1
|
Vilela T, Valente S, Correia J, Ferreira F. Advances in immunotherapy for breast cancer and feline mammary carcinoma: From molecular basis to novel therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189144. [PMID: 38914239 DOI: 10.1016/j.bbcan.2024.189144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The role of inflammation in cancer is a topic that has been investigated for many years. As established, inflammation emerges as a defining characteristic of cancer, presenting itself as a compelling target for therapeutic interventions in the realm of oncology. Controlling the tumor microenvironment (TME) has gained paramount significance, modifying not only the effectiveness of immunotherapy but also modulating the outcomes and prognoses of standard chemotherapy and other anticancer treatments. Immunotherapy has surfaced as a central focus within the domain of tumor treatments, using immune checkpoint inhibitors as cancer therapy. Immune checkpoints and their influence on the tumor microenvironment dynamic are presently under investigation, aiming to ascertain their viability as therapeutic interventions across several cancer types. Cancer presents a significant challenge in humans and cats, where female breast cancer ranks as the most prevalent malignancy and feline mammary carcinoma stands as the third most frequent. This review seeks to summarize the data about the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), programmed cell death protein-1 (PD-1), V-domain Ig suppressor of T cell activation (VISTA), and T-cell immunoglobulin and mucin domain 3 (TIM-3) respective ongoing investigations as prospective targets for therapy for human breast cancer, while also outlining findings from studies reported on feline mammary carcinoma (FMC), strengthening the rationale for employing FMC as a representative model in the exploration of human breast cancer.
Collapse
Affiliation(s)
- Tatiana Vilela
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Sofia Valente
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Jorge Correia
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| |
Collapse
|
2
|
Ono M, Satou Y. Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1. DISCOVERY IMMUNOLOGY 2024; 3:kyae006. [PMID: 38863793 PMCID: PMC11165433 DOI: 10.1093/discim/kyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the 'self-reactivity' of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic T cell receptor (TCR)-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus type 1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single-cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Stockem CF, Galsky MD, van der Heijden MS. Turning up the heat: CTLA4 blockade in urothelial cancer. Nat Rev Urol 2024; 21:22-34. [PMID: 37608154 DOI: 10.1038/s41585-023-00801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/24/2023]
Abstract
Anti-PD1 and anti-PDL1 monotherapies have shown clinical efficacy in stage IV urothelial cancer and are integrated into current clinical practice. However, only a small number of the patients treated with single-agent checkpoint blockade experience an antitumour response. Insufficient priming or inhibitory factors in the tumour immune microenvironment might have a role in the lack of response. CTLA4 is an inhibitory checkpoint on activated T cells that is being studied as a therapeutic target in combination with anti-PD1 or anti-PDL1 therapies in advanced urothelial cancer. In locally advanced urothelial cancer, this combination approach has shown encouraging antitumour effects when administered pre-operatively. We believe that the presence of pre-existing intratumoural T cell immunity is not a prerequisite for response to combination therapy and that the additional value of CTLA4 blockade might involve the broadening of peripheral T cell priming, thereby transforming immunologically cold tumours into hot tumours.
Collapse
Affiliation(s)
- Chantal F Stockem
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Matthew D Galsky
- Department of Genitourinary Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | |
Collapse
|
4
|
Habib JG, Liu D, Crepeau RM, Wagener ME, Ford ML. Selective CD28 blockade impacts T cell differentiation during homeostatic reconstitution following lymphodepletion. Front Immunol 2023; 13:1081163. [PMID: 36761170 PMCID: PMC9904166 DOI: 10.3389/fimmu.2022.1081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Costimulation blockade targeting the CD28 pathway provides improved long-term renal allograft survival compared to calcineurin inhibitors but may be limited as CTLA-4-Ig (abatacept, belatacept) blocks both CD28 costimulation and CTLA-4 coinhibition. Directly targeting CD28 while leaving CTLA-4 intact may provide a mechanistic advantage. Fc-silent non-crosslinking CD28 antagonizing domain antibodies (dAb) are currently in clinical trials for renal transplantation. Given the current standard of care in renal transplantation at most US centers, it is likely that lymphodepletion via thymoglobulin induction therapy could be used in patients treated with CD28 antagonists. Thus, we investigated the impact of T cell depletion (TCD) on T cell phenotype following homeostatic reconstitution in a murine model of skin transplantation treated with anti-CD28dAb. Methods Skin from BALB/cJ donors was grafted onto C56BL/6 recipients which were treated with or without 0.2mg anti-CD4 and 10μg anti-CD8 one day prior to transplant and with or without 100μg anti-CD28dAb on days 0, 2, 4, 6, and weekly thereafter. Mice were euthanized six weeks post-transplant and lymphoid cells were analyzed by flow cytometry. Results Anti-CD28dAb reversed lymphopenia-induced differentiation of memory CD4+ T cells in the spleen and lymph node compared to TCD alone. Mice treated with TCD+anti-CD28dAb exhibited significantly improved skin graft survival compared to anti-CD28dAb alone, which was also improved compared to no treatment. In addition, the expression of CD69 was reduced on CD4+ and CD8+ T cells in the spleen and lymph node from mice that received TCD+anti-CD28dAb compared to TCD alone. While a reduced frequency of CD4+FoxP3+ T cells was observed in anti-CD28dAb treated mice relative to untreated controls, this was balanced by an increased frequency of CD8+Foxp3+ T cells that was observed in the blood and kidney of mice given TCD+anti-CD28dAb compared to TCD alone. Discussion These data demonstrate that CD28 signaling impacts the differentiation of both CD4+ and CD8+ T cells during homeostatic reconstitution following lymphodepletion, resulting in a shift towards fewer activated memory T cells and more CD8+FoxP3+ T cells, a profile that may underpin the observed prolongation in allograft survival.
Collapse
|
5
|
Hu X, Wang L, Shang B, Wang J, Sun J, Liang B, Su L, You W, Jiang S. Immune checkpoint inhibitor-associated toxicity in advanced non-small cell lung cancer: An updated understanding of risk factors. Front Immunol 2023; 14:1094414. [PMID: 36949956 PMCID: PMC10025397 DOI: 10.3389/fimmu.2023.1094414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies, etc, have revolutionized cancer treatment strategies, including non-small cell lung cancer (NSCLC). While these immunotherapy agents have achieved durable clinical benefits in a subset of NSCLC patients, they bring in a variety of immune-related adverse events (irAEs), which involve cardiac, pulmonary, gastrointestinal, endocrine and dermatologic system damage, ranging from mild to life-threatening. Thus, there is an urgent need to better understand the occurrence of irAEs and predict patients who are susceptible to those toxicities. Herein, we provide a comprehensive review of what is updated about the clinical manifestations, mechanisms, predictive biomarkers and management of ICI-associated toxicity in NSCLC. In addition, this review also provides perspective directions for future research of NSCLC-related irAEs.
Collapse
Affiliation(s)
- Xiangxiao Hu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junren Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bin Liang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lili Su
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjie You
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- *Correspondence: Wenjie You, ; Shujuan Jiang,
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wenjie You, ; Shujuan Jiang,
| |
Collapse
|
6
|
Waters E, Williams C, Kennedy A, Sansom DM. In Vitro Analysis of CTLA-4-Mediated Transendocytosis by Regulatory T Cells. Methods Mol Biol 2023; 2559:171-187. [PMID: 36180633 DOI: 10.1007/978-1-0716-2647-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Regulatory T Cells (Tregs) constitutively express the inhibitory receptor CTLA-4, which is fundamental to their role in immune suppression. Mechanistically, CTLA-4 on Tregs can attenuate T cell activation by physically removing and internalizing costimulatory ligands CD80 and CD86 from the surface of antigen-presenting cells by transendocytosis. Therefore, the process of transendocytosis can be harnessed as a tool to study the molecular basis of CTLA-4 biology and a key aspect of Treg suppressive function. In this chapter, we describe a method of human Treg isolation and expansion resulting in high CTLA-4 expression. We then detail a transendocytosis assay using artificial antigen-presenting cells (DG-75 B Cell lines) expressing fluorescently tagged ligands mixed with the expanded Tregs. This methodology can be applied to testing of patients carrying CTLA-4 mutations, providing a robust model to assess the degree of functional disruption.
Collapse
Affiliation(s)
- Erin Waters
- UCL Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London, UK
| | - Cayman Williams
- UCL Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London, UK
| | - Alan Kennedy
- UCL Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London, UK
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London, UK.
| |
Collapse
|
7
|
Fox TA, Houghton BC, Petersone L, Waters E, Edner NM, McKenna A, Preham O, Hinze C, Williams C, de Albuquerque AS, Kennedy A, Pesenacker AM, Genovese P, Walker LSK, Burns SO, Sansom DM, Booth C, Morris EC. Therapeutic gene editing of T cells to correct CTLA-4 insufficiency. Sci Transl Med 2022; 14:eabn5811. [PMID: 36288278 DOI: 10.1126/scitranslmed.abn5811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heterozygous mutations in CTLA-4 result in an inborn error of immunity with an autoimmune and frequently severe clinical phenotype. Autologous T cell gene therapy may offer a cure without the immunological complications of allogeneic hematopoietic stem cell transplantation. Here, we designed a homology-directed repair (HDR) gene editing strategy that inserts the CTLA-4 cDNA into the first intron of the CTLA-4 genomic locus in primary human T cells. This resulted in regulated expression of CTLA-4 in CD4+ T cells, and functional studies demonstrated CD80 and CD86 transendocytosis. Gene editing of T cells isolated from three patients with CTLA-4 insufficiency also restored CTLA-4 protein expression and rescued transendocytosis of CD80 and CD86 in vitro. Last, gene-corrected T cells from CTLA-4-/- mice engrafted and prevented lymphoproliferation in an in vivo murine model of CTLA-4 insufficiency. These results demonstrate the feasibility of a therapeutic approach using T cell gene therapy for CTLA-4 insufficiency.
