Ther 2022; 32:321-332. [PMID: 35263174 DOI: 10.1089/nat.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Double-stranded RNAs (dsRNAs) longer than 30 bp have not been considered desirable RNA interference (RNAi) triggering structures in mammalian cells as they nonspecifically activate innate immune response. However, in earlier studies, not only dsRNA length but also 5'-triphosphate moiety produced by in vitro transcription might have affected the stimulation of innate immune system. Herein, using chemically synthesized long dsRNAs without 5'-triphosphate, we elucidated direct relationship between length of dsRNAs and innate immune stimulation. First, we found that blunt-ended, chemically synthesized 38/40-60 bp-long dsRNAs induced retinoic acid-inducible gene I (RIG-I)-mediated innate immune response, which was suppressed by the introduction of the 2-nt 3' overhang structure. Surprisingly, we discovered that RIG-I activation by these long dsRNAs is also sequence dependent, and the sequence composition at dsRNA termini is important for RIG-I activation. In addition, we identified that long dsRNAs over 38 bp could elicit single- or dual-target gene silencing in a Dicer-independent manner. Taken together, our findings may serve as guidelines to develop an immunostimulatory RNAi trigger to exploit host's innate immune system, as well as a specific dual-gene targeting RNAi therapeutics platform without nonspecific innate immune stimulation by RIG-I.
Collapse
Affiliation(s)
- Young Gyu Kang
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea.,OliX Pharmaceuticals, Inc., Suwon, Korea
| | - Jaejin Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea
| | - Kyeongmin Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea
| | - Jeong Yong Choe
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea.,OliX Pharmaceuticals, Inc., Suwon, Korea
| | - Pooja Dua
- OliX Pharmaceuticals, Inc., Suwon, Korea
| | - Dong Ki Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea.,OliX Pharmaceuticals, Inc., Suwon, Korea
| |
Collapse
|
29
|
Nance KD, Gamage ST, Alam MM, Yang A, Levy MJ, Link CN, Florens L, Washburn MP, Gu S, Oppenheim JJ, Meier JL. Cytidine acetylation yields a hypoinflammatory synthetic messenger RNA. Cell Chem Biol 2022; 29:312-320.e7. [PMID: 35180432 PMCID: PMC10370389 DOI: 10.1016/j.chembiol.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
Synthetic messenger RNA (mRNA) is an emerging therapeutic platform with important applications in oncology and infectious disease. Effective mRNA medicines must be translated by the ribosome but not trigger a strong nucleic acid-mediated immune response. To expand the medicinal chemistry toolbox for these agents, here we report the properties of the naturally occurring nucleobase N4-acetylcytidine (ac4C) in synthetic mRNAs. We find that ac4C is compatible with, but does not enhance, protein production in the context of synthetic mRNA reporters. However, replacement of cytidine with ac4C diminishes inflammatory gene expression in immune cells caused by synthetic mRNAs. Chemoproteomic capture indicates that ac4C alters the protein interactome of synthetic mRNAs, reducing binding to cytidine-binding proteins and an immune sensor. Overall, our studies illustrate the unique ability of ac4C to modulate RNA-protein interactions and provide a foundation for using N4-cytidine acylation to fine-tune the properties of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Kellie D Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler Street, Frederick, MD 21702, USA
| | - Supuni Thalalla Gamage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler Street, Frederick, MD 21702, USA
| | - Md Masud Alam
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler Street, Frederick, MD 21702, USA
| | - Acong Yang
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler Street, Frederick, MD 21702, USA
| | - Michaella J Levy
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Courtney N Link
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler Street, Frederick, MD 21702, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Michael P Washburn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shuo Gu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler Street, Frederick, MD 21702, USA
| | - Joost J Oppenheim
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler Street, Frederick, MD 21702, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler Street, Frederick, MD 21702, USA.
