1
|
Wang H, Arulraj T, Kimko H, Popel AS. Generating immunogenomic data-guided virtual patients using a QSP model to predict response of advanced NSCLC to PD-L1 inhibition. NPJ Precis Oncol 2023; 7:55. [PMID: 37291190 DOI: 10.1038/s41698-023-00405-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Generating realistic virtual patients from a limited amount of patient data is one of the major challenges for quantitative systems pharmacology modeling in immuno-oncology. Quantitative systems pharmacology (QSP) is a mathematical modeling methodology that integrates mechanistic knowledge of biological systems to investigate dynamics in a whole system during disease progression and drug treatment. In the present analysis, we parameterized our previously published QSP model of the cancer-immunity cycle to non-small cell lung cancer (NSCLC) and generated a virtual patient cohort to predict clinical response to PD-L1 inhibition in NSCLC. The virtual patient generation was guided by immunogenomic data from iAtlas portal and population pharmacokinetic data of durvalumab, a PD-L1 inhibitor. With virtual patients generated following the immunogenomic data distribution, our model predicted a response rate of 18.6% (95% bootstrap confidence interval: 13.3-24.2%) and identified CD8/Treg ratio as a potential predictive biomarker in addition to PD-L1 expression and tumor mutational burden. We demonstrated that omics data served as a reliable resource for virtual patient generation techniques in immuno-oncology using QSP models.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Holly Kimko
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
2
|
Wang H, Arulraj T, Kimko H, Popel AS. Generating immunogenomic data-guided virtual patients using a QSP model to predict response of advanced NSCLC to PD-L1 inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538191. [PMID: 37162938 PMCID: PMC10168221 DOI: 10.1101/2023.04.25.538191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Generating realistic virtual patients from a limited amount of patient data is one of the major challenges for quantitative systems pharmacology modeling in immuno-oncology. Quantitative systems pharmacology (QSP) is a mathematical modeling methodology that integrates mechanistic knowledge of biological systems to investigate dynamics in a whole system during disease progression and drug treatment. In the present analysis, we parameterized our previously published QSP model of the cancer-immunity cycle to non-small cell lung cancer (NSCLC) and generated a virtual patient cohort to predict clinical response to PD-L1 inhibition in NSCLC. The virtual patient generation was guided by immunogenomic data from iAtlas portal and population pharmacokinetic data of durvalumab, a PD-L1 inhibitor. With virtual patients generated following the immunogenomic data distribution, our model predicted a response rate of 18.6% (95% bootstrap confidence interval: 13.3-24.2%) and identified CD8/Treg ratio as a potential predictive biomarker in addition to PD-L1 expression and tumor mutational burden. We demonstrated that omics data served as a reliable resource for virtual patient generation techniques in immuno-oncology using QSP models.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Holly Kimko
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, MD, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Shi B, Tai Q, Chen J, Shi X, Chen G, Yao H, Mi X, Sun J, Zhou G, Gu W, He S. Laparoscopic-Assisted Colorectal Resection Can Reduce the Inhibition of Immune Function Compared with Conventional Open Surgery: A Retrospective Clinical Study. J Clin Med 2023; 12:jcm12062320. [PMID: 36983320 PMCID: PMC10053238 DOI: 10.3390/jcm12062320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Immune function is an important indicator for assessing postoperative recovery and long-term survival in patients with malignancy, and laparoscopic surgery is thought to have a less suppressive effect on the immune response than open surgery. This study aimed to investigate this effect in a retrospective clinical study. Methods: In this retrospective clinical study, we enrolled 63 patients with colorectal cancer in the Department of General Surgery of the First Affiliated Hospital of Soochow University and assessed the changes in their postoperative immune function by measuring CD3+T, CD4+T, CD8+T lymphocytes, and CD4+/CD8+ ratio. Results: Compared with open surgery, laparoscopic colorectal surgery was effective in improving the postoperative decline in immune function. We determined that the number of CD4+, CD8+T lymphocytes, and the CD4+/CD8+ ratio was not significantly reduced in the laparoscopic group. Conclusion: Laparoscopic-assisted colorectal resection can reduce the inhibition of immune functions compared with conventional open surgery.
Collapse
Affiliation(s)
- Bo Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215005, China
| | - Qingliang Tai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215005, China
| | - Junjie Chen
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Xinyu Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215005, China
| | - Guoliang Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215005, China
| | - Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215005, China
| | - Xiuwei Mi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215005, China
| | - Jinbing Sun
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Changshu 215501, China
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Changshu 215123, China
| | - Wen Gu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215005, China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215005, China
- Correspondence:
| |
Collapse
|
4
|
Wang H, Zhao C, Santa-Maria CA, Emens LA, Popel AS. Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. iScience 2022; 25:104702. [PMID: 35856032 PMCID: PMC9287616 DOI: 10.1016/j.isci.2022.104702] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/07/2022] Open
Abstract
Quantitative systems pharmacology (QSP) modeling is an emerging mechanistic computational approach that couples drug pharmacokinetics/pharmacodynamics and the course of disease progression. It has begun to play important roles in drug development for complex diseases such as cancer, including triple-negative breast cancer (TNBC). The combination of the anti-PD-L1 antibody atezolizumab and nab-paclitaxel has shown clinical activity in advanced TNBC with PD-L1-positive tumor-infiltrating immune cells. As tumor-associated macrophages (TAMs) serve as major contributors to the immuno-suppressive tumor microenvironment, we incorporated the dynamics of TAMs into our previously published QSP model to investigate their impact on cancer treatment. We show that through proper calibration, the model captures the macrophage heterogeneity in the tumor microenvironment while maintaining its predictive power of the trial results at the population level. Despite its high mechanistic complexity, the modularized QSP platform can be readily reproduced, expanded for new species of interest, and applied in clinical trial simulation. A mechanistic model of quantitative systems pharmacology in immuno-oncology Dynamics of tumor-associated macrophages are integrated into our previous work Conducting in silico clinical trials to predict clinical response to cancer therapy
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu211166, China
| | - Cesar A Santa-Maria
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Leisha A Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| |
Collapse
|
5
|
Shibad V, Bootwala A, Mao C, Bader H, Vo H, Landesman-Bollag E, Guo C, Rubio A, Near R, Gao W, Challa S, Chukka V, Gao J, Kelly A, Landesman T, VanHelene T, Zhong X. L2pB1 Cells Contribute to Tumor Growth Inhibition. Front Immunol 2021; 12:722451. [PMID: 34630396 PMCID: PMC8495424 DOI: 10.3389/fimmu.2021.722451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Natural IgM (nIgM) antibodies play critical roles in cancer immunosurveillance. However, the role of B-1 B cells, the lymphocytes that produce nIgM, remains to be elucidated. L2pB1 cells, a subpopulation of B-1 B cells, have a unique poly-self-reactive nIgM repertoire and are capable of phagocytosis, potent antigen presentation, and immunomodulation. Using an inducible knock-in and knockout mouse model, we investigated the effect of the loss of L2pB1 cells in a B16F10 melanoma model. Our results show active tumor infiltration of L2pB1 cells in wild type mice, and conversely, depletion of L2pB1 cells results in larger tumor mass and increased angiogenesis. In vitro analysis revealed that L2pB1 cells contribute to the growth inhibition of melanoma cells in both 2D cell culture and 3D tumor spheroids. Similar effects were observed in an MC38 murine colon cancer model. Moreover, our data suggest that one of the ways that L2pB1 cells can induce tumor cell death is via lipoptosis. Lastly, we tested whether L2pB1 cell-derived monoclonal nIgM antibodies can specifically recognize tumor spheroids. Nine of the 28 nIgM-secreting L2pB1 clones demonstrated specific binding to tumor spheroids but did not bind control murine embryonic fibroblasts. Our study provides evidence that L2pB1 cells contribute to cancer immunity through their unique nIgM repertoire, tumor recognition, and lipoptosis. Taken together, because of their ability to recognize common features of tumors that are independent of genetic mutations, L2pB1 cells and their nIgM could be potential candidates for cancer treatment that can overcome tumor heterogeneity-associated drug resistance.
