1
|
Ziblat A, Horton BL, Higgs EF, Hatogai K, Martinez A, Shapiro JW, Kim DEC, Zha Y, Sweis RF, Gajewski TF. Batf3 + DCs and the 4-1BB/4-1BBL axis are required at the effector phase in the tumor microenvironment for PD-1/PD-L1 blockade efficacy. Cell Rep 2024; 43:114141. [PMID: 38656869 PMCID: PMC11229087 DOI: 10.1016/j.celrep.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.
Collapse
Affiliation(s)
- Andrea Ziblat
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Brendan L Horton
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Emily F Higgs
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ken Hatogai
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anna Martinez
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jason W Shapiro
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Danny E C Kim
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - YuanYuan Zha
- Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637, USA
| | - Randy F Sweis
- Department of Medicine, University of Chicago, Chicago, IL 60612, USA
| | - Thomas F Gajewski
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
2
|
Iwamura C, Ohnuki H, Flomerfelt FA, Zheng L, Carletti A, Wakashin H, Mikami Y, Brooks SR, Kanno Y, Gress RE, Tosato G, Nakayama T, O'Shea JJ, Sher A, Jankovic D. Microbial ligand-independent regulation of lymphopoiesis by NOD1. Nat Immunol 2023; 24:2080-2090. [PMID: 37957354 DOI: 10.1038/s41590-023-01668-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
Aberrant differentiation of progenitor cells in the hematopoietic system is known to severely impact host immune responsiveness. Here we demonstrate that NOD1, a cytosolic innate sensor of bacterial peptidoglycan, also functions in murine hematopoietic cells as a major regulator of both the generation and differentiation of lymphoid progenitors as well as peripheral T lymphocyte homeostasis. We further show that NOD1 mediates these functions by facilitating STAT5 signaling downstream of hematopoietic cytokines. In steady-state, loss of NOD1 resulted in a modest but significant decrease in numbers of mature T, B and natural killer cells. During systemic protozoan infection this defect was markedly enhanced, leading to host mortality. Lack of functional NOD1 also impaired T cell-dependent anti-tumor immunity while preventing colitis. These findings reveal that, in addition to its classical role as a bacterial ligand receptor, NOD1 plays an important function in regulating adaptive immunity through interaction with a major host cytokine signaling pathway.
Collapse
Affiliation(s)
- Chiaki Iwamura
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
- Department of Immunology, Graduate School of Medicine, and Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Hidetaka Ohnuki
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD, USA
| | - Francis A Flomerfelt
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexie Carletti
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hidefumi Wakashin
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yohei Mikami
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD, USA
| | | | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
3
|
Rodriguez C, Araujo Furlan CL, Tosello Boari J, Bossio SN, Boccardo S, Fozzatti L, Canale FP, Beccaria CG, Nuñez NG, Ceschin DG, Piaggio E, Gruppi A, Montes CL, Acosta Rodríguez EV. Interleukin-17 signaling influences CD8 + T cell immunity and tumor progression according to the IL-17 receptor subunit expression pattern in cancer cells. Oncoimmunology 2023; 12:2261326. [PMID: 37808403 PMCID: PMC10557545 DOI: 10.1080/2162402x.2023.2261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.
Collapse
Affiliation(s)
- Constanza Rodriguez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Jimena Tosello Boari
- INSERM U932, Immunity and Cancer, Paris, France
- Department of Translational Research, PSL Research University, Paris, France
| | - Sabrina N. Bossio
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Santiago Boccardo
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Fernando P. Canale
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cristian G. Beccaria
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Nicolás G. Nuñez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Danilo G. Ceschin
- Centro de Investigación en Medicina Traslacional “Severo R. Amuchástegui” (CIMETSA), Vinculado al Instituto de Investigación Médica Mercedes y Martín Ferreyra (CONICET-UNC), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Eliane Piaggio
- INSERM U932, Immunity and Cancer, Paris, France
- Department of Translational Research, PSL Research University, Paris, France
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
4
|
Chen YE, Bousbaine D, Veinbachs A, Atabakhsh K, Dimas A, Yu VK, Zhao A, Enright NJ, Nagashima K, Belkaid Y, Fischbach MA. Engineered skin bacteria induce antitumor T cell responses against melanoma. Science 2023; 380:203-210. [PMID: 37053311 DOI: 10.1126/science.abp9563] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Certain bacterial colonists induce a highly specific T cell response. A hallmark of this encounter is that adaptive immunity develops preemptively, in the absence of an infection. However, the functional properties of colonist-induced T cells are not well defined, limiting our ability to understand anticommensal immunity and harness it therapeutically. We addressed both challenges by engineering the skin bacterium Staphylococcus epidermidis to express tumor antigens anchored to secreted or cell-surface proteins. Upon colonization, engineered S. epidermidis elicits tumor-specific T cells that circulate, infiltrate local and metastatic lesions, and exert cytotoxic activity. Thus, the immune response to a skin colonist can promote cellular immunity at a distal site and can be redirected against a target of therapeutic interest by expressing a target-derived antigen in a commensal.
Collapse
Affiliation(s)
- Y Erin Chen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA
| | - Djenet Bousbaine
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Alessandra Veinbachs
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Katayoon Atabakhsh
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Alex Dimas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Victor K Yu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Aishan Zhao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Nora J Enright
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Kazuki Nagashima
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Grace BE, Backlund CM, Morgan DM, Kang BH, Singh NK, Huisman BD, Rappazzo CG, Moynihan KD, Maiorino L, Dobson CS, Kyung T, Gordon KS, Holec PV, Mbah OCT, Garafola D, Wu S, Love JC, Wittrup KD, Irvine DJ, Birnbaum ME. Identification of Highly Cross-Reactive Mimotopes for a Public T Cell Response in Murine Melanoma. Front Immunol 2022; 13:886683. [PMID: 35812387 PMCID: PMC9260506 DOI: 10.3389/fimmu.2022.886683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
While immune checkpoint blockade results in durable responses for some patients, many others have not experienced such benefits. These treatments rely upon reinvigorating specific T cell-antigen interactions. However, it is often unknown what antigens are being recognized by T cells or how to potently induce antigen-specific responses in a broadly applicable manner. Here, we characterized the CD8+ T cell response to a murine model of melanoma following combination immunotherapy to determine the basis of tumor recognition. Sequencing of tumor-infiltrating T cells revealed a repertoire of highly homologous TCR sequences that were particularly expanded in treated mice and which recognized an antigen from an endogenous retrovirus. While vaccination against this peptide failed to raise a protective T cell response in vivo, engineered antigen mimotopes induced a significant expansion of CD8+ T cells cross-reactive to the original antigen. Vaccination with mimotopes resulted in killing of antigen-loaded cells in vivo yet showed modest survival benefit in a prophylactic vaccine paradigm. Together, this work demonstrates the identification of a dominant tumor-associated antigen and generation of mimotopes which can induce robust functional T cell responses that are cross-reactive to the endogenous antigen across multiple individuals.