| |
Collapse
|
30
|
Shi W, Yang X, Xie S, Zhong D, Lin X, Ding Z, Duan S, Mo F, Liu A, Yin S, Jiang X, Xu ZPG, Lu X. A new PD-1-specific nanobody enhances the antitumor activity of T-cells in synergy with dendritic cell vaccine. Cancer Lett 2021; 522:184-197. [PMID: 34562519 DOI: 10.1016/j.canlet.2021.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Despite the many successes and opportunities presented by PD-1 blockade in cancer therapies, anti-PD-1 monoclonal antibodies still face multiple challenges. Herein we report a strategy based on a nanobody (Nb) to circumvent these obstacles. A new PD-1-blocking Nb (PD-1 Nb20) in combination with tumor-specific dendritic cell (DC)/tumor-fusion cell (FC) vaccine that aims to improve the activation, proliferation, cytokine secretion, and tumor cell cytotoxicity of CD8+ T-cells. This combination was found to effectively enhance the in vitro cytotoxicity of CD8+ T-cells to kill human non-small cell lung cancer (NSCLC) HCC827 cells, hepatocellular carcinoma (HCC) HepG2 cells, and tongue squamous cell carcinoma (TSCC) Tca8113 cells. Moreover, CD8+ T-cells pre-treated with PD-1 Nb20 and tumor-specific DC/tumor-FCs significantly suppressed the growth of NSCLC-, HCC- and TSCC-derived xenograft tumors and prolonged the survival of tumor-bearing mice, through promoting T-cell infiltration to kill tumor cells and inhibiting tumor angiogenesis. These data demonstrate that PD-1 Nb20 in synergy with DC/tumor-FC vaccine augment the broad spectrum of antitumor activity of CD8+ T-cells, providing an alternative and promising immunotherapeutic strategy for tumor patients who are T-cell-dysfunctional or not sensitive to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiaomei Yang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Shenxia Xie
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Dani Zhong
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, PR China
| | - Xuandong Lin
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; College of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Ziqiang Ding
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Siliang Duan
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Fengzhen Mo
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Aiqun Liu
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, PR China
| | - Shihua Yin
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China.
| | - Zhi Ping Gordon Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Xiaoling Lu
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; College of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
31
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
32
|
Patel J, Maddukuri S, Li Y, Bax C, Werth VP. Highly Multiplexed Mass Cytometry Identifies the Immunophenotype in the Skin of Dermatomyositis. J Invest Dermatol 2021; 141:2151-2160. [PMID: 33766508 PMCID: PMC8384654 DOI: 10.1016/j.jid.2021.02.748] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 01/06/2023]
Abstract
Dermatomyositis (DM) is a rare, systemic autoimmune disease that most frequently affects the skin, muscles, and lungs. The inflammatory infiltrate in the skin has not been fully characterized, and, in this study, we took a single-cell, unbiased approach using imaging mass cytometry. Substantial monocyte‒macrophage diversity was observed, with the CD14+ population correlating positively with Cutaneous Dermatomyositis Disease Area and Severity Index scores (P = 0.031). The T-cell compartment revealed CD4+ T, CD8+ T, and FOXP3+ T cells. Activated (CD69+) circulating memory T cells correlated positively with Cutaneous Dermatomyositis Disease Area and Severity Index scores (P = 0.0268). IFN-β protein was highly upregulated in the T-cell, macrophage, dendritic cell, and endothelial cell populations of DM skin. Myeloid dendritic cells expressed phosphorylated peroxisome proliferator‒activated receptor γ, phosphorylated IRF3, IL-4, and IL-31, and their quantity correlated with itch as measured in Skindex-29. Plasmacytoid dendritic cells colocalized with IFN-γ in addition to the known colocalization with IFN-β. Nuclear phosphorylated peroxisome proliferator‒activated receptor γ expression was found in the DM endothelium. Imaging mass cytometry allows us to characterize single cells in the immune cell population and identify upregulated cytokines and inflammatory pathways in DM. These findings have important implications for the development of future targeted therapies for DM.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Spandana Maddukuri
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yubin Li
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina Bax
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
33
|
Immune Responses to Pandemic H1N1 Influenza Virus Infection in Pigs Vaccinated with a Conserved Hemagglutinin HA1 Peptide Adjuvanted with CAF ®01 or CDA/αGalCerMPEG. Vaccines (Basel) 2021; 9:vaccines9070751. [PMID: 34358167 PMCID: PMC8310093 DOI: 10.3390/vaccines9070751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023] Open
Abstract
This study aimed to evaluate the immune response and protection correlates against influenza virus (IV) infection in pigs vaccinated with the novel NG34 HA1 vaccine candidate adjuvanted with either CAF®01 or CDA/αGalCerMPEG (αGCM). Two groups of six pigs each were vaccinated intramuscularly twice with either NG34 + CAF®01 or NG34 + CDA/αGCM. As controls, groups of animals (n = 6 or 4) either non-vaccinated or vaccinated with human seasonal trivalent influenza vaccine or NG34 + Freund’s adjuvant were included in the study. All animal groups were challenged with the 2009 pandemic (pdm09) strain of H1N1 (total amount of 7 × 106 TCID50/mL) via intranasal and endotracheal routes 21 days after second vaccination. Reduced consolidated lung lesions were observed both on days three and seven post-challenge in the animals vaccinated with NG34 + CAF®01, whereas higher variability with relatively more severe lesions in pigs of the NG34 + CDA/αGCM group on day three post-infection. Among groups, animals vaccinated with NG34 + CDA/αGCM showed higher viral loads in the lung at seven days post infection whereas animals from NG34 + CAF®01 completely abolished virus from the lower respiratory tract. Similarly, higher IFNγ secretion and stronger IgG responses against the NG34 peptide in sera was observed in animals from the NG34 + CAF®01 group as compared to the NG34 + CDA/αGCM. NG34-vaccinated pigs with adjuvanted CAF®01 or CDA/αGCM combinations resulted in different immune responses as well as outcomes in pathology and viral shedding.