Collapse
Affiliation(s)
- Thomas Andrew Fox
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Haematology, University College London NHS Foundation Trust, London, NW1 2BU UK
- UCL Great Ormond Street Institute of Child Health, UCL, London WC1N 1EH, UK
| | | | - Lina Petersone
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Erin Waters
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Natalie Mona Edner
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Alex McKenna
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Olivier Preham
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Claudia Hinze
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Cayman Williams
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Adriana Silva de Albuquerque
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- University College London Hospital, National Institute for Health and Care Research Biomedical Research Centre, London W1T 7DN, UK
| | - Alan Kennedy
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Anne Maria Pesenacker
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Pietro Genovese
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Lucy Sarah Kate Walker
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Siobhan Oisin Burns
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, NW3 2QG, UK
| | - David Michael Sansom
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, UCL, London WC1N 1EH, UK
- Department of Paediatric Immunology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Emma Catherine Morris
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Haematology, University College London NHS Foundation Trust, London, NW1 2BU UK
- University College London Hospital, National Institute for Health and Care Research Biomedical Research Centre, London W1T 7DN, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, NW3 2QG, UK
| |
Collapse
|
8
|
Li HB, Yang ZH, Guo QQ. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: limitations and prospects: a systematic review. Cell Commun Signal 2021; 19:117. [PMID: 34819086 PMCID: PMC8611916 DOI: 10.1186/s12964-021-00789-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is an extremely malignant tumor with the lowest 5-year survival rate among all tumors. Pancreatic ductal adenocarcinoma (PDAC), as the most common pathological subtype of pancreatic cancer, usually has poor therapeutic results. Immune checkpoint inhibitors (ICIs) can relieve failure of the tumor-killing effect of immune effector cells caused by immune checkpoints. Therefore, they have been used as a novel treatment for many solid tumors. However, PDAC is not sensitive to monotherapy with ICIs, which might be related to the inhibitory immune microenvironment of pancreatic cancer. Therefore, the way to improve the microenvironment has raised a heated discussion in recent years. Here, we elaborate on the relationship between different immune cellular components in this environment, list some current preclinical or clinical attempts to enhance the efficacy of ICIs by targeting the inhibitory tumor microenvironment of PDAC or in combination with other therapies. Such information offers a better understanding of the sophisticated tumor-microenvironment interactions, also providing insights on therapeutic guidance of PDAC targeting. Video Abstract.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| | - Zi-Han Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| | - Qing-Qu Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| |
Collapse
|
9
|
Li WX, Xu XH, Jin LP. Regulation of the innate immune cells during pregnancy: An immune checkpoint perspective. J Cell Mol Med 2021; 25:10362-10375. [PMID: 34708495 PMCID: PMC8581333 DOI: 10.1111/jcmm.17022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The foetus can be regarded as a half‐allograft implanted into the maternal body. In a successful pregnancy, the mother does not reject the foetus because of the immune tolerance mechanism at the maternal‐foetal interface. The innate immune cells are a large part of the decidual leukocytes contributing significantly to a successful pregnancy. Although the contributions have been recognized, their role in human pregnancy has not been completely elucidated. Additionally, the accumulated evidence demonstrates that the immune checkpoint molecules expressed on the immune cells are co‐inhibitory receptors regulating their activation and biological function. Therefore, it is critical to understand the immune microenvironment and explore the function of the innate immune cells during pregnancy. This review summarizes the classic immune checkpoints such as PD‐1, CTLA‐4 and some novel molecules recently identified, including TIM‐3, CD200, TIGIT and the Siglecs family on the decidual and peripheral innate immune cells during pregnancy. Furthermore, it emphasizes the role of the immune checkpoint molecules in pregnancy‐associated complications and reproductive immunotherapy.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Gao C, Gardner D, Theobalds MC, Hitchcock S, Deutsch H, Amuzie C, Cesaroni M, Sargsyan D, Rao TS, Malaviya R. Cytotoxic T lymphocyte antigen-4 regulates development of xenogenic graft versus host disease in mice via modulation of host immune responses induced by changes in human T cell engraftment and gene expression. Clin Exp Immunol 2021; 206:422-438. [PMID: 34487545 DOI: 10.1111/cei.13659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Graft versus host disease (GvHD) is a major clinical problem with a significant unmet medical need. We examined the role of cytotoxic T lymphocyte antigen-4 (CTLA-4) in a xenogenic GvHD (xeno-GvHD) model induced by injection of human peripheral mononuclear cells (hPBMC) into irradiated non-obese diabetic (NOD) SCID gamma (NSG) mice. Targeting the CTLA-4 pathway by treatment with CTLA-4 immunoglobulin (Ig) prevented xeno-GvHD, while anti-CTLA-4 antibody treatment exacerbated the lethality and morbidity associated with GvHD. Xeno-GvHD is associated with infiltration of hPBMCs into the lungs, spleen, stomach, liver and colon and an increase in human proinflammatory cytokines, including interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-5. Infiltration of donor cells and increases in cytokines were attenuated by treatment with CTLA-4 Ig, but remained either unaffected or enhanced by anti-CTLA-4 antibody. Further, splenic human T cell phenotyping showed that CTLA-4 Ig treatment prevented the engraftment of human CD45+ cells, while anti-CTLA-4 antibody enhanced donor T cell expansion, particularly CD4+ (CD45RO+ ) subsets, including T box transcription factor TBX21 (Tbet)+ CXCR3+ and CD25+ forkhead box protein 3 (FoxP3) cells. Comprehensive analysis of transcriptional profiling of human cells isolated from mouse spleen identified a set of 417 differentially expressed genes (DEGs) by CTLA-4 Ig treatment and 13 DEGs by anti-CTLA-4 antibody treatment. The CTLA-4 Ig regulated DEGs mapped to down-regulated apoptosis, inflammasome, T helper type 17 (Th17) and regulatory T cell (Treg ) pathways and enhanced Toll-like receptor (TLR) receptor signaling, TNF family signaling, complement system and epigenetic and transcriptional regulation, whereas anti-CTLA-4 antibody produced minimal to no impact on these gene pathways. Our results show an important role of co-inhibitory CTLA-4 signaling in xeno-GvHD and suggest the therapeutic utility of other immune checkpoint co-inhibitory pathways in the treatment of immune-mediated diseases driven by hyperactive T cells.
Collapse
Affiliation(s)
- Chunxu Gao
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Debra Gardner
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Marie-Clare Theobalds
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Shannon Hitchcock
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Heather Deutsch
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Chidozie Amuzie
- Global Pathology-Nonclinical Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Matteo Cesaroni
- World Without Disease, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Davit Sargsyan
- Translational Medicine and Early Development Statistics and Data Sciences, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Tadimeti S Rao
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Ravi Malaviya
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| |
Collapse
|
11
|
Teraoka Y, Imamura M, Uchida T, Ohya K, Morio K, Fujino H, Ono A, Nakahara T, Murakami E, Yamauchi M, Kawaoka T, Miki D, Tsuge M, Hiramatsu A, Abe-Chayama H, Nelson Hayes C, Aikata H, Chayama K. Abatacept treatment for patients with severe acute hepatitis caused by hepatitis B virus infection-Pilot study. J Viral Hepat 2021; 28:400-409. [PMID: 33197288 DOI: 10.1111/jvh.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/01/2020] [Accepted: 10/19/2020] [Indexed: 12/09/2022]
Abstract
Although glucocorticoids have been used for immunosuppression of patients with primary hepatitis B virus (HBV) infection-induced severe hepatitis, the treatment is associated with a high frequency of adverse events. We conducted a pilot study for evaluating the efficacy and safety of abatacept, a cytotoxic T lymphocyte antigen-4 immunoglobulin (CTLA4), for acute hepatitis B. Five patients with severe acute hepatitis B (prothrombin activity ≤ 60%) were treated for immunosuppression by abatacept. Four patients received abatacept concurrently with methylprednisolone, and another patient was treated with abatacept alone. Rapid decrease in serum alanine aminotransferase levels, increase in prothrombin activity and improvement of general condition were obtained in four out of five patients. The patient with the most severe hepatitis underwent liver transplantation due to exacerbation of hepatitis in spite of treatment with both abatacept and methylprednisolone. None of the patients developed significant adverse events associated with the use of abatacept. Hepatitis B surface antigen (HBsAg) became negative in all five patients. The effect of abatacept and methylprednisolone for severe hepatitis B was compared using a mouse model. Rapid reduction in mouse serum HBV DNA and human albumin levels and elevation of serum interferon-gamma and granzyme A levels were observed in HBV-infected human hepatocyte-transplanted immunodeficient mice that were administered human peripheral blood mononuclear cells. These hepatocyte injuries were inhibited to a greater extent by abatacept compared to methylprednisolone. Abatacept might be an effective therapy alternative to methylprednisolone to reduce acute massive liver damage for patients with severe acute hepatitis caused by HBV infection.
Collapse
Affiliation(s)
- Yuji Teraoka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Takuro Uchida
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Kazuki Ohya
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Kei Morio
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hatsue Fujino
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Takashi Nakahara
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Masami Yamauchi
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.,Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Akira Hiramatsu
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.,Center for Medical Specialist Graduate Education and Research, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.,Institute of Physical and Chemical Research (RIKEN) Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
12
|
Halliday N, Williams C, Kennedy A, Waters E, Pesenacker AM, Soskic B, Hinze C, Hou TZ, Rowshanravan B, Janman D, Walker LSK, Sansom DM. CD86 Is a Selective CD28 Ligand Supporting FoxP3+ Regulatory T Cell Homeostasis in the Presence of High Levels of CTLA-4. Front Immunol 2020; 11:600000. [PMID: 33363541 PMCID: PMC7753196 DOI: 10.3389/fimmu.2020.600000] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
CD80 and CD86 are expressed on antigen presenting cells and are required to engage their shared receptor, CD28, for the costimulation of CD4 T cells. It is unclear why two stimulatory ligands with overlapping roles have evolved. CD80 and CD86 also bind the regulatory molecule CTLA-4. We explored the role of CD80 and CD86 in the homeostasis and proliferation of CD4+FoxP3+ regulatory T cells (Treg), which constitutively express high levels of CTLA-4 yet are critically dependent upon CD28 signals. We observed that CD86 was the dominant ligand for Treg proliferation, survival, and maintenance of a regulatory phenotype, with higher expression of CTLA-4, ICOS, and OX40. We also explored whether CD80-CD28 interactions were specifically compromised by CTLA-4 and found that antibody blockade, clinical deficiency of CTLA-4 and CRISPR-Cas9 deletion of CTLA-4 all improved Treg survival following CD80 stimulation. Taken together, our data suggest that CD86 is the dominant costimulatory ligand for Treg homeostasis, despite its lower affinity for CD28, because CD80-CD28 interactions are selectively impaired by the high levels of CTLA-4. These data suggest a cell intrinsic role for CTLA-4 in regulating CD28 costimulation by direct competition for CD80, and indicate that that CD80 and CD86 have discrete roles in CD28 costimulation of CD4 T cells in the presence of high levels of CTLA-4.