Collapse
Affiliation(s)
- Varuna Shibad
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Ali Bootwala
- Department of Graduate Medical Studies, Boston University School of Medicine, Boston, MA, United States
| | - Changchuin Mao
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
- Antagen Institute for Biomedical Research, Boston, MA, United States
| | - Hanna Bader
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Hung Vo
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Esther Landesman-Bollag
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Conrad Guo
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Angel Rubio
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Richard Near
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
- Antagen Institute for Biomedical Research, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA, United States
| | | | | | - Jeffrey Gao
- Sharon High School, Sharon, MA, United States
| | - Avery Kelly
- Brookline High School, Brookline, MA, United States
| | | | | | - Xuemei Zhong
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
6
|
Kalim M, Iqbal Khan MS, Zhan J. Programmed cell death ligand-1: A dynamic immune checkpoint in cancer therapy. Chem Biol Drug Des 2020; 95:552-566. [PMID: 32166894 DOI: 10.1111/cbdd.13677] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022]
Abstract
Antibody-based immunotherapies play a pivotal role in cancer research with efficient achievements in tumor suppression. Tumor survival is assisted by modulation of immune checkpoints to create imbalances between immune cells and cancer cell's environment. The modulation results in T-cell signal inhibition ultimately inert its proliferation and activation against various tumor cells. PD-L1, a 40 kDa transmembrane protein of B7 family, binds with PD-1 on the membrane of T cells which results in inhibition of T-cell proliferation and activation. PD-L1/PD-1 pathway has generated novel target sites for antibodies that can block PD-L1/PD-1 interactions. The blockage results in T-cell proliferation and tumor cell suppression. The PD-L1 immune checkpoint strategies' development, expression and regulations, signal inhibitions, and developmental stages of PD-L1/PD-1 antibodies are briefly discussed here in this review. All this information will provide a base for new therapeutic development against PD-L1 and PD-1 immune checkpoint interactions and will make available promising treatment options.
Collapse
Affiliation(s)
- Muhammad Kalim
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Muhammad Saleem Iqbal Khan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinbiao Zhan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Macatangay BJC, Gandhi RT, Jones RB, Mcmahon DK, Lalama CM, Bosch RJ, Cyktor JC, Thomas AS, Borowski L, Riddler SA, Hogg E, Stevenson E, Eron JJ, Mellors JW, Rinaldo CR. T cells with high PD-1 expression are associated with lower HIV-specific immune responses despite long-term antiretroviral therapy. AIDS 2020; 34:15-24. [PMID: 31634201 PMCID: PMC7313719 DOI: 10.1097/qad.0000000000002406] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We evaluated frequencies of T cells with high PD-1 expression (PD-1) before and after long-term effective antiretroviral therapy (ART), and determined if frequencies on-ART correlated positively with measures of HIV persistence and negatively with HIV-specific responses. METHODS We enrolled individuals who started ART during chronic infection and had durable suppression of viremia for at least 4 years (N = 99). We assessed PD-1 T-cell frequencies at timepoints pre-ART and on-ART using flow cytometry, and evaluated how frequencies on-ART are associated with measures of HIV persistence, HIV-specific immune responses, and immune activation levels. RESULTS Pre-ART, PD-1 CD4 T cells correlated positively with viremia and negatively with CD4 T-cell count. At year 1 on-ART, %PD-1 CD4 T cells decreased but then remained stable at 4 and 6-15 years on-ART, whereas %PD-1 CD8 T cells on-ART remained similar to pre-ART. PD-1 CD4 T cells correlated positively with HIV DNA pre-ART and on-ART, and with CD4 T-cell activation on-ART. PD-1 CD4 T cells negatively correlated with HIV Gag-specific and Env-specific T-cell responses but not with CMV-specific or EBV-specific responses. PD-1 CD8 T cells trended towards a negative correlation with responses to Gag and Env, but not to CMV and EBV. CONCLUSION PD-1 T cells persist in blood despite prolonged suppression on ART, correlate with HIV DNA levels, and are associated with lower HIV-specific T-cell responses but not CMV-specific or EBV-specific responses, suggesting that these cells are HIV-specific. The findings support evaluating PD-1 blockade strategies for their effect on HIV persistence and HIV-specific immunity.
Collapse
Affiliation(s)
- Bernard J C Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts Division of Infectious Diseases, Weill Cornell Medicine, New York, New York Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania Social & Scientific Systems, Inc., Silver Spring, Maryland Department of Medicine, University of North Carolina, Chapel Hill, North Carolina Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Verma V, Shrimali RK, Ahmad S, Dai W, Wang H, Lu S, Nandre R, Gaur P, Lopez J, Sade-Feldman M, Yizhak K, Bjorgaard SL, Flaherty KT, Wargo JA, Boland GM, Sullivan RJ, Getz G, Hammond SA, Tan M, Qi J, Wong P, Merghoub T, Wolchok J, Hacohen N, Janik JE, Mkrtichyan M, Gupta S, Khleif SN. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1 +CD38 hi cells and anti-PD-1 resistance. Nat Immunol 2019; 20:1231-1243. [PMID: 31358999 PMCID: PMC7472661 DOI: 10.1038/s41590-019-0441-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
Abstract
Understanding resistance to antibody to programmed cell death protein 1 (PD-1; anti-PD-1) is crucial for the development of reversal strategies. In anti-PD-1-resistant models, simultaneous anti-PD-1 and vaccine therapy reversed resistance, while PD-1 blockade before antigen priming abolished therapeutic outcomes. This was due to induction of dysfunctional PD-1+CD38hi CD8+ cells by PD-1 blockade in suboptimally primed CD8 cell conditions induced by tumors. This results in erroneous T cell receptor signaling and unresponsiveness to antigenic restimulation. On the other hand, PD-1 blockade of optimally primed CD8 cells prevented the induction of dysfunctional CD8 cells, reversing resistance. Depleting PD-1+CD38hi CD8+ cells enhanced therapeutic outcomes. Furthermore, non-responding patients showed more PD-1+CD38+CD8+ cells in tumor and blood than responders. In conclusion, the status of CD8+ T cell priming is a major contributor to anti-PD-1 therapeutic resistance. PD-1 blockade in unprimed or suboptimally primed CD8 cells induces resistance through the induction of PD-1+CD38hi CD8+ cells that is reversed by optimal priming. PD-1+CD38hi CD8+ cells serve as a predictive and therapeutic biomarker for anti-PD-1 treatment. Sequencing of anti-PD-1 and vaccine is crucial for successful therapy.
Collapse
Affiliation(s)
- Vivek Verma
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rajeev K Shrimali
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Therapeutic Discovery, MD Anderson Cancer Center, Houston, TX, USA
| | - Shamim Ahmad
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Winjie Dai
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Hua Wang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Sumin Lu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Rahul Nandre
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jose Lopez
- Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Moshe Sade-Feldman
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Keren Yizhak
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Stacey L. Bjorgaard
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Keith T. Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gad Getz
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ming Tan
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University, Washington, DC, USA
| | - Jingjing Qi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Wong
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical and Graduate Schools, New York, NY, USA
| | - Jedd Wolchok
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical and Graduate Schools, New York, NY, USA
| | - Nir Hacohen
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - John E. Janik
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Incyte Inc., Wilmington, DE, USA
| | - Mikayel Mkrtichyan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Present address: A2 Biotherapeutics, Agoura Hills, CA, USA
| | - Seema Gupta
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Samir N. Khleif
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Correspondence and requests for materials should be addressed to S.N.K.
| |
Collapse
|
9
|
Agina HA, Ehsan NA, Abd-Elaziz TA, Abd-Elfatah GA, Said EM, Sira MM. Hepatic expression of programmed death-1 (PD-1) and its ligand, PD-L1, in children with autoimmune hepatitis: relation to treatment response. Clin Exp Hepatol 2019; 5:256-264. [PMID: 31598564 PMCID: PMC6781821 DOI: 10.5114/ceh.2019.87642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023] Open
Abstract
AIM OF THE STUDY Autoimmune hepatitis (AIH) is characterized histologically by aggressive inflammation with interface hepatitis and prominent lymphoplasmacytic infiltration. Programmed death-1 (PD-1) is expressed on activated lymphocytes. Engagement of PD-1 by its ligand PD-L1 leads to cell apoptosis and death. We aimed to evaluate the immunohistochemical expression of PD-1 and PD-L1 in children with AIH, and its relation to treatment outcome. MATERIAL AND METHODS Pre-treatment liver biopsies of 31 children with AIH were compared to 30 children with chronic hepatitis C virus (HCV) infection as a control group. PD-1 was evaluated in lymphocytes, while PD-L1 was evaluated in lymphocytes, hepatocytes, biliary epithelial cells, sinusoidal endothelial cells and Kupffer cells. All AIH patients received the standard treatment. RESULTS The mean PD-1 was significantly higher in AIH than HCV patients (29.19 ±18.5% vs. 15.2 ±10.1%; p = 0.002) while there was no statistically significant difference as regards PD-L1 on lymphocytes (p = 0.853). Neither PD-1 nor PD-L1 correlated with either liver fibrosis or the inflammatory activity (p > 0.05 for all). PD-1/PD-L1 ratio was significantly higher in AIH compared to HCV patients and in non-responder AIH patients compared to responders (46.9 vs. 6.58). PD-1 expression was comparable in both responders and non-responders (p = 0.813), while PD-L1 was significantly upregulated in responders (4.17 ±3.15% vs. 0.63 ±1.3%; p = 0.046). PD-L1 expression on hepatocytes, biliary epithelial cells, sinusoidal endothelial cells and Kupffer cells was comparable in AIH and HCV groups. CONCLUSIONS PD-1/PD-L1 ratio, which reflects immune aggression, was significantly higher in AIH compared to HCV patients and in non-responder AIH patients compared to responders.