Collapse
|
34
|
TLR3 agonists: RGC100, ARNAX, and poly-IC: a comparative review. Immunol Res 2021; 69:312-322. [PMID: 34145551 PMCID: PMC8213534 DOI: 10.1007/s12026-021-09203-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Toll-like receptors 3 (TLR3) have been broadly studied among all TLRs over the last few decades together with its agonists due to their contribution to cancer regression. These agonists undeniably have some shared characteristics such as mimicking dsRNA but pathways through which they exhibit antitumor properties are relatively diverse. In this review, three widely studied agonists RGC100, ARNAX, and poly-IC are discussed along with their structural and physiochemical differences including the signaling cascades through which they exert their actions. Comparison has been made to identify the finest agonist with maximum effectivity and the least side effect profile.
Collapse
|
35
|
Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma. Front Immunol 2021; 12:650486. [PMID: 34025657 PMCID: PMC8137829 DOI: 10.3389/fimmu.2021.650486] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is a highly prevalent malignancy that develops in patients with chronic liver diseases and dysregulated systemic and hepatic immunity. The tumor microenvironment (TME) contains tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF), regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and is central to mediating immune evasion and resistance to therapy. The interplay between these cells types often leads to insufficient antigen presentation, preventing effective anti-tumor immune responses. In situ vaccines harness the tumor as the source of antigens and implement sequential immunomodulation to generate systemic and lasting antitumor immunity. Thus, in situ vaccines hold the promise to induce a switch from an immunosuppressive environment where HCC cells evade antigen presentation and suppress T cell responses towards an immunostimulatory environment enriched for activated cytotoxic cells. Pivotal steps of in situ vaccination include the induction of immunogenic cell death of tumor cells, a recruitment of antigen-presenting cells with a focus on dendritic cells, their loading and maturation and a subsequent cross-priming of CD8+ T cells to ensure cytotoxic activity against tumor cells. Several in situ vaccine approaches have been suggested, with vaccine regimens including oncolytic viruses, Flt3L, GM-CSF and TLR agonists. Moreover, combinations with checkpoint inhibitors have been suggested in HCC and other tumor entities. This review will give an overview of various in situ vaccine strategies for HCC, highlighting the potentials and pitfalls of in situ vaccines to treat liver cancer.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
36
|
Abstract
Adjuvants are vaccine components that enhance the magnitude, breadth and durability of the immune response. Following its introduction in the 1920s, alum remained the only adjuvant licensed for human use for the next 70 years. Since the 1990s, a further five adjuvants have been included in licensed vaccines, but the molecular mechanisms by which these adjuvants work remain only partially understood. However, a revolution in our understanding of the activation of the innate immune system through pattern recognition receptors (PRRs) is improving the mechanistic understanding of adjuvants, and recent conceptual advances highlight the notion that tissue damage, different forms of cell death, and metabolic and nutrient sensors can all modulate the innate immune system to activate adaptive immunity. Furthermore, recent advances in the use of systems biology to probe the molecular networks driving immune response to vaccines ('systems vaccinology') are revealing mechanistic insights and providing a new paradigm for the vaccine discovery and development process. Here, we review the 'known knowns' and 'known unknowns' of adjuvants, discuss these emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuvants for use in vaccines against COVID-19 and future pandemics.
