1
|
Mao Y, Ge H, Chen W, Wang Y, Liu H, Li Z, Bai Y, Wang D, Yu Y, Zhen Q, Li B, Sun L. RasGRP1 influences imiquimod-induced psoriatic inflammation via T-cell activation in mice. Int Immunopharmacol 2023; 122:110590. [PMID: 37429143 DOI: 10.1016/j.intimp.2023.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
The vascular endothelial growth factor (VEGF) signal transduction pathway has been shown to be a potential target for the treatment of psoriasis. Ras guanyl-releasing protein 1 (RasGRP1), a downstream target gene of VEGF, regulates the development, homeostasis, and differentiation of T cells, but the contribution of RasGRP1 to psoriasis is limited. In this manuscript, we aimed to investigate the role of RasGRP1 in psoriasis. The RNA-Seq transcriptome sequencing data from the mouse model of psoriasis treated with IMQ (imiquimod) were analyzed. The effect of RasGRP1 was investigated through in vivo injection of activators or small molecular inhibitors, as well as adeno-associated virus injections. Gene knockout and NB-UVB (narrow-band ultraviolet B) treatments were utilized to interfere with the psoriatic mouse model. By transfection of lentivirus in vitro, the effect of RasGRP1 gene function on the secretion of psoriasis-related cytokines by T cells was confirmed. We showed that cutaneous VEGF and RasGRP1 were strongly activated in human psoriatic lesions and the skin of mice with IMQ-induced psoriasis. RasGRP1 deficiency and overexpression influence IMQ-induced psoriasis-like manifestations and skin inflammation in mice. VEGF, secreted mainly by epidermal cells, mediates psoriatic inflammation through the RasGRP1-AKT-NF-κB pathway. RasGRP1 is required for psoriasis development mediated by VEGF. These results confirmed the role of RasGRP1 in the pathogenesis of psoriasis and provided potential targets for clinical psoriasis treatment.
Collapse
Affiliation(s)
- Yiwen Mao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - YiRui Wang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Hao Liu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zhuo Li
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yuanming Bai
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Daiyue Wang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yafen Yu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qi Zhen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Bao Li
- Integrated Laboratory, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liangdan Sun
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Health Science Center, North China University of Science and Technology, Tangshan 063210, China; North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, China; School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
2
|
Ling S, You Z, Li Y, Zhang J, Zhao S, He Y, Chen X. The role of γδ T17 cells in cardiovascular disease. J Leukoc Biol 2022; 112:1649-1661. [PMID: 36073777 DOI: 10.1002/jlb.3mr0822-761rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023] Open
Abstract
Due to the ability of γδ T cells to bridge adaptive and innate immunity, γδ T cells can respond to a variety of molecular cues and acquire the ability to induce a variety of cytokines such as IL-17 family, IFN-γ, IL-4, and IL-10. IL-17+ γδ T cells (γδ T17 cells) populations have recently received considerable interest as they are the major early source of IL-17A in many immune response models. However, the exact mechanism of γδ T17 cells is still poorly understood, especially in the context of cardiovascular disease (CVD). CVD is the leading cause of death in the world, and it tends to be younger. Here, we offer a review of the cardiovascular inflammatory and immune functions of γδ T17 cells in order to understand their role in CVD, which may be the key to developing new clinical applications.