Collapse
Affiliation(s)
- Hala A Agina
- Pathology Department, Faculty of Medicine, Benha University, Egypt
| | - Nermine A Ehsan
- Pathology Department, National Liver Institute, Menoufia University, Egypt
| | | | | | - Eman M Said
- Pathology Department, Faculty of Medicine, Benha University, Egypt
| | - Mostafa M Sira
- Pediatric Hepatology, Gastroenterology and Nutrition Department, National Liver Institute, Menoufia University, Egypt
| |
Collapse
|
10
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
11
|
Posttranscriptional Control of PD-L1 Expression by 17β-Estradiol via PI3K/Akt Signaling Pathway in ERα-Positive Cancer Cell Lines. Int J Gynecol Cancer 2018; 27:196-205. [PMID: 27870715 DOI: 10.1097/igc.0000000000000875] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Estrogen is a well-known oncogenic driver in endometrial (ECs) and breast cancers (BCs). Programmed cell death protein 1 (PD-1) and its ligands PD-1 Ligand 1 (PD-L1) and PD-L2 have been shown to mediate immune evasion of the tumor cells. The purpose of the present study was to assess the effects of estrogen on PD-L1 and PD-L2 expression in EC and BC cell lines. METHODS 17β-Estradiol (E2)-induced expression of PD-L1 and PD-L2 and possible signaling pathway were investigated in EC and BC cells. Coculture of T cells and cancer cells with E2 stimulation was performed to assess the functions of T cells. RESULTS We found that E2 increased expression of PD-L1, but not PD-L2, protein via activation of phosphoinositide 3-kinase (PI3K)/Akt pathway in Ishikawa and Michigan Cancer Foundation-7 (MCF-7) cells. Phosphoinositide 3-kinase and Akt inhibitors could block E2's effects. 17β-Estradiol did not increase PD-L1 mRNA transcription, but stabilized PD-L1 mRNA. 17β-Estradiol's effects were only observed in estrogen receptor α (ERα)-positive Ishikawa and MCF-7 cells, but not in ERα-negative MDA-MB-231 cells. Coculture of Ishikawa or MCF-7 cells with T cells inhibited expression of interferon-γ and interleukin-2 and increased BCL-2-interacting mediator of cell death expression in the presence of E2. CONCLUSIONS This study provides the first evidence that estrogen upregulates PD-L1 protein expression in ERα-positive EC and BC cells to suppress immune functions of T cells in the tumor microenvironment, demonstrating a new mechanism of how estrogen drives cancer progression.
Collapse
|
12
|
Berrong Z, Mkrtichyan M, Ahmad S, Webb M, Mohamed E, Okoev G, Matevosyan A, Shrimali R, Abu Eid R, Hammond S, Janik JE, Khleif SN. Antigen-Specific Antitumor Responses Induced by OX40 Agonist Are Enhanced by the IDO Inhibitor Indoximod. Cancer Immunol Res 2018; 6:201-208. [PMID: 29305519 DOI: 10.1158/2326-6066.cir-17-0223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/26/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
Abstract
Although an immune response to tumors may be generated using vaccines, so far, this approach has only shown minimal clinical success. This is attributed to the tendency of cancer to escape immune surveillance via multiple immune suppressive mechanisms. Successful cancer immunotherapy requires targeting these inhibitory mechanisms along with enhancement of antigen-specific immune responses to promote sustained tumor-specific immunity. Here, we evaluated the effect of indoximod, an inhibitor of the immunosuppressive indoleamine-(2,3)-dioxygenase (IDO) pathway, on antitumor efficacy of anti-OX40 agonist in the context of vaccine in the IDO- TC-1 tumor model. We demonstrate that although the addition of anti-OX40 to the vaccine moderately enhances therapeutic efficacy, incorporation of indoximod into this treatment leads to enhanced tumor regression and cure of established tumors in 60% of treated mice. We show that the mechanisms by which the IDO inhibitor leads to this therapeutic potency include (i) an increment of vaccine-induced tumor-infiltrating effector T cells that is facilitated by anti-OX40 and (ii) a decrease of IDO enzyme activity produced by nontumor cells within the tumor microenvironment that results in enhancement of the specificity and the functionality of vaccine-induced effector T cells. Our findings suggest a translatable strategy to enhance the overall efficacy of cancer immunotherapy. Cancer Immunol Res; 6(2); 201-8. ©2018 AACR.
Collapse
Affiliation(s)
- Zuzana Berrong
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | | | - Shamim Ahmad
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mason Webb
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Eslam Mohamed
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Grigori Okoev
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | | | | | - Rasha Abu Eid
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,The University of Aberdeen Dental School and Hospital, The Institute of Medicine, Medical Sciences and Nutrition, The University of Aberdeen, Scotland, United Kingdom
| | | | - John E Janik
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Samir N Khleif
- Georgia Cancer Center, Augusta University, Augusta, Georgia.
| |
Collapse
|
13
|
Filley AC, Henriquez M, Dey M. Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget 2017; 8:91779-91794. [PMID: 29207684 PMCID: PMC5710964 DOI: 10.18632/oncotarget.21586] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma (GBM) is the most common, and aggressive, primary brain tumor in adults. With a median patient survival of less than two years, GBM represents one of the biggest therapeutic challenges of the modern era. Even with the best available treatment, recurrence rates are nearly 100% and therapeutic options at the time of relapse are extremely limited. Nivolumab, an anti-programmed cell death-1 (PD-1) monoclonal antibody, has provided significant clinical benefits in the treatment of various advanced cancers and represented a promising therapy for primary and recurrent GBM. CheckMate 143 (NCT 02017717) was the first large randomized clinical trial of PD pathway inhibition in the setting of GBM, including a comparison of nivolumab and the anti-VEGF antibody, bevacizumab, in the treatment of recurrent disease. However, preliminary results, recently announced in a WFNOS 2017 abstract, demonstrated a failure of nivolumab to prolong overall survival of patients with recurrent GBM, and this arm of the trial was prematurely closed. In this review, we discuss the basic concepts underlying the rational to target PD pathway in GBM, address implications of using immune checkpoint inhibitors in central nervous system malignancies, provide a rationale for possible reasons contributing to the failure of nivolumab to prolong survival in patients with recurrent disease, and analyze the future role of immune checkpoint inhibitors in the treatment of GBM.
Collapse
Affiliation(s)
- Anna C. Filley
- Department of Neurosurgery, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Mario Henriquez
- Department of Neurosurgery, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Zhu YP, Yue F, He Y, Li P, Yang Y, Han YT, Zhang YF, Sun GP, Guo DG, Yin M, Wang XN. Prokaryotic expression of the extracellular domain of porcine programmed death 1 (PD-1) and its ligand PD-L1 and identification of the binding with peripheral blood mononuclear cells in vitro. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:147-154. [PMID: 28408783 PMCID: PMC5370541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/12/2016] [Indexed: 06/07/2023]
Abstract
Programmed cell death protein 1 (PD-1), a costimulatory molecule of the CD28 family, has 2 ligands, PD-L1 and PD-L2. Our previous studies showed that the expression of PD-1 and PD-L1 is up-regulated during viral infection in pigs. Extensive studies have shown that blockade of the PD-1/PD-L1 pathways by anti-PD-L1 antibody or soluble PD-1 restores exhausted T-cells in humans and mice. In the present study the extracellular domains of PD-1 and PD-L1 were used to evaluate the binding of PD-1 and PD-L1 with peripheral blood mononuclear cells (PBMCs). We amplified the cDNA encoding the extracellular domains of PD-1 and PD-L1 to construct recombinant expression plasmids and obtain soluble recombinant proteins, which were then labeled with fluorescein isothiocyanate (FITC). The His-ExPD-1 and His-ExPD-L1 recombinant proteins were expressed in the form of inclusion bodies with a relative molecular weight of 33.0 and 45.0 kDa, respectively. We then prepared polyclonal antibodies against the proteins with a multi-antiserum titer of 1:102 400. Binding of the proteins with PBMCs was evaluated by flow cytometry. The fluorescence signals of His-ExPD-1-FITC and His-ExPD-L1-FITC were greater than those for the FITC control. These results suggest that the soluble recombinant proteins may be used to prepare monoclonal antibodies to block the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xuan-Nian Wang
- Address all correspondence to Dr. Xuan-Nian Wang; telephone: +86 373 3682111; fax: +86 373 3683344; e-mail:
| |
Collapse
|
15
|
Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I, Vale RD. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017; 355:1428-1433. [PMID: 28280247 DOI: 10.1126/science.aaf1292] [Citation(s) in RCA: 1115] [Impact Index Per Article: 159.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 11/09/2016] [Accepted: 02/17/2017] [Indexed: 12/16/2022]
Abstract
Programmed cell death-1 (PD-1) is a coinhibitory receptor that suppresses T cell activation and is an important cancer immunotherapy target. Upon activation by its ligand PD-L1, PD-1 is thought to suppress signaling through the T cell receptor (TCR). By titrating PD-1 signaling in a biochemical reconstitution system, we demonstrate that the co-receptor CD28 is strongly preferred over the TCR as a target for dephosphorylation by PD-1-recruited Shp2 phosphatase. We also show that CD28, but not the TCR, is preferentially dephosphorylated in response to PD-1 activation by PD-L1 in an intact cell system. These results reveal that PD-1 suppresses T cell function primarily by inactivating CD28 signaling, suggesting that costimulatory pathways play key roles in regulating effector T cell function and responses to anti-PD-L1/PD-1 therapy.