Collapse
|
37
|
Zheng W, Chu Q, Yang L, Sun L, Xu T. Circular RNA circDtx1 regulates IRF3-mediated antiviral immune responses through suppression of miR-15a-5p-dependent TRIF downregulation in teleost fish. PLoS Pathog 2021; 17:e1009438. [PMID: 33735323 PMCID: PMC8009406 DOI: 10.1371/journal.ppat.1009438] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) represent a class of widespread and diverse covalently closed circular endogenous RNAs that exert crucial functions in regulating gene expression in mammals. However, the function and regulation mechanism of circRNAs in lower vertebrates are still unknown. Here, we discovered a novel circRNA derived from Deltex E3 ubiquitin ligase 1 (Dtx1) gene, namely, circDtx1, which was related to the antiviral responses in teleost fish. Results indicated that circDtx1 played essential roles in host antiviral immunity and inhibition of SCRV replication. Our study also found a microRNA miR-15a-5p, which could inhibit antiviral immune response and promote viral replication by targeting TRIF. Moreover, we also found that the antiviral effect inhibited by miR-15a-5p could be reversed with the circDtx1. In mechanism, our data revealed that circDtx1 was a competing endogenous RNA (ceRNA) of TRIF by sponging miR-15a-5p, leading to activation of the NF-κB/IRF3 pathway, and then enhancing the innate antiviral responses. Our results indicated that circRNAs played a regulatory role in immune responses in teleost fish. Increasing evidence indicates that circRNAs participate in innate and adaptive immunity. However, the relationship between circRNAs and host antiviral responses remains unknown, particularly in lower vertebrates. Our results provided direct evidence that a circRNA, namely, circDtx1, is related to the antiviral responses in lower vertebrates. In addition, our study also found a microRNA, namely, miR-15a-5p, which could inhibit an antiviral immune response and promote viral replication by targeting TRIF. Moreover, circRNAs can serve as competing endogenous RNAs (ceRNAs) and cross-talk with mRNAs by competing shared miRNAs. Such ceRNAs regulate the distribution of miRNA molecules on their targets and apply an additional level of post-transcriptional regulation. In our study, circDtx1 functions as a ceRNA for miR-15a-5p to control protein abundance of fish TRIF, thereby inhibiting viral replication and promoting antiviral responses. Our study demonstrates the ceRNA regulatory networks existing in lower vertebrates, which can provide new insights into understanding the effects of circRNAs on host-virus interactions.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing Chu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Lingping Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- * E-mail:
| |
Collapse
|
38
|
Deep Learning Method for RNA Secondary Structure Prediction with Pseudoknots Based on Large-Scale Data. JOURNAL OF HEALTHCARE ENGINEERING 2021. [DOI: 10.1155/2021/6699996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional machine learning methods are widely used in the field of RNA secondary structure prediction and have achieved good results. However, with the emergence of large-scale data, deep learning methods have more advantages than traditional machine learning methods. As the number of network layers increases in deep learning, there will often be problems such as increased parameters and overfitting. We used two deep learning models, GoogLeNet and TCN, to predict RNA secondary results. And from the perspective of the depth and width of the network, improvements are made based on the neural network model, which can effectively improve the computational efficiency while extracting more feature information. We process the existing real RNA data through experiments, use deep learning models to extract useful features from a large amount of RNA sequence data and structure data, and then predict the extracted features to obtain each base’s pairing probability. The characteristics of RNA secondary structure and dynamic programming methods are used to process the base prediction results, and the structure with the largest sum of the probability of each base pairing is obtained, and this structure will be used as the optimal RNA secondary structure. We, respectively, evaluated GoogLeNet and TCN models based on 5sRNA, tRNA data, and tmRNA data, and compared them with other standard prediction algorithms. The sensitivity and specificity of the GoogLeNet model on the 5sRNA and tRNA data sets are about 16% higher than the best prediction results in other algorithms. The sensitivity and specificity of the GoogLeNet model on the tmRNA dataset are about 9% higher than the best prediction results in other algorithms. As deep learning algorithms’ performance is related to the size of the data set, as the scale of RNA data continues to expand, the prediction accuracy of deep learning methods for RNA secondary structure will continue to improve.