Collapse
Affiliation(s)
- Neil Halliday
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Institute of Liver and Digestive Health, University College London, London, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Alan Kennedy
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Erin Waters
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Anne M Pesenacker
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Blagoje Soskic
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Claudia Hinze
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Tie Zheng Hou
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Behzad Rowshanravan
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniel Janman
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - David M Sansom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
13
|
FoxP3 + T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett 2020; 490:174-185. [PMID: 32721551 DOI: 10.1016/j.canlet.2020.07.022] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/28/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
T Regulatory cells (Tregs) can have both protective and pathological roles. They maintain immune homeostasis and inhibit immune responses in various diseases, including cancer. Proportions of Tregs in the peripheral blood of some cancer patients increase by approximately two-fold, compared to those in healthy individuals. Tregs contribute to cancer development and progression by suppressing T effector cell functions, thereby compromising tumor killing and promoting tumor growth. Highly immunosuppressive Tregs express upregulated levels of the transcription factor, Forkhead box protein P3 (FoxP3). Elevated levels of FoxP3+ Tregs within the tumor microenvironment (TME) showed a positive correlation with poor prognosis in various cancer patients. Despite the success of immunotherapy, including the use of immune checkpoint inhibitors, a significant proportion of patients show low response rates as a result of primary or acquired resistance against therapy. Some of the mechanisms which underlie the development of therapy resistance are associated with Treg suppressive function. In this review, we describe Treg contribution to cancer development/progression, and the mechanisms of Treg-mediated immunosuppression. We discuss the prognostic significance of FoxP3+ Tregs in different cancers and their potential use as prognostic biomarkers. We also describe potential therapeutic strategies to target Tregs in combination with other types of immunotherapies aiming to overcome tumor resistance and improve clinical outcomes in cancer patients. Overall, understanding the prognostic significance of FoxP3+ Tregs in various cancers and their contribution to therapy resistance could help in the development of more effective targeted therapeutic strategies to enhance the clinical outcomes in cancer patients.
Collapse
|
14
|
Krummey SM, Hartigan CR, Liu D, Ford ML. CD28-Dependent CTLA-4 Expression Fine-Tunes the Activation of Human Th17 Cells. iScience 2020; 23:100912. [PMID: 32203908 PMCID: PMC7096747 DOI: 10.1016/j.isci.2020.100912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/26/2019] [Accepted: 02/10/2020] [Indexed: 01/05/2023] Open
Abstract
Previous work has demonstrated that Th17 memory cells but not Th1 cells are resistant to CD28/CTLA-4 blockade with CTLA-4 Ig, leading us to investigate the individual roles of the CD28 and CTLA-4 cosignaling pathways on Th1 versus Th17 cells. We found that selective CD28 blockade with a domain antibody (dAb) inhibited Th1 cells but surprisingly augmented Th17 responses. CD28 agonism resulted in a profound increase in CTLA-4 expression in Th17 cells as compared with Th1 cells. Consistent with these findings, inhibition of the CD28 signaling protein AKT revealed that CTLA-4 expression on Th17 cells was more significantly reduced by AKT inhibition relative to CTLA-4 expression on Th17 cells. Finally, we found that FOXO1 and FOXO3 overexpression restrained high expression of CTLA-4 on Th17 cells but not Th1 cells. This study demonstrates that the heterogeneity of the CD4+ T cell compartment has implications for the immunomodulation of pathologic T cell responses. CD28 blockade resulted in augmentation of human Th17 cells relative to Th1 cells Th17 polarized mice exhibited graft rejection in the presence of CD28 blockade A significant portion of Th17 cell CTLA-4 expression was induced by CD28 ligation Overexpression of FOXO1 or FOXO3 inhibited Th17 cell CTLA-4 expression
Collapse
Affiliation(s)
- Scott M Krummey
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christina R Hartigan
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Danya Liu
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Sharifi A, Vahedi H, Honarvar MR, Alipoor B, Nikniaz Z, Rafiei H, Hosseinzadeh-Attar MJ. Vitamin D Increases CTLA-4 Gene Expression in Patients with Mild to Moderate Ulcerative Colitis. Middle East J Dig Dis 2019; 11:199-204. [PMID: 31824622 PMCID: PMC6895856 DOI: 10.15171/mejdd.2019.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disorder of the large intestine. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a member of the immunoglobulin superfamily, which binds B7-1 and B7-2 on APCs (antigen-presenting cells), and induces APCs to produce an inhibitory signal to T cells. The aim of this study was to investigate the effect of vitamin D on CTLA-4 gene expression in whole blood samples of patients with UC. METHODS 90 patients with mild to moderate UC were randomized to receive either a single injection of 7.5 mg vitamin D3 or 1 mL normal saline. 90 days following the intervention fold changes in CTLA-4 mRNA expression were determined and statistical comparisons between the two groups were performed. RESULTS Serum vitamin D increased significantly only in the vitamin D group. CTLA-4 fold changes were significantly higher in the vitamin D group compared with the placebo group (median ± IQR: 1.21 ± 2.3 vs. 1.00 ± 1.5, respectively; p = 0.007). CONCLUSION The results of this study revealed that vitamin D administration in patients with UC enhances the CTLA-4 gene expression.
Collapse
Affiliation(s)
- Amrollah Sharifi
- Assistant Professor; Golestan Research Center of Gastroenterology and Hepatology (GRCGH), Faculty of health, Golestan University of Medical Sciences (GOUMS), Gorgan, Iran
| | - Homayoon Vahedi
- Associate Professor; Digestive Disease Research Center, Digestive Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Honarvar
- Assistant Professor, Health Management and Social Development Research Center, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Behnam Alipoor
- Assistant Professor; Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zeinab Nikniaz
- Assistant Professor; Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Rafiei
- Faculty of Health and Social Development, College of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Mohammad Javad Hosseinzadeh-Attar
- Professor; Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Demeyer A, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Muyllaert D, Staal J, Beyaert R. MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. Front Immunol 2019; 10:2330. [PMID: 31632405 PMCID: PMC6779721 DOI: 10.3389/fimmu.2019.02330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
MALT1 plays an important role in innate and adaptive immune signaling by acting as a scaffold protein that mediates NF-κB signaling. In addition, MALT1 is a cysteine protease that further fine tunes proinflammatory signaling by cleaving specific substrates. Deregulated MALT1 activity has been associated with immunodeficiency, autoimmunity, and cancer in mice and humans. Genetically engineered mice expressing catalytically inactive MALT1, still exerting its scaffold function, were previously shown to spontaneously develop autoimmunity due to a decrease in Tregs associated with increased effector T cell activation. In contrast, complete absence of MALT1 does not lead to autoimmunity, which has been explained by the impaired effector T cell activation due to the absence of MALT1-mediated signaling. However, here we report that MALT1-deficient mice develop atopic-like dermatitis upon aging, which is preceded by Th2 skewing, an increase in serum IgE, and a decrease in Treg frequency and surface expression of the Treg functionality marker CTLA-4.
Collapse
Affiliation(s)
- Annelies Demeyer
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Nuffel
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Baudelet
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - David Muyllaert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Demeyer A, Skordos I, Driege Y, Kreike M, Hochepied T, Baens M, Staal J, Beyaert R. MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner. Front Immunol 2019; 10:1898. [PMID: 31474984 PMCID: PMC6702287 DOI: 10.3389/fimmu.2019.01898] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 01/31/2023] Open
Abstract
MALT1 is a central signaling component in innate and adaptive immunity by regulating NF-κB and other key signaling pathways in different cell types. Activities of MALT1 are mediated by its scaffold and protease functions. Because of its role in lymphocyte activation and proliferation, inhibition of MALT1 proteolytic activity is of high interest for therapeutic targeting in autoimmunity and certain lymphomas. However, recent studies showing that Malt1 protease-dead knock-in (Malt1-PD) mice suffer from autoimmune disease have somewhat tempered the initial enthusiasm. Although it has been proposed that an imbalance between immune suppressive regulatory T cells (Tregs) and activated effector CD4+ T cells plays a key role in the autoimmune phenotype of Malt1-PD mice, the specific contribution of MALT1 proteolytic activity in T cells remains unclear. Using T cell-conditional Malt1 protease-dead knock-in (Malt1-PDT) mice, we here demonstrate that MALT1 has a T cell-intrinsic role in regulating the homeostasis and function of thymic and peripheral T cells. T cell-specific ablation of MALT1 proteolytic activity phenocopies mice in which MALT1 proteolytic activity has been genetically inactivated in all cell types. The Malt1-PDT mice have a reduced number of Tregs in the thymus and periphery, although the effect in the periphery is less pronounced compared to full-body Malt1-PD mice, indicating that also other cell types may promote Treg induction in a MALT1 protease-dependent manner. Despite the difference in peripheral Treg number, both T cell-specific and full-body Malt1-PD mice develop ataxia and multi-organ inflammation to a similar extent. Furthermore, reconstitution of the full-body Malt1-PD mice with T cell-specific expression of wild-type human MALT1 eliminated all signs of autoimmunity. Together, these findings establish an important T cell-intrinsic role of MALT1 proteolytic activity in the suppression of autoimmune responses.
Collapse
Affiliation(s)
- Annelies Demeyer
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ioannis Skordos
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathijs Baens
- Center for Innovation and Stimulation of Drug Discovery (CISTIM), Leuven, Belgium
| | - Jens Staal
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Crepeau R, Elengickal J, La Muraglia G, Ford M. Impact of selective CD28 blockade on virus-specific immunity to a murine Epstein-Barr virus homolog. Am J Transplant 2019; 19:2199-2209. [PMID: 30801917 PMCID: PMC6658342 DOI: 10.1111/ajt.15321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 01/25/2023]
Abstract
CTLA-4Ig (belatacept) blocks the CD80/CD86 ligands for both CD28 and CTLA-4; thus, in addition to the intended effect of blocking CD28-mediated costimulation, belatacept also has the unintended effect of blocking CTLA-4-mediated coinhibition. Recently, anti-CD28 domain antibodies (dAb) that selectively target CD28 while leaving CTLA-4 intact were shown to more effectively inhibit alloimmune responses and prolong graft survival. However, the impact of selective CD28 blockade on protective immunity has not been extensively investigated. Here, we sought to compare the impact of CTLA-4Ig vs anti-CD28dAb on CD8+ T cell immunity to a transplant-relevant pathogen, a murine homolog of Epstein-Barr virus. Mice were infected with murine gammaherpesvirus-68 (MHV) and treated with vehicle, CTLA-4Ig, or anti-CD28dAb. Although anti-CD28dAb resulted in a decrease in virus-specific CD8+ T cell numbers as compared to CTLA-4Ig, cytolytic function and the expression of markers of high-quality effectors were not different from CTLA-4Ig treated animals. Importantly, MHV-68 viral load was not different between the treatment groups. These results suggest that preserved CTLA-4 coinhibition limits MHV-specific CD8+ T cell accumulation, but the population that remains retains cytolytic function and migratory capacity and is not inferior in its ability to control viral burden relative to T cell responses in CTLA-4Ig-treated animals.