Collapse
Affiliation(s)
- Enfu Hui
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Jeanne Cheung
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Jing Zhu
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Xiaolei Su
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Marcus J Taylor
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Heidi A Wallweber
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Dibyendu K Sasmal
- Institute for Molecular Engineering, University of Chicago, IL 60637, USA
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, IL 60637, USA
| | - Jeong M Kim
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Ira Mellman
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Obeid JM, Erdag G, Smolkin ME, Deacon DH, Patterson JW, Chen L, Bullock TN, Slingluff CL. PD-L1, PD-L2 and PD-1 expression in metastatic melanoma: Correlation with tumor-infiltrating immune cells and clinical outcome. Oncoimmunology 2016; 5:e1235107. [PMID: 27999753 DOI: 10.1080/2162402x.2016.1235107] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Therapeutic blockade of PD-1/PD-L1 can have dramatic therapeutic benefit in some patients; however, the prognostic associations of PD-1 and its ligands, in the absence of therapeutic blockade have not been definitively addressed. In particular, associations of PD-L2 with immune infiltrates and with outcome have yet to be explored. We hypothesized that surface expression of both PD-L1 and PD-L2 by melanoma cells would be associated with immune cell infiltration and with overall patient survival, independent of checkpoint blockade therapy. We also characterized the heterogeneity of their distribution within a tumor and within tumors of the same patient. Tissue microarrays of metastatic melanoma samples from 147 patients were quantified for CD8+, CD45, CD4+, CD3, CD163, CD20, CD138, FoxP3, PD-1, PD-L1 and PD-L2 markers by immunohistochemistry. Relationships between the proportions of PD-L1 and PD-L2 expressing tumor cells with the immune cell count, distribution (immunotype) and patient survival were studied. Expressions of both PD-L1 and PD-L2 correlated significantly with increasing densities of immune cells in the tumor specimens and with immunotype. Positive PD-L2 expression was associated with improved overall survival and the simultaneous positive expression of both PD-1 ligands showed a higher association with survival. Significant heterogeneity of PD-L1 and PD-L2 expressions within tumors were observed, however, they were less pronounced with PD-L2. In conclusion, both are markers of immune infiltration and PD-L2, alone or in combination with PD-L1, is a marker for prognosis in metastatic melanoma patients. Larger tumor samples yield more reliable assessments of PD-L1/L2 expression.
Collapse
Affiliation(s)
- Joseph M Obeid
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, VA, USA
| | - Gulsun Erdag
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Pathology, University of Virginia Health Science Center, Charlottesville, VA, USA
| | - Mark E Smolkin
- Department of Public Health Sciences, University of Virginia Health Science Center , Charlottesville, VA, USA
| | - Donna H Deacon
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, VA, USA
| | - James W Patterson
- Department of Pathology, University of Virginia Health Science Center , Charlottesville, VA, USA
| | - Leiping Chen
- University of Virginia Health Science Center, Charlottesville, VA, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Timothy N Bullock
- Department of Pathology, University of Virginia Health Science Center , Charlottesville, VA, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, VA, USA
| |
Collapse
|
17
|
Ahmad SM, Borch TH, Hansen M, Andersen MH. PD-L1-specific T cells. Cancer Immunol Immunother 2016; 65:797-804. [PMID: 26724936 PMCID: PMC11028888 DOI: 10.1007/s00262-015-1783-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/13/2015] [Indexed: 12/21/2022]
Abstract
Recently, there has been an increased focus on the immune checkpoint protein PD-1 and its ligand PD-L1 due to the discovery that blocking the PD-1/PD-L1 pathway with monoclonal antibodies elicits striking clinical results in many different malignancies. We have described naturally occurring PD-L1-specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses, and discusses future opportunities.
Collapse
Affiliation(s)
- Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Troels Holz Borch
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The development of 'immune checkpoint inhibitors' or drugs targeting the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has been a stunning success of cancer immunotherapy. This review provides a timely overview of the biology and function of the PD-1 pathway and discusses the rationale for therapeutic inhibition of this pathway in lymphoma. RECENT FINDINGS Recent studies have evaluated the prevalence and prognostic implications of PD-1, PD-L1/2 expression in various lymphoma subtypes. We present an overview of the clinical trials evaluating pidilizumab, nivolumab, and pembrolizumab in patients with lymphoid malignancies, and highlight some of the more promising agents in this class, currently in development. Finally, we discuss biomarkers that may predict response to therapy in patients with lymphoma across these clinical trials. SUMMARY A plethora of clinical trials are in progress testing immune checkpoint inhibitors in many subtypes of lymphoma, which will define their role both as a monotherapy and in combination with other biologic agents.
Collapse
|
19
|
Abu Eid R, Razavi GSE, Mkrtichyan M, Janik J, Khleif SN. Old-School Chemotherapy in Immunotherapeutic Combination in Cancer, A Low-cost Drug Repurposed. Cancer Immunol Res 2016; 4:377-82. [PMID: 27196429 DOI: 10.1158/2326-6066.cir-16-0048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapy has proven to be a potent treatment modality. Although often successful in generating antitumor immune responses, cancer immunotherapy is frequently hindered by tumor immune-escape mechanisms. Among immunosuppressive strategies within the tumor microenvironment, suppressive immune regulatory cells play a key role in promoting tumor progression through inhibiting the effector arm of the immune response. Targeting these suppressive cells can greatly enhance antitumor immune therapies, hence augmenting a highly effective therapeutic antitumor response. Several approaches are being tested to enhance the effector arm of the immune system while simultaneously inhibiting the suppressor arm. Some of these approaches are none other than traditional drugs repurposed as immune modulators. Cyclophosphamide, an old-school chemotherapeutic agent used across a wide range of malignancies, was found to be a potent immune modulator that targets suppressive regulatory immune cells within the tumor microenvironment while enhancing effector cells. Preclinical and clinical findings have confirmed the ability of low doses of cyclophosphamide to selectively deplete regulatory T cells while enhancing effector and memory cytotoxic T cells within the tumor microenvironment. These immune effects translate to suppressed tumor growth and enhanced survival, evidence of antitumor therapeutic efficacy. This article discusses the reincarnation of cyclophosphamide as an immune modulator that augments novel immunotherapeutic approaches. Cancer Immunol Res; 4(5); 377-82. ©2016 AACR.