Collapse
|
39
|
Azuma M, Ebihara T, Oshiumi H, Matsumoto M, Seya T. Cross-priming for antitumor CTL induced by soluble Ag + polyI:C depends on the TICAM-1 pathway in mouse CD11c(+)/CD8α(+) dendritic cells. Oncoimmunology 2021; 1:581-592. [PMID: 22934250 PMCID: PMC3429562 DOI: 10.4161/onci.19893] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PolyI:C is a nucleotide pattern molecule that induces cross-presentation of foreign Ag in myeloid dendritic cells (DC) and MHC Class I-dependent proliferation of cytotoxic T lymphocytes (CTL). DC (BM or spleen CD8α+) have sensors for dsRNA including polyI:C to signal facilitating cross-presentation. Endosomal TLR3 and cytoplasmic RIG-I/MDA5 are reportedly responsible for polyI:C sensing and presumed to deliver signal for cross-presentation via TICAM-1 (TRIF) and IPS-1 (MAVS, Cardif, VISA) adaptors, respectively. In fact, when tumor-associated Ag (TAA) was simultaneously taken up with polyI:C in DC, the DC cross-primed CTL specific to the TAA in a syngenic mouse model. Here we tested which of the TICAM-1 or IPS-1 pathway participate in cross-presentation of tumor-associated soluble Ag and retardation of tumor growth in the setting with a syngeneic tumor implant system, EG7/C57BL6, and exogenously challenged soluble Ag (EG7 lysate) and polyI:C. When EG7 lysate and polyI:C were subcutaneously injected in tumor-bearing mice, EG7 tumor growth retardation was observed in wild-type and to a lesser extent IPS-1−/− mice, but not TICAM-1−/− mice. IRF-3/7 were essential but IPS-1 and type I IFN were minimally involved in the polyI:C-mediated CTL proliferation. Although both TICAM-1 and IPS-1 contributed to CD86/CD40 upregulation in CD8α+ DC, H2Kb-SL8 tetramer and OT-1 proliferation assays indicated that OVA-recognizing CD8 T cells predominantly proliferated in vivo through TICAM-1 and CD8α+ DC is crucial in ex vivo analysis. Ultimately, tumor regresses > 8 d post polyI:C administration. The results infer that soluble tumor Ag induces tumor growth retardation, i.e., therapeutic potential, if the TICAM-1 signal coincidentally occurs in CD8α+ DC around the tumor.
Collapse
Affiliation(s)
- Masahiro Azuma
- Department of Microbiology and Immunology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| | | | | | | | | |
Collapse
|
40
|
Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-Da̧browska L, Bossowska-Nowicka M, Wyżewski Z, Cymerys J, Chodkowski M, Kiełbik P, Godlewski MM, Gieryńska M, Toka FN. Participation of Endosomes in Toll-Like Receptor 3 Transportation Pathway in Murine Astrocytes. Front Cell Neurosci 2020; 14:544612. [PMID: 33281554 PMCID: PMC7705377 DOI: 10.3389/fncel.2020.544612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.
Collapse
Affiliation(s)
- Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Da̧browska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paula Kiełbik
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał M Godlewski
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
41
|
Nguyen H, Gazy N, Venketaraman V. A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. Int J Mol Sci 2020; 21:E6148. [PMID: 32858917 PMCID: PMC7503332 DOI: 10.3390/ijms21176148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a highly infectious acid-fast bacillus and is known to cause tuberculosis (TB) in humans. It is a leading cause of death from a sole infectious agent, with an estimated 1.5 million deaths yearly worldwide, and up to one third of the world's population has been infected with TB. The virulence and susceptibility of Mtb are further amplified in the presence of Human Immunodeficiency Virus (HIV). Coinfection with Mtb and HIV forms a lethal combination. Previous studies had demonstrated the synergistic effects of Mtb and HIV, with one disease accelerating the disease progression of the other through multiple mechanisms, including the modulation of the immune response to these two pathogens. The response of the endosomal pattern recognition receptors to these two pathogens, specifically toll-like receptors (TLR)-3, -7, and -9, has not been elucidated, with some studies producing mixed results. This article seeks to review the roles of TLR-3, -7, and -9 in response to Mtb infection, as well as Mtb-HIV-coinfection via Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing INF-β (TRIF)-dependent and myeloid differentiation factor 88 (MyD88)-dependent pathways.