Collapse
Affiliation(s)
- R.L. Crepeau
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - J.A. Elengickal
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - G.M. La Muraglia
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - M.L. Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
19
|
Czaja AJ. Immune inhibitory proteins and their pathogenic and therapeutic implications in autoimmunity and autoimmune hepatitis. Autoimmunity 2019; 52:144-160. [PMID: 31298041 DOI: 10.1080/08916934.2019.1641200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Key inhibitory proteins can blunt immune responses to self-antigens, and deficiencies in this repertoire may promote autoimmunity. The goals of this review are to describe the key immune inhibitory proteins, indicate their possible impact on the development of autoimmune disease, especially autoimmune hepatitis, and encourage studies to clarify their pathogenic role and candidacy as therapeutic targets. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Cytotoxic T lymphocyte antigen-4 impairs ligation of CD28 to B7 ligands on antigen presenting cells and inhibits the adaptive immune response by increasing anti-inflammatory cytokines, generating regulatory T cells, and reducing T cell activation and proliferation. Programed cell death antigen-1 inhibits T cell selection, activation, and proliferation by binding with two ligands at different phases and locations of the immune response. A soluble alternatively spliced variant of this protein can dampen the inhibitory signal. Autoimmune hepatitis has been associated with polymorphisms of the cytotoxic T lymphocyte antigen-4 gene, reduced hepatic expression of a ligand of programed cell death antigen-1, an interfering soluble variant of this key inhibitory protein, and antibodies against it. Findings have been associated with laboratory indices of liver injury and suboptimal treatment response. Abatacept, belatacept, CD28 blockade, and induction of T cell exhaustion are management considerations that require scrutiny. In conclusion, deficiencies in key immune inhibitory proteins may promote the occurrence of autoimmune diseases, such as autoimmune hepatitis, and emerging interventions may overcome these deficiencies. Investigations should define the nature, impact and management of these inhibitory disturbances in autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
20
|
Saleh R, Elkord E. Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett 2019; 457:168-179. [PMID: 31078738 DOI: 10.1016/j.canlet.2019.05.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023]
Abstract
T Regulatory cells (Tregs) act as a double-edged sword by regulating immune homeostasis (protective role) and inhibiting immune responses in different disease settings (pathological role). They contribute to cancer development and progression by suppressing T effector cell (Teff) functions. Decreased ratios of intratumoral CD8+ T cells to Tregs have been associated with poor prognosis in most cancer types. Targeting immune checkpoints (ICs), such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death-1 (PD-1), by immune checkpoint inhibitors (ICIs) in cancer patients has been beneficial in inducing anti-tumor immune responses and improving clinical outcomes. However, response rates remain relatively low, ranging from 15 to 40% depending on cancer type. Additionally, a significant proportion of patients who initially demonstrates a clinical response can acquire resistance overtime. This acquired resistance could occur due to the emergence of compensatory mechanisms within the tumor microenvironment (TME) to evade the anti-tumor effects of ICIs. In this review, we describe the immunosuppressive role of Tregs in the TME, the effects of currently approved ICIs on Treg phenotype and function, and the mechanisms of acquired resistance to ICIs mediated by Tregs within the TME, such as the over-expression of ICs, the up-regulation of immunosuppressive molecules, and apoptotic Treg-induced immunosuppression. We also describe potential therapeutic strategies to target Tregs in combination with ICIs aiming to overcome such resistance and improve clinical outcomes. Elucidating the Treg-mediated acquired resistance mechanisms should benefit the designing of well-targeted therapeutic strategies to overcome resistance and maximize the therapeutic efficacy in cancer patients.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
21
|
Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): A versatile receptor for immune-based therapy. Semin Immunol 2019; 42:101298. [DOI: 10.1016/j.smim.2019.101298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
|
22
|
Rosskopf S, Leitner J, Zlabinger GJ, Steinberger P. CTLA-4 antibody ipilimumab negatively affects CD4 + T-cell responses in vitro. Cancer Immunol Immunother 2019; 68:1359-1368. [PMID: 31332464 PMCID: PMC6683241 DOI: 10.1007/s00262-019-02369-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitors targeting coinhibitory pathways in T cells possess efficacy in combating cancer. In addition to PD-1/PD-L1 and CTLA-4 antibodies which are already established in tumor immunotherapy, immune checkpoints such as LAG-3 or BTLA are emerging, which may have the potential to enhance T-cell responses alone or in combination with PD-1 blockers. CD4+ T cells play a central role in the immune system and contribute to productive immune responses in multiple ways. The effects of immune checkpoint inhibitors on this cell subset may thus critically influence therapeutic outcomes. Here, we have used in vitro responses to tetanus toxoid (TT) as a model system to study the effects of immune checkpoint inhibitors on CD4+ T-cell responses. CFSE-labeled PBMCs of 65 donors were stimulated with TT in the presence of blocking antibodies to PD-L1, CTLA-4, LAG-3, or BTLA for 7 days. We found that the PD-L1 antibody greatly enhanced cytokine production and antigen-specific CD4+ T-cell proliferation, whereas blocking antibodies to BTLA or LAG-3 did not augment responses to TT. Surprisingly, the presence of the therapeutic CTLA-4 antibody ipilimumab resulted in a significant reduction of CD4+ T-cell proliferation and cytokine production. Stimulation experiments with an IgG4 variant of ipilimumab indicated that the inhibitory effect of ipilimumab was dependent on its IgG1 isotype. Our results indicate that the therapeutic CTLA-4 antibody ipilimumab can impair CD4+ effector T-cell responses and that this activity is mediated by its Fc part and CD16-expressing cells.
Collapse
Affiliation(s)
- Sandra Rosskopf
- 0000 0000 9259 8492grid.22937.3dDivision of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, Vienna, Austria
| | - Judith Leitner
- 0000 0000 9259 8492grid.22937.3dDivision of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, Vienna, Austria
| | - Gerhard J. Zlabinger
- 0000 0000 9259 8492grid.22937.3dDivision of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- 0000 0000 9259 8492grid.22937.3dDivision of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, Vienna, Austria
| |
Collapse
|
23
|
Tipping the balance: inhibitory checkpoints in intestinal homeostasis. Mucosal Immunol 2019; 12:21-35. [PMID: 30498201 DOI: 10.1038/s41385-018-0113-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 02/04/2023]
Abstract
The small intestinal and colonic lamina propria are populated with forkhead box P3 (FOXP3)+CD4+ regulatory T cells (Tregs) and interleukin-10-producing T cells that orchestrate intestinal tolerance to harmless microbial and food antigens. Expression of co-inhibitory receptors such as CTLA-4 and PD-1 serve as checkpoints to these cells controlling their T-cell receptor (TCR)-mediated and CD28-mediated activation and modulating the phenotype of neighboring antigen presenting cells. Recent discoveries on the diversity of co-inhibitory receptors and their selective cellular expression has shed new light on their tissue-dependent function. In this review, we provide an overview of the co-inhibitory pathways and checkpoints of Treg and effector T cells and their mechanisms of action in intestinal homeostasis. Better understanding of these inhibitory checkpoints is desired as their blockade harbors clinical potential for the treatment of cancer and their stimulation may offer new opportunities to treat chronic intestinal inflammation such as inflammatory bowel disease.
Collapse
|
24
|
Jiang H, Ti Y, Wang Y, Wang J, Chang M, Zhao J, Sun G. Downregulation of regulatory T cell function in patients with delayed fracture healing. Clin Exp Pharmacol Physiol 2018; 45:430-436. [PMID: 29215756 DOI: 10.1111/1440-1681.12902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Hui Jiang
- Department of Orthopedics; Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu Province China
| | - Yunfan Ti
- Department of Orthopedics; Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu Province China
| | - Yicun Wang
- Department of Orthopedics; Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu Province China
| | - Jun Wang
- Department of Orthopedics; Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu Province China
| | - Menghan Chang
- Department of Orthopedics; Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu Province China
| | - Jianning Zhao
- Department of Orthopedics; Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu Province China
| | - Guojing Sun
- Department of Orthopedics; Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu Province China
| |
Collapse
|
25
|
Liu D, Badell IR, Ford ML. Selective CD28 blockade attenuates CTLA-4-dependent CD8+ memory T cell effector function and prolongs graft survival. JCI Insight 2018; 3:96378. [PMID: 29321374 DOI: 10.1172/jci.insight.96378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Memory T cells pose a significant problem to successful therapeutic control of unwanted immune responses during autoimmunity and transplantation, as they are differentially controlled by cosignaling receptors such as CD28 and CTLA-4. Treatment with abatacept and belatacept impede CD28 signaling by binding to CD80 and CD86, but they also have the unintended consequence of blocking the ligands for CTLA-4, a process that may inadvertently boost effector responses. Here, we show that a potentially novel anti-CD28 domain antibody (dAb) that selectively blocks CD28 but preserves CTLA-4 coinhibition confers improved allograft survival in sensitized recipients as compared with CTLA-4 Ig. However, both CTLA-4 Ig and anti-CD28 dAb similarly and significantly reduced the accumulation of donor-reactive CD8+ memory T cells, demonstrating that regulation of the expansion of CD8+ memory T cell populations is controlled in part by CD28 signals and is not significantly impacted by CTLA-4. In contrast, selective CD28 blockade was superior to CTLA-4 Ig in inhibiting IFN-γ, TNF, and IL-2 production by CD8+ memory T cells, which in turn resulted in reduced recruitment of innate CD11b+ monocytes into allografts. Importantly, this superiority was CTLA-4 dependent, demonstrating that effector function of CD8+ memory T cells is regulated by the balance of CD28 and CTLA-4 signaling.
Collapse
|
26
|
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood 2018; 131:58-67. [PMID: 29118008 PMCID: PMC6317697 DOI: 10.1182/blood-2017-06-741033] [Citation(s) in RCA: 739] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023] Open
Abstract
CD28 and CTLA-4 are members of a family of immunoglobulin-related receptors that are responsible for various aspects of T-cell immune regulation. The family includes CD28, CTLA-4, and ICOS as well as other proteins, including PD-1, BTLA, and TIGIT. These receptors have both stimulatory (CD28, ICOS) and inhibitory roles (CTLA-4, PD-1, BTLA, and TIGIT) in T-cell function. Increasingly, these pathways are targeted as part of immune modulatory strategies to treat cancers, referred to generically as immune checkpoint blockade, and conversely to treat autoimmunity and CTLA-4 deficiency. Here, we focus on the biology of the CD28/CTLA-4 pathway as a framework for understanding the impacts of therapeutic manipulation of this pathway.