Collapse
Affiliation(s)
- Shaoxue Ling
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zonghao You
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jian Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Shuwu Zhao
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| |
Collapse
|
3
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic Epithelial Cell-Derived IL-15 and IL-15 Receptor α Chain Foster Local Environment for Type 1 Innate Like T Cell Development. Front Immunol 2021; 12:623280. [PMID: 33732245 PMCID: PMC7957058 DOI: 10.3389/fimmu.2021.623280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Expression of tissue-restricted antigens (TRAs) in thymic epithelial cells (TECs) ensures negative selection of highly self-reactive T cells to establish central tolerance. Whether some of these TRAs could exert their canonical biological functions to shape thymic environment to regulate T cell development is unclear. Analyses of publicly available databases have revealed expression of transcripts at various levels of many cytokines and cytokine receptors such as IL-15, IL-15Rα, IL-13, and IL-23a in both human and mouse TECs. Ablation of either IL-15 or IL-15Rα in TECs selectively impairs type 1 innate like T cell, such as iNKT1 and γδT1 cell, development in the thymus, indicating that TECs not only serve as an important source of IL-15 but also trans-present IL-15 to ensure type 1 innate like T cell development. Because type 1 innate like T cells are proinflammatory, our data suggest the possibility that TEC may intrinsically control thymic inflammatory innate like T cells to influence thymic environment.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kimberly S Schluns
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - John W Sleasman
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
5
|
Pan Y, Deng W, Xie J, Zhang S, Wan ECK, Li L, Tao H, Hu Z, Chen Y, Ma L, Gao J, Zhong XP. Graded diacylglycerol kinases α and ζ activities ensure mucosal-associated invariant T-cell development in mice. Eur J Immunol 2019; 50:192-204. [PMID: 31710099 DOI: 10.1002/eji.201948289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells participate in both protective immunity and pathogenesis of diseases. Most murine MAIT cells express an invariant TCRVα19-Jα33 (iVα19) TCR, which triggers signals crucial for their development. However, signal pathways downstream of the iVα19TCR and their regulation in MAIT cells are unknown. Diacylglycerol (DAG) is a critical second messenger that relays the TCR signal to multiple downstream signaling cascades. DAG is terminated by DAG kinase (DGK)-mediated phosphorylation and conversion to phosphatidic acid. We have demonstrated here that downregulation of DAG caused by enhanced DGK activity impairs late-stage MAIT cell maturation in both thymus and spleen. Moreover, deficiency of DGKζ but not DGKα by itself causes modest decreases in MAIT cells, and deficiency of both DGKα and ζ results in severe reductions of MAIT cells in an autonomous manner. Our studies have revealed that DAG signaling is not only critical but also must be tightly regulated by DGKs for MAIT cell development and that both DGKα and, more prominently, DGKζ contribute to the overall DGK activity for MAIT cell development.
Collapse
Affiliation(s)
- Yun Pan
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenhai Deng
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinhai Xie
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shimeng Zhang
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Edwin C K Wan
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Microbiology, Immunology, & Cell Biology and Department of Neuroscience, West Virginia University, Morgantown, WV
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Breast and Thyroid Surgery and Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiming Hu
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongping Chen
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Immunology and Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Duke University Medical Center, Durham, NC
| |
Collapse
|
6
|
Chen P, Wang S, Janardhan KS, Zemans RL, Deng W, Karmaus P, Shen S, Sunday M, Que LG, Fessler MB, Zhong XP. Efficient CD4Cre-Mediated Conditional KRas Expression in Alveolar Macrophages and Alveolar Epithelial Cells Causes Fatal Hyperproliferative Pneumonitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1208-1217. [PMID: 31315887 PMCID: PMC6702086 DOI: 10.4049/jimmunol.1900566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
The CD4Cre transgenic model has been widely used for T cell-specific gene manipulation. We report unexpected highly efficient Cre-mediated recombination in alveolar macrophages (AMFs), bronchial epithelial cells (BECs), and alveolar epithelial cells (AECs) in this strain of mice. Different from CD4 T cells, AMFs, AECs, and BECs do not express detectable Cre protein, suggesting that Cre protein is either very transiently expressed in these cells or only expressed in their precursors. Mice carrying a conditional constitutively active KRas (caKRas) allele and the CD4Cre transgene contain not only hyperactivated T cells but also develop severe AMF accumulation, AEC and BEC hyperplasia, and adenomas in the lung, leading to early lethality correlated with caKRas expression in these cells. We propose that caKRas-CD4Cre mice represent, to our knowledge, a novel model of proliferative pneumonitis involving macrophages and epithelial cells and that the CD4Cre model may offer unique usefulness for studying gene functions simultaneously in multilineages in the lung. Our observations, additionally, suggest that caution in data interpretation is warranted when using the CD4Cre transgenic model for T cell-specific gene manipulation, particularly when lung pathophysiological status is being examined.