Collapse
Affiliation(s)
- Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nicky Gazy
- Beaumont Health System, 5450 Fort St, Trenton, MI 48183, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|
42
|
Mondal M, Brown JK, Flynt A. Exploiting somatic piRNAs in Bemisia tabaci enables novel gene silencing through RNA feeding. Life Sci Alliance 2020; 3:3/10/e202000731. [PMID: 32764103 PMCID: PMC7425214 DOI: 10.26508/lsa.202000731] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
RNAi usually relies on Dicer-produced siRNAs to induce gene silencing. In many arthropods, another type of RNAi is present in the soma—the piRNA pathway. This work finds exploiting this biology is a viable alternative for gene knockdown. RNAi promises to reshape pest control by being nontoxic, biodegradable, and species specific. However, due to the plastic nature of RNAi, there is a significant variability in responses. In this study, we investigate small RNA pathways and processing of ingested RNAi trigger molecules in a hemipteran plant pest, the whitefly Bemisia tabaci. Unlike Drosophila, where the paradigm for insect RNAi technology was established, whitefly has abundant somatic piwi-associated RNAs (piRNAs). Long regarded as germline restricted, piRNAs are common in the soma of many invertebrates. We sought to exploit this for a novel gene silencing approach. The main principle of piRNA biogenesis is the recruitment of target RNA fragments into the pathway. As such, we designed synthetic RNAs to possess complementarity to the loci we annotated. Following feeding of these exogenous piRNA triggers knockdown as effective as conventional siRNA-only approaches was observed. These results demonstrate a new approach for RNAi technology that could be applicable to dsRNA-recalcitrant pest species and could be fundamental to realizing insecticidal RNAi against pests.
Collapse
Affiliation(s)
- Mosharrof Mondal
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Alex Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
43
|
Malik G, Zhou Y. Innate Immune Sensing of Influenza A Virus. Viruses 2020; 12:E755. [PMID: 32674269 PMCID: PMC7411791 DOI: 10.3390/v12070755] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza virus infection triggers host innate immune response by stimulating various pattern recognition receptors (PRRs). Activation of these PRRs leads to the activation of a plethora of signaling pathways, resulting in the production of interferon (IFN) and proinflammatory cytokines, followed by the expression of interferon-stimulated genes (ISGs), the recruitment of innate immune cells, or the activation of programmed cell death. All these antiviral approaches collectively restrict viral replication inside the host. However, influenza virus also engages in multiple mechanisms to subvert the innate immune responses. In this review, we discuss the role of PRRs such as Toll-like receptors (TLRs), Retinoic acid-inducible gene I (RIG-I), NOD-, LRR-, pyrin domain-containing protein 3 (NLRP3), and Z-DNA binding protein 1 (ZBP1) in sensing and restricting influenza viral infection. Further, we also discuss the mechanisms influenza virus utilizes, especially the role of viral non-structure proteins NS1, PB1-F2, and PA-X, to evade the host innate immune responses.
Collapse
Affiliation(s)
- Gaurav Malik
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
44
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology 2020; 9:1771143. [PMID: 32934877 PMCID: PMC7466857 DOI: 10.1080/2162402x.2020.1771143] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is a pattern recognition receptor that senses exogenous (viral) as well as endogenous (mammalian) double-stranded RNA in endosomes. On activation, TLR3 initiates a signal transduction pathway that culminates with the secretion of pro-inflammatory cytokines including type I interferon (IFN). The latter is essential not only for innate immune responses to infection but also for the initiation of antigen-specific immunity against viruses and malignant cells. These aspects of TLR3 biology have supported the development of various agonists for use as stand-alone agents or combined with other therapeutic modalities in cancer patients. Here, we review recent preclinical and clinical advances in the development of TLR3 agonists for oncological disorders. Abbreviations cDC, conventional dendritic cell; CMT, cytokine modulating treatment; CRC, colorectal carcinoma; CTL, cytotoxic T lymphocyte; DC, dendritic cell; dsRNA, double-stranded RNA; FLT3LG, fms-related receptor tyrosine kinase 3 ligand; HNSCC, head and neck squamous cell carcinoma; IFN, interferon; IL, interleukin; ISV, in situ vaccine; MUC1, mucin 1, cell surface associated; PD-1, programmed cell death 1; PD-L1, programmed death-ligand 1; polyA:U, polyadenylic:polyuridylic acid; polyI:C, polyriboinosinic:polyribocytidylic acid; TLR, Toll-like receptor.