1
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits dsDNA-mediated type I IFN expression via STING-dependent and STING-independent signalling pathways. J Gen Virol 2023; 104. [PMID: 37882657 DOI: 10.1099/jgv.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Type I interferons (IFNs) are critical in the host defence against viruses. They induce hundreds of interferon-stimulated genes (ISGs) many of which have an antiviral role. Poxviruses induce IFNs via their pathogen-associated molecular patterns, in particular, their genomic DNA. In a majority of cell types, dsDNA is detected by a range of cytoplasmic DNA sensors that mediate type I IFN expression via stimulator of interferon genes (STING). Orf virus (ORFV) induces cutaneous pustular skin lesions and is the type species of the Parapoxvirus genus within the Poxviridae family. The aim of this study was to investigate whether ORFV modulates dsDNA-induced type I IFN expression via STING-dependent signalling pathways in human dermal fibroblasts (hNDF) and THP-1 cells. We showed that ORFV infection of these cell types treated with poly(dA:dT) resulted in strong inhibition of expression of IFN-β. In hNDFs, we showed using siRNA knock-down that STING was essential for type I IFN induction. IFN-β expression was further reduced when both STING and RIG-I were knocked down. In addition, HEK293 cells that do not express STING or Toll-like receptors also produce IFN-β following stimulation with poly(dA:dT). The 5' triphosphate dsRNA produced by RNA polymerase III specifically results in the induction of type I IFNs through the RIG-I receptor. We showed that ORFV infection resulted in strong inhibition of IFN-β expression in HEK293 cells stimulated with poly(dA:dT). Overall, this study shows that ORFV potently counteracts the STING-dependent and STING-independent IFN response by antagonizing dsDNA-activated IFN signalling pathways.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Petenkova A, Auger SA, Lamb J, Quellier D, Carter C, To OT, Milosevic J, Barghout R, Kugadas A, Lu X, Geddes-McAlister J, Fichorova R, Sykes DB, Distefano MD, Gadjeva M. Prenylcysteine oxidase 1 like protein is required for neutrophil bactericidal activities. Nat Commun 2023; 14:2761. [PMID: 37179332 PMCID: PMC10182992 DOI: 10.1038/s41467-023-38447-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The bactericidal function of neutrophils is dependent on a myriad of intrinsic and extrinsic stimuli. Using systems immunology approaches we identify microbiome- and infection-induced changes in neutrophils. We focus on investigating the Prenylcysteine oxidase 1 like (Pcyox1l) protein function. Murine and human Pcyox1l proteins share ninety four percent aminoacid homology revealing significant evolutionary conservation and implicating Pcyox1l in mediating important biological functions. Here we show that the loss of Pcyox1l protein results in significant reductions in the mevalonate pathway impacting autophagy and cellular viability under homeostatic conditions. Concurrently, Pcyox1l CRISPRed-out neutrophils exhibit deficient bactericidal properties. Pcyox1l knock-out mice demonstrate significant susceptibility to infection with the gram-negative pathogen Psuedomonas aeruginosa exemplified through increased neutrophil infiltrates, hemorrhaging, and reduced bactericidal functionality. Cumulatively, we ascribe a function to Pcyox1l protein in modulation of the prenylation pathway and suggest connections beween metabolic responses and neutrophil functionality.
Collapse
Affiliation(s)
- Anastasiia Petenkova
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeffrey Lamb
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Daisy Quellier
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Cody Carter
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - On Tak To
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Rana Barghout
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Abirami Kugadas
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoxiao Lu
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Raina Fichorova
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard University, Faculty of Arts and Sciences, Cambridge, MA, 02138, USA.
| |
Collapse
|
3
|
Stegelmeier AA, Darzianiazizi M, Hanada K, Sharif S, Wootton SK, Bridle BW, Karimi K. Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. Int J Mol Sci 2021; 22:4726. [PMID: 33946935 PMCID: PMC8125486 DOI: 10.3390/ijms22094726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges. Like all cells in the human body, neutrophils possess the receptors for IFNs and contribute to antiviral host defense. To combat viruses, neutrophils utilize various mechanisms, such as viral sensing, neutrophil extracellular trap formation, and antigen presentation. These mechanisms have also been linked to tissue damage during viral infection and inflammation. In this review, we presented evidence that a complex cross-regulatory talk between IFNs and neutrophils initiates appropriate antiviral immune responses and regulates them to minimize tissue damage. We also explored recent exciting research elucidating the interactions between IFNs, neutrophils, and severe acute respiratory syndrome-coronavirus-2, as an example of neutrophil and IFN cross-regulatory talk. Dissecting the IFN-neutrophil paradigm is needed for well-balanced antiviral therapeutics and development of novel treatments against many major epidemic or pandemic viral infections, including the ongoing pandemic of the coronavirus disease that emerged in 2019.