Collapse
Affiliation(s)
- Pengcheng Chen
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Shang Wang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Kyathanahalli S Janardhan
- Integrated Laboratory Systems, Inc., and National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Rachel L Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Wenhai Deng
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Peer Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Shudan Shen
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Mary Sunday
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Loretta G Que
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Xiao-Ping Zhong
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710;
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
7
|
Abstract
T cells are central to the vertebrate immune system. Two distinct types of T cells, αβT and γδT cells, express different types of T cell antigen receptors (TCRs), αβTCR and γδTCR, respectively, that are composed of different sets of somatically rearranged TCR chains and CD3 subunits. γδT cells have recently attracted considerable attention due to their ability to produce abundant cytokines and versatile roles in host defense, tissue regeneration, inflammation, and autoimmune diseases. Both αβT and γδT cells develop in the thymus. Unlike the development of αβT cells, which depends on αβTCR-mediated positive and negative selection, the development of γδT cells, including the requirement of γδTCR, has been less well understood. αβT cells differentiate into effector cells in the peripheral tissues, whereas γδT cells acquire effector functions during their development in the thymus. In this review, we will discuss the current state of knowledge of the molecular mechanism of TCR signal transduction and its role in the thymic development of γδT cells, particularly highlighting a newly discovered mechanism that controls proinflammatory γδT cell development.
Collapse
|
8
|
RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol 2018; 142:595-604.e16. [DOI: 10.1016/j.jaci.2017.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
|
9
|
Somekh I, Marquardt B, Liu Y, Rohlfs M, Hollizeck S, Karakukcu M, Unal E, Yilmaz E, Patiroglu T, Cansever M, Frizinsky S, Vishnvenska-Dai V, Rechavi E, Stauber T, Simon AJ, Lev A, Klein C, Kotlarz D, Somech R. Novel Mutations in RASGRP1 are Associated with Immunodeficiency, Immune Dysregulation, and EBV-Induced Lymphoma. J Clin Immunol 2018; 38:699-710. [DOI: 10.1007/s10875-018-0533-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022]
|
10
|
Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest 2017; 128:415-426. [PMID: 29202478 DOI: 10.1172/jci95837] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
γδT cells produce inflammatory cytokines and have been implicated in the pathogenesis of cancer, infectious diseases, and autoimmunity. The T cell receptor (TCR) signal transduction that specifically regulates the development of IL-17-producing γδT (γδT17) cells largely remains unclear. Here, we showed that the receptor proximal tyrosine kinase Syk is essential for γδTCR signal transduction and development of γδT17 in the mouse thymus. Zap70, another tyrosine kinase essential for the development of αβT cells, failed to functionally substitute for Syk in the development of γδT17. Syk induced the activation of the PI3K/Akt pathway upon γδTCR stimulation. Mice deficient in PI3K signaling exhibited a complete loss of γδT17, without impaired development of IFN-γ-producing γδT cells. Moreover, γδT17-dependent skin inflammation was ameliorated in mice deficient in RhoH, an adaptor known to recruit Syk. Thus, we deciphered lineage-specific TCR signaling and identified the Syk/PI3K pathway as a critical determinant of proinflammatory γδT cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan.,Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Tadashi Okamura
- Department of Laboratory Animal Medicine, and.,Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
11
|
Buus TB, Schmidt JD, Bonefeld CM, Geisler C, Lauritsen JPH. Development of interleukin-17-producing Vγ2+ γδ T cells is reduced by ICOS signaling in the thymus. Oncotarget 2017; 7:19341-54. [PMID: 27235509 PMCID: PMC4991387 DOI: 10.18632/oncotarget.8464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/21/2016] [Indexed: 11/25/2022] Open
Abstract
Co-stimulation is an integral part of T cell signaling involved in almost all facets of T cell biology. While much is known about co-stimulation in differentiation and function of conventional αβ T cells, less is known about how co-stimulation affects the development and programming of γδ T cells. In this study, we have investigated the role of inducible T cell co-stimulator (ICOS) on the development of γδ T cells. We show that ICOS is expressed by a population of immature Vγ2+CD45RBlow γδ T cells predisposed to interleukin-17 (IL-17) production. We found that treatment with ICOS specific antibodies drastically reduces fetal development of IL-17-producing γδ T cells by agonistic actions, and that ICOS deficient mice have a significant increase in the population of IL-17-producing Vγ2+ γδ T cells in the thymus, spleen, lymph nodes and skin and exhibit exacerbated sensitization responses to 2,4-dinitrofluorobenzene. In conclusion, this study demonstrates that development of IL-17-producing Vγ2+ γδ T cells is reduced by ICOS signaling in the thymus.