Collapse
Affiliation(s)
- Rasha Abu Eid
- Georgia Cancer Center, Augusta University (Previously Georgia Regents University), Augusta, Georgia
| | - Ghazaleh Shoja E Razavi
- Georgia Cancer Center, Augusta University (Previously Georgia Regents University), Augusta, Georgia
| | - Mikayel Mkrtichyan
- Georgia Cancer Center, Augusta University (Previously Georgia Regents University), Augusta, Georgia
| | - John Janik
- Georgia Cancer Center, Augusta University (Previously Georgia Regents University), Augusta, Georgia
| | - Samir N Khleif
- Georgia Cancer Center, Augusta University (Previously Georgia Regents University), Augusta, Georgia.
| |
Collapse
|
20
|
Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, Zhang C, Sheng C, Leng Q, Rudd CE, Wei B, Wang H. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med 2016; 7:754-69. [PMID: 25851535 PMCID: PMC4459816 DOI: 10.15252/emmm.201404578] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PD-1 negatively regulates CD8(+) cytotoxic T lymphocytes (CTL) cytotoxicity and anti-tumor immunity. However, it is not fully understood how PD-1 expression on CD8(+) CTL is regulated during anti-tumor immunotherapy. In this study, we have identified that the ADAP-SKAP55 signaling module reduced CD8(+) CTL cytotoxicity and enhanced PD-1 expression in a Fyn-, Ca(2+)-, and NFATc1-dependent manner. In DC vaccine-based tumor prevention and therapeutic models, knockout of SKAP55 or ADAP showed a heightened protection from tumor formation or metastases in mice and reduced PD-1 expression in CD8(+) effector cells. Interestingly, CTLA-4 levels and the percentages of tumor infiltrating CD4(+)Foxp3(+) Tregs remained unchanged. Furthermore, adoptive transfer of SKAP55-deficient or ADAP-deficient CD8(+) CTLs significantly blocked tumor growth and increased anti-tumor immunity. Pretreatment of wild-type CD8(+) CTLs with the NFATc1 inhibitor CsA could also downregulate PD-1 expression and enhance anti-tumor therapeutic efficacy. Together, we propose that targeting the unrecognized ADAP-SKAP55-NFATc1-PD-1 pathway might increase efficacy of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Chunyang Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Weiyun Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Jun Xiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Normal University, Shanghai, China
| | - Shaozhuo Jiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Xue
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chun Sheng
- Shanghai Normal University, Shanghai, China
| | - Qibin Leng
- Institute Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | | | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, China
| | - Hongyan Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Ascierto PA, Atkins M, Bifulco C, Botti G, Cochran A, Davies M, Demaria S, Dummer R, Ferrone S, Formenti S, Gajewski TF, Garbe C, Khleif S, Kiessling R, Lo R, Lorigan P, Arthur GM, Masucci G, Melero I, Mihm M, Palmieri G, Parmiani G, Puzanov I, Romero P, Schilling B, Seliger B, Stroncek D, Taube J, Tomei S, Zarour HM, Testori A, Wang E, Galon J, Ciliberto G, Mozzillo N, Marincola FM, Thurin M. Future perspectives in melanoma research: meeting report from the "Melanoma Bridge": Napoli, December 3rd-6th 2014. J Transl Med 2015; 13:374. [PMID: 26619946 PMCID: PMC4665874 DOI: 10.1186/s12967-015-0736-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.
| | - Michael Atkins
- Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC, USA.
| | - Carlo Bifulco
- Translational Molecular Pathology, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA.
| | - Gerardo Botti
- Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.
| | - Alistair Cochran
- Departments of Pathology and Laboratory Medicine and Surgery, David Geffen School of Medicine at University of California Los Angeles (UCLA), John Wayne Cancer Institute, Santa Monica, CA, USA.
| | - Michael Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sandra Demaria
- Departments of Radiation Oncology and Pathology, Weill Cornell Medical College, New York, NY, USA.
| | - Reinhard Dummer
- Skin Cancer Unit, Department of Dermatology, University Hospital Zürich, 8091, Zurich, Switzerland.
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
| | - Thomas F Gajewski
- Departments of Medicine and of Pathology, Immunology and Cancer Program, The University of Chicago Medicine, Chicago, IL, USA.
| | - Claus Garbe
- Department of Dermatology, Center for Dermato Oncology, University of Tübingen, Tübingen, Germany.
| | - Samir Khleif
- Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA, USA.
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
| | - Roger Lo
- Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center at the University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Paul Lorigan
- University of Manchester/Christie NHS Foundation Trust, Manchester, UK.
| | - Grant Mc Arthur
- Peter MacCallum Cancer Centre and University of Melbourne, Victoria, Australia.
| | - Giuseppe Masucci
- Department of Oncology-Pathology, The Karolinska Hospital, Stockholm, Sweden.
| | - Ignacio Melero
- Centro de Investigación Médica Aplicada, and Clinica Universidad de Navarra, Pamplona, Navarra, Spain.
| | - Martin Mihm
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy.
| | - Giorgio Parmiani
- Division of Molecular Oncology, Unit of Bio-Immunotherapy of Solid Tumors, San Raffaele Institute, Milan, Italy.
| | - Igor Puzanov
- Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Pedro Romero
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland.
| | - Bastian Schilling
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany. .,German Cancer Consortium (DKTK), Essen, Germany.
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - David Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD, USA.
| | - Janis Taube
- Department of Dermatology, Johns Hopkins University SOM, Baltimore, MD, USA.
| | - Sara Tomei
- Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar.
| | - Hassane M Zarour
- Departments of Medicine, Immunology and Dermatology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Ena Wang
- Division of Translational Medicine, Sidra Medical and Research Centre, Doha, Qatar.
| | - Jérôme Galon
- INSERM, UMRS1138, Laboratory of Integrative Cancer Immunology, Université Paris Descartes, Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France.
| | | | - Nicola Mozzillo
- Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.
| | | | - Magdalena Thurin
- Cancer Diagnosis Program, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
22
|
Zheng P, Zhou Z. Human Cancer Immunotherapy with PD-1/PD-L1 Blockade. BIOMARKERS IN CANCER 2015; 7:15-8. [PMID: 26448693 PMCID: PMC4578571 DOI: 10.4137/bic.s29325] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/19/2015] [Accepted: 07/22/2015] [Indexed: 01/06/2023]
Abstract
The ligation of programmed cell death-1 (PD-1) to its ligands PD-L1 and PD-L2 counteracts T-cell activation, which is critical in immune tolerance. The persistent high expression of PD-1 and PD-L1 are also observed on tumor-infiltrating lymphocytes and various tumor cells, maintaining the highly suppressive microenvironment in tumor sites and promoting tumor malignancies. The blockade of PD-1 axis with PD-L2 fusion protein or monoclonal antibodies against either PD-1 or PD-L1 has been clinically evaluated in various tumor types. This short review summarizes the progress of PD-1 axis blockade in clinical trials to evaluate its effectiveness in the antitumor immunotherapy.
Collapse
Affiliation(s)
- Peilin Zheng
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| |
Collapse
|
23
|
Borch TH, Donia M, Andersen MH, Svane IM. Reorienting the immune system in the treatment of cancer by using anti-PD-1 and anti-PD-L1 antibodies. Drug Discov Today 2015; 20:1127-34. [DOI: 10.1016/j.drudis.2015.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/17/2015] [Accepted: 07/09/2015] [Indexed: 02/05/2023]
|
24
|
Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment and Treatment for Non-Small Cell Lung Cancer. Sci Rep 2015; 5:13110. [PMID: 26279307 PMCID: PMC4538573 DOI: 10.1038/srep13110] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer-related death in worldwide, non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Surgery, platinum-based chemotherapy, molecular targeted agents and radiotherapy are the main treatment of NSCLC. With the strategies of treatment constantly improving, the prognosis of NSCLC patients is not as good as before, new sort of treatments are needed to be exploited. Programmed death 1 (PD-1) and its ligand PD-L1 play a key role in tumor immune escape and the formation of tumor microenvironment, closely related with tumor generation and development. Blockading the PD-1/PD-L1 pathway could reverse the tumor microenvironment and enhance the endogenous antitumor immune responses. Utilizing the PD-1 and/or PD-L1 inhibitors has shown benefits in clinical trials of NSCLC. In this review, we discuss the basic principle of PD-1/PD-L1 pathway and its role in the tumorigenesis and development of NSCLC. The clinical development of PD-1/PD-L1 pathway inhibitors and the main problems in the present studies and the research direction in the future will also be discussed.
Collapse
|
25
|
Shrimali RK, Janik JE, Abu-Eid R, Mkrtichyan M, Khleif SN. Programmed death-1 & its ligands: promising targets for cancer immunotherapy. Immunotherapy 2015; 7:777-92. [PMID: 26250412 DOI: 10.2217/imt.15.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit.