Collapse
Affiliation(s)
| | | | | | | | | | - Byram W. Bridle
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
4
|
Klug NR, Chechneva OV, Hung BY, O'Donnell ME. High glucose-induced effects on Na +-K +-2Cl - cotransport and Na +/H + exchange of blood-brain barrier endothelial cells: involvement of SGK1, PKCβII, and SPAK/OSR1. Am J Physiol Cell Physiol 2021; 320:C619-C634. [PMID: 33406028 DOI: 10.1152/ajpcell.00177.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hyperglycemia exacerbates edema formation and worsens neurological outcome in ischemic stroke. Edema formation in the early hours of stroke involves transport of ions and water across an intact blood-brain barrier (BBB), and swelling of astrocytes. We showed previously that high glucose (HG) exposures of 24 hours to 7 days increase abundance and activity of BBB Na+-K+-2Cl- cotransport (NKCC) and Na+/H+ exchange 1 (NHE1). Further, bumetanide and HOE-642 inhibition of these transporters significantly reduces edema and infarct following middle cerebral artery occlusion in hyperglycemic rats, suggesting that NKCC and NHE1 are effective therapeutic targets for reducing edema in hyperglycemic stroke. The mechanisms underlying hyperglycemia effects on BBB NKCC and NHE1 are not known. In the present study we investigated whether serum-glucocorticoid regulated kinase 1 (SGK1) and protein kinase C beta II (PKCβII) are involved in HG effects on BBB NKCC and NHE1. We found transient increases in phosphorylated SGK1 and PKCβII within the first hour of HG exposure, after 5-60 min for SGK1 and 5 min for PKCβII. However, no changes were observed in cerebral microvascular endothelial cell SGK1 or PKCβII abundance or phosphorylation (activity) after 24 or 48 h HG exposures. Further, we found that HG-induced increases in NKCC and NHE1 abundance were abolished by inhibition of SGK1 but not PKCβII, whereas the increases in NKCC and NHE activity were abolished by inhibition of either kinase. Finally, we found evidence that STE20/SPS1-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 (SPAK/OSR1) participate in the HG-induced effects on BBB NKCC.
Collapse
Affiliation(s)
- Nicholas R Klug
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Olga V Chechneva
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Benjamin Y Hung
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
5
|
Carretta MD, Barría Y, Borquez K, Urra B, Rivera A, Alarcón P, Hidalgo MA, Burgos RA. β-hydroxybutyrate and hydroxycarboxylic acid receptor 2 agonists activate the AKT, ERK and AMPK pathways, which are involved in bovine neutrophil chemotaxis. Sci Rep 2020; 10:12491. [PMID: 32719460 PMCID: PMC7385489 DOI: 10.1038/s41598-020-69500-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
Elevated plasma concentrations of the ketone body β-hydroxybutyrate (BHB), an endogenous agonist of the hydroxycarboxylic acid receptor 2 (HCA2), is associated with an increased incidence of inflammatory diseases during lactation in dairy cows. In the early stages of this pathology, an increase in neutrophil recruitment is observed; however, the role of BHB remains elusive. This study characterized the effect of BHB and synthetic agonists of the HCA2 receptor on bovine neutrophil chemotaxis and the signaling pathways involved in this process. We demonstrated that treatment with BHB concentrations between 1.2 and 10 mM and two full selective agonists of the HCA2 receptor, MK-1903 and nicotinic acid, increased bovine neutrophil chemotaxis. We also observed that BHB and HCA2 agonists induced calcium release and phosphorylation of AKT, ERK 1/2 and AMPKα. To evaluate the role of these pathways in bovine neutrophil chemotaxis, we used the pharmacological inhibitors BAPTA-AM, pertussis toxin, U73122, LY294002, U0126 and compound C. Our results suggest that these pathways are required for HCA2 agonist-induced bovine neutrophil chemotaxis in non-physiological condition. Concentrations around 1.4 mM of BHB after calving may exert a chemoattractant effect that is key during the onset of the inflammatory process associated with metabolic disorders in dairy cows.
Collapse
Affiliation(s)
- María D Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.
| | - Yonathan Barría
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Katherine Borquez
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Bárbara Urra
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Andrés Rivera
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - María A Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Tamassia N, Arruda‐Silva F, Wright HL, Moots RJ, Gardiman E, Bianchetto‐Aguilera F, Gasperini S, Capone M, Maggi L, Annunziato F, Edwards SW, Cassatella MA. Human neutrophils activated via TLR8 promote Th17 polarization through IL‐23. J Leukoc Biol 2019; 105:1155-1165. [DOI: 10.1002/jlb.ma0818-308r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nicola Tamassia
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | - Fabio Arruda‐Silva
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
- CAPES FoundationMinistry of Education of Brazil Brasilia DF Brazil
| | - Helen L. Wright
- Institute of Integrative BiologyUniversity of Liverpool Liverpool United Kindom
| | - Robert J. Moots
- Institute of Ageing and Chronic DiseaseUniversity of Liverpool Liverpool United Kindom
| | - Elisa Gardiman
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | | | - Sara Gasperini
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Steven W. Edwards
- Institute of Integrative BiologyUniversity of Liverpool Liverpool United Kindom
| | - Marco A. Cassatella
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| |
Collapse
|
7
|
Olmo I, Teuber S, Larrazabal C, Alarcon P, Raipane F, Burgos RA, Hidalgo MA. Docosahexaenoic acid and TUG-891 activate free fatty acid-4 receptor in bovine neutrophils. Vet Immunol Immunopathol 2019; 209:53-60. [PMID: 30885306 DOI: 10.1016/j.vetimm.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/18/2022]
Abstract
Fatty acids are well known metabolic intermediaries but also have a role in the immune response. Long-chain fatty acids such as omega-6 and -9 activate neutrophil function through free fatty acid (FFA)-1 receptor in bovines. Although omega-3 has also been suggested to influence neutrophil function, the details remain unclear. The goal of this study was to determine the presence of the bovine FFA4 receptor and its effect on neutrophil responses. We treated bovine neutrophils with the natural and synthetic agonists of FFA4 receptor docosahexaenoic acid (DHA) and TUG-891, respectively, and assessed oxidative and no oxidative response. We detected protein and mRNA FFA4 receptor expression through immunofluorescence, immunoblot, and RT-PCR analysis. DHA and TUG-891 both increased intracellular calcium mobilisation in bovine neutrophils, with 50% effective concentrations of 99 μM and 73 μM, respectively, which was partially reduced after treatment with the FFA4 antagonist AH7614. Furthermore, DHA and TUG-891 increased matrix metalloproteinase (MMP)-9 granules release and superoxide production. AH7614 and the intracellular calcium chelator BAPTA-AM decreased the superoxide production induced by TUG-891 and by both DHA and TUG-891, respectively, suggesting a key role of intracellular calcium in FFA4 agonists-induced superoxide production. These results highlight an important mechanism of bovine neutrophil responses mediated via FFA4 receptor, which can further inform the development of new formulations for DHA-enriched feed supplements to enhance innate immunity in dairy cattle.