Collapse
Affiliation(s)
- Terkild Brink Buus
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Damgård Schmidt
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Peter Holst Lauritsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, Platzer R, Pfajfer L, Bilic I, Ban SA, Willmann KL, Mukherjee M, Supper V, Hsu HT, Banerjee PP, Sinha P, McClanahan F, Zlabinger GJ, Pickl WF, Gribben JG, Stockinger H, Bennett KL, Huppa JB, Dupré L, Sanal Ö, Jäger U, Sixt M, Tezcan I, Orange JS, Boztug K. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol 2016; 17:1352-1360. [PMID: 27776107 PMCID: PMC6400263 DOI: 10.1038/ni.3575] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
Abstract
RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.
Collapse
Affiliation(s)
- Elisabeth Salzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Deniz Cagdas
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Miroslav Hons
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Wojciech Garncarz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Özlem Yüce Petronczki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Ivan Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sol A Ban
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katharina L Willmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Malini Mukherjee
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Verena Supper
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hsiang Ting Hsu
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Pinaki P Banerjee
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Papiya Sinha
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Fabienne McClanahan
- Centre for Haemato-Oncology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London, UK
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Christian Doppler Laboratory for Immunomodulation and Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London, UK
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Loïc Dupré
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Centre de Physiopathologie de Toulouse Purpan (CPTP), INSERM, UMR1043, Toulouse Purpan University Hospital, Toulouse, France
| | - Özden Sanal
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Ilhan Tezcan
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Chen SS, Hu Z, Zhong XP. Diacylglycerol Kinases in T Cell Tolerance and Effector Function. Front Cell Dev Biol 2016; 4:130. [PMID: 27891502 PMCID: PMC5103287 DOI: 10.3389/fcell.2016.00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that regulate the relative levels of diacylglycerol (DAG) and phosphatidic acid (PA) in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR) signal by recruiting multiple effector molecules, such as RasGRP1, PKCθ, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms, α and ζ, in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.