Collapse
Affiliation(s)
| | - John E Janik
- Georgia Regents University Cancer Center, Augusta, GA 30912, USA
| | - Rasha Abu-Eid
- Georgia Regents University Cancer Center, Augusta, GA 30912, USA
| | | | - Samir N Khleif
- Georgia Regents University Cancer Center, Augusta, GA 30912, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Despite eliciting an early antiviral T cell response, HIV-specific T cells are unable to prevent disease progression, partly because of their loss of effector functions, known as T cell exhaustion. Restoring this T cell functionality represents a critical step for regaining immunological control of HIV-1 replication, and may be fundamental for the development of a functional cure for HIV. In this context, the use of animal models is invaluable for evaluating the efficacy and mechanisms of novel therapeutics aimed at reinvigorating T cell functions. RECENT FINDINGS Although nonhuman primates continue to be a mainstay for studying HIV pathogenesis and therapies, recent advances in humanized mouse models have improved their ability to recapitulate the features of cell exhaustion during HIV infection. Targeting coinhibitory receptors in HIV-infected and simian immunodeficiency virus (SIV)-infected animals has resulted in viral load reductions, presumably by reinvigorating the effector functions of T cells. Additionally, studies combining programmed death-1 (PD-1) blockade with suppressive antiretroviral therapy provide further support to the use of coinhibitory receptor blockades in restoring T cell function by delaying viral load rebound upon antiretroviral therapy interruption. Future in-vivo studies should build on recent in-vitro data, supporting the simultaneous targeting of multiple regulators of cell exhaustion. SUMMARY In this review, we describe the most recent advances in the use of animal models for the study of cell exhaustion following HIV/SIV infection. These findings suggest that the use of animal models is increasingly critical in translating immunotherapeutics into clinical practice.
Collapse
|
27
|
Guilleminault L, Carmier D, Heuzé-Vourc'h N, Diot P, Pichon E. [Immunotherapy in non-small cell lung cancer: inhibition of PD1/PDL1 pathway]. REVUE DE PNEUMOLOGIE CLINIQUE 2015; 71:44-56. [PMID: 25687821 DOI: 10.1016/j.pneumo.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 10/13/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Despite recent advances in targeted therapy of non-small cell lung cancer (NSCLC), many patients do not benefit from these therapies. Inhibition of PD1/PDL1 is an interesting therapeutic target which restores the immune system against tumor cells. PD1 is located on lymphocytes and PDL1 on the antigen presenting cells. PD1 and PDL1 are co-inhibition molecules and their interaction results in immune tolerance against tumor cells. Anti-PD1 and anti-PDL1 antibodies have been developed to restore immune system in solid cancer including NSCLC. In phase I, studies assessing nivolumab, an anti-PD1 antibody, objective responses were observed in 13 to 18% of NSCLC patients failing previous treatment. The data obtained with anti-PDL1 antibodies is similar with objective responses ranging from 6 to 22%. The encouraging results of phase I/II studies must be confirmed in ongoing phase III studies. Anti-PD1 and anti-PDL1 antibodies exposed to new adverse events including auto-immune diseases whose support is not codified. Questions about treatment duration and criteria evaluation are not resolved. These treatments pave the way for immunomodulation in NSCLC treatment.
Collapse
Affiliation(s)
- L Guilleminault
- Service de pneumologie et d'explorations fonctionnelles, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours cedex, France; Centre d'étude des pathologies respiratoires, UMR 1100/EA6305, 37032 Tours, France; EA6305, université François-Rabelais de Tours, 37032 Tours, France.
| | - D Carmier
- Service de pneumologie et d'explorations fonctionnelles, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours cedex, France
| | - N Heuzé-Vourc'h
- Centre d'étude des pathologies respiratoires, UMR 1100/EA6305, 37032 Tours, France; EA6305, université François-Rabelais de Tours, 37032 Tours, France
| | - P Diot
- Service de pneumologie et d'explorations fonctionnelles, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours cedex, France; Centre d'étude des pathologies respiratoires, UMR 1100/EA6305, 37032 Tours, France; EA6305, université François-Rabelais de Tours, 37032 Tours, France
| | - E Pichon
- Service de pneumologie et d'explorations fonctionnelles, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours cedex, France
| |
Collapse
|
28
|
Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 2015; 21:24-33. [PMID: 25440090 PMCID: PMC4282825 DOI: 10.1016/j.molmed.2014.10.009] [Citation(s) in RCA: 581] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023]
Abstract
The programmed death 1 (PD-1) receptor and its ligands programmed death ligand 1 (PD-L1) and PD-L2, members of the CD28 and B7 families, play critical roles in T cell coinhibition and exhaustion. Overexpression of PD-L1 and PD-1 on tumor cells and tumor-infiltrating lymphocytes, respectively, correlates with poor disease outcome in some human cancers. Monoclonal antibodies (mAbs) blockading the PD-1/PD-L1 pathway have been developed for cancer immunotherapy via enhancing T cell functions. Clinical trials with mAbs to PD-1 and PD-L1 have shown impressive response rates in patients, particularly for melanoma, non-small-cell lung cancer (NSCLC), renal cell carcinoma (RCC), and bladder cancer. Further studies are needed to dissect the mechanisms of variable response rate, to identify biomarkers for clinical response, to develop small-molecule inhibitors, and to combine these treatments with other therapies.
Collapse
Affiliation(s)
- Kim C Ohaegbulam
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Amer Assal
- Department of Oncology, Montefiore Medical Center, New York, NY 10467, USA
| | - Eszter Lazar-Molnar
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Oncology, Montefiore Medical Center, New York, NY 10467, USA.
| |
Collapse
|
29
|
Fusion protein of mutant B7-DC and Fc enhances the antitumor immune effect of GM-CSF-secreting whole-cell vaccine. J Immunother 2014; 37:147-54. [PMID: 24598447 DOI: 10.1097/cji.0000000000000025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
B7-DC [also known as programmed death ligand 2 (PD-L2)] is a costimulatory molecule expressed predominantly on dendritic cells (DCs) and macrophages. In addition to its coinhibitory receptor, programmed death receptor 1 (PD-1), evidence suggests that B7-DC interacts with an unidentified costimulatory receptor on T cells. B7-DC mutants with selective binding capacity for the costimulatory receptor may be effective in stimulating antitumor immune responses, while avoiding the inhibitory effects of PD-1. In this study, we concomitantly administered a GM-CSF-secreting whole-cell vaccine together with a fusion protein of mutant B7-DC and Fc portion (mB7-DC-Fc), which binds selectively to the costimulatory receptor. This lead to an increased number of tumor antigen-specific cytotoxic T lymphocytes both in the spleen and at the tumor site and complete elimination of established tumors in vivo. In addition, mB7-DC-Fc increased IFN-γ and IL-2 production and decreased IL-4 and IL-10 production in vitro, indicating that mB7-DC-Fc tips the Th1/Th2 balance toward Th1 dominance, which is more favorable for antitumor immunity. Furthermore, mB7-DC-Fc decreased the PD-1(+) proportion of CD8(+) T cells in vitro and tumor-infiltrating CD8(+) T cells in vivo, suggesting that mB7-DC-Fc may maintain tumor-infiltrating CD8(+) T cells in a nonexhausted state. In conclusion, mB7-DC-Fc administration during the T-cell priming phase enhances antitumor effects of vaccine by generating more tumor antigen-specific cytotoxic T lymphocytes and leading to their accumulation at the tumor site. We suggest that this combination approach may be a promising strategy for antitumor immunotherapy.
Collapse
|
30
|
Blocking tumor escape in hematologic malignancies: the anti-PD-1 strategy. Blood Rev 2014; 29:25-32. [PMID: 25260226 DOI: 10.1016/j.blre.2014.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 08/26/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022]
Abstract
Immunotherapy remains an important tool for treatment of hematologic malignancies. The Programmed Death-1 (PD-1) immune checkpoint pathway has emerged as a mechanism of tumor evasion from the anti-tumor immune response. The recent development of anti-PD-1 monoclonal antibodies has offered a targeted approach to cancer therapy. Several agents are in various stages of development and have shown clinical responses across a broad spectrum of both solid and hematologic malignancies. The use of anti-PD-1 therapy in hematologic malignancies is limited but has demonstrated clinical responses in relapsed/refractory disease following multiple lines of therapy. PD-1 blockade may reduce relapse rates for patients who fail to obtain a complete remission prior to autologous hematopoietic cell transplant. The role of the PD-1 pathway for tumor escape is reviewed. We explore the use of anti-PD-1 therapy in hematologic malignancies. The proposed mechanism of PD-1 blockade as a modulator of the innate and acquired immune response is considered. Finally, the challenges of anti-PD-1 therapy and the future direction of investigation in this area are reviewed.