Collapse
Affiliation(s)
- Ivan Olmo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Camilo Larrazabal
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcon
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Fernanda Raipane
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile.
| | - Maria A Hidalgo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
8
|
Perčulija V, Ouyang S. Diverse Roles of DEAD/DEAH-Box Helicases in Innate Immunity and Diseases. HELICASES FROM ALL DOMAINS OF LIFE 2019. [PMCID: PMC7158350 DOI: 10.1016/b978-0-12-814685-9.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DEAD/DEAH-box helicases are enzymes that belong to the DEAD/H-box family of SF2 helicase superfamily. These enzymes are essential in RNA metabolism, where they are involved in a number of processes that require manipulation of RNA structure. Recent studies have found that some DEAD/DEAH-box helicases play important roles in innate immunity, where they act as sensors of cytosolic DNA/RNA, as adaptor proteins, or as regulators of signaling and gene expression. In spite of their function in immunity, DEAD/DEAH-box helicases can also be hijacked and exploited by viruses to circumvent detection and aid in viral replication. These findings not only imply that DEAD/DEAH-box helicases have a broader function than previously thought, but also give us a much better understanding of immune mechanisms and diseases that arise due to the dysregulation or evasion thereof. In this chapter, we demonstrate the known scope of activities of human DEAD/DEAH-box helicases in innate immunity and interaction with viruses or other pathogens. Additionally, we give an outline of diseases in which they are, or may be, involved in the context of immunity.
Collapse
|
9
|
Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC, Catz SD. Neutrophils: New insights and open questions. Sci Immunol 2018; 3:eaat4579. [PMID: 30530726 DOI: 10.1126/sciimmunol.aat4579] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2024]
Abstract
Neutrophils are the first line of defense against bacteria and fungi and help combat parasites and viruses. They are necessary for mammalian life, and their failure to recover after myeloablation is fatal. Neutrophils are short-lived, effective killing machines. Their life span is significantly extended under infectious and inflammatory conditions. Neutrophils take their cues directly from the infectious organism, from tissue macrophages and other elements of the immune system. Here, we review how neutrophils traffic to sites of infection or tissue injury, how they trap and kill bacteria, how they shape innate and adaptive immune responses, and the pathophysiology of monogenic neutrophil disorders.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego,9500 Gilman Drive, La Jolla, CA, USA
| | - Hal M Hoffman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Paul Kubes
- Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 4, 37134 Verona, Italy
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego,9500 Gilman Drive, La Jolla, CA, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Caneparo V, Landolfo S, Gariglio M, De Andrea M. The Absent in Melanoma 2-Like Receptor IFN-Inducible Protein 16 as an Inflammasome Regulator in Systemic Lupus Erythematosus: The Dark Side of Sensing Microbes. Front Immunol 2018; 9:1180. [PMID: 29892303 PMCID: PMC5985366 DOI: 10.3389/fimmu.2018.01180] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Absent in melanoma 2 (AIM2)-like receptors (ALRs) are a newly characterized class of pathogen recognition receptors (PRRs) involved in cytosolic and nuclear pathogen DNA recognition. In recent years, two ALR family members, the interferon (IFN)-inducible protein 16 (IFI16) and AIM2, have been linked to the pathogenesis of various autoimmune diseases, among which systemic lupus erythematosus (SLE) has recently gained increasing attention. SLE patients are indeed often characterized by constitutively high serum IFN levels and increased expression of IFN-stimulated genes due to an abnormal response to pathogens and/or incorrect self-DNA recognition process. Consistently, we and others have shown that IFI16 is overexpressed in a wide range of autoimmune diseases where it triggers production of specific autoantibodies. In addition, evidence from mouse models supports a model whereby ALRs are required for IFN-mediated host response to both exogenous and endogenous DNA. Following interaction with cytoplasmic or nuclear nucleic acids, ALRs can form a functional inflammasome through association with the adaptor ASC [apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD)] and with procaspase-1. Importantly, inflammasome-mediated upregulation of IL-1β and IL-18 production positively correlates with SLE disease severity. Therefore, targeting ALR sensors and their downstream pathways represents a promising alternative therapeutic approach for SLE and other systemic autoimmune diseases.