Collapse
Affiliation(s)
- Behzad Rowshanravan
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
27
|
Hou TZ, Olbrich P, Soto JML, Sanchez B, Moreno PS, Borte S, Stauss HJ, Burns SO, Walker LSK, Pan-Hammarström Q, Hammarström L, Sansom DM, Neth O. Study of an extended family with CTLA-4 deficiency suggests a CD28/CTLA-4 independent mechanism responsible for differences in disease manifestations and severity. Clin Immunol 2018; 188:94-102. [PMID: 29305966 DOI: 10.1016/j.clim.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/30/2017] [Accepted: 01/02/2018] [Indexed: 01/19/2023]
Abstract
The CTLA-4 checkpoint regulates the activation of T cells. Individuals with heterozygous mutations in CTLA-4 have a complex phenotype typically characterized by antibody deficiency alongside variable autoimmunity. Despite severe disease in some individuals, others remain largely unaffected with reasons for this variation unknown. We studied a large family carrying a single point mutation in CTLA-4 leading to an amino acid change R75W and compared both unaffected with affected individuals. We measured a variety of features pertaining to T cell and CTLA-4 biology and observed that at the cellular level there was complete penetrance of CTLA-4 mutations. Accordingly, unaffected individuals were indistinguishable from those with disease in terms of level of CTLA-4 expression, percentage of Treg, upregulation of CTLA-4 upon stimulation and proliferation of CD4 T cells. We conclude that the wide variation in disease phenotype is influenced by immune variation outside of CTLA-4 biology.
Collapse
Affiliation(s)
- Tie Zheng Hou
- University College London Institute of Immunity and Transplantation, School of Life and Medical Sciences, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Peter Olbrich
- Seccion de Infectología e Inmunopatología, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla, Instituto de Biomedicina de Sevilla (IBiS), Spain
| | | | - Berta Sanchez
- Unidad de Inmunología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Paula Sanchez Moreno
- Seccion de Infectología e Inmunopatología, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla, Instituto de Biomedicina de Sevilla (IBiS), Spain
| | - Stephan Borte
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.; Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany; ImmunoDeficiencyCenter Leipzig at Hospital St Georg gGmbH Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Leipzig, Germany
| | - Hans J Stauss
- University College London Institute of Immunity and Transplantation, School of Life and Medical Sciences, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, School of Life and Medical Sciences, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Lucy S K Walker
- University College London Institute of Immunity and Transplantation, School of Life and Medical Sciences, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - David M Sansom
- University College London Institute of Immunity and Transplantation, School of Life and Medical Sciences, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK.
| | - Olaf Neth
- Seccion de Infectología e Inmunopatología, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla, Instituto de Biomedicina de Sevilla (IBiS), Spain
| |
Collapse
|
28
|
Lang C, Wang J, Chen L. CD25-expressing Th17 cells mediate CD8 + T cell suppression in CTLA-4 dependent mechanisms in pancreatic ductal adenocarcinoma. Exp Cell Res 2017; 360:384-389. [PMID: 28942020 DOI: 10.1016/j.yexcr.2017.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
Abstract
The tumor-associated immune response is governed by the signalling events of various regulatory molecules, one of which is the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). In conventional T cells, CTLA-4 could outcompete CD28 in binding to CD80/86 but does not produce a co-stimulatory signal, resulting in T cell anergy. CTLA-4 in regulatory T cells (Tregs) could also function in a cell-extrinsic fashion by removing CD80/CD86 from the antigen-presenting cells (APCs), thus preventing further priming of other T cells. In this study, we examined the role of CTLA-4 in CD4+ T cell subsets from pancreatic cancer patients. In circulating CD4+ T cells, the expression of CTLA-4 was low at baseline but was significantly upregulated following T cell stimulation. Interestingly, the CTLA-4-expressing CD4+ T cells at baseline were overwhelmingly FOXP3-expressing. With the increase of T cell stimulation, the proportion of ROR gamma t-expressing CD4+ T cells was progressively increased. By CD25 vs. CCR6 staining, the CD25+CCR6+ and the CD25+CCR6- CD4+ T cells both presented high levels of CTLA-4 expression, but only the CD25+CCR6+ and the CD25-CCR6+ expressed significant amounts of IL-17. When incubated with autologous CD8+ T cells, the CD25+CCR6+ Th17 cells presented significantly higher suppressive function than the CD25-CCR6+ Th17 cells in a CTLA-4-dependent manner. Finally, the CTLA-4-expressing Th17 cells were present at higher levels in the tumor-infiltrating lymphocytes than in circulating blood. Overall, these data suggest that CTLA-4 expressing Th17 cells may present regulatory activities in pancreatic cancer patients.
Collapse
Affiliation(s)
- Cuicui Lang
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong Province 252000, China.
| | - Jinyan Wang
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong Province 252000, China
| | - Lei Chen
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, Shandong Province 252000, China
| |
Collapse
|
29
|
Schildberg FA, Klein SR, Freeman GJ, Sharpe AH. Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity 2017; 44:955-72. [PMID: 27192563 DOI: 10.1016/j.immuni.2016.05.002] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 01/10/2023]
Abstract
Immune responses need to be controlled for optimal protective immunity and tolerance. Coinhibitory pathways in the B7-CD28 family provide critical inhibitory signals that regulate immune homeostasis and defense and protect tissue integrity. These coinhibitory signals limit the strength and duration of immune responses, thereby curbing immune-mediated tissue damage, regulating resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors and microbes that cause chronic infections can exploit these coinhibitory pathways to establish an immunosuppressive microenvironment, hindering their eradication. Advances in understanding T cell coinhibitory pathways have stimulated a new era of immunotherapy with effective drugs to treat cancer, autoimmune and infectious diseases, and transplant rejection. In this review we discuss the current knowledge of the mechanisms underlying the coinhibitory functions of pathways in the B7-CD28 family, the diverse functional consequences of these inhibitory signals on immune responses, and the overlapping and unique functions of these key immunoregulatory pathways.
Collapse
Affiliation(s)
- Frank A Schildberg
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah R Klein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Knaus HA, Kanakry CG, Luznik L, Gojo I. Immunomodulatory Drugs: Immune Checkpoint Agents in Acute Leukemia. Curr Drug Targets 2017; 18:315-331. [PMID: 25981611 DOI: 10.2174/1389450116666150518095346] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 01/15/2015] [Accepted: 02/27/2015] [Indexed: 12/20/2022]
Abstract
Intrinsic immune responses to acute leukemia are inhibited by a variety of mechanisms, such as aberrant antigen expression by leukemia cells, secretion of immunosuppressive cytokines and expression of inhibitory enzymes in the tumor microenvironment, expansion of immunoregulatory cells, and activation of immune checkpoint pathways, all leading to T cell dysfunction and/or exhaustion. Leukemic cells, similar to other tumor cells, hijack these inhibitory pathways to evade immune recognition and destruction by cytotoxic T lymphocytes. Thus, blockade of immune checkpoints has emerged as a highly promising approach to augment innate anti-tumor immunity in order to treat malignancies. Most evidence for the clinical efficacy of this immunotherapeutic strategy has been seen in patients with metastatic melanoma, where anti-CTLA-4 and anti-PD-1 antibodies have recently revolutionized treatment of this lethal disease with otherwise limited treatment options. To meet the high demand for new treatment strategies in acute leukemia, clinical testing of these promising therapies is commencing. Herein, we review the biology of multiple inhibitory checkpoints (including CTLA-4, PD-1, TIM-3, LAG-3, BTLA, and CD200R) and their contribution to immune evasion by acute leukemias. In addition, we discuss the current state of preclinical and clinical studies of immune checkpoint inhibition in acute leukemia, which seek to harness the body's own immune system to fight leukemic cells.
Collapse
Affiliation(s)
| | | | | | - Ivana Gojo
- Cancer Research Building I, Room 346, 1650 Orleans Street, Baltimore, MD 21287, United States
| |
Collapse
|
31
|
Klocke K, Holmdahl R, Wing K. CTLA-4 expressed by FOXP3 + regulatory T cells prevents inflammatory tissue attack and not T-cell priming in arthritis. Immunology 2017; 152:125-137. [PMID: 28497863 DOI: 10.1111/imm.12754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
Abstract
Cytotoxic T-lymphocyte antigen 4 (CTLA-4) -mediated regulation of already tolerized autoreactive T cells is critical for understanding autoimmune responses. Although defects in CTLA-4 contribute to abnormal FOXP3+ regulatory T (Treg) cell function in rheumatoid arthritis, its role in autoreactive T cells remains elusive. We studied immunity towards the dominant collagen type II (CII) T-cell epitope in collagen-induced arthritis both in the heterologous setting and in the autologous setting where CII is mutated at position E266D in mouse cartilage. CTLA-4 regulated all stages of arthritis, including the chronic phase, and affected the priming of autologous but not heterologous CII-reactive T cells. CTLA-4 expression by both conventional T (Tconv) cells and Treg cells was required but while Tconv cell expression was needed to control the priming of naive autoreactive T cells, CTLA-4 on Treg cells prevented the inflammatory tissue attack. This identifies a cell-type-specific time window when CTLA-4-mediated tolerance is most powerful, which has important implications for clinical therapy with immune modulatory drugs.
Collapse
Affiliation(s)
- Katrin Klocke
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kajsa Wing
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proc Natl Acad Sci U S A 2017; 114:E4223-E4232. [PMID: 28484017 DOI: 10.1073/pnas.1617941114] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rational modulation of the immune response with biologics represents one of the most promising and active areas for the realization of new therapeutic strategies. In particular, the use of function blocking monoclonal antibodies targeting checkpoint inhibitors such as CTLA-4 and PD-1 have proven to be highly effective for the systemic activation of the human immune system to treat a wide range of cancers. Ipilimumab is a fully human antibody targeting CTLA-4 that received FDA approval for the treatment of metastatic melanoma in 2011. Ipilimumab is the first-in-class immunotherapeutic for blockade of CTLA-4 and significantly benefits overall survival of patients with metastatic melanoma. Understanding the chemical and physical determinants recognized by these mAbs provides direct insight into the mechanisms of pathway blockade, the organization of the antigen-antibody complexes at the cell surface, and opportunities to further engineer affinity and selectivity. Here, we report the 3.0 Å resolution X-ray crystal structure of the complex formed by ipilimumab with its human CTLA-4 target. This structure reveals that ipilimumab contacts the front β-sheet of CTLA-4 and intersects with the CTLA-4:Β7 recognition surface, indicating that direct steric overlap between ipilimumab and the B7 ligands is a major mechanistic contributor to ipilimumab function. The crystallographically observed binding interface was confirmed by a comprehensive cell-based binding assay against a library of CTLA-4 mutants and by direct biochemical approaches. This structure also highlights determinants responsible for the selectivity exhibited by ipilimumab toward CTLA-4 relative to the homologous and functionally related CD28.
