1
|
Chen H, Zhou X, Liu T, Liu J, Wu D, Xu X, Ma S, Qiang G, Chen J, Cao Y, Fu W, Yang J. Postprandial parasympathetic signals promote lung type 2 immunity. Neuron 2025:S0896-6273(24)00919-X. [PMID: 39837323 DOI: 10.1016/j.neuron.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/03/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Lung type 2 immunity protects against pathogenic infection, but its dysregulation causes asthma. Although it has long been observed that symptoms of asthmatic patients often become exaggerated following food intake, the pathophysiological mechanism underlying this postprandial phenomenon is incompletely understood. Here, we report that lung type 2 immunity in mice is enhanced after feeding, which correlates with parasympathetic activation. Also, local parasympathetic innervations exhibit spatial engagement with such immune responses mediated by group 2 innate lymphoid cells (ILC2s). Pharmacologic or surgical blockage of parasympathetic signals diminishes lung type 2 immunity. Conversely, chemogenetic manipulation of parasympathetic inputs and their upstream neurocircuit is sufficient to modulate those immune responses. We then show that the cholinergic receptor muscarinic 4 (Chrm4) for the parasympathetic neurotransmitter acetylcholine is expressed in mouse or human lung ILC2s, and the Chrm4 deletion mitigates ILC2-mediated lung inflammation. These results have revealed a critical neuroimmune function of the gut-brain-lung reflex.
Collapse
Affiliation(s)
- Hongjie Chen
- PTN Graduate Program, Peking University Third Hospital Cancer Center, Center for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Zhou
- PTN Graduate Program, Peking University Third Hospital Cancer Center, Center for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Tingting Liu
- PTN Graduate Program, Peking University Third Hospital Cancer Center, Center for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiaqi Liu
- PTN Graduate Program, Peking University Third Hospital Cancer Center, Center for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Di Wu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xia Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shanwu Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Jian Chen
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Ying Cao
- PTN Graduate Program, Peking University Third Hospital Cancer Center, Center for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Wei Fu
- PTN Graduate Program, Peking University Third Hospital Cancer Center, Center for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Department of General Surgery, Peking University Third Hospital, Beijing 100191, China.
| | - Jing Yang
- PTN Graduate Program, Peking University Third Hospital Cancer Center, Center for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
2
|
Obata‐Ninomiya K, Jayaraman T, Ziegler SF. From the bench to the clinic: basophils and type 2 epithelial cytokines of thymic stromal lymphopoietin and IL-33. Clin Transl Immunology 2024; 13:e70020. [PMID: 39654685 PMCID: PMC11626414 DOI: 10.1002/cti2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 epithelial cytokines, including thymic stromal lymphopoietin and IL-33, play central roles in modulation of type 2 immune cells, such as basophils. Basophils are a small subset of granulocytes within the leukocyte population that predominantly exist in the blood. They have non-redundant roles in allergic inflammation in peripheral tissues such as the lung, skin and gut, where they increase and accumulate at inflammatory lesions and exclusively produce large amounts of IL-4, a type 2 cytokine. These inflammatory reactions are known to be, to some extent, phenocopies of infectious diseases of ticks and helminths. Recently, biologics related to both type 2 epithelial cytokines and basophils have been approved by the US Food and Drug Administration for treatment of allergic diseases. We summarised the roles of Type 2 epithelial cytokines and basophils in basic science to translational medicine, including recent findings.
Collapse
Affiliation(s)
| | | | - Steven F Ziegler
- Center of Fundamental ImmunologyBenaroya Research InstituteSeattleWAUSA
- Department of ImmunologyUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
3
|
Schuijs MJ, Brenis Gomez CM, Bick F, Van Moorleghem J, Vanheerswynghels M, van Loo G, Beyaert R, Voehringer D, Locksley RM, Hammad H, Lambrecht BN. Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. J Exp Med 2024; 221:e20240103. [PMID: 39297875 PMCID: PMC11413418 DOI: 10.1084/jem.20240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.
Collapse
Affiliation(s)
- Martijn J. Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia M. Brenis Gomez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Fabian Bick
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Laboratory of Molecular and Cellular Pathophysiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Richard M. Locksley
- UCSF Department of Medicine and Howard Hugues Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands
| |
Collapse
|
4
|
Matatia PR, Christian E, Sokol CL. Sensory sentinels: Neuroimmune detection and food allergy. Immunol Rev 2024; 326:83-101. [PMID: 39092839 PMCID: PMC11436315 DOI: 10.1111/imr.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.
Collapse
Affiliation(s)
- Peri R. Matatia
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Christian
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline L. Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
5
|
Hassan GF, Cohen LS, Alexander-Brett J. IL-33: Friend or foe in transplantation? J Heart Lung Transplant 2024; 43:1235-1240. [PMID: 38452960 PMCID: PMC11246814 DOI: 10.1016/j.healun.2024.02.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Several reports have highlighted the dichotomous nature of the Interleukin-33 (IL-33) system in cardiac and lung disease, where this cytokine can exert both protective effects and drive pro-inflammatory responses in a context-specific manner. This State-of-the-Art review focuses on preclinical mechanistic studies of the IL-33 system in development of allograft rejection in heart and lung transplantation. We address the scope of potential cellular sources of IL-33 and pathways for cellular release that may impact the study of this cytokine system in transplant models. We then highlight soluble IL-33 receptor as a biomarker in cardiac allograft rejection and detail preclinical models that collectively demonstrate a role for this cytokine in driving type-2 immune programs to protect cardiac allografts. We contrast this with investigation of IL-33 in lung transplantation, which has yielded mixed and somewhat conflicting results when comparing human studies with preclinical models, which have implicated the IL-33 system in both allograft tolerance and acceleration of chronic rejection. We summarize and interpret these results in aggregate and provide future directions for study of IL-33 in heart and lung transplantation.
Collapse
Affiliation(s)
- Ghandi F Hassan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Lucy S Cohen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Jen Alexander-Brett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
6
|
Baglivo I, Quaranta VN, Dragonieri S, Colantuono S, Menzella F, Selvaggio D, Carpagnano GE, Caruso C. The New Paradigm: The Role of Proteins and Triggers in the Evolution of Allergic Asthma. Int J Mol Sci 2024; 25:5747. [PMID: 38891935 PMCID: PMC11171572 DOI: 10.3390/ijms25115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Epithelial barrier damage plays a central role in the development and maintenance of allergic inflammation. Rises in the epithelial barrier permeability of airways alter tissue homeostasis and allow the penetration of allergens and other external agents. Different factors contribute to barrier impairment, such as eosinophilic infiltration and allergen protease action-eosinophilic cationic proteins' effects and allergens' proteolytic activity both contribute significantly to epithelial damage. In the airways, allergen proteases degrade the epithelial junctional proteins, allowing allergen penetration and its uptake by dendritic cells. This increase in allergen-immune system interaction induces the release of alarmins and the activation of type 2 inflammatory pathways, causing or worsening the main symptoms at the skin, bowel, and respiratory levels. We aim to highlight the molecular mechanisms underlying allergenic protease-induced epithelial barrier damage and the role of immune response in allergic asthma onset, maintenance, and progression. Moreover, we will explore potential clinical and radiological biomarkers of airway remodeling in allergic asthma patients.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Centro Malattie Apparato Digerente (CEMAD) Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Vitaliano Nicola Quaranta
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Silvano Dragonieri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Stefania Colantuono
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - David Selvaggio
- UOS di Malattie dell’Apparato Respiratorio Ospedale Cristo Re, 00167 Roma, Italy
| | - Giovanna Elisiana Carpagnano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Cristiano Caruso
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
7
|
Raphael HE, Hassan GF, Osorio OA, Cohen LS, Payne MD, Katz-Kiriakos E, Tata I, Hicks J, Byers DE, Zhang B, Alexander-Brett J. Activator protein transcription factors coordinate human IL-33 expression from noncanonical promoters in chronic airway disease. JCI Insight 2024; 9:e174786. [PMID: 38456508 PMCID: PMC10972587 DOI: 10.1172/jci.insight.174786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
IL-33 is a cytokine central to type 2 immune pathology in chronic airway disease. This cytokine is abundantly expressed in the respiratory epithelium and increased in disease, but how expression is regulated is undefined. Here we show that increased IL33 expression occurs from multiple noncanonical promoters in human chronic obstructive pulmonary disease (COPD), and it facilitates production of alternatively spliced isoforms in airway cells. We found that phorbol 12-myristate 13-acetate (PMA) can activate IL33 promoters through protein kinase C in primary airway cells and lines. Transcription factor (TF) binding arrays combined with RNA interference identified activator protein (AP) TFs as regulators of baseline and induced IL33 promoter activity. ATAC-Seq and ChIP-PCR identified chromatin accessibility and differential TF binding as additional control points for transcription from noncanonical promoters. In support of a role for these TFs in COPD pathogenesis, we found that AP-2 (TFAP2A, TFAP2C) and AP-1 (FOS and JUN) family members are upregulated in human COPD specimens. This study implicates integrative and pioneer TFs in regulating IL33 promoters and alternative splicing in human airway basal cells. Our work reveals a potentially novel approach for targeting IL-33 in development of therapeutics for COPD.