Collapse
Affiliation(s)
- Valeria Caneparo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy.,Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy
| | - Marisa Gariglio
- Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy.,Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
11
|
Yang F, Feng C, Zhang X, Lu J, Zhao Y. The Diverse Biological Functions of Neutrophils, Beyond the Defense Against Infections. Inflammation 2017; 40:311-323. [PMID: 27817110 DOI: 10.1007/s10753-016-0458-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymorphonuclear neutrophils are among the first defense against infection and closely involved in the initiation of inflammatory response. It is well recognized that this function of neutrophils was mainly mediated by phagocytosis, intracellular degradation, releasing of granules, and formation of neutrophil extracellular traps after sensing dangerous stress. However, accumulating data showed that neutrophils had a variety of important biological functions in both innate and adaptive immunities, far beyond cytotoxicity against pathogens. Neutrophils can differentially switch phenotypes and display distinct subpopulations under different microenvironments. Neutrophils can produce a large variety of cytokines and chemokines upon stimulation. Furthermore, neutrophils directly interact with dendritic cells (DCs), macrophages, natural killer cells, T cells, and B cells so as to either potentiate or down-modulate both innate and adaptive immunity. In the present review, we summarize the recent progress on the functional plasticity and the regulatory ability on immunity of neutrophils in physiological and pathological situations.
Collapse
Affiliation(s)
- Fan Yang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Chang Feng
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
12
|
Will T, Helms V. Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare. BMC SYSTEMS BIOLOGY 2017; 11:44. [PMID: 28376810 PMCID: PMC5379774 DOI: 10.1186/s12918-017-0400-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. RESULTS Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. CONCLUSIONS Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .
Collapse
Affiliation(s)
- Thorsten Will
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
- Graduate School of Computer Science, Saarland University, Campus E1.3, Saarbrücken, 66123 Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
| |
Collapse
|
13
|
Abstract
The innate immune system represents the first line of defense against pathogens and comprises both a cellular and a humoral arm. Fluid-phase pattern recognition molecules (PRMs), which include collectins, ficolins, and pentraxins, are key components of the humoral arm of innate immunity and are expressed by a variety of cells, including myeloid, epithelial, and endothelial cells, mainly in response to infectious and inflammatory conditions. Soluble PRMs share basic multifunctional properties including activation and regulation of the complement cascade, opsonization of pathogens and apoptotic cells, regulation of leukocyte extravasation, and fine-tuning of inflammation. Therefore, soluble PRMs are part of the immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on the long pentraxin PTX3.
Collapse
|
14
|
Stoeckle C, Geering B, Yousefi S, Rožman S, Andina N, Benarafa C, Simon HU. RhoH is a negative regulator of eosinophilopoiesis. Cell Death Differ 2016; 23:1961-1972. [PMID: 27740624 DOI: 10.1038/cdd.2016.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are frequently elevated in pathological conditions and can cause tissue damage and disease exacerbation. The number of eosinophils in the blood is largely regulated by factors controlling their production in the bone marrow. While several exogenous factors, such as interleukin-5, have been described to promote eosinophil differentiation, comparatively little is known about eosinophil-intrinsic factors that control their de novo generation. Here, we report that the small atypical GTPase RhoH is induced during human eosinophil differentiation, highly expressed in mature blood eosinophils and further upregulated in patients suffering from a hypereosinophilic syndrome. Overexpression of RhoH increases, in a Rho-associated protein kinase-dependent manner, the expression of GATA-2, a transcription factor involved in regulating eosinophil differentiation. In RhoH-/- mice, we observed reduced GATA-2 expression as well as accelerated eosinophil differentiation both in vitro and in vivo. Conversely, RhoH overexpression in bone marrow progenitors reduces eosinophil development in mixed bone marrow chimeras. These results highlight a novel negative regulatory role for RhoH in eosinophil differentiation, most likely in consequence of altered GATA-2 levels.
Collapse
Affiliation(s)
| | - Barbara Geering
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Saša Rožman
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nicola Andina
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Epigenetic regulation of neutrophil development and function. Semin Immunol 2016; 28:83-93. [PMID: 27084194 DOI: 10.1016/j.smim.2016.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
In addition to performing well-defined effector functions, neutrophils are now recognized as versatile and sophisticated cells with critical immunoregulatory roles. These include the release of a variety of proinflammatory or immunosuppressive cytokines, as well as the expression of genes with regulatory functions. Neutrophils share broad transcriptional features with monocytes, in keeping with the close developmental relation between the two cell types. However, neutrophil-specific gene expression patterns conferring cell type-specific responses to bacterial, viral or fungal components have been identified. Accumulating evidence suggest that these differences reflect the peculiar epigenomic and regulatory landscapes of neutrophils and monocytes, in turn controlled by the specific lineage-determining transcription factors shaping their identity. In this review, we will describe current knowledge on how neutrophil identity and function are controlled at the molecular level, focusing on transcriptional and chromatin regulation of neutrophil development and activation in response to inflammatory stimuli.