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,AP-HP, Hôpital Européen Georges Pompidou, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
45
|
Migration of murine intestinal dendritic cell subsets upon intrinsic and extrinsic TLR3 stimulation. Eur J Immunol 2020; 50:1525-1536. [DOI: 10.1002/eji.201948497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 01/26/2023]
|
46
|
RNA Signaling in Pulmonary Arterial Hypertension-A Double-Stranded Sword. Int J Mol Sci 2020; 21:ijms21093124. [PMID: 32354189 PMCID: PMC7247700 DOI: 10.3390/ijms21093124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Recognition of and response to pathogens and tissue injury is driven by the innate immune system via activation of pattern recognition receptors. One of the many patterns recognized is RNA and, while several receptors bind RNA, Toll-like receptor 3 (TLR3) is well placed for initial recognition of RNA molecules due to its localization within the endosome. There is a growing body of work describing a role for TLR3 in maintenance of vascular homeostasis. For example, TLR3 deficiency has been shown to play repair and remodeling roles in the systemic vasculature and in lung parenchyma. A hallmark of pulmonary arterial hypertension (PAH) is pulmonary vascular remodeling, yet drivers and triggers of this remodeling remain incompletely understood. Based on its role in the systemic vasculature, our group discovered reduced endothelial TLR3 expression in PAH and revealed a protective role for a TLR3 agonist in rodent models of pulmonary hypertension. This review will provide an overview of RNA signaling in the vasculature and how it relates to PAH pathobiology, including whether targeting double-stranded RNA signaling is a potential treatment option for PAH.
Collapse
|
47
|
Blair TC, Bambina S, Alice AF, Kramer GF, Medler TR, Baird JR, Broz ML, Tormoen GW, Troesch V, Crittenden MR, Gough MJ. Dendritic Cell Maturation Defines Immunological Responsiveness of Tumors to Radiation Therapy. THE JOURNAL OF IMMUNOLOGY 2020; 204:3416-3424. [PMID: 32341058 DOI: 10.4049/jimmunol.2000194] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Radiation therapy is capable of directing adaptive immune responses against tumors by stimulating the release of endogenous adjuvants and tumor-associated Ags. Within the tumor, conventional type 1 dendritic cells (cDC1s) are uniquely positioned to respond to these signals, uptake exogenous tumor Ags, and migrate to the tumor draining lymph node to initiate cross-priming of tumor-reactive cytotoxic CD8+ T cells. In this study, we report that radiation therapy promotes the activation of intratumoral cDC1s in radioimmunogenic murine tumors, and this process fails to occur in poorly radioimmunogenic murine tumors. In poorly radioimmunogenic tumors, the adjuvant polyinosinic-polycytidylic acid overcomes this failure following radiation and successfully drives intratumoral cDC1 maturation, ultimately resulting in durable tumor cures. Depletion studies revealed that both cDC1 and CD8+ T cells are required for tumor regression following combination therapy. We further demonstrate that treatment with radiation and polyinosinic-polycytidylic acid significantly expands the proportion of proliferating CD8+ T cells in the tumor with enhanced cytolytic potential and requires T cell migration from lymph nodes for therapeutic efficacy. Thus, we conclude that lack of endogenous adjuvant release or active suppression following radiation therapy may limit its efficacy in poorly radioimmunogenic tumors, and coadministration of exogenous adjuvants that promote cDC1 maturation and migration can overcome this limitation to improve tumor control following radiation therapy.