Collapse
Affiliation(s)
- Heather E. Raphael
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Ghandi F. Hassan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Omar A. Osorio
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Lucy S. Cohen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Morgan D. Payne
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Ella Katz-Kiriakos
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Ishana Tata
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Jamie Hicks
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Derek E. Byers
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Bo Zhang
- Department of Developmental Biology, and
| | - Jen Alexander-Brett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Kimitsu T, Kamijo S, Yoshimura T, Masutani Y, Shimizu S, Takada K, Suchiva P, Ogawa H, Okumura K, Ikeda S, Takai T. Antigen Protease Activity on Intact or Tape-Stripped Skin Induces Acute Itch and T Helper Sensitization Leading to Airway Eosinophilia in Mice. JID INNOVATIONS 2024; 4:100239. [PMID: 38282648 PMCID: PMC10810837 DOI: 10.1016/j.xjidi.2023.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 01/30/2024] Open
Abstract
Respiratory allergen sources such as house dust mites frequently contain proteases. In this study, we demonstrated that the epicutaneous application of a model protease antigen, papain, onto intact or tape-stripped ear skin of mice induced acute scratching behaviors and T helper (Th)2, Th9, Th17/Th22, and/or Th1 sensitization in a protease activity-dependent manner. The protease activity of papain applied onto the skin was also essential for subsequent airway eosinophilia induced by an intranasal challenge with low-dose papain. With tape stripping, papain-treated mice showed barrier dysfunction, the accelerated onset of acute scratching behaviors, and attenuated Th17/Th22 sensitization. In contrast, the protease activity of inhaled papain partially or critically contributed to airway atopic march responses in mice sensitized through intact or tape-stripped skin, respectively. These results indicated that papain protease activity on epicutaneous application through intact skin or skin with mechanical barrier damage is critical to the sensitization phase responses, including acute itch and Th sensitization and progression to the airway atopic march, whereas dependency on the protease activity of inhaled papain in the atopic march differs by the condition of the sensitized skin area. This study suggests that exogenous protease-dependent epicutaneous mechanisms are a target for controlling allergic sensitization and progression to the atopic march.
Collapse
Affiliation(s)
- Toru Kimitsu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoko Yoshimura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yurie Masutani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saya Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiko Takada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Punyada Suchiva
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Yoshimura T, Kamijo S, Ichikawa S, Kimitsu T, Masutani Y, Shimizu S, Takada K, Ogawa T, Tominaga M, Takamori K, Ogawa H, Okumura K, Ikeda S, Takai T. Antigen Protease Activity with a Detergent Induces Severe Skin Inflammation with Itch and Robust T Helper 17/T Helper 22 Differentiation in Mice. J Invest Dermatol 2023; 143:2314-2318.e3. [PMID: 37230236 DOI: 10.1016/j.jid.2023.03.1685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Affiliation(s)
- Tomoko Yoshimura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Ichikawa
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Toru Kimitsu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yurie Masutani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saya Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiko Takada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takasuke Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Hideoki Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
10
|
O'Grady SM, Kita H. ATP functions as a primary alarmin in allergen-induced type 2 immunity. Am J Physiol Cell Physiol 2023; 325:C1369-C1386. [PMID: 37842751 PMCID: PMC10861152 DOI: 10.1152/ajpcell.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.
Collapse
Affiliation(s)
- Scott M O'Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hirohito Kita
- Division of Allergy, Asthma and Immunology, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
11
|
Liu T, Liu J, Chen H, Zhou X, Fu W, Cao Y, Yang J. Cannabinoid receptor 2 signal promotes type 2 immunity in the lung. CELL INSIGHT 2023; 2:100124. [PMID: 37868095 PMCID: PMC10585230 DOI: 10.1016/j.cellin.2023.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Type 2 immunity in the lung protects against pathogenic infection and facilitates tissue repair, but its dysregulation may lead to severe human diseases. Notably, cannabis usage for medical or recreational purposes has increased globally. However, the potential impact of the cannabinoid signal on lung immunity is incompletely understood. Here, we report that cannabinoid receptor 2 (CB2) is highly expressed in group 2 innate lymphoid cells (ILC2s) of mouse and human lung tissues. Of importance, the CB2 signal enhances the IL-33-elicited immune response of ILC2s. In addition, the chemogenetic manipulation of inhibitory G proteins (Gi) downstream of CB2 produces a similarly promotive effect. Conversely, the genetic deletion of CB2 mitigates the IL-33-elicited type 2 immunity in the lung. Also, such ablation of the CB2 signal ameliorates papain-induced tissue inflammation. Together, these results have elucidated a critical aspect of the CB2 signal in lung immunity, implicating its potential involvement in pulmonary diseases.
Collapse
Affiliation(s)
- Tingting Liu
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jiaqi Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hongjie Chen
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
- Peking University Third Hospital Cancer Center, Beijing, 100191, China
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
- Peking University Third Hospital Cancer Center, Beijing, 100191, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jing Yang
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Peking University Third Hospital Cancer Center, Beijing, 100191, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| |
Collapse
|
12
|
Cros A, De Juan A, Leclère R, Sampaio JL, San Roman M, Maurin M, Heurtebise-Chrétien S, Segura E. Homeostatic activation of aryl hydrocarbon receptor by dietary ligands dampens cutaneous allergic responses by controlling Langerhans cells migration. eLife 2023; 12:86413. [PMID: 37190854 DOI: 10.7554/elife.86413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Dietary compounds can affect the development of inflammatory responses at distant sites. However, the mechanisms involved remain incompletely understood. Here, we addressed the influence on allergic responses of dietary agonists of aryl hydrocarbon receptor (AhR). In cutaneous papain-induced allergy, we found that lack of dietary AhR ligands exacerbates allergic responses. This phenomenon was tissue-specific as airway allergy was unaffected by the diet. In addition, lack of dietary AhR ligands worsened asthma-like allergy in a model of 'atopic march.' Mice deprived of dietary AhR ligands displayed impaired Langerhans cell migration, leading to exaggerated T cell responses. Mechanistically, dietary AhR ligands regulated the inflammatory profile of epidermal cells, without affecting barrier function. In particular, we evidenced TGF-β hyperproduction in the skin of mice deprived of dietary AhR ligands, explaining Langerhans cell retention. Our work identifies an essential role for homeostatic activation of AhR by dietary ligands in the dampening of cutaneous allergic responses and uncovers the importance of the gut-skin axis in the development of allergic diseases.