Collapse
|
16
|
Mukherjee S, Karmakar S, Babu SPS. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz J Infect Dis 2016; 20:193-204. [PMID: 26775799 PMCID: PMC9427569 DOI: 10.1016/j.bjid.2015.10.011] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 02/08/2023] Open
Abstract
During the course of evolution, multicellular organisms have been orchestrated with an efficient and versatile immune system to counteract diverse group of pathogenic organisms. Pathogen recognition is considered as the most critical step behind eliciting adequate immune response during an infection. Hitherto Toll-like receptors (TLRs), especially the surface ones viz. TLR2 and TLR4 have gained immense importance due to their extreme ability of identifying distinct molecular patterns from invading pathogens. These pattern recognition receptors (PRRs) not only act as innate sensor but also shape and bridge innate and adaptive immune responses. In addition, they also play a pivotal role in regulating the balance between Th1 and Th2 type of response essential for the survivability of the host. In this work, major achievements rather findings made on the typical signalling and immunopathological attributes of TLR2 and TLR4 mediated host response against the major infectious diseases have been reviewed. Infectious diseases like tuberculosis, trypanosomiasis, malaria, and filariasis are still posing myriad threat to mankind. Furthermore, increasing resistance of the causative organisms against available therapeutics is also an emerging problem. Thus, stimulation of host immune response with TLR2 and TLR4 agonist can be the option of choice to treat such diseases in future.
Collapse
|
17
|
Zimmermann M, Arruda-Silva F, Bianchetto-Aguilera F, Finotti G, Calzetti F, Scapini P, Lunardi C, Cassatella MA, Tamassia N. IFNα enhances the production of IL-6 by human neutrophils activated via TLR8. Sci Rep 2016; 6:19674. [PMID: 26790609 PMCID: PMC4726390 DOI: 10.1038/srep19674] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/04/2015] [Indexed: 12/26/2022] Open
Abstract
Recently, we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8, a receptor recognizing viral single strand RNA. In this study, we demonstrate that IFNα, a cytokine that modulates the early innate immune responses toward viral and bacterial infections, potently enhances the production of IL-6 in neutrophils stimulated with R848, a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848, but, rather, it is substantially mediated by an increased production and release of endogenous TNFα. The latter cytokine, in an autocrine manner, leads to an augmented synthesis of the IkBζ co-activator and an enhanced recruitment of the C/EBPβ transcription factor to the IL-6 promoter. Moreover, we show that neutrophils from SLE patients with active disease state, hence displaying an IFN-induced gene expression signature, produce increased amounts of both IL-6 and TNFα in response to R848 as compared to healthy donors. Altogether, data uncover novel effects that type I IFN exerts in TLR8-activated neutrophils, which therefore enlarge our knowledge on the various biological actions which type I IFN orchestrates during infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Maili Zimmermann
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Fabio Arruda-Silva
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | | | - Giulia Finotti
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Federica Calzetti
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Patrizia Scapini
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | | | - Marco A Cassatella
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
18
|
Vermi W, Micheletti A, Lonardi S, Costantini C, Calzetti F, Nascimbeni R, Bugatti M, Codazzi M, Pinter PC, Schäkel K, Tamassia N, Cassatella MA. slanDCs selectively accumulate in carcinoma-draining lymph nodes and marginate metastatic cells. Nat Commun 2015; 5:3029. [PMID: 24398631 DOI: 10.1038/ncomms4029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/27/2013] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) initiate adaptive immune responses to cancer cells by activating naive T lymphocytes. 6-sulfo LacNAc(+) DCs (slanDCs) represent a distinct population of circulating and tissue proinflammatory DCs, whose role in cancer immune surveillance is unknown. Herein, by screening a large set of clinical samples, we demonstrate accumulation of slanDCs in metastatic tumour-draining lymph nodes (M-TDLN) from carcinoma patients. Remarkably, slanDCs are absent at the primary carcinoma site, while their selective nodal recruitment follows the arrival of cancer cells to M-TDLN. slanDCs surround metastatic carcinoma deposits in close proximity to dead cells and efficiently phagocytose tumour cells. In colon carcinoma patients, the contingent of circulating slanDCs remains intact and competent in terms of IL-12p70 and tumour necrosis factor alpha production, induction of T-cell proliferation and migratory capacity to a set of chemokines produced in M-TDLN. We conclude that activated slanDCs represent previously unrecognized players of nodal immune responses to cancer cells.
Collapse
Affiliation(s)
- William Vermi
- 1] Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Alessandra Micheletti
- 1] Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2]
| | - Silvia Lonardi
- 1] Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy [2]
| | - Claudio Costantini
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Federica Calzetti
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Riccardo Nascimbeni
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Manuela Codazzi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Patrick C Pinter
- Section of Otorhinolaryngology, Department of Surgery, University of Verona, Verona 37134, Italy
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, 69115 Heidelberg, Germany
| | - Nicola Tamassia
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| |
Collapse
|
19
|
de Laurentiis A, Hiscott J, Alcalay M. The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation. Oncogene 2015; 34:6018-28. [DOI: 10.1038/onc.2015.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/25/2022]
|
20
|
Microbial DNA recognition by cGAS-STING and other sensors in dendritic cells in inflammatory bowel diseases. Inflamm Bowel Dis 2015; 21:901-11. [PMID: 25581829 DOI: 10.1097/mib.0000000000000299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recognition of microbial nucleic acid initiates host immune defenses against pathogens. Impaired recognition of nucleic acid is involved in the pathogenesis of inflammatory bowel diseases. In contrast to the relatively well-established mechanism of microbial RNA sensing and associated signaling cascades, very little is known on how microbial DNA activates intracellular DNA sensors and controls the function of antigen-presenting cells (especially dendritic cells) to shape mucosal immune responses in intestine. In this review, we will introduce mucosal dendritic cell population, describe various putative DNA sensors, emphasize on newly identified cGAS-cGAMP-STING complex, and discuss how the detection of foreign DNA by mucosal dendritic cells activates innate and adaptive immune responses in intestine. Finally, we will identify certain inflammatory bowel disease-susceptibility genes that associate with impaired microbial DNA recognition in human.