Collapse
|
33
|
Jutz S, Hennig A, Paster W, Asrak Ö, Dijanovic D, Kellner F, Pickl WF, Huppa JB, Leitner J, Steinberger P. A cellular platform for the evaluation of immune checkpoint molecules. Oncotarget 2017; 8:64892-64906. [PMID: 29029399 PMCID: PMC5630299 DOI: 10.18632/oncotarget.17615] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/22/2017] [Indexed: 12/31/2022] Open
Abstract
Blockade of the T cell coinhibitory molecules CTLA-4 and PD-1 has clinical utility to strengthen T cell responses. In addition to these immune checkpoints an ever-growing number of molecules has been implicated in generating coinhibitory signals in T cells. However, investigating coinhibitory molecules in primary human cells is complicated by the restricted expression and promiscuity of both coinhibitory receptors and their ligands. Here we have evaluated the potential of fluorescence-based transcriptional reporters based on the human Jurkat T cell line in conjunction with engineered T cell stimulator cell lines for investigating coinhibitory pathways. CTLA-4, PD-1, TIGIT, BTLA and 2B4 expressing reporter cells were generated and activated with T cell stimulator cells expressing cognate ligands of these molecules. All accessory molecules tested were functional in our reporter system. Engagement of CTLA-4, PD-1, BTLA and TIGIT by their ligands significantly inhibited T cell activation, whereas binding of 2B4 by CD48 resulted in enhanced responses. Mutational analysis revealed intracellular motifs that are responsible for BTLA mediated T cell inhibition and demonstrates potent reporter inhibition by CTLA-4 independent of cytoplasmic signaling motifs. Moreover, considerably higher IC50 values were measured for the CTLA-4 blocker Ipilimumab compared to the PD-1 antibody Nivolumab. Our findings show that coinhibitory pathways can be evaluated in Jurkat-based transcriptional reporters and yield novel insights on their function. Results obtained from this robust reductionist system can complement more time consuming and complex studies of such pathways in primary T cells.
Collapse
Affiliation(s)
- Sabrina Jutz
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Annika Hennig
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ömer Asrak
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dejana Dijanovic
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Florian Kellner
- Department of Molecular Immunology, Immune Recognition Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B Huppa
- Department of Molecular Immunology, Immune Recognition Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Walker LS. EFIS Lecture: Understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol Lett 2017; 184:43-50. [DOI: 10.1016/j.imlet.2017.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
|
35
|
Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood 2017; 129:1458-1468. [PMID: 28159733 DOI: 10.1182/blood-2016-10-745174] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022] Open
Abstract
Heterozygous CTLA-4 deficiency has been reported as a monogenic cause of common variable immune deficiency with features of immune dysregulation. Direct mutation in CTLA-4 leads to defective regulatory T-cell (Treg) function associated with impaired ability to control levels of the CTLA-4 ligands, CD80 and CD86. However, additional mutations affecting the CTLA-4 pathway, such as those recently reported for LRBA, indirectly affect CTLA-4 expression, resulting in clinically similar disorders. Robust phenotyping approaches sensitive to defects in the CTLA-4 pathway are therefore required to inform understanding of such immune dysregulation syndromes. Here, we describe assays capable of distinguishing a variety of defects in the CTLA-4 pathway. Assessing total CTLA-4 expression levels was found to be optimal when restricting analysis to the CD45RA-Foxp3+ fraction. CTLA-4 induction following stimulation, and the use of lysosomal-blocking compounds, distinguished CTLA-4 from LRBA mutations. Short-term T-cell stimulation improved the capacity for discriminating the Foxp3+ Treg compartment, clearly revealing Treg expansions in these disorders. Finally, we developed a functionally orientated assay to measure ligand uptake by CTLA-4, which is sensitive to ligand-binding or -trafficking mutations, that would otherwise be difficult to detect and that is appropriate for testing novel mutations in CTLA-4 pathway genes. These approaches are likely to be of value in interpreting the functional significance of mutations in the CTLA-4 pathway identified by gene-sequencing approaches.
Collapse
|
36
|
Carbonnel F, Soularue E, Coutzac C, Chaput N, Mateus C, Lepage P, Robert C. Inflammatory bowel disease and cancer response due to anti-CTLA-4: is it in the flora? Semin Immunopathol 2017; 39:327-331. [PMID: 28093620 DOI: 10.1007/s00281-016-0613-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022]
Abstract
Checkpoint inhibitors blocking CTLA-4 (ipilimumab) and PD-1 (nivolumab, pembrolizumab) have transfigured our cancer treatment paradigm. However, these drugs can induce immune-related adverse events that share clinical and pathological characteristics with immune-mediated diseases. One of the most severe immune-related adverse event observed with anti-CTLA-4 is an enterocolitis that mirrors naturally occurring inflammatory bowel disease. This paper reviews the clinical, immunological, and microbiota data associated with the immune-related enterocolitis induced by the cancer immunotherapy blocking CTLA-4, ipilimumab. A parallel analysis of the mechanisms underlying inflammatory bowel diseases on the one hand, and anti-CTLA-4-induced colitis on the other hand, stresses the crucial role of the gut microbiota and of resident Treg in the genesis of both iatrogenic and spontaneous inflammatory bowel diseases.
Collapse
Affiliation(s)
- Franck Carbonnel
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre, France
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, F-94276, France
| | - Emilie Soularue
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre, France
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, F-94276, France
| | - Clélia Coutzac
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, and CNRS-UMS 3655 and INSERM-US23, Villejuif, F-94805, France
| | - Nathalie Chaput
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, and CNRS-UMS 3655 and INSERM-US23, Villejuif, F-94805, France
- Université Paris-Sud, Faculté de pharmacie, Chatenay-Malabry, Châtenay-Malabry, F-92296, France
| | - Christine Mateus
- Gustave Roussy, Département de Médecine, Service de Dermatologie, et Université Paris-Sud Villejuif, Villejuif, F-94805, France
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Caroline Robert
- Gustave Roussy, Département de Médecine, Service de Dermatologie, et Université Paris-Sud Villejuif, Villejuif, F-94805, France.
| |
Collapse
|
37
|
Abstract
The response of peripheral T lymphocytes (T cell) is controlled by multiple checkpoints to avoid unwanted activation against self-tissues. Two opposing costimulatory receptors, CD28 and CTLA-4, on T cells bind to the same ligands (CD80 and CD86) on antigen-presenting cells (APCs), and provide positive and negative feedback for T-cell activation, respectively. Early studies suggested that CTLA-4 is induced on activated T cells and binds to CD80/CD86 with much stronger affinity than CD28, providing a competitive inhibition. Subsequent studies by many researchers revealed the more complex mode of T-cell inhibition by CTLA-4. After T-cell activation, CTLA-4 is stored in the intracellular vesicles, and recruited to the immunological synapse formed between T cells and APCs, and inhibits further activation of T cells by blocking signals initiated by T-cell receptors and CD28. CTLA-4-positive cells can also provide cell-extrinsic regulation on other autoreactive T cells, and are considered to provide an essential regulatory mechanism for FoxP3+ regulatory T cells. Genetic deficiency of CTLA-4 leads to CD28-mediated severe autoimmunity in mice and humans, suggesting its function as a fundamental brake that restrains the expansion and activation of self-reactive T cells. In cancer, therapeutic approaches targeting CTLA-4 by humanized blocking antibodies has been demonstrated to be an effective immunotherapy by reversing T-cell tolerance against tumors. This chapter introduces CTLA-4 biology, including its discovery and mechanism of action, and discusses questions related to CTLA-4.
Collapse
Affiliation(s)
- Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
38
|
Schwarz C, Unger L, Mahr B, Aumayr K, Regele H, Farkas AM, Hock K, Pilat N, Wekerle T. The Immunosuppressive Effect of CTLA4 Immunoglobulin Is Dependent on Regulatory T Cells at Low But Not High Doses. Am J Transplant 2016; 16:3404-3415. [PMID: 27184870 DOI: 10.1111/ajt.13872] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
B7.1/2-targeted costimulation blockade (CTLA4 immunoglobulin [CTLA4-Ig]) is available for immunosuppression after kidney transplantation, but its potentially detrimental impact on regulatory T cells (Tregs) is of concern. We investigated the effects of CTLA4-Ig monotherapy in a fully mismatched heart transplant model (BALB/c onto C57BL/6). CTLA4-Ig was injected chronically (on days 0, 4, 14, and 28 and every 4 weeks thereafter) in dosing regimens paralleling clinical use, shown per mouse: low dose (LD), 0.25 mg (≈10 mg/kg body weight); high dose (HD), 1.25 mg (≈50 mg/kg body weight); and very high dose (VHD), 6.25 mg (≈250 mg/kg body weight). Chronic CTLA4-Ig therapy showed dose-dependent efficacy, with the LD regimen prolonging graft survival and with the HD and VHD regimens leading to >95% long-term graft survival and preserved histology. CTLA4-Ig's effect was immunosuppressive rather than tolerogenic because treatment cessation after ≈3 mo led to rejection. FoxP3-positive Tregs were reduced in naïve mice to a similar degree, independent of the CTLA4-Ig dose, but recovered to normal values in heart recipients under chronic CTLA4-Ig therapy. Treg depletion (anti-CD25) resulted in an impaired outcome under LD therapy but had no detectable effect under HD therapy. Consequently, the immunosuppressive effect of partially effective LD CTLA4-Ig therapy is impaired when Tregs are removed, whereas CTLA4-Ig monotherapy at higher doses effectively maintains graft survival independent of Tregs.
Collapse
Affiliation(s)
- C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - L Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - B Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Aumayr
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - H Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - A M Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Selby MJ, Engelhardt JJ, Johnston RJ, Lu LS, Han M, Thudium K, Yao D, Quigley M, Valle J, Wang C, Chen B, Cardarelli PM, Blanset D, Korman AJ. Preclinical Development of Ipilimumab and Nivolumab Combination Immunotherapy: Mouse Tumor Models, In Vitro Functional Studies, and Cynomolgus Macaque Toxicology. PLoS One 2016; 11:e0161779. [PMID: 27610613 PMCID: PMC5017747 DOI: 10.1371/journal.pone.0161779] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
The monoclonal antibodies ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) have shown remarkable antitumor activity in an increasing number of cancers. When combined, ipilimumab and nivolumab have demonstrated superior activity in patients with metastatic melanoma (CHECKMATE-067). Here we describe the preclinical development strategy that predicted these clinical results. Synergistic antitumor activity in mouse MC38 and CT26 colorectal tumor models was observed with concurrent, but not sequential CTLA-4 and PD-1 blockade. Significant antitumor activity was maintained using a fixed dose of anti-CTLA-4 antibody with decreasing doses of anti-PD-1 antibody in the MC38 model. Immunohistochemical and flow cytometric analyses confirmed that CD3+ T cells accumulated at the tumor margin and infiltrated the tumor mass in response to the combination therapy, resulting in favorable effector and regulatory T-cell ratios, increased pro-inflammatory cytokine secretion, and activation of tumor-specific T cells. Similarly, in vitro studies with combined ipilimumab and nivolumab showed enhanced cytokine secretion in superantigen stimulation of human peripheral blood lymphocytes and in mixed lymphocyte response assays. In a cynomolgus macaque toxicology study, dose-dependent immune-related gastrointestinal inflammation was observed with the combination therapy; this response had not been observed in previous single agent cynomolgus studies. Together, these in vitro assays and in vivo models comprise a preclinical strategy for the identification and development of highly effective antitumor combination immunotherapies.