Collapse
Affiliation(s)
- Adeline Cros
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Alba De Juan
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Renaud Leclère
- Institut Curie, PSL Research University, Plateforme de Pathologie Expérimentale, Paris, France
| | - Julio L Sampaio
- Institut Curie, PSL Research University, Plateforme de Métabolomique et Lipidomique, Paris, France
| | - Mabel San Roman
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | | | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| |
Collapse
|
13
|
Soh WT, Zhang J, Hollenberg MD, Vliagoftis H, Rothenberg ME, Sokol CL, Robinson C, Jacquet A. Protease allergens as initiators-regulators of allergic inflammation. Allergy 2023; 78:1148-1168. [PMID: 36794967 PMCID: PMC10159943 DOI: 10.1111/all.15678] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Tremendous progress in the last few years has been made to explain how seemingly harmless environmental proteins from different origins can induce potent Th2-biased inflammatory responses. Convergent findings have shown the key roles of allergens displaying proteolytic activity in the initiation and progression of the allergic response. Through their propensity to activate IgE-independent inflammatory pathways, certain allergenic proteases are now considered as initiators for sensitization to themselves and to non-protease allergens. The protease allergens degrade junctional proteins of keratinocytes or airway epithelium to facilitate allergen delivery across the epithelial barrier and their subsequent uptake by antigen-presenting cells. Epithelial injuries mediated by these proteases together with their sensing by protease-activated receptors (PARs) elicit potent inflammatory responses resulting in the release of pro-Th2 cytokines (IL-6, IL-25, IL-1β, TSLP) and danger-associated molecular patterns (DAMPs; IL-33, ATP, uric acid). Recently, protease allergens were shown to cleave the protease sensor domain of IL-33 to produce a super-active form of the alarmin. At the same time, proteolytic cleavage of fibrinogen can trigger TLR4 signaling, and cleavage of various cell surface receptors further shape the Th2 polarization. Remarkably, the sensing of protease allergens by nociceptive neurons can represent a primary step in the development of the allergic response. The goal of this review is to highlight the multiple innate immune mechanisms triggered by protease allergens that converge to initiate the allergic response.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Caroline L. Sokol
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clive Robinson
- Institute for Infection and Immunity, St George’s University of London, London, UK
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Zhao R, Shi Y, Liu N, Li B. Elevated levels of interleukin-33 are associated with asthma: A meta-analysis. Immun Inflamm Dis 2023; 11:e842. [PMID: 37102668 PMCID: PMC10116908 DOI: 10.1002/iid3.842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Previous studies reported that patients with asthma showed higher levels of interleukin (IL)-33 in peripheral blood, compared to healthy control (HCs). However, we also noticed that there were no significant differences of IL-33 levels between controls and asthma patients in a recent study. We aim to conduct this meta-analysis and evaluate the feasibility of IL-33 in peripheral blood that may act as a promising biomarker in asthma. METHODS Articles published before December 2022 were searched in these databases (PubMed, Web of Science, EMBASE, and Google Scholar). We used STATA 12.0 software to compute the results. RESULTS The study showed that asthmatics showed higher IL-33 level in serum and plasma, compared to HCs (serum: standard mean difference [SMD] 2.06, 95% confidence interval [CI] 1.12-3.00, I2 = 98.4%, p < .001; plasma: SMD 3.67, 95% CI 2.32-5.03, I2 = 86.0%, p < .001). Subgroup analysis indicated that asthma adults showed higher IL-33 level in serum, compared to HCs, whereas no significant difference in IL-33 level in serum was showed between asthma children and HCs (adults: SMD 2.17, 95% CI 1.09-3.25; children: SMD 1.81, 95% CI -0.11 to 3.74). The study indicated that moderate and severe asthmatics showed higher IL-33 level in serum, compared to mild asthmatics (SMD 0.78, 95% CI 0.41-1.16, I2 = 66.2%, p = .011). CONCLUSIONS In conclusion, the main findings of present meta-analysis suggested that there was a significant correlation between IL-33 levels and the severity of asthma. Therefore, IL-33 levels of either serum or plasma may be regarded as a useful biomarker of asthma or the degree of disease.
Collapse
Affiliation(s)
- Ranran Zhao
- Department of Respiratory MedicineCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina
| | - Yun Shi
- Medical and Health CenterCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina
| | - Na Liu
- Department of Respiratory MedicineBeijing Hepingli hospitalBeijingChina
| | - Bin Li
- Department of Respiratory MedicineCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina
| |
Collapse
|
15
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
16
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
17
|
Gurram RK, Wei D, Yu Q, Kamenyeva O, Chung H, Zheng M, Butcher MJ, Kabat J, Liu C, Khillan JS, Zhu J. Gata3 ZsG and Gata3 ZsG-fl: Novel murine Gata3 reporter alleles for identifying and studying Th2 cells and ILC2s in vivo. Front Immunol 2022; 13:975958. [PMID: 36466899 PMCID: PMC9709206 DOI: 10.3389/fimmu.2022.975958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/31/2022] [Indexed: 10/10/2023] Open
Abstract
T helper-2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) play crucial roles during type 2 immune responses; the transcription factor GATA3 is essential for the differentiation and functions of these cell types. It has been demonstrated that GATA3 is critical for maintaining Th2 and ILC2 phenotype in vitro; GATA3 not only positively regulates type 2 lymphocyte-associated genes, it also negatively regulates many genes associated with other lineages. However, such functions cannot be easily verified in vivo because the expression of the markers for identifying Th2 and ILC2s depends on GATA3. Thus, whether Th2 cells and ILC2s disappear after Gata3 deletion or these Gata3-deleted "Th2 cells" or "ILC2s" acquire an alternative lineage fate is unknown. In this study, we generated novel GATA3 reporter mouse strains carrying the Gata3 ZsG or Gata3 ZsG-fl allele. This was achieved by inserting a ZsGreen-T2A cassette at the translation initiation site of either the wild type Gata3 allele or the modified Gata3 allele which carries two loxP sites flanking the exon 4. ZsGreen faithfully reflected the endogenous GATA3 protein expression in Th2 cells and ILC2s both in vitro and in vivo. These reporter mice also allowed us to visualize Th2 cells and ILC2s in vivo. An inducible Gata3 deletion system was created by crossing Gata3 ZsG-fl/fl mice with a tamoxifen-inducible Cre. Continuous expression of ZsGreen even after the Gata3 exon 4 deletion was noted, which allows us to isolate and monitor GATA3-deficient "Th2" cells and "ILC2s" during in vivo immune responses. Our results not only indicated that functional GATA3 is dispensable for regulating its own expression in mature type 2 lymphocytes, but also revealed that GATA3-deficient "ILC2s" might be much more stable in vivo than in vitro. Overall, the generation of these novel GATA3 reporters will provide valuable research tools to the scientific community in investigating type 2 immune responses in vivo.
Collapse
Affiliation(s)
- Rama K. Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Qiao Yu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Olena Kamenyeva
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hyunwoo Chung
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Matthew J. Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood institutes, National Institutes of Health, Bethesda, MD, United States
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Trimarchi M, Lauritano D, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Calvisi V, Conti P. Mast Cell Cytokines in Acute and Chronic Gingival Tissue Inflammation: Role of IL-33 and IL-37. Int J Mol Sci 2022; 23:13242. [PMID: 36362030 PMCID: PMC9654575 DOI: 10.3390/ijms232113242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct activation of autoreactive immune cells and production of TNF can activate neutrophils to release pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota that triggers the immune system. This inflammatory pathological state can affect the periodontal ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells and inflammatory-immune cells, including mast cells (MCs), produce cytokines and chemokines, mediating local inflammation of the gingival, along with destruction of the periodontal ligament and alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines, such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33 are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired immunological diseases. The classic therapies for periodontitis include non-surgical periodontal treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b, has received considerable attention for the treatment of inflammatory diseases. In this article, we report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and IL-37 inhibition in acute and chronic inflamed gingival tissue.