Collapse
Affiliation(s)
- Beth E. Grace
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Coralie M. Backlund
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Byong H. Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nishant K. Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Brooke D. Huisman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - C. Garrett Rappazzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kelly D. Moynihan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Laura Maiorino
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Connor S. Dobson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Taeyoon Kyung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Khloe S. Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Patrick V. Holec
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Daniel Garafola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - K. Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Michael E. Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- *Correspondence: Michael E. Birnbaum,
| |
Collapse
|
6
|
MacNabb BW, Tumuluru S, Chen X, Godfrey J, Kasal DN, Yu J, Jongsma MLM, Spaapen RM, Kline DE, Kline J. Dendritic cells can prime anti-tumor CD8 + T cell responses through major histocompatibility complex cross-dressing. Immunity 2022; 55:982-997.e8. [PMID: 35617964 PMCID: PMC9883788 DOI: 10.1016/j.immuni.2022.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/20/2021] [Accepted: 04/28/2022] [Indexed: 01/31/2023]
Abstract
Antigen cross-presentation, wherein dendritic cells (DCs) present exogenous antigen on major histocompatibility class I (MHC-I) molecules, is considered the primary mechanism by which DCs initiate tumor-specific CD8+ T cell responses. Here, we demonstrate that MHC-I cross-dressing, an antigen presentation pathway in which DCs acquire and display intact tumor-derived peptide:MHC-I molecules, is also important in orchestrating anti-tumor immunity. Cancer cell MHC-I expression was required for optimal CD8+ T cell activation in two subcutaneous tumor models. In vivo acquisition of tumor-derived peptide:MHC-I molecules by DCs was sufficient to induce antigen-specific CD8+ T cell priming. Transfer of tumor-derived human leukocyte antigen (HLA) molecules to myeloid cells was detected in vitro and in human tumor xenografts. In conclusion, MHC-I cross-dressing is crucial for anti-tumor CD8+ T cell priming by DCs. In addition to quantitatively enhancing tumor antigen presentation, MHC cross-dressing might also enable DCs to more faithfully and efficiently mirror the cancer cell peptidome.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Sravya Tumuluru
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - James Godfrey
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jovian Yu
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Douglas E Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Justin Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Hackett JB, Glassbrook JE, Muñiz MC, Bross M, Fielder A, Dyson G, Movahhedin N, McCasland J, McCarthy-Leo C, Gibson HM. A diversity outbred F1 mouse model identifies host-intrinsic genetic regulators of response to immune checkpoint inhibitors. Oncoimmunology 2022; 11:2064958. [PMID: 35481286 PMCID: PMC9037414 DOI: 10.1080/2162402x.2022.2064958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) have improved outcomes for a variety of malignancies; however, many patients fail to benefit. While tumor-intrinsic mechanisms are likely involved in therapy resistance, it is unclear to what extent host genetic background influences response. To investigate this, we utilized the Diversity Outbred (DO) and Collaborative Cross (CC) mouse models. DO mice are an outbred stock generated by crossbreeding eight inbred founder strains, and CC mice are recombinant inbred mice generated from the same eight founders. We generated 207 DOB6F1 mice representing 48 DO dams and demonstrated that these mice reliably accept the C57BL/6-syngeneic B16F0 tumor and that host genetic background influences response to ICI. Genetic linkage analysis from 142 mice identified multiple regions including one within chromosome 13 that associated with therapeutic response. We utilized 6 CC strains bearing the positive (NZO) or negative (C57BL/6) driver genotype in this locus. We found that 2/3 of predicted responder CCB6F1 crosses show reproducible ICI response. The chromosome 13 locus contains the murine prolactin family, which is a known immunomodulating cytokine associated with various autoimmune disorders. To directly test whether prolactin influences ICI response rates, we implanted inbred C57BL/6 mice with subcutaneous slow-release prolactin pellets to induce mild hyperprolactinemia. Prolactin augmented ICI response against B16F0, with increased CD8 infiltration and 5/8 mice exhibiting slowed tumor growth relative to controls. This study highlights the role of host genetics in ICI response and supports the use of F1 crosses in the DO and CC mouse populations as powerful cancer immunotherapy models.
Collapse
Affiliation(s)
- Justin B. Hackett
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - James E. Glassbrook
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Biochemistry Microbiology Immunology, Wayne State University, Detroit, MI, USA
| | - Maria C. Muñiz
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Madeline Bross
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Abigail Fielder
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Gregory Dyson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Nasrin Movahhedin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Jennifer McCasland
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Heather M. Gibson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
8
|
Anti-Gr-1 Antibody Provides Short-Term Depletion of MDSC in Lymphodepleted Mice with Active-Specific Melanoma Therapy. Vaccines (Basel) 2022; 10:vaccines10040560. [PMID: 35455309 PMCID: PMC9032646 DOI: 10.3390/vaccines10040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
Lymphodepletion, reconstitution and active-specific tumor cell vaccination (LRAST) enhances the induction of tumor-specific T cells in a murine melanoma model. Myeloid-derived suppressor cells (MDSC) may counteract the induction of tumor-reactive T cells and their therapeutic efficacy. Thus, the aim of the study was to evaluate a possible benefit of MDSC depletion using anti-Gr-1 antibodies (Ab) in combination with LRAST. Female C57BL/6 mice with 3 days established subcutaneous (s.c.) D5 melanoma were lymphodepleted with cyclophosphamide and reconstituted with naive splenocytes. Vaccination was performed with irradiated syngeneic mGM-CSF-secreting D5G6 melanoma cells. MDSC depletion was performed using anti-Gr-1 Ab (clone RB6-8C5). Induction of tumor-specific T cells derived from tumor vaccine draining lymph nodes (TVDLN) was evaluated by the amount of tumor-specific interferon (IFN)-γ release. LRAST combined with anti-Gr-1 mAb administration enhanced the induction of tumor-specific T cells in TVDLN capable of releasing IFN-γ in a tumor-specific manner. Additional anti-Gr-1 mAb administration in LRAST-treated mice delayed growth of D5 melanomas by two weeks. Furthermore, we elucidate the impact of anti-Gr-1-depleting antibodies on the memory T cell compartment. Our data indicate that standard of care treatment regimens against cancer can be improved by implementing agents, e.g., depleting antibodies, which target and eliminate MDSC.