Collapse
|
31
|
Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y, Murata S, Ohashi K. Influence of PD-L1 cross-linking on cell death in PD-L1-expressing cell lines and bovine lymphocytes. Immunology 2014; 142:551-61. [PMID: 24405267 DOI: 10.1111/imm.12243] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) blockade is accepted as a novel strategy for the reactivation of exhausted T cells that express programmed death-1 (PD-1). However, the mechanism of PD-L1-mediated inhibitory signalling after PD-L1 cross-linking by anti-PD-L1 monoclonal antibody (mAb) or PD-1-immunogloblin fusion protein (PD-1-Ig) is still unknown, although it may induce cell death of PD-L1(+) cells required for regular immune reactions. In this study, PD-1-Ig or anti-PD-L1 mAb treatment was tested in cell lines that expressed PD-L1 and bovine lymphocytes to investigate whether the treatment induces immune reactivation or PD-L1-mediated cell death. PD-L1 cross-linking by PD-1-Ig or anti-PD-L1 mAb primarily increased the number of dead cells in PD-L1(high) cells, but not in PD-L1(low) cells; these cells were prepared from Cos-7 cells in which bovine PD-L1 expression was induced by transfection. The PD-L1-mediated cell death also occurred in Cos-7 and HeLa cells transfected with vectors only encoding the extracellular region of PD-L1. In bovine lymphocytes, the anti-PD-L1 mAb treatment up-regulated interferon-γ (IFN-γ) production, whereas PD-1-Ig treatment decreased this cytokine production and cell proliferation. The IFN-γ production in B-cell-depleted peripheral blood mononuclear cells was not reduced by PD-1-Ig treatment and the percentages of dead cells in PD-L1(+) B cells were increased by PD-1-Ig treatment, indicating that PD-1-Ig-induced immunosuppression in bovine lymphocytes could be caused by PD-L1-mediated B-cell death. This study provides novel information for the understanding of signalling through PD-L1.
Collapse
Affiliation(s)
- Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Almo SC, Guha C. Considerations for combined immune checkpoint modulation and radiation treatment. Radiat Res 2014; 182:230-8. [PMID: 25003312 DOI: 10.1667/rr13667.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent advances indicate that new therapeutic strategies for the treatment of malignancies will be realized from combined radiation treatment and immune checkpoint modulation. Numerous biophysical properties must be considered for effective biologic development, including affinity, selectivity, oligomeric state and valency. High-resolution structural characterization contributes to our understanding of these properties and can lead to the realization of proteins with unique in vitro activities and novel in vivo therapeutic functions. In this article we focus on the importance of these factors for new potential biologics and consider these in the context of combination therapies with physical modalities, including radiation therapy. In particular, we examine the consequences of altered avidities and subset-specific ligand density on the rational modification of biological function in the immunoglobulin and tumor necrosis factor superfamilies and for new optimized combination therapies.
Collapse
Affiliation(s)
- Steven C Almo
- a Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
33
|
Nishimori A, Konnai S, Ikebuchi R, Okagawa T, Nakajima C, Suzuki Y, Mingala CN, Murata S, Ohashi K. Identification and characterization of bovine programmed death-ligand 2. Microbiol Immunol 2014; 58:388-97. [PMID: 24845976 DOI: 10.1111/1348-0421.12160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/03/2014] [Accepted: 05/12/2014] [Indexed: 11/30/2022]
Abstract
Previous reports from this group have indicated that the immunoinhibitory programmed death (PD)-1 receptor and its ligand, PD-L1, are involved in the mechanism of immune evasion of bovine chronic infection. However, no functional analysis of bovine PD-L2 in cattle has been reported. Thus, in this study, the molecular function of bovine PD-L2 was analyzed in vitro. Recombinant PD-L2 (PD-L2-Ig), which comprises an extracellular domain of bovine PD-L2 fused to the Fc portion of rabbit IgG1, was prepared based on the cloned cDNA sequence for bovine PD-L2. Bovine PD-L2-Ig bound to bovine PD-1-expressing cells and addition of soluble bovine PD-1-Ig clearly inhibited the binding of PD-L2-Ig to membrane PD-1 in a dose-dependent manner. Cell proliferation and IFN-γ production were significantly enhanced in the presence of PD-L2-Ig in peripheral blood mononuclear cells (PBMCs) from cattle. Moreover, PD-L2-Ig significantly enhanced IFN-γ production from virus envelope peptides-stimulated PBMCs derived from bovine leukemia virus-infected cattle. Interestingly, PD-L2-Ig-induced IFN-γ production was further enhanced by treatment with anti-bovine PD-1 antibody. These data suggest potential applications of bovine PD-L2-Ig as a therapy for bovine diseases.
Collapse
Affiliation(s)
- Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, Hua P, Duke-Cohan JS, Umetsu DT, Sharpe AH, DeKruyff RH, Freeman GJ. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. ACTA ACUST UNITED AC 2014; 211:943-59. [PMID: 24752301 PMCID: PMC4010901 DOI: 10.1084/jem.20130790] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interaction between the inhibitory molecule PD-L2 on dendritic cells and repulsive guidance molecule b (RGMb) on lung macrophages is required to establish respiratory tolerance. We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal resting lung interstitial macrophages and alveolar epithelial cells express high levels of RGMb mRNA, whereas lung dendritic cells express PD-L2. Blockade of the RGMb–PD-L2 interaction markedly impaired the development of respiratory tolerance by interfering with the initial T cell expansion required for respiratory tolerance. Experiments with PD-L2–deficient mice showed that PD-L2 expression on non–T cells was critical for respiratory tolerance, but expression on T cells was not required. Because PD-L2 binds to both PD-1, which inhibits antitumor immunity, and to RGMb, which regulates respiratory immunity, targeting the PD-L2 pathway has therapeutic potential for asthma, cancer, and other immune-mediated disorders. Understanding this pathway may provide insights into how to optimally modulate the PD-1 pathway in cancer immunotherapy while minimizing adverse events.
Collapse
Affiliation(s)
- Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute; 2 Division of Immunology and Department of Pediatrics, Boston Children's Hospital; 3 Department of Microbiology and Immunobiology and 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, Hua P, Duke-Cohan JS, Umetsu DT, Sharpe AH, DeKruyff RH, Freeman GJ. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. Mol Immunol 2014; 48:1292-300. [PMID: 24752301 DOI: 10.1016/j.molimm.2010.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/17/2010] [Accepted: 12/08/2010] [Indexed: 12/30/2022]
Abstract
We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal resting lung interstitial macrophages and alveolar epithelial cells express high levels of RGMb mRNA, whereas lung dendritic cells express PD-L2. Blockade of the RGMb-PD-L2 interaction markedly impaired the development of respiratory tolerance by interfering with the initial T cell expansion required for respiratory tolerance. Experiments with PD-L2-deficient mice showed that PD-L2 expression on non-T cells was critical for respiratory tolerance, but expression on T cells was not required. Because PD-L2 binds to both PD-1, which inhibits antitumor immunity, and to RGMb, which regulates respiratory immunity, targeting the PD-L2 pathway has therapeutic potential for asthma, cancer, and other immune-mediated disorders. Understanding this pathway may provide insights into how to optimally modulate the PD-1 pathway in cancer immunotherapy while minimizing adverse events.
Collapse
Affiliation(s)
- Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute; 2 Division of Immunology and Department of Pediatrics, Boston Children's Hospital; 3 Department of Microbiology and Immunobiology and 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Merelli B, Massi D, Cattaneo L, Mandalà M. Targeting the PD1/PD-L1 axis in melanoma: Biological rationale, clinical challenges and opportunities. Crit Rev Oncol Hematol 2014; 89:140-65. [DOI: 10.1016/j.critrevonc.2013.08.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022] Open
|
37
|
Affiliation(s)
- Benjamin C. Creelan
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
38
|
Vargas-Inchaustegui DA, Xiao P, Hogg AE, Demberg T, McKinnon K, Venzon D, Brocca-Cofano E, DiPasquale J, Lee EM, Hudacik L, Pal R, Sui Y, Berzofsky JA, Liu L, Langermann S, Robert-Guroff M. Immune targeting of PD-1(hi) expressing cells during and after antiretroviral therapy in SIV-infected rhesus macaques. Virology 2013; 447:274-84. [PMID: 24210124 PMCID: PMC3869407 DOI: 10.1016/j.virol.2013.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/05/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
High-level T cell expression of PD-1 during SIV infection is correlated with impaired proliferation and function. We evaluated the phenotype and distribution of T cells and Tregs during antiretroviral therapy plus PD-1 modulation (using a B7-DC-Ig fusion protein) and post-ART. Chronically SIV-infected rhesus macaques received: 11 weeks of ART (Group A); 11 weeks of ART plus B7-DC-Ig (Group B); 11 weeks of ART plus B7-DC-Ig, then 12 weeks of B7-DC-Ig alone (Group C). Continuous B7-DC-Ig treatment (Group C) decreased rebound viremia post-ART compared to pre-ART levels, associated with decreased PD-1(hi) expressing T cells and Tregs in PBMCs, and PD-1(hi) Tregs in lymph nodes. It transiently decreased expression of Ki67 and α4β7 in PBMC CD4(+) and CD8(+) Tregs for up to 8 weeks post-ART and maintained Ag-specific T-cell responses at low levels. Continued immune modulation targeting PD-1(hi) cells during and post-ART helps maintain lower viremia, keeps a favorable T cell/Treg repertoire and modulates antigen-specific responses.