Collapse
Affiliation(s)
- Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy;
| | - Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy;
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece;
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece;
| | - Vittorio Calvisi
- Orthopaedics Department, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 65100 Pescara, Italy
| |
Collapse
|
19
|
Yánez DC, Lau CI, Papaioannou E, Chawda MM, Rowell J, Ross S, Furmanski A, Crompton T. The Pioneer Transcription Factor Foxa2 Modulates T Helper Differentiation to Reduce Mouse Allergic Airway Disease. Front Immunol 2022; 13:890781. [PMID: 36003391 PMCID: PMC9393229 DOI: 10.3389/fimmu.2022.890781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022] Open
Abstract
Foxa2, a member of the Forkhead box (Fox) family of transcription factors, plays an important role in the regulation of lung function and lung tissue homeostasis. FOXA2 expression is reduced in the lung and airways epithelium of asthmatic patients and in mice absence of Foxa2 from the lung epithelium contributes to airway inflammation and goblet cell hyperplasia. Here we demonstrate a novel role for Foxa2 in the regulation of T helper differentiation and investigate its impact on lung inflammation. Conditional deletion of Foxa2 from T-cells led to increased Th2 cytokine secretion and differentiation, but decreased Th1 differentiation and IFN-γ expression in vitro. Induction of mouse allergic airway inflammation resulted in more severe disease in the conditional Foxa2 knockout than in control mice, with increased cellular infiltration to the lung, characterized by the recruitment of eosinophils and basophils, increased mucus production and increased production of Th2 cytokines and serum IgE. Thus, these experiments suggest that Foxa2 expression in T-cells is required to protect against the Th2 inflammatory response in allergic airway inflammation and that Foxa2 is important in T-cells to maintain the balance of effector cell differentiation and function in the lung.
Collapse
Affiliation(s)
- Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Mira M Chawda
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anna Furmanski
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- School of Life Sciences, University of Bedfordshire, Luton, United Kingdom
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
20
|
Ikutani M, Nakae S. Heterogeneity of Group 2 Innate Lymphoid Cells Defines Their Pleiotropic Roles in Cancer, Obesity, and Cardiovascular Diseases. Front Immunol 2022; 13:939378. [PMID: 35844571 PMCID: PMC9278653 DOI: 10.3389/fimmu.2022.939378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are typically known for their ability to respond rapidly to parasitic infections and play a pivotal role in the development of certain allergic disorders. ILC2s produce cytokines such as Interleukin (IL)-5 and IL-13 similar to the type 2 T helper (Th2) cells. Recent findings have highlighted that ILC2s, together with IL-33 and eosinophils, participate in a considerably broad range of physiological roles such as anti-tumor immunity, metabolic regulation, and vascular disorders. Therefore, the focus of the ILC2 study has been extended from conventional Th2 responses to these unexplored areas of research. However, disease outcomes accompanied by ILC2 activities are paradoxical mostly in tumor immunity requiring further investigations. Although various environmental factors that direct the development, activation, and localization of ILC2s have been studied, IL-33/ILC2/eosinophil axis is presumably central in a multitude of inflammatory conditions and has guided the research in ILC2 biology. With a particular focus on this axis, we discuss ILC2s across different diseases.
Collapse
Affiliation(s)
- Masashi Ikutani
- Laboratory of Immunology, Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- *Correspondence: Masashi Ikutani, ; Susumu Nakae,
| | - Susumu Nakae
- Laboratory of Immunology, Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- *Correspondence: Masashi Ikutani, ; Susumu Nakae,
| |
Collapse
|
21
|
Ogasawara A, Yuki T, Katagiri A, Lai YT, Takahashi Y, Basketter D, Sakaguchi H. Proteolytic activity accelerates the T H17/T H22 recall response to an epicutaneous protein allergen-induced T H2 response. J Immunotoxicol 2022; 19:27-33. [PMID: 35378053 DOI: 10.1080/1547691x.2022.2049665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Epicutaneous exposure to protein allergens, such as papain, house dust mite (HDM), and ovalbumin (OVA), represents an important mode of sensitization for skin diseases including protein contact dermatitis, immunologic contact urticaria, and atopic dermatitis. These diseases are inducible by re-exposure to an allergen at both original skin sensitization and distant skin sites. In this study, we examined the serum IgE/IgG1 response, differentiation of T-helper (TH) cells, and epicutaneous TH recall response in mice pre-sensitized with protein allergens through the back skin and subsequently challenged on the ear skin. Repeated epicutaneous sensitization with allergenic proteins including papain, HDM, OVA, and protease inhibitor-treated papain, but not bovine serum albumin, induced serum allergen-specific antibody production, passive cutaneous anaphylaxis responses, and TH2 differentiation in the skin draining lymph node (DLN) cells. Sensitization with papain or HDM, which have protease activity, resulted in the differentiation of TH17 as well as TH2. In papain- or HDM-sensitized mice, a subsequent single challenge on the ear skin induced the expression of TH2 and TH17/TH22 cytokines. These results suggest that allergenic proteins induce the differentiation of TH2 in skin DLN cells and an antibody response. These findings may be useful for identifying proteins of high and low allergenic potential. Moreover, allergenic proteins containing protease activity may also differentiate TH17 and induce TH2 and TH17/TH22 recall responses at epicutaneous challenge sites. This suggests that allergen protease activity accelerates the onset of skin diseases caused by protein allergens.
Collapse
Affiliation(s)
- Akira Ogasawara
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuo Yuki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Asuka Katagiri
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Yi-Ting Lai
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Yutaka Takahashi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | | | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| |
Collapse
|
22
|
Integrated OMICs Approach for the Group 1 Protease Mite-Allergen of House Dust Mite Dermatophagoides microceras. Int J Mol Sci 2022; 23:ijms23073810. [PMID: 35409170 PMCID: PMC8998267 DOI: 10.3390/ijms23073810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
House dust mites (HDMs) are one of the most important allergy-causing agents of asthma. In central Taiwan, the prevalence of sensitization to Dermatophagoides microceras (Der m), a particular mite species of HDMs, is approximately 80% and is related to the IgE crossing reactivity of Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farinae (Der f). Integrated OMICs examination was used to identify and characterize the specific group 1 mite-allergic component (Der m 1). De novo draft genomic assembly and comparative genome analysis predicted that the full-length Der m 1 allergen gene is 321 amino acids in silico. Proteomics verified this result, and its recombinant protein production implicated the cysteine protease and α chain of fibrinogen proteolytic activity. In the sensitized mice, pathophysiological features and increased neutrophils accumulation were evident in the lung tissues and BALF with the combination of Der m 1 and 2 inhalation, respectively. Principal component analysis (PCA) of mice cytokines revealed that the cytokine profiles of the allergen-sensitized mice model with combined Der m 1 and 2 were similar to those with Der m 2 alone but differed from those with Der m 1 alone. Regarding the possible sensitizing roles of Der m 1 in the cells, the fibrinogen cleavage products (FCPs) derived from combined Der m 1 and Der m 2 induced the expression of pro-inflammatory cytokines IL-6 and IL-8 in human bronchial epithelium cells. Der m 1 biologically functions as a cysteine protease and contributes to the α chain of fibrinogen digestion in vitro. The combination of Der m 1 and 2 could induce similar cytokines expression patterns to Der m 2 in mice, and the FCPs derived from Der m 1 has a synergistic effect with Der m 2 to induce the expression of pro-inflammatory cytokines in human bronchial epithelium cells.