Collapse
|
9
|
Varela-Vázquez A, Guitián-Caamaño A, Carpintero-Fernandez P, Fonseca E, Sayedyahossein S, Aasen T, Penuela S, Mayán MD. Emerging functions and clinical prospects of connexins and pannexins in melanoma. Biochim Biophys Acta Rev Cancer 2020; 1874:188380. [PMID: 32461135 DOI: 10.1016/j.bbcan.2020.188380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Cellular communication through gap junctions and hemichannels formed by connexins and through channels made by pannexins allows for metabolic cooperation and control of cellular activity and signalling. These channel proteins have been described to be tumour suppressors that regulate features such as cell death, proliferation and differentiation. However, they display cancer type-dependent and stage-dependent functions and may facilitate tumour progression through junctional and non-junctional pathways. The accumulated knowledge and emerging strategies to target connexins and pannexins are providing novel clinical opportunities for the treatment of cancer. Here, we provide an updated overview of the role of connexins and pannexins in malignant melanoma. We discuss how targeting of these channel proteins may be used to potentiate antitumour effects in therapeutic settings, including through improved immune-mediated tumour elimination.
Collapse
Affiliation(s)
- Adrián Varela-Vázquez
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Amanda Guitián-Caamaño
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernandez
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain; Dermatology Deparment, University Hospital of A Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Samar Sayedyahossein
- Department of Anatomy & Cell Biology, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A5C1, Canada
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain
| | - Silvia Penuela
- Department of Anatomy & Cell Biology, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A5C1, Canada
| | - María D Mayán
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain.
| |
Collapse
|
10
|
Wilski NA, Stotesbury C, Del Casale C, Montoya B, Wong E, Sigal LJ, Snyder CM. STING Sensing of Murine Cytomegalovirus Alters the Tumor Microenvironment to Promote Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 204:2961-2972. [PMID: 32284333 DOI: 10.4049/jimmunol.1901136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/18/2020] [Indexed: 01/04/2023]
Abstract
CMV has been proposed to play a role in cancer progression and invasiveness. However, CMV has been increasingly studied as a cancer vaccine vector, and multiple groups, including ours, have reported that the virus can drive antitumor immunity in certain models. Our previous work revealed that intratumoral injections of wild-type murine CMV (MCMV) into B16-F0 melanomas caused tumor growth delay in part by using a viral chemokine to recruit macrophages that were subsequently infected. We now show that MCMV acts as a STING agonist in the tumor. MCMV infection of tumors in STING-deficient mice resulted in normal recruitment of macrophages to the tumor, but poor recruitment of CD8+ T cells, reduced production of inflammatory cytokines and chemokines, and no delay in tumor growth. In vitro, expression of type I IFN was dependent on both STING and the type I IFNR. Moreover, type I IFN alone was sufficient to induce cytokine and chemokine production by macrophages and B16 tumor cells, suggesting that the major role for STING activation was to produce type I IFN. Critically, viral infection of wild-type macrophages alone was sufficient to restore tumor growth delay in STING-deficient animals. Overall, these data show that MCMV infection and sensing in tumor-associated macrophages through STING signaling is sufficient to promote antitumor immune responses in the B16-F0 melanoma model.
Collapse
Affiliation(s)
- Nicole A Wilski
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christina Del Casale
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Brian Montoya
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Eric Wong
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Luis J Sigal
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
11
|
Williams JB, Li S, Higgs EF, Cabanov A, Wang X, Huang H, Gajewski TF. Tumor heterogeneity and clonal cooperation influence the immune selection of IFN-γ-signaling mutant cancer cells. Nat Commun 2020; 11:602. [PMID: 32001684 PMCID: PMC6992737 DOI: 10.1038/s41467-020-14290-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023] Open
Abstract
PD-1/PD-L1 blockade can promote robust tumor regression yet secondary resistance often occurs as immune selective pressure drives outgrowth of resistant tumor clones. Here using a genome-wide CRISPR screen in B16.SIY melanoma cells, we confirm Ifngr2 and Jak1 as important genes conferring sensitivity to T cell-mediated killing in vitro. However, when implanted into mice, these Ifngr2- and Jak1-deficient tumors paradoxically are better controlled immunologically. This phenotype maps to defective PD-L1 upregulation on mutant tumor cells, which improves anti-tumor efficacy of CD8+ T cells. To reconcile these observations with clinical reports of anti-PD-1 resistance linked to emergence of IFN-γ signaling mutants, we show that when mixed with wild-type tumor cells, IFN-γ-insensitive tumor cells indeed grow out, which depends upon PD-L1 expression by wild-type cells. Our results illustrate the complexity of functions for IFN-γ in anti-tumor immunity and demonstrate that intratumor heterogeneity and clonal cooperation can contribute to immunotherapy resistance.
Collapse
Affiliation(s)
- Jason B Williams
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Shuyin Li
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Emily F Higgs
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Alexandra Cabanov
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, United States
| | - Haochu Huang
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States.
- Departments of Medicine, Section of Hematology/Oncology, Chicago, IL, 60208, United States.
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637, United States.
| |
Collapse
|
12
|
Zhang Y, Fang C, Wang RE, Wang Y, Guo H, Guo C, Zhao L, Li S, Li X, Schultz PG, Cao YJ, Wang F. A tumor-targeted immune checkpoint blocker. Proc Natl Acad Sci U S A 2019; 116:15889-15894. [PMID: 31332018 PMCID: PMC6689898 DOI: 10.1073/pnas.1905646116] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To direct checkpoint inhibition to the tumor microenvironment, while avoiding systemic immune activation, we have synthesized a bispecific antibody [norleucine4, d-Phe7]-melanocyte stimulating hormone (NDP-MSH)-antiprogrammed cell death-ligand 1 antibody (αPD-L1) by conjugating a melanocyte stimulating hormone (α-MSH) analog to the antiprogrammed cell death-ligand 1 to (αPD-L1) antibody avelumab. This bispecific antibody can bind to both the melanocortin-1 receptor (MC1R) and to PD-L1 expressed on melanoma cells and shows enhanced specific antitumor efficacy in a syngeneic B16-SIY melanoma mouse model compared with the parental antibody at a 5 mg/kg dose. Moreover, the bispecific antibody showed increased infiltrated T cells in the tumor microenvironment. These results suggest that a tumor-targeted PD-L1-blocking bispecific antibody could have a therapeutic advantage in vivo, especially when used in combination with other checkpoint inhibitors.