Collapse
|
21
|
Kodigepalli KM, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS One 2015; 10:e0117464. [PMID: 25658875 PMCID: PMC4320088 DOI: 10.1371/journal.pone.0117464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) are the primary sensors of the innate immune system that recognize pathogenic nucleic acids including double-stranded plasmid DNA (dsDNA). TLR signaling activates multiple pathways including IRF3 which is involved in transcriptional induction of inflammatory cytokines (i.e. interferons (IFNs)). Phospholipid scramblase 1, PLSCR1, is a highly inducible IFN-regulated gene mediating anti-viral properties of IFNs. Herein, we report a novel finding that dsDNA transfection in T80 immortalized normal ovarian surface epithelial cell line leads to a marked increase in PLSCR1 mRNA and protein. We also noted a comparable response in primary mammary epithelial cells (HMECs). Similar to IFN-2α treated cells, de novo synthesized PLSCR1 was localized predominantly to the plasma membrane. dsDNA transfection, in T80 and HMEC cells, led to activation of MAPK and IRF3. Although inhibition of MAPK (using U0126) did not modulate PLSCR1 mRNA and protein, IRF3 knockdown (using siRNA) significantly ablated the PLSCR1 induction. In prior studies, the activation of IRF3 was shown to be mediated by cGAS-STING pathway. To investigate the contribution of STING to PLSCR1 induction, we utilized siRNA to reduce STING expression and observed that PLSCR1 protein was markedly reduced. In contrast to normal T80/HMECs, the phosphorylation of IRF3 as well as induction of STING and PLSCR1 were absent in ovarian cancer cells (serous, clear cell, and endometrioid) suggesting that the STING/IRF3 pathway may be dysregulated in these cancer cells. However, we also noted induction of different TLR and IFN mRNAs between the T80 and HEY (serous epithelial ovarian carcinoma) cell lines upon dsDNA transfection. Collectively, these results indicate that the STING/IRF3 pathway, activated following dsDNA transfection, contributes to upregulation of PLSCR1 in ovarian epithelial cells.
Collapse
Affiliation(s)
- Karthik M. Kodigepalli
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
- * E-mail:
| |
Collapse
|
22
|
Banerjee AR, Kim YJ, Kim TH. A novel virus-inducible enhancer of the interferon-β gene with tightly linked promoter and enhancer activities. Nucleic Acids Res 2014; 42:12537-54. [PMID: 25348400 PMCID: PMC4227751 DOI: 10.1093/nar/gku1018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long-range enhancers of transcription are a key component of the genomic regulatory architecture. Recent studies have identified bi-directionally transcribed RNAs emanating from these enhancers known as eRNAs. However, it remains unclear how tightly coupled eRNA production is with enhancer activity. Through our systematic search for long-range elements that interact with the interferon-β gene, a model system for studying inducible transcription, we have identified a novel enhancer, which we have named L2 that regulates the expression of interferon-β. We have demonstrated its virus-inducible enhancer activity by analyzing epigenomic profiles, transcription factor association, nascent RNA production and activity in reporter assays. This enhancer exhibits intimately linked virus-inducible enhancer and bidirectional promoter activity that is largely dependent on a conserved Interferon Stimulated Response Element and robustly generates virus inducible eRNAs. Notably, its enhancer and promoter activities are fully retained in reporter assays even upon a complete elimination of its associated eRNA sequences. Finally, we show that L2 regulates IFNB1 expression by siRNA knockdown of eRNAs, and the deletion of L2 in a BAC transfection assay. Thus, L2 is a novel enhancer that regulates IFNB1 and whose eRNAs exert significant activity in vivo that is distinct from those activities recapitulated in the luciferase reporter assays.
Collapse
Affiliation(s)
- A Raja Banerjee
- Department of Genetics, Yale University, School of Medicine, New Haven, CT 06520, USA
| | - Yoon Jung Kim
- Department of Genetics, Yale University, School of Medicine, New Haven, CT 06520, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
23
|
Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol 2014; 5:508. [PMID: 25374568 PMCID: PMC4204637 DOI: 10.3389/fimmu.2014.00508] [Citation(s) in RCA: 470] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 12/21/2022] Open
Abstract
Polymorphonuclear neutrophils, besides their involvement in primary defense against infections - mainly through phagocytosis, generation of toxic molecules, release of enzymes, and formation of extracellular traps - are also becoming increasingly important for their contribution to the fine regulation in development of inflammatory and immune responses. These latter functions of neutrophils occur, in part, via their de novo production and release of a large variety of cytokines, including chemotactic cytokines (chemokines). Accordingly, the improvement in technologies for molecular and functional cell analysis, along with concomitant advances in cell purification techniques, have allowed the identification of a continuously growing list of neutrophil-derived cytokines, as well as the characterization of their biological implications in vitro and/or in vivo. This short review summarizes crucial concepts regarding the modalities of expression, release, and regulation of neutrophil-derived cytokines. It also highlights examples illustrating the potential implications of neutrophil-derived cytokines according to recent observations made in humans and/or in experimental animal models.