Collapse
|
23
|
Virtanen T. Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. FRONTIERS IN ALLERGY 2022; 2:824736. [PMID: 35387007 PMCID: PMC8974866 DOI: 10.3389/falgy.2021.824736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
A major part of important mammalian respiratory allergens belongs to the lipocalin family of proteins. By this time, 19 respiratory mammalian lipocalin allergens have been registered in the WHO/IUIS Allergen Nomenclature Database. Originally, lipocalins, small extracellular proteins (molecular mass ca. 20 kDa), were characterized as transport proteins but they are currently known to exert a variety of biological functions. The three-dimensional structure of lipocalins is well-preserved, and lipocalin allergens can exhibit high amino acid identities, in several cases more than 50%. Lipocalins contain an internal ligand-binding site where they can harbor small principally hydrophobic molecules. Another characteristic feature is their capacity to bind to specific cell-surface receptors. In all, the physicochemical properties of lipocalin allergens do not offer any straightforward explanations for their allergenicity. Allergic sensitization begins at epithelial barriers where diverse insults through pattern recognition receptors awaken innate immunity. This front-line response is manifested by epithelial barrier-associated cytokines which together with other components of immunity can initiate the sensitization process. In the following, the crucial factor in allergic sensitization is interleukin (IL)-4 which is needed for stabilizing and promoting the type 2 immune response. The source for IL-4 has been searched widely. Candidates for it may be non-professional antigen-presenting cells, such as basophils or mast cells, as well as CD4+ T cells. The synthesis of IL-4 by CD4+ T cells requires T cell receptor engagement, i.e., the recognition of allergen peptides, which also provides the specificity for sensitization. Lipocalin and innate immunity-associated cell-surface receptors are implicated in facilitating the access of lipocalin allergens into the immune system. However, the significance of this for allergic sensitization is unclear, as the recognition by these receptors has been found to produce conflicting results. As to potential adjuvants associated with mammalian lipocalin allergens, the hydrophobic ligands transported by lipocalins have not been reported to enhance sensitization while it is justified to suppose that lipopolysaccharide plays a role in it. Taken together, type 2 immunity to lipocalin allergens appears to be a harmful immune response resulting from a combination of signals involving both the innate and adaptive immunities.
Collapse
Affiliation(s)
- Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Wu X, Johnson JR. Drivers of Type 2 Inflammation in Allergic Airway Disease: Wnt You Like to Know? Am J Respir Cell Mol Biol 2022; 66:245-247. [PMID: 35030311 PMCID: PMC8937248 DOI: 10.1165/rcmb.2021-0550ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Xinhui Wu
- University of Groningen, 3647, Molecular Pharmacology, Groningen, Netherlands
| | - Jill R Johnson
- Aston University, School of Life and Health Sciences, Birmingham, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
25
|
Temporal Quantitative Phosphoproteomics Profiling of Interleukin-33 Signaling Network Reveals Unique Modulators of Monocyte Activation. Cells 2022; 11:cells11010138. [PMID: 35011700 PMCID: PMC8749991 DOI: 10.3390/cells11010138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 superfamily cytokines, is an endogenous danger signal and a nuclear-associated cytokine. It is one of the essential mediators of both innate and adaptive immune responses. Aberrant IL-33 signaling has been demonstrated to play a defensive role against various infectious and inflammatory diseases. Although the signaling responses mediated by IL-33 have been previously reported, the temporal signaling dynamics are yet to be explored. To this end, we applied quantitative temporal phosphoproteomics analysis to elucidate pathways and proteins induced by IL-33 in THP-1 monocytes. Employing a TMT labeling-based quantitation and titanium dioxide (TiO2)-based phosphopeptide enrichment strategy followed by mass spectrometry analysis, we identified and quantified 9448 unique phosphopeptides corresponding to 3392 proteins that showed differential regulation. Of these, 171 protein kinases, 60 phosphatases and 178 transcription factors were regulated at different phases of IL-33 signaling. In addition to the confirmed activation of canonical signaling modules including MAPK, NFκB, PI3K/AKT modules, pathway analysis of the time-dependent phosphorylation dynamics revealed enrichment of several cellular processes, including leukocyte adhesion, response to reactive oxygen species, cell cycle checkpoints, DNA damage and repair pathways. The detailed quantitative phosphoproteomic map of IL-33 signaling will serve as a potentially useful resource to study its function in the context of inflammatory and pathological conditions.
Collapse
|
26
|
Role of IL-33/ST2 Axis in Chronic Inflammatory Neurological Disorderss. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Interleukin-33 (IL-33) is a member of IL-1 family of cytokines, produced constitutively by fibroblasts, endothelial cells, and epithelial cells. IL-33 can be released passively from cells during tissue damage and cell necrosis, suggesting that it may act as an alarmin. Function of IL-33 is mediated by its interaction with ST2 molecule that is expressed on many immune cells: Th2 lymphocytes, NK, NKT and mast cells, monocytes, dendritic cells and granulocytes. IL-33/ST2 pathway plays, often dual, roles in different physiological and inflammatory processes, mediating both, pathological immune responses and tissue repair. Expression of IL-33 in the central nervous system (CNS) is significantly enhanced during various pathological processes, indicating its important role in the pathogenesis of neurological inflammatory and degenerative diseases. In this review the biological features, expression of IL-33 and its ligand ST2 in CNS, and the role of IL- 33/ST2 pathway in development of Alzheimer’s disease and multiple sclerosis are discussed.
Collapse
|
27
|
Kim Y, Ma C, Park S, Shin- Y, Lee T, Paek J, Hoon Kim K, Jang G, Cho H, Son S, Son SH, Yong Lee K, Lee K, Woo Jung Y, Ho Jeon Y, Byun Y. Rational Design, Synthesis and Evaluation of Oxazolo[4,5-c]-quinolinone Analogs as Novel Interleukin-33 Inhibitors. Chem Asian J 2021; 16:3702-3712. [PMID: 34553505 DOI: 10.1002/asia.202100896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Indexed: 12/30/2022]
Abstract
Interleukin-33 (IL-33) is an epithelial-derived cytokine that plays an important role in immune-mediated diseases such as asthma, atopic dermatitis, and rheumatoid arthritis. Although IL-33 is considered a potential target for the treatment of allergy-related diseases, no small molecule that inhibits IL-33 has been reported. Based on the structure-activity relationship and in vitro 2D NMR studies employing 15 N-labeled IL-33, we identified that the oxazolo[4,5-c]-quinolinone analog 7 c binds to the interface region of IL-33 and IL-33 receptor (ST2), an orphan receptor of the IL-1 receptor family. Compound 7 c effectively inhibited the production of IL-6 in human mast cells in a dose-dependent manner. Compound 7 c is the first low molecular weight IL-33 inhibitor and may be used as a prototype molecule for structural optimization and investigation of the IL-33/ST2 signaling pathway.