Collapse
Affiliation(s)
- Yuhan Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Changming Fang
- California Institute for Biomedical Research (Calibr), La Jolla, CA 92037
| | - Rongsheng E Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Ying Wang
- California Institute for Biomedical Research (Calibr), La Jolla, CA 92037
| | - Hui Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Chao Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- School of Ocean, Shandong University, 264209 Weihai, China
| | - Lijun Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055 Shenzhen, China
| | - Shuhong Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055 Shenzhen, China
| | - Xia Li
- School of Ocean, Shandong University, 264209 Weihai, China
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr), La Jolla, CA 92037;
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Yu J Cao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055 Shenzhen, China
| | - Feng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China;
| |
Collapse
|
13
|
Fu Z, Ye J, Dean JW, Bostick JW, Weinberg SE, Xiong L, Oliff KN, Chen ZE, Avram D, Chandel NS, Zhou L. Requirement of Mitochondrial Transcription Factor A in Tissue-Resident Regulatory T Cell Maintenance and Function. Cell Rep 2019; 28:159-171.e4. [PMID: 31269437 PMCID: PMC6679941 DOI: 10.1016/j.celrep.2019.06.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/19/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Regulatory T cells (Tregs) are pivotal for immune suppression. Cellular metabolism is important for Treg homeostasis and function. However, the exact role of mitochondrial respiration in Tregs remains elusive. Mitochondrial transcription factor A (Tfam) is essential for mitochondrial respiration and controls mitochondrial DNA replication, transcription, and packaging. Here, we show that genetic ablation of Tfam in Tregs impairs Treg maintenance in non-lymphoid tissues in the steady state and in tumors. Tfam-deficient Tregs have reduced proliferation and Foxp3 expression upon glucose deprivation in vitro. Tfam deficiency preferentially affects gene activation in Tregs through regulation of DNA methylation, with enhanced methylation in the TSDR of the Foxp3 locus. Deletion of Tfam in Tregs affects Treg homing and stability, resulting in tissue inflammation in colitis, but enhances tumor rejection. Thus, our work reveals a critical role of Tfam-mediated mitochondrial respiration in Tregs to regulate inflammation and anti-tumor immunity.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Jian Ye
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - John W Bostick
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Samuel E Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Kristen N Oliff
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Zongming E Chen
- Geisinger Medical Center, Laboratory Medicine, 01-31, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
14
|
Tanaka M, Ishige A, Yaguchi M, Matsumoto T, Shirouzu M, Yokoyama S, Ishikawa F, Kitabayashi I, Takemori T, Harada M. Development of a simple new flow cytometric antibody-dependent cellular cytotoxicity (ADCC) assay with excellent sensitivity. J Immunol Methods 2018; 464:74-86. [PMID: 30389576 DOI: 10.1016/j.jim.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
Antibody-based therapeutic strategies have become recognized as useful clinical options in several types of cancer, often with the expectation that such therapies will trigger target cell elimination via antibody-dependent cellar cytotoxicity (ADCC) by natural killer cells. The successful development of therapeutic monoclonal antibodies (mAbs) requires an assay system that permits a critical evaluation of their physicochemical and biological characteristics. At present a number of ADCC assay systems have been reported, however, there is still room for improvement in terms of usability, operability and sensitivity. Here we report a novel flow cytometric ADCC assay that uses a human natural killer cell line stably transfected with mouse FcγRIII, and Fc receptor common-γ chain (FcRγ) and a reporter gene as effector cells. This assay relies on discriminating effector and target cells by their differential immunofluorescence, which allows for clear-cut gating and accurate calculation of the number of surviving cells in a target population. This assay is easy and quick to perform and provides reliable data even for low frequency target cells in assay samples and with low concentrations of mAbs. Furthermore, our approach allows us to identify synergistic ADCC activity of mAbs with different epitope specificities on the same target antigen.
Collapse
Affiliation(s)
- Miho Tanaka
- Drug Discovery Antibody Platform Unit, RIKEN Center for Integrative Medical Science (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Akiko Ishige
- Drug Discovery Antibody Platform Unit, RIKEN Center for Integrative Medical Science (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Masami Yaguchi
- Drug Discovery Antibody Platform Unit, RIKEN Center for Integrative Medical Science (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Takehisa Matsumoto
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Mikako Shirouzu
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Science (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Toshitada Takemori
- Drug Discovery Antibody Platform Unit, RIKEN Center for Integrative Medical Science (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Michishige Harada
- Drug Discovery Antibody Platform Unit, RIKEN Center for Integrative Medical Science (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
15
|
Adenovirus Coding for Interleukin-2 and Tumor Necrosis Factor Alpha Replaces Lymphodepleting Chemotherapy in Adoptive T Cell Therapy. Mol Ther 2018; 26:2243-2254. [PMID: 30017877 DOI: 10.1016/j.ymthe.2018.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 02/08/2023] Open
Abstract
Lymphodepleting preconditioning with high-dose chemotherapy is commonly used to increase the clinical efficacy of adoptive T cell therapy (ACT) strategies, however, with severe toxicity for patients. Conversely, oncolytic adenoviruses are safe and, when engineered to express interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α), they can achieve antitumor immunomodulatory effects similar to lymphodepletion. Therefore, we compare the safety and efficacy of such adenoviruses with a cyclophosphamide- and fludarabine-containing lymphodepleting regimen in the setting of ACT. Human adenovirus (Ad5/3-E2F-D24-hTNF-α-IRES-hIL-2; TILT-123) replication was studied using a Syrian hamster pancreatic tumor model (HapT1) infused with tumor-infiltrating lymphocytes (TILs). Using the oncolytic virus instead of lymphodepletion resulted in superior efficacy and survival. Immune cells responsive to TNF-α IL-2 were studied using an immunocompetent mouse melanoma model (B16.OVA) infused with ovalbumin-specific T (OT-I) cells. Here, the adenovirus approach improved tumor control together with increased intratumoral Th1 cytokine levels and infiltration of CD8+ T cells and CD86+ dendritic cells. Similar to humans, lymphodepleting preconditioning caused severe cytopenias, systemic inflammation, and damage to vital organs. Toxicity was minimal in adenovirus- and OT-I-treated mice. These findings demonstrate that ACT can be effectively facilitated by cytokine-coding adenovirus without requiring lymphodepletion, a rationale being clinically investigated.
Collapse
|
16
|
Spranger S, Gajewski TF. Mechanisms of Tumor Cell–Intrinsic Immune Evasion. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050606] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefani Spranger
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA;,
- Current affiliation: Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Thomas F. Gajewski
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA;,
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
17
|
Liang D, Tian L, You R, Halpert MM, Konduri V, Baig YC, Paust S, Kim D, Kim S, Jia F, Huang S, Zhang X, Kheradmand F, Corry DB, Gilbert BE, Levitt JM, Decker WK. AIMp1 Potentiates T H1 Polarization and Is Critical for Effective Antitumor and Antiviral Immunity. Front Immunol 2018; 8:1801. [PMID: 29379495 PMCID: PMC5775236 DOI: 10.3389/fimmu.2017.01801] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) must integrate a broad array of environmental cues to exact control over downstream immune responses including TH polarization. The multienzyme aminoacyl-tRNA synthetase complex component AIMp1/p43 responds to cellular stress and exerts pro-inflammatory functions; however, a role for DC-expressed AIMp1 in TH polarization has not previously been shown. Here, we demonstrate that the absence of AIMp1 in bone marrow-derived DC (BMDC) significantly impairs cytokine and costimulatory molecule expression, p38 MAPK signaling, and TH1 polarization of cocultured T-cells while significantly dysregulating immune-related gene expression. These deficits resulted in significantly compromised BMDC vaccine-mediated protection against melanoma. AIMp1 within the host was also critical for innate and adaptive antiviral immunity against influenza virus infection in vivo. Cancer patients with AIMp1 expression levels in the highest tertiles exhibited a 70% survival advantage at 15-year postdiagnosis as determined by bioinformatics analysis of nearly 9,000 primary human tumor samples in The Cancer Genome Atlas database. These data establish the importance of AIMp1 for the effective governance of antitumor and antiviral immune responses.