Collapse
Affiliation(s)
- Shelley S Chen
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center Durham, NC, USA
| | - Zhiming Hu
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Institute of Biotherapy, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Department of Immunology, Duke University Medical CenterDurham, NC, USA; Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
14
|
Wang HX, Cheng JS, Chu S, Qiu YR, Zhong XP. mTORC2 in Thymic Epithelial Cells Controls Thymopoiesis and T Cell Development. THE JOURNAL OF IMMUNOLOGY 2016; 197:141-50. [PMID: 27233961 DOI: 10.4049/jimmunol.1502698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/04/2016] [Indexed: 01/15/2023]
Abstract
Thymic epithelial cells (TECs) play important roles in T cell generation. Mechanisms that control TEC development and function are still not well defined. The mammalian or mechanistic target of rapamycin complex (mTORC)2 signals to regulate cell survival, nutrient uptake, and metabolism. We report in the present study that mice with TEC-specific ablation of Rictor, a critical and unique adaptor molecule in mTORC2, display thymic atrophy, which accompanies decreased TEC numbers in the medulla. Moreover, generation of multiple T cell lineages, including conventional TCRαβ T cells, regulatory T cells, invariant NKT cells, and TCRγδ T cells, was reduced in TEC-specific Rictor-deficient mice. Our data demonstrate that mTORC2 in TECs is important for normal thymopoiesis and efficient T cell generation.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Joyce S Cheng
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710; Pre-Med (BS/MD) Health Scholar Program, Temple University, Philadelphia, PA 19222
| | - Shuai Chu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China;
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710; Department of Immunology, Duke University Medical Center, Durham, NC 27710; and Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
15
|
Ye J, Shi H, Shen Y, Peng C, Liu Y, Li C, Deng K, Geng J, Xu T, Zhuang Y, Zheng B, Tao W. PP6 controls T cell development and homeostasis by negatively regulating distal TCR signaling. THE JOURNAL OF IMMUNOLOGY 2015; 194:1654-64. [PMID: 25609840 DOI: 10.4049/jimmunol.1401692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell development and homeostasis are both regulated by TCR signals. Protein phosphorylation and dephosphorylation, which are catalyzed by protein kinases and phosphatases, respectively, serve as important switches controlling multiple downstream pathways triggered by TCR recognition of Ags. It has been well documented that protein tyrosine phosphatases are involved in negative regulation of proximal TCR signaling. However, how TCR signals are terminated or attenuated in the distal TCR signaling pathways is largely unknown. We investigated the function of Ser/Thr protein phosphatase (PP) 6 in TCR signaling. T cell lineage-specific ablation of PP6 in mice resulted in enhanced thymic positive and negative selection, and preferential expansion of fetal-derived, IL-17-producing Vγ6Vδ1(+) T cells. Both PP6-deficient peripheral CD4(+) helper and CD8(+) cytolytic cells could not maintain a naive state and became fast-proliferating and short-lived effector cells. PP6 deficiency led to profound hyperactivation of multiple distal TCR signaling molecules, including MAPKs, AKT, and NF-κB. Our studies demonstrate that PP6 acts as a critical negative regulator, not only controlling both αβ and γδ lineage development, but also maintaining naive T cell homeostasis by preventing their premature activation before Ag stimulation.
Collapse
Affiliation(s)
- Jian Ye
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hao Shi
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ye Shen
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chao Peng
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yan Liu
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chenyu Li
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Kejing Deng
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jianguo Geng
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109
| | - Tian Xu
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China; Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536
| | - Yuan Zhuang
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China; Department of Immunology, Duke University Medical Center, Durham, NC 27701; and
| | - Biao Zheng
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China;
| |
Collapse
|
16
|
Sharma A, Fonseca LL, Rajani C, Yanagida JK, Endo Y, Cline JM, Stone JC, Ji J, Ramos JW, Lorenzo PS. Targeted deletion of RasGRP1 impairs skin tumorigenesis. Carcinogenesis 2014; 35:1084-91. [PMID: 24464785 DOI: 10.1093/carcin/bgu016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ras is frequently activated in cutaneous squamous cell carcinoma, a prevalent form of skin cancer. However, the pathways that contribute to Ras-induced transformation have not been entirely elucidated. We have previously demonstrated that in transgenic mice, overexpression of the Ras activator RasGRP1 promotes the formation of spontaneous skin tumors and enhances malignant progression in the multistage carcinogenesis skin model that relies on the oncogenic activation of H-Ras. Utilizing a RasGRP1 knockout mouse model (RasGRP1 KO), we now show that lack of RasGRP1 reduced the susceptibility to skin tumorigenesis. The dependency on RasGRP1 was associated with a diminished response to the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Specifically, we found impairment of epidermal hyperplasia induced by TPA through keratinocyte proliferation. Using a keratinocyte cell line that carries a ras oncogenic mutation, we also demonstrated that RasGRP1 could further activate Ras in response to TPA. Thus, we propose that RasGRP1 upregulates signaling from Ras and contributes to epidermal tumorigenesis by increasing the total dosage of active Ras.