Collapse
Affiliation(s)
- Yujin Kim
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Chao Ma
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea.,Current address, College of Food & Pharmaceutical Engineering, Guizhou Institute of Technology, Guizhou, 550003, P. R. China
| | - Seonghu Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Yujin Shin-
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Taeyun Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Jiwon Paek
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Kyong Hoon Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, South Korea
| | - Geonhee Jang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Haelim Cho
- T&J TECH Inc., 212 Gasan digital 1-ro, Geumcheon-gu, Seoul, 08502, South Korea
| | - Seyoung Son
- Azcuris, Co., Ltd., 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Sang-Hyun Son
- Azcuris, Co., Ltd., 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Yong Woo Jung
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| |
Collapse
|
28
|
Yánez DC, Papaioannou E, Chawda MM, Rowell J, Ross S, Lau CI, Crompton T. Systemic Pharmacological Smoothened Inhibition Reduces Lung T-Cell Infiltration and Ameliorates Th2 Inflammation in a Mouse Model of Allergic Airway Disease. Front Immunol 2021; 12:737245. [PMID: 34580585 PMCID: PMC8463265 DOI: 10.3389/fimmu.2021.737245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Allergic asthma is a common inflammatory airway disease in which Th2 immune response and inflammation are thought to be triggered by inhalation of environmental allergens. Many studies using mouse models and human tissues and genome-wide association have indicated that Sonic Hedgehog (Shh) and the Hedgehog (Hh) signaling pathway are involved in allergic asthma and that Shh is upregulated in the lung on disease induction. We used a papain-induced mouse model of allergic airway inflammation to investigate the impact of systemic pharmacological inhibition of the Hh signal transduction molecule smoothened on allergic airway disease induction and severity. Smoothened-inhibitor treatment reduced the induction of Shh, IL-4, and IL-13 in the lung and decreased serum IgE, as well as the expression of Smo, Il4, Il13, and the mucin gene Muc5ac in lung tissue. Smoothened inhibitor treatment reduced cellular infiltration of eosinophils, mast cells, basophils, and CD4+ T-cells to the lung, and eosinophils and CD4+ T-cells in the bronchoalveolar lavage. In the mediastinal lymph nodes, smoothened inhibitor treatment reduced the number of CD4+ T-cells, and the cell surface expression of Th2 markers ST2 and IL-4rα and expression of Th2 cytokines. Thus, overall pharmacological smoothened inhibition attenuated T-cell infiltration to the lung and Th2 function and reduced disease severity and inflammation in the airway.
Collapse
Affiliation(s)
- Diana C. Yánez
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Mira M. Chawda
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
29
|
Ogasawara A, Yuki T, Takai T, Yokozeki K, Katagiri A, Takahashi Y, Yokozeki H, Basketter D, Sakaguchi H. Epicutaneous challenge with protease allergen requires its protease activity to recall T H2 and T H17/T H22 responses in mice pre-sensitized via distant skin. J Immunotoxicol 2021; 18:118-126. [PMID: 34487475 DOI: 10.1080/1547691x.2021.1968548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epicutaneous exposure to allergenic proteins is an important sensitization route for skin diseases like protein contact dermatitis, immunologic contact urticaria, and atopic dermatitis. Environmental allergen sources such as house dust mites contain proteases, which are frequent allergens themselves. Here, the dependency of T-helper (TH) cell recall responses on allergen protease activity in the elicitation phase in mice pre-sensitized via distant skin was investigated. Repeated epicutaneous administration of a model protease allergen, i.e. papain, to the back skin of hairless mice induced skin inflammation, serum papain-specific IgE and TH2 and TH17 cytokine responses in the sensitization sites, and antigen-restimulated draining lymph node cells. In the papain-sensitized but not vehicle-treated mice, subsequent single challenge on the ear skin with papain, but not with protease inhibitor-treated papain, up-regulated the gene expression of TH2 and TH17/TH22 cytokines along with cytokines promoting these TH cytokine responses (TSLP, IL-33, IL-17C, and IL-23p19). Up-regulation of IL-17A gene expression and cells expressing RORγt occurred in the ear skin of the presensitized mice even before the challenge. In a reconstructed epidermal model with a three-dimensional culture of human keratinocytes, papain but not protease inhibitor-treated papain exhibited increasing transdermal permeability and stimulating the gene expression of TSLP, IL-17C, and IL-23p19. This study demonstrated that allergen protease activity contributed to the onset of cutaneous TH2 and TH17/TH22 recall responses on allergen re-encounter at sites distant from the original epicutaneous sensitization exposures. This finding suggested the contribution of protease-dependent barrier disruption and induction of keratinocyte-derived cytokines to the recall responses.
Collapse
Affiliation(s)
- Akira Ogasawara
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuo Yuki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyosuke Yokozeki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Asuka Katagiri
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Yutaka Takahashi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| |
Collapse
|
30
|
Matsuyama T, Machida K, Motomura Y, Takagi K, Doutake Y, Tanoue‐Hamu A, Kondo K, Mizuno K, Moro K, Inoue H. Long-acting muscarinic antagonist regulates group 2 innate lymphoid cell-dependent airway eosinophilic inflammation. Allergy 2021; 76:2785-2796. [PMID: 33792078 DOI: 10.1111/all.14836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/28/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tiotropium bromide, a long-acting muscarinic antagonist, reduces the frequency of exacerbation in patients with moderate to severe asthma, but its underlying mechanism is not clear. Asthma exacerbations are associated with exposure to external stimuli, and group 2 innate lymphoid cells (ILC2s) are considered to be involved in the pathophysiology of asthma exacerbation. We investigated whether tiotropium modulates airway inflammation through ILC2 functions. METHODS Mice were administered papain intranasally to induce innate-type airway inflammation with or without tiotropium pretreatment, and bronchoalveolar lavage fluids (BALF) and lung tissues were collected. Lung-derived ILC2s and bone marrow-derived basophils were stimulated in vitro with IL-33 in the presence or absence of tiotropium. Muscarinic M3 receptor (M3R) expression on immune cells was assessed by RNA sequence. RESULTS Papain induced airway eosinophilic inflammation, and tiotropium reduced the numbers of eosinophils in BALF. The concentrations of IL-4, IL-5, and IL-13, and the numbers of ILC2s in BALF were also reduced by tiotropium treatment. However, tiotropium did not affect IL-33-induced IL-5 and IL-13 production from ILC2s, suggesting that tiotropium regulates ILC2s indirectly. Gene-expression analysis showed that basophils predominantly expressed M3R mRNA among murine immune cells. Tiotropium reduced IL-4 production from basophils derived from mouse bone marrow and human basophils after stimulation with IL-33. CONCLUSIONS These findings suggest that tiotropium attenuates ILC2-dependent airway inflammation by suppressing IL-4 production from basophils and, subsequently, regulating ILC2 activation. The inhibitory effects of long-acting muscarinic antagonists on the innate response may contribute to reducing asthma exacerbation.