Collapse
Affiliation(s)
| | - Peng Xiao
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alison E. Hogg
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thorsten Demberg
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Katherine McKinnon
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Egidio Brocca-Cofano
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Janet DiPasquale
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Eun M. Lee
- Advanced Bioscience Laboratories Inc., Rockville, MD 20850
| | - Lauren Hudacik
- Advanced Bioscience Laboratories Inc., Rockville, MD 20850
| | - Ranajit Pal
- Advanced Bioscience Laboratories Inc., Rockville, MD 20850
| | - Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jay A. Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Linda Liu
- Amplimmune Inc., Gaithersburg, MD 20878
| | | | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
39
|
Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2013; 2:e27010. [PMID: 24498547 PMCID: PMC3906430 DOI: 10.4161/onci.27010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 02/06/2023] Open
Abstract
The prognosis of patients with advanced pancreatic cancer is extremely poor and there are only a few standard treatments. Here, we report the results of a Phase I clinical trial to investigate the safety, immunostimulatory effects, and antineoplastic activity of a multi-target vaccine composed of four distinct peptides derived from cancer-testis (CT) antigens and vascular endothelial growth factor receptors (VEGFRs). Nine patients with unresectable, advanced pancreatic cancer who were refractory to standard chemotherapy were enrolled. Each patient was vaccinated with HLA-A*2402-restricted peptides derived from the CT antigens kinesin family member 20A (KIF20A) and cell division cycle-associated 1 (CDCA1) as well as from VEGFR1 and VEGFR2 subcutaneously once a week, and disease progression was evaluated up to 6 mo later. Adverse events were assessed using the Common Terminology Criteria for Adverse Events v. 3.0. Immunological responses were monitored by ELISPOT assays and flow cytometry based on peptide-specific dextramers. The clinical outcomes that were measured were tumor response, progression-free survival (PFS) and overall survival (OS). In general, the multi-peptide vaccine was well-tolerated, and no grade 3 or 4 adverse events were observed upon vaccination. Peptide-specific T-cell responses were detected in all 9 patients, and clinical benefits were observed in four of them. Median PFS and OS were 90 and 207 d, respectively. The elicitation of multiple and robust peptide-specific T-cell responses as well as the status of host lymphocytes may be useful prognostic factors among patients with advanced pancreatic cancer treated with peptide-based anticancer vaccines.
Collapse
Affiliation(s)
- Ryuji Okuyama
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Tokyo, Japan
| | - Atsushi Aruga
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Tokyo, Japan ; Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Tokyo, Japan
| | - Takashi Hatori
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Immunology; Juntendo School of Medicine; Tokyo, Japan
| | - Masakazu Yamamoto
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Tokyo, Japan
| |
Collapse
|
40
|
Mkrtichyan M, Chong N, Abu Eid R, Wallecha A, Singh R, Rothman J, Khleif SN. Anti-PD-1 antibody significantly increases therapeutic efficacy of Listeria monocytogenes (Lm)-LLO immunotherapy. J Immunother Cancer 2013; 1:15. [PMID: 24829751 PMCID: PMC4019896 DOI: 10.1186/2051-1426-1-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/20/2013] [Indexed: 01/04/2023] Open
Abstract
Background One of the significant tumor immune escape mechanisms and substantial barrier for successful immunotherapy is tumor-mediated inhibition of immune response through cell-to-cell or receptor/ligand interactions. Programmed death receptor-1 (PD-1) interaction with its ligands, PD-L1 and PD-L2, is one of the important strategies that many tumors employ to escape immune surveillance. Upon PD-Ls binding to PD-1, T cell receptor (TCR) signaling is dampened, causing inhibition of proliferation, decreased cytokine production, anergy and/or apoptosis. Thus PD-Ls expression by tumor cells serves as a protective mechanism, leading to suppression of tumor-infiltrating lymphocytes in the tumor microenvironment. Lm-LLO immunotherapies have been shown to be therapeutically effective due to their ability to induce potent antigen-specific immune responses. However, it has been demonstrated that infection with Lm leads to up-regulation of PD-L1 on mouse immune cells that can inhibit effector T cells through PD-1/PD-L1 pathway. Methods Therapeutic and immune efficacy of Listeria-based vaccine (Lm-LLO-E7) in combination with anti-PD-1 antibody was tested in E7 antigen expressing TC-1 mouse tumor model. Tumor growth, survival, as well as peripheral and tumor-infiltrating immune cell profiles after immunotherapy were assessed. Results Here we demonstrate that the combination of an Lm-LLO immunotherapy with anti-PD-1 antibody that blocks PD-1/PD-L1 interaction, significantly improves immune and therapeutic efficacy of treatment in TC-1 mouse tumor model. Importantly, we show that in addition to significant reduction of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) in both spleen and tumor microenvironment that are mediated solely by the Lm-LLO immunotherapy, the addition of anti-PD-1 antibody to the treatment results in significant increase of antigen-specific immune responses in periphery and CD8 T cell infiltration into the tumor. As a result, this combinational treatment leads to significant inhibition of tumor growth and prolonged survival/complete regression of tumors in treated animals. We also demonstrate that in vitro infection with Lm results in significant upregulation of surface PD-L1 expression on human monocyte-derived dendritic cells suggesting the translational capacity of this finding. Conclusions Our findings demonstrate that combination of Lm-LLO-based vaccine with blocking of PD-1/PD-L1 interaction is a feasible approach with clinical translation potential that can lead to overall enhancement of the efficacy of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Mikayel Mkrtichyan
- Cancer Center, Georgia Regents University, 1120 15th Street, Augusta GA 30192, USA
| | - Namju Chong
- National Cancer Institute, NIH, Vaccine Branch, Bethesda, MD 20892, USA
| | - Rasha Abu Eid
- Cancer Center, Georgia Regents University, 1120 15th Street, Augusta GA 30192, USA
| | | | | | | | - Samir N Khleif
- Cancer Center, Georgia Regents University, 1120 15th Street, Augusta GA 30192, USA
| |
Collapse
|
41
|
Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 2013; 19:1021-34. [PMID: 23460533 PMCID: PMC3702373 DOI: 10.1158/1078-0432.ccr-12-2063] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The immune suppressive molecule programmed death-1 (PD-1) is upregulated in activated T lymphocytes and inhibits T-cell function upon binding to its ligands B7-H1 (PD-L1, CD274) and B7-DC (PD-L2, CD273). Substantial experimental data from in vitro cell culture systems and animal models, and more recently from clinical trials, indicate that PD-1/PD-1-ligand interactions are a major mechanism of immune suppression within the tumor microenvironment. Initial clinical studies of antibodies directed against PD-1 and B7-H1 showed both an encouraging safety profile and remarkable antitumor activity in subsets of patients with metastatic disease, including malignancies--such as lung cancer--which were previously thought to be unresponsive to immunotherapy. Preliminary data have suggested a correlation between tumor membrane B7-H1 expression and clinical response to anti-PD-1 antibodies. Several key challenges remain to optimize development of PD-1/B7-H1 pathway blockade, including defining the biologic significance of all potential ligand-receptor interactions in the tumor microenvironment, developing more accurate predictive biomarkers of response, determining the breadth of activity in human malignancies, and developing rational combinations of therapy that address key mechanisms involved in positive and negative regulation of antitumor immune responses.
Collapse
Affiliation(s)
- Mario Sznol
- Department of Medicine and Immunobiology, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
42
|
Smothers F, Hoos A, Langermann S, Marshall S, May R, Fleming M. AMP-224, a Fusion Protein that Targets PD-1. Ann Oncol 2013. [DOI: 10.1093/annonc/mdt042.6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
43
|
Hamid O, Carvajal RD. Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy. Expert Opin Biol Ther 2013; 13:847-61. [DOI: 10.1517/14712598.2013.770836] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Omid Hamid
- The Angeles Clinic and Research Institute, Melanoma Center, 11818 Wilshire Blvd., Los Angeles, CA 90025, USA ;
| | - Richard D Carvajal
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| |
Collapse
|
44
|
Sunay M, Marincola F, Khleif SN, Silverstein SC, Fox BA, Galon J, Emens LA. Focus on the target: the tumor microenvironment, Society for Immunotherapy of Cancer Annual Meeting Workshop, October 24th-25th 2012. J Immunother Cancer 2013. [PMCID: PMC4019899 DOI: 10.1186/2051-1426-1-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Workshop associated with the 27th Annual Meeting of the Society for Immunotherapy of Cancer (SITC), North Bethesda, MD, October 24-25, 2012 focused on targeting the tumor microenvironment as part of an integrative approach to immune-based cancer therapy.
Collapse
|