Collapse
Affiliation(s)
- Dan Liang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Lin Tian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Ran You
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Matthew M Halpert
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Yunyu C Baig
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Silke Paust
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States.,Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Fuli Jia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Antibody-based Proteomics Core, Baylor College of Medicine, Houston, TX, United States
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Antibody-based Proteomics Core, Baylor College of Medicine, Houston, TX, United States
| | - Xiang Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David B Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, TX, United States
| | - Brian E Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan M Levitt
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, United States
| | - William K Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
Villarreal DO, Allegrezza MJ, Smith MA, Chin D, Luistro LL, Snyder LA. Targeting of CD122 enhances antitumor immunity by altering the tumor immune environment. Oncotarget 2017; 8:109151-109160. [PMID: 29312597 PMCID: PMC5752510 DOI: 10.18632/oncotarget.22642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/05/2017] [Indexed: 11/25/2022] Open
Abstract
Mounting evidence demonstrates that CD8+CD122+ T cells have suppressive properties with the capacity to inhibit T cell responses. Therefore, these cells are rational targets for cancer immunotherapy. Here, we demonstrate that CD122 monoclonal antibody (mAb; aCD122) therapy significantly suppressed tumor growth and improved long-term survival in tumor-bearing mice. This therapeutic effect correlated with enhanced polyfunctional, cytolytic intratumoral CD8+ T cells and a decrease in granulocytic myeloid-derived suppressor cells (G-MDSCs). In addition, aCD122 treatment synergized with a vaccine to augment vaccine-induced antigen (Ag)-specific CD8+ T cell responses, reject established tumors and generate memory T cells. Furthermore, aCD122 mAb synergized with an anti-GITR (aGITR) mAb to confer significant control of tumor growth. These results suggest CD122 might be a promising target for cancer immunotherapy, either as a single agent or in combination with other forms of immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Diana Chin
- Oncology Discovery, Janssen R&D, Spring House, PA 19477
| | | | | |
Collapse
|
19
|
Williams JB, Horton BL, Zheng Y, Duan Y, Powell JD, Gajewski TF. The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J Exp Med 2017; 214:381-400. [PMID: 28115575 PMCID: PMC5294847 DOI: 10.1084/jem.20160485] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/08/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Although the presence of tumor-infiltrating lymphocytes (TILs) indicates an endogenous antitumor response, immune regulatory pathways can subvert the effector phase and enable tumor escape. Negative regulatory pathways include extrinsic suppression mechanisms, but also a T cell-intrinsic dysfunctional state. A more detailed study has been hampered by a lack of cell surface markers defining tumor-specific dysfunctional TILs, and PD-1 alone is not sufficient. Recently, we identified the transcription factor Egr2 as a critical component in controlling the anergic state in vitro. In this study, we show that the Egr2-driven cell surface proteins LAG-3 and 4-1BB can identify dysfunctional tumor antigen-specific CD8+ TIL. Co-expression of 4-1BB and LAG-3 was seen on a majority of CD8+ TILs, but not in lymphoid organs. Functional analysis revealed defective IL-2 and TNF production yet retained expression of IFN-γ and regulatory T cell-recruiting chemokines. Transcriptional and phenotypic characterization revealed coexpression of multiple additional co-stimulatory and co-inhibitory receptors. Administration of anti-LAG-3 plus anti-4-1BB mAbs was therapeutic against tumors in vivo, which correlated with phenotypic normalization. Our results indicate that coexpression of LAG-3 and 4-1BB characterize dysfunctional T cells within tumors, and that targeting these receptors has therapeutic utility.
Collapse
Affiliation(s)
- Jason B Williams
- Departments of Pathology, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
| | - Brendan L Horton
- Departments of Pathology, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
| | - Yan Zheng
- Departments of Pathology, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
| | - Yukan Duan
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jonathan D Powell
- Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Thomas F Gajewski
- Departments of Pathology, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
| |
Collapse
|
20
|
Ng SSM, Nagy BA, Jensen SM, Hu X, Alicea C, Fox BA, Felber BK, Bergamaschi C, Pavlakis GN. Heterodimeric IL15 Treatment Enhances Tumor Infiltration, Persistence, and Effector Functions of Adoptively Transferred Tumor-specific T Cells in the Absence of Lymphodepletion. Clin Cancer Res 2016; 23:2817-2830. [PMID: 27986749 DOI: 10.1158/1078-0432.ccr-16-1808] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
Abstract
Purpose: Adoptive cell transfer (ACT) is a promising immunotherapeutic approach for cancer. Host lymphodepletion is associated with favorable ACT therapy outcomes, but it may cause detrimental effects in humans. We tested the hypothesis that IL15 administration enhances ACT in the absence of lymphodepletion. We previously showed that bioactive IL15 in vivo comprises a stable complex of the IL15 chain with the IL15 receptor alpha chain (IL15Rα), termed heterodimeric IL15 (hetIL15).Experimental Design: We evaluated the effects of the combination regimen ACT + hetIL15 in the absence of lymphodepletion by transferring melanoma-specific Pmel-1 T cells into B16 melanoma-bearing mice.Results: hetIL15 treatment delayed tumor growth by promoting infiltration and persistence of both adoptively transferred Pmel-1 cells and endogenous CD8+ T cells into the tumor. In contrast, persistence of Pmel-1 cells was severely reduced following irradiation in comparison with mice treated with hetIL15. Importantly, we found that hetIL15 treatment led to the preferential enrichment of Pmel-1 cells in B16 tumor sites in an antigen-dependent manner. Upon hetIL15 administration, tumor-infiltrating Pmel-1 cells showed a "nonexhausted" effector phenotype, characterized by increased IFNγ secretion, proliferation, and cytotoxic potential and low level of PD-1. hetIL15 treatment also resulted in an improved ratio of Pmel-1 to Treg in the tumor.Conclusions: hetIL15 administration improves the outcome of ACT in lymphoreplete hosts, a finding with significant implications for improving cell-based cancer immunotherapy strategies. Clin Cancer Res; 23(11); 2817-30. ©2016 AACR.