Collapse
Affiliation(s)
- Tiffany C Blair
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213
| | - Gwen F Kramer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213
| | - Terry R Medler
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213
| | - Jason R Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213
| | | | - Garth W Tormoen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213
| | - Victoria Troesch
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213.,The Oregon Clinic, Portland, OR 97213
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213;
| |
Collapse
|
48
|
Matsumoto M, Takeda Y, Seya T. Targeting Toll-like receptor 3 in dendritic cells for cancer immunotherapy. Expert Opin Biol Ther 2020; 20:937-946. [PMID: 32223572 DOI: 10.1080/14712598.2020.1749260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Activation of innate immune system is a key step to develop anti-tumor immunity. Antigen-presenting dendritic cells (DCs) cross-present tumor-associated antigens to cytotoxic CD8+ T cells (CTLs). Signaling from pattern-recognition receptors (PRRs) in DCs is required to induce tumor-specific CTLs. AREAS COVERED This review summarizes the properties of PRRs expressed by antigen-presenting DCs, especially TLR3, and provides the recent knowledge of their function in anti-tumor immunity. We also summarize the characteristics of newly-developed TLR3-specific agonist, ARNAX, which efficiently primes DCs to induce anti-tumor immunity without systemic inflammation in mice. EXPERT OPINION In cancer immunotherapy, the induction of tumor-specific CTLs is significant for tumor regression and to augment the efficacy of PD-1/PD-L1 blockade. Non-inflammatory TLR3 adjuvant ARNAX that can induce tumor-specific CTLs without inducing inflammation benefits cancer immunotherapy. Development of appropriate protocols for ARNAX vaccine therapy would be useful to overcome the PD-1/PD-L1 blockade resistance.
Collapse
Affiliation(s)
- Misako Matsumoto
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan.,Nebuta Research Institute for Life Sciences, Aomori University , Aomori, Japan
| | - Yohei Takeda
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Tsukasa Seya
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan.,Nebuta Research Institute for Life Sciences, Aomori University , Aomori, Japan
| |
Collapse
|
49
|
Imai J, Ohashi S, Sakai T. Endoplasmic Reticulum-Associated Degradation-Dependent Processing in Cross-Presentation and Its Potential for Dendritic Cell Vaccinations: A Review. Pharmaceutics 2020; 12:pharmaceutics12020153. [PMID: 32070016 PMCID: PMC7076524 DOI: 10.3390/pharmaceutics12020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023] Open
Abstract
While the success of dendritic cell (DC) vaccination largely depends on cross-presentation (CP) efficiency, the precise molecular mechanism of CP is not yet characterized. Recent research revealed that endoplasmic reticulum (ER)-associated degradation (ERAD), which was first identified as part of the protein quality control system in the ER, plays a pivotal role in the processing of extracellular proteins in CP. The discovery of ERAD-dependent processing strongly suggests that the properties of extracellular antigens are one of the keys to effective DC vaccination, in addition to DC subsets and the maturation of these cells. In this review, we address recent advances in CP, focusing on the molecular mechanisms of the ERAD-dependent processing of extracellular proteins. As ERAD itself and the ERAD-dependent processing in CP share cellular machinery, enhancing the recognition of extracellular proteins, such as the ERAD substrate, by ex vivo methods may serve to improve the efficacy of DC vaccination.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
50
|
Wang L, Zeng W, Wang L, Wang Z, Yin X, Qin Y, Zhang F, Zhang C, Liang W. Naringenin Enhances the Antitumor Effect of Therapeutic Vaccines by Promoting Antigen Cross-Presentation. THE JOURNAL OF IMMUNOLOGY 2020; 204:622-631. [PMID: 31871020 DOI: 10.4049/jimmunol.1900278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) can internalize and cross-present exogenous Ags to CD8+ T cells for pathogen or tumor cell elimination. Recently, growing evidences suggest the possible immunoregulatory role of flavonoids through modulating the Ag presentation of DCs. In this study, we report that naringenin, a grapefruit-derived flavonoid, possesses the ability to increase the Ag cross-presentation in both murine DC line DC2.4 as well as bone marrow-derived DCs, and naringenin-induced moderate intracellular oxidative stress that contributed to the disruption of lysosomal membrane enhanced Ag leakage to cytosol and cross-presentation. Moreover, in a murine colon adenocarcinoma model, naringenin induced more CD103+ DCs infiltration into tumor and facilitated the activation of CD8+ T cells and strengthened the performance of therapeutic E7 vaccine against TC-1 murine lung cancer. Our investigations may inspire novel thoughts for vaccine design and open a new field of potential applications of flavonoids as immunomodulators to improve host protection against infection and tumor.
Collapse
Affiliation(s)
- Luoyang Wang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China; and.,Department of Chemical Engineering, Tsinghua University, Beijing 100101, China
| | - Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100101, China; and
| | - Luyao Wang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China; and
| | - Zihao Wang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China; and
| | - Xiaozhe Yin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China; and
| | - Yan Qin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China; and
| | - Fayun Zhang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China; and
| | - Chunling Zhang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China; and
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100101, China; and
| |
Collapse
|