Collapse
Affiliation(s)
- Takahiro Matsuyama
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Yasutaka Motomura
- Laboratory for Immune Cell Systems RIKEN Center for Integrative Medical Sciences Yokohama Japan
- Laboratory for Innate Immune Systems Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Yoichi Doutake
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Asako Tanoue‐Hamu
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Kiyotaka Kondo
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Kazuyo Moro
- Laboratory for Immune Cell Systems RIKEN Center for Integrative Medical Sciences Yokohama Japan
- Laboratory for Innate Immune Systems Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka Japan
- Laboratory for Innate Immune Systems Immunology Frontier Research Center (iFReC) Osaka University Osaka Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| |
Collapse
|
31
|
Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol 2021; 12:708186. [PMID: 34456917 PMCID: PMC8397413 DOI: 10.3389/fimmu.2021.708186] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells. Rheumatoid arthritis (RA) is a chronic autoimmune-driven spectrum of diseases where persistent inflammation results in synovial hyperplasia and excessive immune cell accumulation, leading to remodeling and reduced function in affected joints. Macrophages are central to the pathophysiology of RA, driving episodic cycles of chronic inflammation and tissue destruction. RA patients have increased numbers of active M1 polarized pro-inflammatory macrophages and few or inactive M2 type cells. This imbalance in macrophage homeostasis is a main contributor to pro-inflammatory mediators in RA, resulting in continual activation of immune and stromal populations and accelerated tissue remodeling. Modulation of macrophage phenotype and function remains a key therapeutic goal for the treatment of this disease. Intriguingly, therapeutic intervention with glucocorticoids or other DMARDs promotes the re-polarization of M1 macrophages to an anti-inflammatory M2 phenotype; this reprogramming is dependent on metabolic changes to promote phenotypic switching. Allergic asthma is associated with Th2-polarised airway inflammation, structural remodeling of the large airways, and airway hyperresponsiveness. Macrophage polarization has a profound impact on asthma pathogenesis, as the response to allergen exposure is regulated by an intricate interplay between local immune factors including cytokines, chemokines and danger signals from neighboring cells. In the Th2-polarized environment characteristic of allergic asthma, high levels of IL-4 produced by locally infiltrating innate lymphoid cells and helper T cells promote the acquisition of an alternatively activated M2a phenotype in macrophages, with myriad effects on the local immune response and airway structure. Targeting regulators of macrophage plasticity is currently being pursued in the treatment of allergic asthma and other allergic diseases. Macrophages promote the re-balancing of pro-inflammatory responses towards pro-resolution responses and are thus central to the success of an inflammatory response. It has long been established that apoptosis supports monocyte and macrophage recruitment to sites of inflammation, facilitating subsequent corpse clearance. This drives resolution responses and mediates a phenotypic switch in the polarity of macrophages. However, the role of apoptotic cell-derived extracellular vesicles (ACdEV) in the recruitment and control of macrophage phenotype has received remarkably little attention. ACdEV are powerful mediators of intercellular communication, carrying a wealth of lipid and protein mediators that may modulate macrophage phenotype, including a cargo of active immune-modulating enzymes. The impact of such interactions may result in repair or disease in different contexts. In this review, we will discuss the origin, characterization, and activity of macrophages in sterile inflammatory diseases and the underlying mechanisms of macrophage polarization via ACdEV and apoptotic cell clearance, in order to provide new insights into therapeutic strategies that could exploit the capabilities of these agile and responsive cells.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Andrew Devitt
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Jill R Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
32
|
Shigemasa R, Masuko H, Oshima H, Hyodo K, Kitazawa H, Kanazawa J, Iijima H, Naito T, Saito T, Sakamoto T, Hizawa N. Dust mite-dominant sensitization pattern as a causal factor for adult-onset asthma. Allergol Int 2021; 70:368-369. [PMID: 33762158 DOI: 10.1016/j.alit.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Rie Shigemasa
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hironori Masuko
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Hisayuki Oshima
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kentaro Hyodo
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruna Kitazawa
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jun Kanazawa
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | - Takefumi Saito
- National Hospital Organization Ibaraki Higashi National Hospital, Tokai, Japan
| | - Tohru Sakamoto
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
33
|
Transient IL-33 upregulation in neonatal mouse lung promotes acute but not chronic type 2 immune responses induced by allergen later in life. PLoS One 2021; 16:e0252199. [PMID: 34048460 PMCID: PMC8162637 DOI: 10.1371/journal.pone.0252199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Early life respiratory insults, such as viral infections or hyperoxia, often increase asthma susceptibility later in life. The mechanisms underlying this increased susceptibility are not fully understood. IL-33 has been shown to be critically involved in allergic airway diseases. IL-33 expression in the neonatal lung can be increased by various respiratory insults associated with asthma development. Therefore, we investigated whether and how early life increases in IL-33 impact allergic airway responses later in life. Using a novel IL-33 transgenic mouse model, in which full-length IL-33 was inducible overexpressed in lung epithelial cells, we transiently upregulated lung IL-33 expression in neonatal mice for one week. After resting for 4–6 weeks, mice were intranasally exposed to a single-dose of recombinant IL-33 or the airborne allergen Alternaria. Alternatively, mice were exposed to Alternaria and ovalbumin multiple times for one month. We found that a transient increase in IL-33 expression during the neonatal period promoted IL-5 and IL-13 production when mice were later exposed to a single-dose of IL-33 or Alternaria in adulthood. However, increased IL-33 expression during the neonatal period did not affect airway inflammation, type 2 cytokine production, lung mucus production, or antigen-specific antibody responses when adult mice were exposed to Alternaria and ovalbumin multiple times. These results suggest that transient increased IL-33 expression early in life may have differential effects on allergic airway responses in later life, preferentially affecting allergen-induced acute type 2 cytokine production.
Collapse
|
34
|
Griffiths JS, Camilli G, Kotowicz NK, Ho J, Richardson JP, Naglik JR. Role for IL-1 Family Cytokines in Fungal Infections. Front Microbiol 2021; 12:633047. [PMID: 33643264 PMCID: PMC7902786 DOI: 10.3389/fmicb.2021.633047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Fungal pathogens kill approximately 1.5 million individuals per year and represent a severe disease burden worldwide. It is estimated over 150 million people have serious fungal disease such as recurrent mucosal infections or life-threatening systemic infections. Disease can ensue from commensal fungi or new infection and involves different fungal morphologies and the expression of virulence factors. Therefore, anti-fungal immunity is complex and requires coordination between multiple facets of the immune system. IL-1 family cytokines are associated with acute and chronic inflammation and are essential for the innate response to infection. Recent research indicates IL-1 cytokines play a key role mediating immunity against different fungal infections. During mucosal disease, IL-1R and IL-36R are required for neutrophil recruitment and protective Th17 responses, but function through different mechanisms. During systemic disease, IL-18 drives protective Th1 responses, while IL-33 promotes Th2 and suppresses Th1 immunity. The IL-1 family represents an attractive anti-fungal immunotherapy target. There is a need for novel anti-fungal therapeutics, as current therapies are ineffective, toxic and encounter resistance, and no anti-fungal vaccine exists. Furthering our understanding of the IL-1 family cytokines and their complex role during fungal infection may aid the development of novel therapies. As such, this review will discuss the role for IL-1 family cytokines in fungal infections.
Collapse
Affiliation(s)
- James S Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Giorgio Camilli
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Natalia K Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jemima Ho
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
35
|
Epicutaneous vaccination with protease inhibitor-treated papain prevents papain-induced Th2-mediated airway inflammation without inducing Th17 in mice. Biochem Biophys Res Commun 2021; 546:192-199. [PMID: 33618285 DOI: 10.1016/j.bbrc.2020.12.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Environmental allergen sources such as house dust mites contain proteases, which are frequently allergens themselves. Inhalation with the exogenous proteases, such as a model of protease allergen, papain, to airways evokes release and activation of IL-33, which promotes innate and adaptive allergic airway inflammation and Th2 sensitization in mice. Here, we examine whether epicutaneous (e.c.) vaccination with antigens with and without protease activity shows prophylactic effect on the Th airway sensitization and Th2-medated airway inflammation, which are driven by exogenous or endogenous IL-33. E.c. vaccination with ovalbumin restrained ovalbumin-specific Th2 airway sensitization and/or airway inflammation on subsequent inhalation with ovalbumin plus papain or ovalbumin plus recombinant IL-33. E.c. vaccination with papain or protease inhibitor-treated papain restrained papain-specific Th2 and Th9 airway sensitization, eosinophilia, and infiltration of IL-33-responsive Th2 and group 2 innate lymphoid cells on subsequent inhalation with papain. However, e.c. vaccination with papain but not protease inhibitor-treated papain induced Th17 response in bronchial draining lymph node cells. In conclusions, we demonstrated that e.c. allergen vaccination via intact skin in mice restrained even protease allergen-activated IL-33-driven airway Th2 sensitization to attenuate allergic airway inflammation and that e.c. vaccination with protease allergen attenuated the airway inflammation similar to its derivative lacking the protease activity, although the former but not the latter promoted Th17 development. In addition, the present study suggests that modified allergens, of which Th17-inducing e.c. adjuvant activity such as the protease activity was eliminated, might be preferable for safer clinical applications of the e.c. allergen administration.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Lineage commitment is governed by instructive and stochastic signals, which drive both active induction of the lineage program and repression of alternative fates. Eosinophil lineage commitment is driven by the ordered interaction of transcription factors, supported by cytokine signals. This review summarizes key findings in the study of eosinophil lineage commitment and examines new data investigating the factors that regulate this process. RECENT FINDINGS Recent and past studies highlight how intrinsic and extrinsic signals modulate transcription factor network and lineage decisions. Early action of the transcription factors C/EBPα and GATA binding protein-1 along with C/EBPε supports lineage commitment and eosinophil differentiation. This process is regulated and enforced by the pseudokinase Trib1, a regulator of C/EBPα levels. The cytokines interleukin (IL)-5 and IL-33 also support early eosinophil development. However, current studies suggest that these cytokines are not specifically required for lineage commitment. SUMMARY Together, recent evidence suggests a model where early transcription factor activity drives expression of key eosinophil genes and cytokine receptors to prime lineage commitment. Understanding the factors and signals that control eosinophil lineage commitment may guide therapeutic development for eosinophil-mediated diseases and provide examples for fate choices in other lineages.