Collapse
Affiliation(s)
- Sinnie Sin Man Ng
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Bethany A Nagy
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.,Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Shawn M Jensen
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, Oregon
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Bernard A Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, Oregon
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.
| |
Collapse
|
21
|
Evaristo C, Spranger S, Barnes SE, Miller ML, Molinero LL, Locke FL, Gajewski TF, Alegre ML. Cutting Edge: Engineering Active IKKβ in T Cells Drives Tumor Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:2933-8. [PMID: 26903482 PMCID: PMC4799771 DOI: 10.4049/jimmunol.1501144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 02/01/2016] [Indexed: 01/02/2023]
Abstract
Acquired dysfunction of tumor-reactive T cells is one mechanism by which tumors can evade the immune system. Identifying and correcting pathways that contribute to such dysfunction should enable novel anticancer therapy design. During cancer growth, T cells show reduced NF-κB activity, which is required for tumor rejection. Impaired T cell-intrinsic NF-κB may create a vicious cycle conducive to tumor progression and further T cell dysfunction. We hypothesized that forcing T cell-intrinsic NF-κB activation might break this cycle and induce tumor elimination. NF-κB was activated in T cells by inducing the expression of a constitutively active form of the upstream activator IκB kinase β (IKKβ). T cell-restricted constitutively active IKKβ augmented the frequency of functional tumor-specific CD8(+) T cells and improved tumor control. Transfer of constitutively active IKKβ-transduced T cells also boosted endogenous T cell responses that controlled pre-established tumors. Our results demonstrate that driving T cell-intrinsic NF-κB can result in tumor control, thus identifying a pathway with potential clinical applicability.
Collapse
Affiliation(s)
- César Evaristo
- Department of Medicine, University of Chicago, Chicago, IL 60637; and
| | - Stefani Spranger
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Sarah E Barnes
- Department of Medicine, University of Chicago, Chicago, IL 60637; and
| | - Michelle L Miller
- Department of Medicine, University of Chicago, Chicago, IL 60637; and
| | | | - Frederick L Locke
- Department of Medicine, University of Chicago, Chicago, IL 60637; and
| | - Thomas F Gajewski
- Department of Medicine, University of Chicago, Chicago, IL 60637; and Department of Pathology, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
22
|
Barnes SE, Wang Y, Chen L, Molinero LL, Gajewski TF, Evaristo C, Alegre ML. T cell-NF-κB activation is required for tumor control in vivo. J Immunother Cancer 2015; 3:1. [PMID: 25648675 PMCID: PMC4308877 DOI: 10.1186/s40425-014-0045-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND T cells have the capacity to eliminate tumors but the signaling pathways by which they do so are incompletely understood. T cell priming requires activation of the transcription factors AP-1, NFAT and NF-κB downstream of the TCR, but whether activation of T cell-NF-κB in vivo is required for tumor control has not been addressed. In humans and mice with progressively growing tumors, the activity of T cell-intrinsic NF-κB is often reduced. However, it is not clear if this is causal for an inability to reject transformed cells, or if it is a consequence of tumor growth. T cell-NF-κB is important for T cell survival and effector differentiation and plays an important role in enabling T cells to reject cardiac and islet allografts, suggesting the possibility that it may also be required for tumor elimination. In this study, we tested whether normal T cell-NF-κB activation is necessary for the rejection of tumors whose growth is normally controlled by the immune system. METHODS Mice with genetically impaired T cell-NF-κB activity were subcutaneously injected with MC57-SIY tumor cells. Tumor growth was measured over time, and the anti-tumor immune response was evaluated using flow cytometry and cytokine detection assays. RESULTS Mice with impaired T cell-NF-κB activity were unable to reject tumors that were otherwise eliminated by wildtype mice, despite equal accumulation of tumor-reactive T cells. In addition, specific impairment of NF-κB signaling downstream of the TCR was sufficient to prevent tumor rejection. Tumor antigen-specific T cell-IFN-γ and TNF-α production, as well as cytotoxic ability, were all reduced in mice with impaired T cell-NF-κB, suggesting an important role for this transcription factor in the effector differentiation of tumor-specific effector T cells. CONCLUSIONS Our results have identified the NF-κB pathway as an important signaling axis in T cells, required for the elimination of growing tumors in vivo. Maintaining or enhancing T cell-NF-κB activity may be a promising avenue for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Sarah E Barnes
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| | - Ying Wang
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| | - Luqiu Chen
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| | - Luciana L Molinero
- />Genentech, Inc., 1 DNA Way MS: 245c, South San Francisco, CA 94080 USA
| | - Thomas F Gajewski
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
- />Department of Pathology, The University of Chicago, 927 E. 57th St, Chicago, IL 60637 USA
| | - Cesar Evaristo
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| | - Maria-Luisa Alegre
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| |
Collapse
|
23
|
|
24
|
Sapkota B, Hill CE, Pollack BP. Vemurafenib enhances MHC induction in BRAF V600E homozygous melanoma cells. Oncoimmunology 2014; 2:e22890. [PMID: 23483066 PMCID: PMC3583938 DOI: 10.4161/onci.22890] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To optimally integrate targeted kinase inhibitors and immunotherapies in the treatment of melanoma, it will be critical to understand how BRAFV600E mutational status and BRAFV600E inhibition influence the expression of genes that govern antitumor immune responses. Because major histocompatibility complex (MHC) molecules are critical for interactions between tumor cells and lymphocytes, we investigated the impact of BRAFV600E-selective inhibitors on the expression of MHC molecules. We found that the treatment of A375 melanoma cells with vemurafenib enhances the induction of MHC Class I and Class II molecules by interferon γ and IFNα2b. Consistent with these findings, we observed that the forced overexpression of BRAFV600E has the opposite effect and can repress the baseline expression of MHC Class I molecules in A375 cells. Further studies utilizing eight other melanoma cell lines revealed that the vemurafenib-mediated enhancement of MHC induction by IFNγ only occurs in the context of homozygous, but not heterozygous, BRAFV600E mutation. These findings suggest that BRAFV600E activity directly influences the expression of MHC molecules and the response to Type I and Type II IFNs. Furthermore, our data suggest that the effect of vemurafenib on the expression of immune system-relevant genes may depend on the zygosity of the BRAFV600E mutation, which is not routinely assessed in melanoma patients.