Collapse
Affiliation(s)
- Mark J. Selby
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | | | | | - Li-Sheng Lu
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | - Minhua Han
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | - Kent Thudium
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | - Dapeng Yao
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | - Michael Quigley
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | - Jose Valle
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | - Changyu Wang
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | - Bing Chen
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | | | - Diann Blanset
- Bristol-Myers Squibb, Redwood City, CA, United States of America
| | - Alan J. Korman
- Bristol-Myers Squibb, Redwood City, CA, United States of America
- * E-mail:
| |
Collapse
|
40
|
Gonçalves-Lopes RM, Lima NF, Carvalho KI, Scopel KKG, Kallás EG, Ferreira MU. Surface expression of inhibitory (CTLA-4) and stimulatory (OX40) receptors by CD4 + regulatory T cell subsets circulating in human malaria. Microbes Infect 2016; 18:639-648. [PMID: 27320393 DOI: 10.1016/j.micinf.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/06/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Several CD4+ T cell subtypes contribute to immune homeostasis in malaria, but the markers that define the main suppressive T cell subsets induced by this infection remain largely unknown. Here we provide a detailed phenotypic characterization of immunoregulatory CD4+ T cell populations in uncomplicated human malaria. We found an increased proportion of CD4+ T cells expressing CTLA-4, OX40, GITR, TNFRII, and CD69 in acute-phase single-species infections with Plasmodium vivax, Plasmodium falciparum, or both. Such an increase was not proportional to parasite density in P. vivax infections, and did not persist after parasite clearance. Significantly, less than 10% of CD4+ T cells expressing these regulatory molecules had the classical T regulatory (Treg) phenotype (CD4+CD25+CD127-FoxP3+). Two major Treg cell subpopulations, which together accounted for 19-23% of all Treg cells circulating in malaria patients, expressed surface receptors with opposing regulatory functions, either CTLA-4 or OX40. OX40+ Treg cells outnumbered their CTLA-4+ counterparts (1.8:1) during acute P. vivax infection, while a more balanced ratio (1.3:1) was observed following parasite clearance These data reveal new players in the complex CD4+ Treg cell network that maintains immune homeostasis in malaria and suggest potential targets for therapeutic interventions to improve parasite-specific effector immune responses.
Collapse
Affiliation(s)
- Raquel M Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, Cidade Universitária, 05508-000, São Paulo, São Paulo, Brazil
| | - Nathália F Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, Cidade Universitária, 05508-000, São Paulo, São Paulo, Brazil
| | - Karina I Carvalho
- Division of Clinical Immunology and Allergy, Faculty of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, Pinheiros, 01246-903, São Paulo, São Paulo, Brazil; Albert Einstein Hospital, Av. Albert Einstein 627, Jardim Leonor, 05652-000, São Paulo, São Paulo, Brazil
| | - Kézia K G Scopel
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Av. Lourenço Kelmer, Bairro Martelos, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Esper G Kallás
- Division of Clinical Immunology and Allergy, Faculty of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, Pinheiros, 01246-903, São Paulo, São Paulo, Brazil
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, Cidade Universitária, 05508-000, São Paulo, São Paulo, Brazil.
| |
Collapse
|
41
|
Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol 2016; 13:473-86. [DOI: 10.1038/nrclinonc.2016.58] [Citation(s) in RCA: 660] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Marthey L, Mateus C, Mussini C, Nachury M, Nancey S, Grange F, Zallot C, Peyrin-Biroulet L, Rahier JF, Bourdier de Beauregard M, Mortier L, Coutzac C, Soularue E, Lanoy E, Kapel N, Planchard D, Chaput N, Robert C, Carbonnel F. Cancer Immunotherapy with Anti-CTLA-4 Monoclonal Antibodies Induces an Inflammatory Bowel Disease. J Crohns Colitis 2016; 10:395-401. [PMID: 26783344 PMCID: PMC4946758 DOI: 10.1093/ecco-jcc/jjv227] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Therapeutic monoclonal anti-cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) antibodies are associated with immune-mediated enterocolitis. The aim of this study was to provide a detailed description of this entity. METHODS We included patients with endoscopic signs of inflammation after anti-CTLA-4 infusions for cancer treatment. Other causes of enterocolitis were excluded. Clinical, biological and endoscopic data were recorded. A single pathologist reviewed endoscopic biopsies and colectomy specimens from 27 patients. Patients with and without enterocolitis after ipilimumab-treated melanoma were compared, to identify clinical factors associated with enterocolitis. RESULTS Thirty-nine patients with anti-CTLA-4 enterocolitis were included (ipilimumab n = 37; tremelimumab n = 2). The most frequent symptom was diarrhoea. Ten patients had extra-intestinal manifestations. Most colonoscopies showed ulcerations involving the rectum and sigmoid, 66% of patients had extensive colitis, 55% had patchy distribution and 20% had ileal inflammation. Endoscopic colonic biopsies showed acute colitis in most patients, while half of the patients had chronic duodenitis. Thirty-five patients received steroids that led to complete clinical remission in 13 patients (37%). Twelve patients required infliximab, of whom 10 (83%) responded. Six patients underwent colectomy (perforation n = 5; toxic megacolon n = 1); one of them died postoperatively. Four patients had a persistent enterocolitis at follow-up colonoscopy. Patients with enterocolitis were more frequently prescribed NSAIDs compared with patients without enterocolitis (31 vs 5%, p = 0.003). CONCLUSIONS Ipilimumab and tremelimumab may induce a severe and extensive form of inflammatory bowel disease. Rapid escalation to infliximab should be advocated in patients who do not respond to steroids. Patients treated with anti-CTLA-4 should be advised to avoid NSAIDs.
Collapse
Affiliation(s)
- L. Marthey
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Le Kremlin Bicêtre, France,Department of Gastroenterology, Antoine Béclère Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Clamart, France
| | - C. Mateus
- Dermatology Unit, Department of Medical Oncology, Gustave Roussy, Paris Sud University, Villejuif, F-94805, France
| | - C. Mussini
- Department of Pathology, Kremlin Bicêtre Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Le Kremlin Bicêtre, France
| | - M. Nachury
- Department of Gastroenterology, Claude Huriez Hospital, Lille, France
| | - S. Nancey
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civils de Lyon, Pierre-Benite, France
| | - F. Grange
- Department of Dermatology, Robert Debré Hospital, Reims, France
| | - C. Zallot
- Department of Gastroenterology, Nancy Hospital, Inserm U954, Lorraine University, Vandoeuvre Les Nancy, France
| | - L. Peyrin-Biroulet
- Department of Gastroenterology, Nancy Hospital, Inserm U954, Lorraine University, Vandoeuvre Les Nancy, France
| | - J. F. Rahier
- Department of Hepato-Gastroenterology, CHU Dinant Godinne UCL Namur, Yvoir, Belgium
| | | | - L. Mortier
- Department of Dermatology, Claude Huriez Hospital, Lille, France
| | - C. Coutzac
- Laboratoire d’Immunomonitoring en Oncologie, Gustave Roussy, Villejuif, F-94805, France
| | - E. Soularue
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Le Kremlin Bicêtre, France
| | - E. Lanoy
- Biostatistics and Epidemiology Unit, Gustave-Roussy, Villejuif, France,Inserm Unit U1018, CESP, Paris Sud University, Paris-Saclay University, Villejuif, France
| | - N. Kapel
- Department of Functional Coprology, Pitié Salpêtrière Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - D. Planchard
- Pneumology Unit, Department of Medical Oncology, Gustave Roussy, Villejuif, F-94805, France
| | - N. Chaput
- Laboratoire d’Immunomonitoring en Oncologie, Gustave Roussy, Villejuif, F-94805, France,CNRS, UMS 3655, Villejuif, F-94805, France,INSERM, US23, Villejuif, F-94805, France
| | - C. Robert
- Dermatology Unit, Department of Medical Oncology, Gustave Roussy, Paris Sud University, Villejuif, F-94805, France
| | - F. Carbonnel
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Le Kremlin Bicêtre, France
| |
Collapse
|
43
|
Chandraratna RAS, Noelle RJ, Nowak EC. Treatment with retinoid X receptor agonist IRX4204 ameliorates experimental autoimmune encephalomyelitis. Am J Transl Res 2016; 8:1016-1026. [PMID: 27158387 PMCID: PMC4846944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Retinoid x receptors (RXRs) are master regulators that control cell growth, differentiation, and survival and form heterodimers with many other family members. Here we show that treatment with the RXR agonist IRX4204 enhances the differentiation of CD4(+) T cells into inducible regulatory T cells (iTreg) and suppresses the development of T helper (Th) 17 cells in vitro. Furthermore in a murine model of multiple sclerosis (experimental autoimmune encephalomyelitis (EAE)), treatment with IRX4204 profoundly attenuates both active and Th17-mediated passive disease. In the periphery, treatment with IRX4204 is associated with decreased numbers of CD4(+) T cells that produce pro-inflammatory cytokines. In addition, CD4(+) T cells express decreased levels of Ki-67 and increased expression of CTLA-4. Our findings demonstrate IRX4204 treatment during EAE results in immune modulation and profound attenuation of disease severity.
Collapse
Affiliation(s)
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthLebanon, NH, USA
| | - Elizabeth C Nowak
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthLebanon, NH, USA
| |
Collapse
|
44
|
Jakubczik F, Jones K, Nichols J, Mansfield W, Cooke A, Holmes N. A SNP in the Immunoregulatory Molecule CTLA-4 Controls mRNA Splicing In Vivo but Does Not Alter Diabetes Susceptibility in the NOD Mouse. Diabetes 2016; 65:120-8. [PMID: 26450994 PMCID: PMC4693968 DOI: 10.2337/db15-1175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/01/2015] [Indexed: 11/13/2022]
Abstract
CTLA-4 is a critical "checkpoint" regulator in autoimmunity. Variation in CTLA-4 isoform expression has been linked to type 1 diabetes development in human and NOD mouse studies. In the NOD mouse, a causative link between increased expression of the minor isoform ligand-independent CTLA-4 and a reduction in diabetes has become widely accepted. Altered splicing of CTLA-4 has been attributed to a single nucleotide polymorphism (SNP) in Ctla4 exon2 (e2_77A/G). To investigate this link, we have used NOD embryonic stem (ES) cells to generate a novel NOD transgenic line with the 77A/G SNP. This strain phenocopies the increase in splicing toward the liCTLA4 isoform seen in B10 Idd5.1 mice. Crucially, the SNP does not alter the spontaneous incidence of diabetes, the incidence of cyclophosphamide-induced diabetes, or the activation of diabetogenic T-cell receptor transgenic CD4(+) T cells after adoptive transfer. Our results show that one or more of the many other linked genetic variants between the B10 and NOD genome are required for the diabetes protection conferred by Idd5.1. With the NOD mouse model closely mimicking the human disease, our data demonstrate that knock-in transgenic mice on the NOD background can test causative mutations relevant in human diabetes.