Collapse
Affiliation(s)
- Amrish Sharma
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Diacylglycerol metabolism attenuates T-cell receptor signaling and alters thymocyte differentiation. Cell Death Dis 2013; 4:e912. [PMID: 24201811 PMCID: PMC3847306 DOI: 10.1038/cddis.2013.396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 09/05/2013] [Indexed: 01/22/2023]
Abstract
Diacylglycerol (DAG) metabolism has a critical function in Ras-regulated functions in mature T cells, but causal data linking defects in DAG-based signals with altered thymus development are missing. To study the effect of increased DAG metabolism in T-cell development, we engineered a membrane-targeted constitutive active version of DAG kinase-α (DGKα). We show that transgenic expression of constitutive active DGK leads to developmental defects in T cells, with a marked accumulation of immature CD8 thymocytes and a reduction in positive selected populations. These alterations are reflected in the periphery by a CD4/CD8 cell imbalance and general T-cell lymphopenia. The results link DAG metabolism to T-cell homeostasis, and show that correctly controlled generation and consumption of this lipid at the plasma membrane ensure T-cell passage through quality-control checkpoints during differentiation.
Collapse
|
18
|
Krishna S, Zhong XP. Regulation of Lipid Signaling by Diacylglycerol Kinases during T Cell Development and Function. Front Immunol 2013; 4:178. [PMID: 23847619 PMCID: PMC3701226 DOI: 10.3389/fimmu.2013.00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/19/2013] [Indexed: 01/14/2023] Open
Abstract
Diacylglycerol (DAG) and phosphatidic acid (PA) are bioactive lipids synthesized when the T cell receptor binds to a cognate peptide-MHC complex. DAG triggers signaling by recruiting Ras guanyl-releasing protein 1, PKCθ, and other effectors, whereas PA binds to effector molecules that include mechanistic target of rapamycin, Src homology region 2 domain-containing phosphatase 1, and Raf1. While DAG-mediated pathways have been shown to play vital roles in T cell development and function, the importance of PA-mediated signals remains less clear. The diacylglycerol kinase (DGK) family of enzymes phosphorylates DAG to produce PA, serving as a molecular switch that regulates the relative levels of these critical second messengers. Two DGK isoforms, α and ζ, are predominantly expressed in T lineage cells and play an important role in conventional αβ T cell development. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T cell hyper-activation and promoting T cell anergy. In this review, we discuss the roles of DAG-mediated pathways, PA-effectors, and DGKs in T cell development and function. We also highlight recent work that has uncovered previously unappreciated roles for DGK activity, for instance in invariant NKT cell development, anti-tumor and anti-viral CD8 responses, and the directional secretion of soluble effectors.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center , Durham, NC , USA ; Department of Immunology, Duke University Medical Center , Durham, NC , USA
| | | |
Collapse
|
19
|
Cheng HY, Wu R, Gebre AK, Hanna RN, Smith DJ, Parks JS, Ley K, Hedrick CC. Increased cholesterol content in gammadelta (γδ) T lymphocytes differentially regulates their activation. PLoS One 2013; 8:e63746. [PMID: 23704936 PMCID: PMC3660587 DOI: 10.1371/journal.pone.0063746] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Gammadelta (γδ) T lymphocytes respond quickly upon antigen encounter to produce a cytokine response. In this study, we sought to understand how functions of γδ T cells are differentially regulated compared to αβ T cells. We found that cholesterol, an integral component of the plasma membrane and a regulator of TCR signaling, is increased in γδ T cells compared to αβ T cells, and modulates their function. Higher levels of activation markers, and increased lipid raft content in γδ cells suggest that γδ T cells are more activated. Cholesterol depletion effectively decreased lipid raft formation and activation of γδ T cells, indicating that increased cholesterol content contributes to the hyper-activated phenotype of γδ T cells, possibly through enhanced clustering of TCR signals in lipid rafts. TCR stimulation assays and western blotting revealed that instead of a lower TCR threshold, enhanced TCR signaling through ERK1/2 activation is likely the cause for high cholesterol-induced rapid activation and proliferation in γδ T cells. Our data indicate that cholesterol metabolism is differentially regulated in γδ T cells. The high intracellular cholesterol content leads to enhanced TCR signaling and increases activation and proliferation of γδ T cells.