Collapse
Affiliation(s)
- Bishu Sapkota
- Department of Dermatology; Emory University School of Medicine; Atlanta, GA USA
| | | | | |
Collapse
|
25
|
Spaapen RM, Leung MYK, Fuertes MB, Kline JP, Zhang L, Zheng Y, Fu YX, Luo X, Cohen KS, Gajewski TF. Therapeutic Activity of High-Dose Intratumoral IFN-β Requires Direct Effect on the Tumor Vasculature. THE JOURNAL OF IMMUNOLOGY 2014; 193:4254-60. [DOI: 10.4049/jimmunol.1401109] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Lim JY, Brockstedt DG, Lord EM, Gerber SA. Radiation therapy combined with Listeria monocytogenes-based cancer vaccine synergize to enhance tumor control in the B16 melanoma model. Oncoimmunology 2014; 3:e29028. [PMID: 25083327 PMCID: PMC4106167 DOI: 10.4161/onci.29028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 01/13/2023] Open
Abstract
Conceptually, the immune system may profoundly influence the efficacy of radiation therapy. Compelling evidence has recently emerged revealing the capacity of local radiation therapy (RT) to induce antitumor immune responses and sparked interest in combining RT with immunotherapy to promote tumor-specific immunity. A Listeria monocytogenes (Lm)-based cancer vaccine engineered to express tumor-associated antigen has been shown to effectively retard tumor growth by cell-mediated immune mechanisms. We hypothesized that combining RT and Lm vaccine will result in synergistic effects that enhance tumor control. Collectively, our data demonstrate that combination therapy significantly delayed B16 melanoma tumor growth by a mechanism partly dependent on CD8+ T cells. Radiotherapy and Lm vaccine each induce different aspects of antitumor immunity, resulting in an overall increase in intratumoral numbers of activated T cells, antigen-specific CD8+ T cells, natural killer (NK) cells and levels of effector molecules, such as interferon γ (IFNγ) and granzyme B. Thus, radiation and Lm vaccine combination therapy is a promising new strategy for the treatment of malignant disease, and further understanding of the mechanisms that underlie efficacy is required to optimize the dosage and schedule for administering the two treatments.
Collapse
Affiliation(s)
- Joanne Yh Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY USA
| | | | - Edith M Lord
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY USA
| | - Scott A Gerber
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY USA
| |
Collapse
|
27
|
Lu Y, Wang Q, Yi Q. Anticancer Tc9 cells: Long-lived tumor-killing T cells for adoptive therapy. Oncoimmunology 2014; 3:e28542. [PMID: 25054087 PMCID: PMC4092006 DOI: 10.4161/onci.28542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 11/25/2022] Open
Abstract
IL-9-producing cytotoxic T (Tc9) cells represent a unique CD8+ T-cell subset. These long-lived immune cells possess the capacity to acquire effector function and home to tumor tissues after adoptive transfer. IL-9 is indispensable for Tc9-mediated superior antitumor response. These findings are highly significant and crucial to achieve advances in T cell-based adoptive therapies.
Collapse
Affiliation(s)
- Yong Lu
- Department of Cancer Biology; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| | - Qiang Wang
- Department of Cancer Biology; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| | - Qing Yi
- Department of Cancer Biology; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| |
Collapse
|
28
|
Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer 2014; 2:3. [PMID: 24829760 PMCID: PMC4019906 DOI: 10.1186/2051-1426-2-3] [Citation(s) in RCA: 437] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/22/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Blockade of immune inhibitory pathways is emerging as an important therapeutic modality for the treatment of cancer. Single agent treatments have partial anti-tumor activity in preclinical models and in human cancer patients. Inasmuch as the tumor microenvironment shows evidence of multiple immune inhibitory mechanisms present concurrently, it has been reasoned that combination therapies may be required for optimal therapeutic effect. METHODS To test this notion, we utilized permutations of anti-CTLA-4 mAb, anti-PD-L1 mAb, and/or the IDO inhibitor INCB23843 in the murine B16.SIY melanoma model. RESULTS All three combinations showed markedly improved tumor control over single treatments, with many mice achieving complete tumor rejection. This effect was seen in the absence of vaccination or adoptive T cell therapy. The mechanism of synergy was investigated to examine the priming versus effector phase of the anti-tumor immune response. Only a minimal increase in priming of anti-tumor T cells was observed at early time points in the tumor-draining lymph nodes (TdLN). In contrast, as early as three days after therapy initiation, a marked increase in the capacity of tumor-infiltrating CD8(+) T cells to produce IL-2 and to proliferate was found in all groups treated with the effective combinations. Treatment of mice with FTY720 to block new T cell trafficking from secondary lymphoid structures still enabled restoration of IL-2 production and proliferation by intratumoral T cells, and also retained most of the tumor growth control. CONCLUSIONS Our data suggest that the therapeutic effect of these immunotherapies was mainly mediated through direct reactivation of T cells in situ. These three combinations are attractive to pursue clinically, and the ability of intratumoral CD8(+) T cells to produce IL-2 and to proliferate could be an important biomarker to integrate into clinical studies.
Collapse
Affiliation(s)
- Stefani Spranger
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | | | - Brendan Horton
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | | | | | - Thomas F Gajewski
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Lim JYH, Gerber SA, Murphy SP, Lord EM. Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells. Cancer Immunol Immunother 2013; 63:259-71. [PMID: 24357146 DOI: 10.1007/s00262-013-1506-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
The need for an intact immune system for cancer radiation therapy to be effective suggests that radiation not only acts directly on the tumor but also indirectly, through the activation of host immune components. Recent studies demonstrated that endogenous type I interferons (type I IFNs) play a role in radiation-mediated anti-tumor immunity by enhancing the ability of dendritic cells to cross-prime CD8(+) T cells. However, it is still unclear to what extent endogenous type I IFNs contribute to the recruitment and function of CD8(+) T cells. Little is also known about the effects of type I IFNs on myeloid cells. In the current study, we demonstrate that type I and type II IFNs (IFN-γ) are both required for the increased production of CXCL10 (IP-10) chemokine by myeloid cells within the tumor after radiation treatment. Radiation-induced intratumoral IP-10 levels in turn correlate with tumor-infiltrating CD8(+) T cell numbers. Moreover, type I IFNs promote potent tumor-reactive CD8(+) T cells by directly affecting the phenotype, effector molecule production, and enhancing cytolytic activity. Using a unique inducible expression system to increase local levels of IFN-α exogenously, we show here that the capacity of radiation therapy to result in tumor control can be enhanced. Our preclinical approach to study the effects of local increase in IFN-α levels can be used to further optimize the combination therapy strategy in terms of dosing and scheduling, which may lead to better clinical outcome.