Collapse
Affiliation(s)
- Cristina Tecchio
- Section of Hematology, Department of Medicine, School of Medicine, University of Verona , Verona , Italy
| | - Alessandra Micheletti
- Section of General Pathology, Department of Pathology and Diagnostics, School of Medicine, University of Verona , Verona , Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Pathology and Diagnostics, School of Medicine, University of Verona , Verona , Italy
| |
Collapse
|
24
|
Dihydroartemisinin inhibits activation of the Toll-like receptor 4 signaling pathway and production of type I interferon in spleen cells from lupus-prone MRL/lpr mice. Int Immunopharmacol 2014; 22:266-72. [PMID: 25027631 DOI: 10.1016/j.intimp.2014.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by various immunological abnormalities. Dihydroartemisinin (DHA), a metabolite of artemisinin, has been recently reported to exhibit immunosuppressive properties. The present study aims to determine the effects of DHA on spleen cell activation triggered by lipopolysaccharide (LPS) and investigate the effects of DHA on LPS-induced activation of the Toll-like receptor 4 (TLR4)/interferon regulatory factor (IRF) signaling pathway. Spleen cells from lupus-prone MRL/lpr mice were isolated, prepared and cultured. Cells were treated with LPS alone or LPS with DHA, and spleen cell proliferation was analyzed using MTS assay. Protein expressions of TLR4, IRF3, and IRF7 were analyzed by Western blot. IRF3 phosphorylation was also determined. Gene expression levels of IFN-α and IFN-β were measured using real-time PCR, and protein levels in cells' supernatants were determined by ELISA. DHA was found to inhibit LPS-induced spleen cell proliferation, decrease LPS-induced protein expression of TLR4, and inhibit IRF3 phosphorylation. Furthermore, LPS significantly induced IRF3 expression and slightly increased IRF7 expression in the nucleus of spleen cells, which was accompanied by enhanced IFN-α and IFN-β production. DHA inhibited the effects of LPS in spleen cells of MRL/lpr mice. Taken together, the data obtained reveal that DHA inhibits LPS-induced cell activation possibly by suppressing the TLR4/IRF/IFN pathway in spleen cells of MRL/lpr mice. These data suggest that DHA has the potential therapeutic utility for the treatment of SLE.
Collapse
|
25
|
Bosse JB, Ragues J, Wodrich H. Fast generation of stable cell lines expressing fluorescent marker molecules to study pathogen induced processes. Methods Mol Biol 2014; 1064:153-69. [PMID: 23996256 DOI: 10.1007/978-1-62703-601-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Virology has greatly benefited from the introduction of fluorescent proteins (FP's) as tags to viral as well as cellular structures. With advanced imaging technologies it is now possible to observe host-pathogen interactions in living cell systems in real-time. The generation of high-quality genetic tools to study host-pathogen interactions therefore becomes imperative for the further development of this type of analysis. In this chapter we describe a universal and reliable method to rapidly generate stable cell lines expressing FP-tagged proteins to be used for the analysis of host-pathogen interactions. The protocol is exemplified for two cellular structures recognized for their importance in the host-pathogen interplay: autophagosomes and the actin cytoskeleton, but can be applied to virtually any transgene or FP. It is based on the commercial Flp-In™ and Gateway™ systems (Life Technologies) and allows the rapid generation of FP-tagged transgenes by Gateway™ technology followed by recombination into a cell line containing a single transcriptionally active genomic recombination locus.
Collapse
|
26
|
Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology 2013; 218:1312-21. [PMID: 23962476 DOI: 10.1016/j.imbio.2013.07.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 12/22/2022]
Abstract
The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA.
Collapse
Affiliation(s)
- Leonie Unterholzner
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, DD1 5EH, UK.
| |
Collapse
|
27
|
Wang C, Liu X, Liu Y, Zhang Q, Yao Z, Huang B, Zhang P, Li N, Cao X. Zinc finger protein 64 promotes Toll-like receptor-triggered proinflammatory and type I interferon production in macrophages by enhancing p65 subunit activation. J Biol Chem 2013; 288:24600-8. [PMID: 23857586 DOI: 10.1074/jbc.m113.473397] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms that fine-tune the Toll-like receptor (TLR)-triggered innate immune response need further investigation. As an important transcription factor, zinc finger proteins (ZFPs) play important roles in many cell functions, including development, differentiation, tumorigenesis, and functions of the immune system. However, the role of ZFP members in the innate immune responses remains unclear. Here we showed that the expression of C2H2-type ZFP, ZFP64, was significantly up-regulated in macrophages upon stimulation with TLR ligands, including LPS, CpG oligodeoxynucleotides, or poly(I:C). ZFP64 overexpression promoted TLR-triggered TNF-α, IL-6, and IFN-β production in macrophages. Coincidently, knockdown of ZFP64 expression significantly inhibited the production of the above cytokines. However, activation of MAPK and IRF3 was not responsible for the ZFP64-mediated promotion of cytokine production. Interestingly, ZFP64 significantly up-regulated TLR-induced NF-κB activation. ZFP64 could bind to the promoter of the TNF-α, IL-6, and IFN-β genes in macrophages only after TLR ligation. Furthermore, ZFP64 associated with the NF-κB p65 subunit upon LPS stimulation, and TLR-ligated macrophages showed a lower level of p65 recruitment to the TNF-α, IL-6, and IFN-β gene promoter in the absence of ZFP64. The data identify ZFP64 as a downstream positive regulator of TLR-initiated innate immune responses by associating with the NF-κB p65 subunit, enhancing p65 recruitment to the target gene promoters and increasing p65 activation and, thus, leading to the promotion of TLR-triggered proinflammatory cytokine and type I interferon production. Our findings add mechanistic insight into the efficient activation of the TLR innate response against invading pathogens.