Collapse
Affiliation(s)
- Hsin-Yuan Cheng
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Abraham K. Gebre
- Department of Pathology/Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Richard N. Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Dan J. Smith
- Targeson, Inc., San Diego, California, United States of America
| | - John S. Parks
- Department of Pathology/Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Catherine C. Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Golec DP, Dower NA, Stone JC, Baldwin TA. RasGRP1, but not RasGRP3, is required for efficient thymic β-selection and ERK activation downstream of CXCR4. PLoS One 2013; 8:e53300. [PMID: 23308188 PMCID: PMC3538756 DOI: 10.1371/journal.pone.0053300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/30/2012] [Indexed: 01/19/2023] Open
Abstract
T cell development is a highly dynamic process that is driven by interactions between developing thymocytes and the thymic microenvironment. Upon entering the thymus, the earliest thymic progenitors, called CD4−CD8− ‘double negative’ (DN) thymocytes, pass through a checkpoint termed “β-selection” before maturing into CD4+CD8+ ‘double positive’ (DP) thymocytes. β-selection is an important developmental checkpoint during thymopoiesis where developing DN thymocytes that successfully express the pre-T cell receptor (TCR) undergo extensive proliferation and differentiation towards the DP stage. Signals transduced through the pre-TCR, chemokine receptor CXCR4 and Notch are thought to drive β-selection. Additionally, it has long been known that ERK is activated during β-selection; however the pathways regulating ERK activation remain unknown. Here, we performed a detailed analysis of the β-selection events in mice lacking RasGRP1, RasGRP3 and RasGRP1 and 3. We report that RasGRP1 KO and RasGRP1/3 DKO deficient thymi show a partial developmental block at the early DN3 stage of development. Furthermore, DN3 thymocytes from RasGRP1 and RasGRP1/3 double knock-out thymi show significantly reduced proliferation, despite expression of the TCRβ chain. As a result of impaired β-selection, the pool of TCRβ+ DN4 is significantly diminished, resulting in inefficient DN to DP development. Also, we report that RasGRP1 is required for ERK activation downstream of CXCR4 signaling, which we hypothesize represents a potential mechanism of RasGRP1 regulation of β-selection. Our results demonstrate that RasGRP1 is an important regulator of proliferation and differentiation at the β-selection checkpoint and functions downstream of CXCR4 to activate the Ras/MAPK pathway.
Collapse
Affiliation(s)
- Dominic P. Golec
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy A. Dower
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - James C. Stone
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A. Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Gorentla BK, Zhong XP. T cell Receptor Signal Transduction in T lymphocytes. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; 2012:5. [PMID: 23946894 PMCID: PMC3740441 DOI: 10.4172/2155-9899.s12-005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The T cell receptor (TCR) recognizes self or foreign antigens presented by major histocompatibility complex (MHC) molecules. Engagement of the TCR triggers the formation of multi-molecular signalosomes that lead to the generation of second messengers and subsequent activation of multiple distal signaling cascades, such as the Ca+2-calcineurin-NFAT, RasGRP1-Ras-Erk1/2, PKCθ-IKK-NFκB, and TSC1/2-mTOR pathways. These signaling cascades control many aspects of T cell biology. Mechanisms have been evolved to fine-tune TCR signaling to maintain T cell homeostasis and self-tolerance, and to properly mount effective responses to microbial infection. Defects or deregulation of TCR signaling has been implicated in the pathogenesis of multiple human diseases.
Collapse
Affiliation(s)
- Balachandra K Gorentla
- Pediatric Biology Center, Translational Health Science and Technology Institute, Gurgaon, 122016, India
| | - Xiao-Ping Zhong
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|