Collapse
Affiliation(s)
- Joanne Y H Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, 601 Elmwood Ave, Box 672, Rochester, NY, 14642, USA
| | | | | | | |
Collapse
|
30
|
Abstract
One of the mechanisms that are in place to control the activation of mature T cells that bear self-reactive antigen receptors is anergy, a long-term state of hyporesponsiveness that is established in T cells in response to suboptimal stimulation. T cells receive signals that result not only from antigen recognition and costimulation but also from other sources, including cytokine receptors, inhibitory receptors or metabolic sensors. Integration of those signals will determine T cell fate. Under conditions that induce anergy, T cells activate a program of gene expression that leads to the production of proteins that block T cell receptor signaling and inhibit cytokine gene expression. In this review we will examine those signals that determine functional outcome following antigen encounter, review current knowledge of the factors that ensure signaling inhibition and epigenetic gene silencing in anergic cells and explore the mechanisms that lead to the reversal of anergy and the reacquisition of effector functions.
Collapse
Affiliation(s)
- Rut Valdor
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| | - Fernando Macian
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| |
Collapse
|
31
|
Spranger S, Gajewski T. Rational combinations of immunotherapeutics that target discrete pathways. J Immunother Cancer 2013; 1:16. [PMID: 24829752 PMCID: PMC4019905 DOI: 10.1186/2051-1426-1-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/12/2013] [Indexed: 12/25/2022] Open
Abstract
An effective anti-tumor immune response requires the coordinated action of the innate and adaptive phases of the immune system. Critical processes include the activation of dendritic cells to present antigens, produce cytokines including type I interferons, and express multiple costimulatory ligands; induction of a productive T cell response within lymph nodes; migration of activated T cells to the tumor microenvironment in response to chemokines and homing receptor expression; and having effector T cells gain access to antigen-expressing tumor cells and maintain sufficient functionality to destroy them. However, tumors can become adept at escaping the immune response, developing multiple mechanisms to disrupt key processes. In general, tumors can be assigned into two different, major groups depending on whether the tumor there is an 'inflamed' or 'non-inflamed' tumor microenvironment. Improvements in our understanding of the interactions between the immune system and cancer have resulted in the development of various strategies to improve the immune-mediated control of tumors in both sub-groups. Categories of major immunotherapeutic intervention include methods to increase the frequency of tumor antigen-specific effector T cells in the circulation, strategies to block or uncouple a range of immune suppressive mechanisms within the tumor microenvironment, and tactics to induce de novo immune inflammation within the tumor microenvironment. The latter may be particularly important for eliciting immune recognition of non-inflamed tumor phenotypes. The premise put forth in this review is that synergistic therapeutic effects in vivo may be derived from combination therapies taken from distinct "bins" based on these mechanisms of action. Early data in both preclinical and some clinical studies provide support for this model. We also suggest that optimal application of these combinations may be aided by appropriate patient selection based on predictive biomarkers.
Collapse
Affiliation(s)
- Stefani Spranger
- Biological Sciences Division, Pathology, The University of Chicago, 929 E. 57th Street, GCIS W-423, Chicago, IL 60637, USA
| | - Thomas Gajewski
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 2013; 25:268-76. [PMID: 23579075 DOI: 10.1016/j.coi.2013.02.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/11/2013] [Accepted: 02/15/2013] [Indexed: 12/22/2022]
Abstract
For tumor antigen-specific T cells to effectively control the growth of cancer cells in vivo, they must gain access to, and function within, the tumor microenvironment. While tumor antigen-based vaccines and T cell adoptive transfer strategies can result in clinical benefit in a subset of patients, most of the patients do not respond clinically. Even for tumor-infiltrating lymphocyte (TIL)-based adoptive transfer for patients with metastatic melanoma, which can provide tumor shrinkage in around 50% of treated individuals, many patients are not eligible, in part because there are not sufficient TIL present in the resected tumor. Thus, the denominator is in fact larger, and it has been suggested that absence of TIL may be a marker for poor efficacy of immunotherapies in general. While qualitative and/or quantitative features of the T cells are important considerations for efficacy, a major component of primary resistance likely can be attributed to the tumor microenvironment. Data are accumulating suggesting that two major categories of immune resistance within the tumor microenvironment may exist: failure of T cell trafficking due to low levels of inflammation and lack of chemokines for migration, and dominant suppression through immune inhibitory mechanisms. New therapeutic interventions are being guided by these observations, and preliminary clinical success is validating this working model.
Collapse
|
33
|
Soto CM, Stone JD, Chervin AS, Engels B, Schreiber H, Roy EJ, Kranz DM. MHC-class I-restricted CD4 T cells: a nanomolar affinity TCR has improved anti-tumor efficacy in vivo compared to the micromolar wild-type TCR. Cancer Immunol Immunother 2012; 62:359-69. [PMID: 22926060 DOI: 10.1007/s00262-012-1336-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/03/2012] [Indexed: 12/29/2022]
Abstract
Clinical studies with immunotherapies for cancer, including adoptive cell transfers of T cells, have shown promising results. It is now widely believed that recruitment of CD4(+) helper T cells to the tumor would be favorable, as CD4(+) cells play a pivotal role in cytokine secretion as well as promoting the survival, proliferation, and effector functions of tumor-specific CD8(+) cytotoxic T lymphocytes. Genetically engineered high-affinity T-cell receptors (TCRs) can be introduced into CD4(+) helper T cells to redirect them to recognize MHC-class I-restricted antigens, but it is not clear what affinity of the TCR will be optimal in this approach. Here, we show that CD4(+) T cells expressing a high-affinity TCR (nanomolar K (d) value) against a class I tumor antigen mediated more effective tumor treatment than the wild-type affinity TCR (micromolar K (d) value). High-affinity TCRs in CD4(+) cells resulted in enhanced survival and long-term persistence of effector memory T cells in a melanoma tumor model. The results suggest that TCRs with nanomolar affinity could be advantageous for tumor targeting when expressed in CD4(+) T cells.
Collapse
Affiliation(s)
- Carolina M Soto
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Complement-induced protection: an explanation for the limitations of cell-based tumour immunotherapies. Immunol Cell Biol 2012; 90:869-71. [PMID: 22777521 DOI: 10.1038/icb.2012.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Complement is involved in the inflammatory response and clearance of infected or altered cells. It is therefore unexpected that complement-deficient animals are less susceptible to carcinogen-induced tumours and more readily control growth of injected tumour cell lines than their wild-type counterparts, implying that complement promotes tumour development and progression. Conversely, natural killer (NK) and CD8(+) T cells are known to limit progression of the same tumours. Previous studies indicate that sublytic levels of the complement membrane attack complex protect cells against further attack by lytic doses of complement and other pore-formers such as perforin. We hypothesise that inefficient attack by complement in vivo allows tumour cells to avoid lysis by both NK cells and antigen-specific cytotoxic T cells, thereby promoting tumour outgrowth. Complement could thus be limiting the efficacy of NK and T cell-targeted cancer therapies, and the inclusion of complement inhibitors could optimise these immunotherapeutic regimes.
Collapse
|