Collapse
Affiliation(s)
- Chunmei Wang
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thomas CJ, Schroder K. Pattern recognition receptor function in neutrophils. Trends Immunol 2013; 34:317-28. [DOI: 10.1016/j.it.2013.02.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 12/13/2022]
|
29
|
Tamassia N, Cassatella MA. Cytoplasmic receptors recognizing nucleic acids and mediating immune functions in neutrophils. Curr Opin Pharmacol 2013; 13:547-54. [PMID: 23725881 DOI: 10.1016/j.coph.2013.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 01/02/2023]
Abstract
Cells belonging to the innate immune system, including neutrophils, rapidly respond to invading microorganisms by recognizing a wide range of microbial-derived products referred to as pathogen-associated molecular patterns (PAMPs). Generally speaking, PAMPs include molecular structures associated with microbial envelopes (such as bacterial lipopolysaccharide, lipoproteins, and flagellin) and microbial nucleic acids. PAMPs bind to and activate various families of germline-encoded receptors carried by cells of the innate immune system, known as pattern-recognition receptors (PRRs). This group of receptors, located in various subcellular compartments, in turn generates a series of intracellular signaling pathways that coordinately modulate the transcription of hundreds of inflammatory genes, the products of which directly control infection and/or contribute to promote the development of the innate and adaptive immune responses. Herein, we summarize current knowledge on neutrophil recognition and response to foreign cytoplasmic nucleic acids.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, 37134 Verona, Italy
| | | |
Collapse
|
30
|
Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C, Mantovani A. Neutrophils in innate and adaptive immunity. Semin Immunopathol 2013; 35:377-94. [PMID: 23553214 DOI: 10.1007/s00281-013-0374-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/18/2013] [Indexed: 12/23/2022]
Abstract
Neutrophils have long been viewed as short-lived cells crucial for the elimination of extracellular pathogens, possessing a limited role in the orchestration of the immune response. This dogma has been challenged by recent lines of evidence demonstrating the expression of an increasing number of cytokines and effector molecules by neutrophils. Moreover, in analogy with their "big brother" macrophages, neutrophils integrate the environmental signals and can be polarized towards an antitumoural or protumoural phenotype. Neutrophils are a major source of humoral fluid phase pattern recognition molecules and thus contribute to the humoral arm of innate immunity. Neutrophils cross talk and shape the maturation and effector functions of other leukocytes in a direct or indirect manner, through cell-cell contact or cytokine production, respectively. Therefore, neutrophils are integrated in the activation and regulation of the innate and adaptive immune system and play an important role in the resolution or exacerbation of diverse pathologies, including infections, chronic inflammation, autoimmunity and cancer.
Collapse
Affiliation(s)
- Sébastien Jaillon
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Tintinger GR, Anderson R, Feldman C. Pharmacological approaches to regulate neutrophil activity. Semin Immunopathol 2013; 35:395-409. [PMID: 23494251 DOI: 10.1007/s00281-013-0366-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
Although indispensable in host defense against microbial pathogens, misdirected hyperacute and chronic activation of neutrophils presents the potential hazard of tissue damage, organ dysfunction, and carcinogenesis. In many clinical settings, particularly inflammatory disorders of the airways, over-reactivity of neutrophils is exacerbated by their relative resistance to conventional, pharmacological anti-inflammatory therapies, including, but not limited to, corticosteroids. Notwithstanding their sheer numbers, which can increase rapidly and dramatically during inflammatory responses, these cells are not only pre-programmed to release reactive oxygen species, proteinases, and eicosanoids/prostanoids immediately on exposure to pro-inflammatory stimuli but may also subsequently undergo the process of netosis, thereby enhancing and protracting their inflammatory potential. All of these mechanisms are likely to underpin the resistance of neutrophils to pharmacological control and have triggered the search for alternatives to corticosteroids. In addition to macrolides and adenosine 3',5'-cyclic adenosine monophospate-elevating agents, more recent innovations in the control of neutrophilic inflammation include activators of histone deacetylases and antagonists of chemokine receptors, as well as monoclonal antibodies which target neutrophil-activating cytokines and their receptors. These and other neutrophil-targeted strategies represent the focus of the current review.
Collapse
Affiliation(s)
- G R Tintinger
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | | | | |
Collapse
|
32
|
Caielli S, Banchereau J, Pascual V. Neutrophils come of age in chronic inflammation. Curr Opin Immunol 2012; 24:671-7. [PMID: 23127555 PMCID: PMC3684162 DOI: 10.1016/j.coi.2012.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 12/21/2022]
Abstract
Neutrophils have long been known to participate in acute inflammation, but a role in chronic inflammatory and autoimmune diseases is now emerging. These cells are key players in the recognition and elimination of pathogens, but they also sense self components, including nucleic acids and products of sterile tissue damage. While this normally contributes to tissue repair, it can also lead to the release of highly immunogenic products that can trigger and/or amplify autoimmune pathogenic loops. Understanding the mechanisms that underlie neutrophil activation, migration, survival and their various forms of death in health and disease might provide us with new approaches to treat chronic inflammatory conditions.
Collapse
Affiliation(s)
- Simone Caielli
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | | | | |
Collapse
|