Collapse
Affiliation(s)
- Fabian Jakubczik
- Department of Pathology, University of Cambridge, Cambridge, U.K
| | - Ken Jones
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, U.K. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, U.K. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - William Mansfield
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, U.K
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, U.K
| | - Nick Holmes
- Department of Pathology, University of Cambridge, Cambridge, U.K.
| |
Collapse
|
45
|
Human Cytotoxic T Lymphocyte-Mediated Acute Liver Failure and Rescue by Immunoglobulin in Human Hepatocyte Transplant TK-NOG Mice. J Virol 2015; 89:10087-96. [PMID: 26246560 DOI: 10.1128/jvi.01126-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) are critical in eliminating infection. We developed an animal model in which HBV-infected human hepatocytes are targeted by HBV-specific CTLs. After HBV inoculation in human hepatocyte-transplanted herpes simplex virus type-1 thymidine kinase-NOG mice, human peripheral blood mononuclear cells (PBMCs) were administered, and albumin, HBV DNA, alanine aminotransferase (ALT), and cytokine levels were analyzed. Histopathological and flow-cytometric analysis of infiltrating human immune cells were performed, and the efficacy of CTL-associated antigen-4 immunoglobulin (CTLA4Ig) against liver damage was evaluated. PBMC treatment resulted in massive hepatocyte damage with elevation of ALT, granzyme A, and gamma interferon and decrease in albumin and HBV DNA. The number of liver-infiltrating human lymphocytes and CD8-positive cells was significantly higher in HBV-infected mice. HBV-specific CTLs were detected by core and polymerase peptide-major histocompatibility complex-tetramer, and the population of regulatory T cells was significantly decreased in HBV-infected mice. Serum hepatitis B surface (HBs) antigen became negative, and HBs antibody appeared. CTLA4Ig treatment strongly inhibited infiltration of mononuclear cells. CTLA4Ig treatment will be used to treat patients who develop severe acute hepatitis B to prevent liver transplantation or lethality. This animal model is useful for virological and immunological analysis of HBV infection and to develop new therapies for severe acute hepatitis B. IMPORTANCE Without liver transplantation, some HBV-infected patients will die from severe liver damage due to acute overreaction of the immune system. No effective treatment exists, due in part to the lack of a suitable animal model. An animal model is necessary to investigate the mechanism of hepatitis and to develop therapeutic strategies to prevent acute liver failure in HBV infection. We developed an animal model in which HBV-infected human hepatocytes are targeted by human HBV-specific CTLs. In this model, HBV-infected human hepatocytes were transplanted into severely immunodeficient NOG mice in order to reconstruct elements of the human immune system. Using this model, we found that CTL-associated antigen-4 immunoglobulin was able to suppress damage to HBV-infected hepatocytes, suggesting an approach to treatment. This animal model is useful for virological and immunological analysis of HBV infection and to develop new therapies for severe acute hepatitis B.
Collapse
|
46
|
Schlößer HA, Theurich S, Shimabukuro-Vornhagen A, Holtick U, Stippel DL, von Bergwelt-Baildon M. Overcoming tumor-mediated immunosuppression. Immunotherapy 2015; 6:973-88. [PMID: 25341119 DOI: 10.2217/imt.14.58] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of tumor-mediated immunosuppression have been described for several solid and hematological tumors. Tumors inhibit immune responses by attraction of immunosuppressive lymphocytic populations, secretion of immunosuppressive cytokines or expression of surface molecules, which inhibit immune responses by induction of anergy or apoptosis in tumor-infiltrating lymphocytes. This tumor-mediated immunosuppression represents a major obstacle to many immunotherapeutic or conventional therapeutic approaches. In this review we discuss how tumor-mediated immunosuppression interferes with different immunotherapeutic approaches and then give an overview of strategies to overcome it. Particular emphasis is placed on agents or approaches already transferred into clinical settings. Finally the success of immune checkpoint inhibitors targeting CTLA-4 or the PD-1 pathway highlights the enormous therapeutic potential of an effective overcoming of tumor-mediated immunosuppression.
Collapse
|
47
|
Jeffery LE, Qureshi OS, Gardner D, Hou TZ, Briggs Z, Soskic B, Baker J, Raza K, Sansom DM. Vitamin D Antagonises the Suppressive Effect of Inflammatory Cytokines on CTLA-4 Expression and Regulatory Function. PLoS One 2015; 10:e0131539. [PMID: 26134669 PMCID: PMC4489761 DOI: 10.1371/journal.pone.0131539] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
The immune suppressive protein CTLA-4 is constitutively expressed by Tregs and induced in effector T cells upon activation. Its crucial role in adaptive immunity is apparent from the fatal autoimmune pathology seen in CTLA-4 knockout mice. However, little is known regarding factors that regulate CTLA-4 expression and their effect upon its function to remove CD80 and CD86 from antigen presenting cells by transendocytosis. Th17 cells are emerging as significant players in autoimmunity as well as other diseases. Therefore, in this study we have examined the effects of Th17 polarising conditions on CTLA-4 expression and function in human T cells and show that Th17 conditions can suppress the expression of CTLA-4 and its transendocytic function. In contrast to Th17 cells, vitamin D is inversely associated with autoimmune disease. We have previously shown a striking ability of 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) to enhance CTLA-4, however, its effects upon B7 transendocytosis and its activity in the context of inflammation remained unknown. Here we show that induction of CTLA-4 by 1,25(OH)2D3 can actually be enhanced in the presence of Th17 polarising cytokines. Furthermore, its transendocytic function was maintained such that T cells generated in the presence of Th17 conditions and 1,25(OH)2D3 were highly effective at capturing CTLA-4 ligands from antigen presenting cells and suppressing T cell division. Taken together, these data reveal an inhibitory effect of Th17 polarising conditions upon CTLA-4-mediated regulation and show that 1,25(OH)2D3 counteracts this effect. Given the importance of CTLA-4-mediated suppression in the control of autoimmune diseases, our novel data highlight the importance of vitamin D in inflammatory settings.
Collapse
Affiliation(s)
- Louisa E. Jeffery
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Omar S. Qureshi
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, United Kingdom
| | - David Gardner
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Tie Z. Hou
- UCL Institute of Immunity and Transplantation, Royal Free Campus, University College London, London, United Kingdom
| | - Zoe Briggs
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Blagoje Soskic
- UCL Institute of Immunity and Transplantation, Royal Free Campus, University College London, London, United Kingdom
| | - Jennifer Baker
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Karim Raza
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, United Kingdom
- Department of Rheumatology, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
- * E-mail:
| | - David M. Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Campus, University College London, London, United Kingdom
| |
Collapse
|
48
|
Condomines M, Arnason J, Benjamin R, Gunset G, Plotkin J, Sadelain M. Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition. PLoS One 2015; 10:e0130518. [PMID: 26110267 PMCID: PMC4482147 DOI: 10.1371/journal.pone.0130518] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/22/2015] [Indexed: 12/30/2022] Open
Abstract
Adoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR) recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown. We investigated whether T cells expressing an anti-CD19, CD3 zeta and CD28-based CAR (19-28z) displayed the same proliferation and anti-tumor abilities than T cells expressing a CD3 zeta-based CAR (19z1) costimulated through the CD80/CD28, ligand/receptor pathway. Repeated in vitro antigen-specific stimulations indicated that 19-28z+ T cells secreted higher levels of Th1 cytokines and showed enhanced proliferation compared to those of 19z1+ or 19z1-CD80+ T cells. In an aggressive pre-B cell leukemia model, mice treated with 19-28z+ T cells had 10-fold reduced tumor progression compared to those treated with 19z1+ or 19z1-CD80+ T cells. shRNA-mediated CTLA-4 down-regulation in 19z1-CD80+ T cells significantly increased their in vivo expansion and anti-tumor properties, but had no effect in 19-28z+ T cells. Our results establish that CTLA-4 down-regulation may benefit human adoptive T cell therapy and demonstrate that CAR design can elude negative checkpoints to better sustain T cell function.
Collapse
Affiliation(s)
- Maud Condomines
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
- * E-mail: (MC); (MS)
| | - Jon Arnason
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Reuben Benjamin
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Gertrude Gunset
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Jason Plotkin
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Michel Sadelain
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
- * E-mail: (MC); (MS)
| |
Collapse
|
49
|
Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A 2015; 112:6140-5. [PMID: 25918390 DOI: 10.1073/pnas.1417320112] [Citation(s) in RCA: 458] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4-specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14(++)CD16(-) monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68(+)/CD163(+) macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti-CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients.
Collapse
|
50
|
Nouël A, Pochard P, Simon Q, Ségalen I, Le Meur Y, Pers JO, Hillion S. B-Cells induce regulatory T cells through TGF-β/IDO production in A CTLA-4 dependent manner. J Autoimmun 2015; 59:53-60. [PMID: 25753821 DOI: 10.1016/j.jaut.2015.02.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 01/03/2023]
Abstract
A number of studies have suggested that B cell mediated-regulation contributes to the establishment of immunological tolerance. However, the precise mechanisms by which regulatory B cells establish and maintain tolerance in humans remain to be determined. The objective of the current study is to understand the cellular and molecular bases of B-cell regulatory functions in humans. To describe the mechanisms regulating the functional plasticity of regulatory B cells, we used an in vitro co-culture model based on autologous mixed lymphocyte cultures involving freshly isolated B and T cells. The results show that activated B cells regulate T cell proliferation through producing transforming growth factor (TGF)-β and indoleamine 2,3-dioxygenase (IDO). The production of TGF-β and IDO leads to the induction of not only "natural" regulatory T cells but also of TGF-β-producing CD4(+) T cells and IL-10-producing regulatory T cells. Furthermore, we evidenced for the first time that CTLA-4 induces B-cells to produce IDO and to become effective induced regulatory B cells (iBregs). This study emphasizes a novel regulatory axis and open news insights in how to manage regulatory B cell functions in autoimmunity.
Collapse
Affiliation(s)
- A Nouël
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France
| | - P Pochard
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France
| | - Q Simon
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France
| | - I Ségalen
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France; Department of Nephrology, CHRU Cavale Blanche, Brest, France
| | - Y Le Meur
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France; Department of Nephrology, CHRU Cavale Blanche, Brest, France
| | - J O Pers
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France.
| | - S Hillion
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France
| |
Collapse
|