Collapse
|
37
|
Innate IL-17A Enhances IL-33-Independent Skin Eosinophilia and IgE Response on Subcutaneous Papain Sensitization. J Invest Dermatol 2021; 141:105-113.e14. [DOI: 10.1016/j.jid.2020.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
|
38
|
Severe COVID-19 patients exhibit an ILC2 NKG2D + population in their impaired ILC compartment. Cell Mol Immunol 2020; 18:484-486. [PMID: 33318627 PMCID: PMC7734385 DOI: 10.1038/s41423-020-00596-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
|
39
|
Park SC, Shim D, Kim H, Bak Y, Choi DY, Yoon JH, Kim CH, Shin SJ. Fms-Like Tyrosine Kinase 3-Independent Dendritic Cells Are Major Mediators of Th2 Immune Responses in Allergen-Induced Asthmatic Mice. Int J Mol Sci 2020; 21:ijms21249508. [PMID: 33327561 PMCID: PMC7765069 DOI: 10.3390/ijms21249508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are the main mediators of Th2 immune responses in allergic asthma, and Fms-like tyrosine kinase 3 ligand (Flt3L) is an important growth factor for the development and homeostasis of DCs. This study identified the DC populations that primarily cause the initiation and development of allergic lung inflammation using Fms-like tyrosine kinase 3 (Flt3) knockout (KO) mice with allergen-induced allergic asthma. We observed type 2 allergic lung inflammation with goblet cell hyperplasia in Flt3 KO mice, despite a significant reduction in total DCs, particularly CD103+ DCs, which was barely detected. In addition, bone marrow-derived dendritic cells (BMDCs) from Flt3 KO mice directed Th2 immune responses in vitro, and the adoptive transfer of these BMDCs exacerbated allergic asthma with more marked Th2 responses than that of BMDCs from wild-type (WT) mice. Furthermore, we found that Flt3L regulated the in vitro expression of OX40 ligand (OX40L) in DCs, which is correlated with DC phenotype in in vivo models. In conclusion, we revealed that Flt3-independent CD11b+ DCs direct Th2 responses with the elevated OX40L and are the primary cause of allergic asthma. Our findings suggest that Flt3 is required to control type 2 allergic inflammation.
Collapse
Affiliation(s)
- Sang Chul Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea;
| | - Dahee Shim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
| | - Hongmin Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yeeun Bak
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Da Yeon Choi
- Hallym University Industry-Academic Cooperation Foundation, Chuncheon 24252, Korea;
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea;
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea;
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (C.-H.K.); (S.J.S.); Tel.: +82-2-2228-3609 (C.-H.K.); +82-2-2228-1813 (S.J.S.)
| | - Sung Jae Shin
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (C.-H.K.); (S.J.S.); Tel.: +82-2-2228-3609 (C.-H.K.); +82-2-2228-1813 (S.J.S.)
| |
Collapse
|
40
|
Leyva-Castillo JM, Das M, Artru E, Yoon J, Galand C, Geha RS. Mast cell-derived IL-13 downregulates IL-12 production by skin dendritic cells to inhibit the T H1 cell response to cutaneous antigen exposure. J Allergy Clin Immunol 2020; 147:2305-2315.e3. [PMID: 33316284 DOI: 10.1016/j.jaci.2020.11.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is characterized by a skin barrier defect aggravated by mechanical injury inflicted by scratching, a TH2 cell-dominated immune response, and susceptibility to viral skin infections that are normally restrained by a TH1 cell response. The signals leading to a TH2 cell-dominated immune response in AD are not completely understood. OBJECTIVE Our aim was to determine the role of IL-13 in initiation of the TH cell response to cutaneously encountered antigens. METHODS Wild-type, Il13-/-, Il1rl1-/-, and Il4ra-/- mice, as well as mice with selective deficiency of IL-13 in mast cells (MCs) were studied; in addition, dendritic cells (DCs) purified from the draining lymph nodes of tape-stripped and ovalbumin (OVA)-sensitized skin were examined for their ability to polarize naive OVA-TCR transgenic CD4+ T cells. Cytokine expression was examined by reverse-transcriptase quantitative PCR, intracellular flow cytometry, and ELISA. Contact hypersensitivity to dinitrofluorobenzene was examined. RESULTS Tape stripping caused IL-33-driven upregulation of Il13 expression by skin MCs. MC-derived IL-13 acted on DCs from draining lymph nodes of OVA-sensitized skin to selectively suppress their ability to polarize naive OVA-TCR transgenic CD4+ T cells into IFN-γ-secreting cells. MC-derived IL-13 inhibited the TH1 cell response in contact hypersensitivity to dinitrofluorobenzene. IL-13 suppressed IL-12 production by mouse skin-derived DCs in vitro and in vivo. Scratching upregulated IL13 expression in human skin, and IL-13 suppressed the capacity of LPS-stimulated human skin DCs to express IL-12 and promote IFN-γ secretion by CD4+ T cells. CONCLUSION Release of IL-13 by cutaneous MCs in response to mechanical skin injury inhibits the TH1 cell response to cutaneous antigen exposure in AD.
Collapse
Affiliation(s)
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School
| | - Emilie Artru
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School
| | - Juhan Yoon
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School
| | - Claire Galand
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School.
| |
Collapse
|
41
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
42
|
Adachi T, Yasuda K, Muto T, Serada S, Yoshimoto T, Ishii KJ, Kuroda E, Araki K, Ohmuraya M, Naka T, Nakanishi K. Lung fibroblasts produce IL-33 in response to stimulation with retinoblastoma-binding protein 9 via production of prostaglandin E2. Int Immunol 2020; 32:637-652. [PMID: 32484881 DOI: 10.1093/intimm/dxaa031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Intestinal nematode infection induces pulmonary eosinophilia via IL-33, although the mechanism of pulmonary IL-33 induction remains unclear. Because nematode migration damages lungs, we speculated that lung-derived damage-associated molecular patterns (DAMPs) possess an IL-33-inducing activity (IL33ia). Indeed, intra-nasal administration of a lung extract induced IL-33 production in lungs. Additionally, lung extracts increased Il33 mRNA expression in primary lung fibroblasts. Proteomic analysis identified retinoblastoma-binding protein 9 (RBBP9) as a major DAMP with IL33ia. RBBP9 was originally discovered as a protein that provides cells with resistance to the growth inhibitory effect of transforming growth factor (TGF)-β1. Here, we found that stimulation by RBBP9 induced primary fibroblasts to produce prostaglandin E2 (PGE2) that, in turn, induced fibroblasts to produce IL-33. RBBP9-activated fibroblasts expressed mRNAs of cyclooxygenase-2 (COX-2) and PGE2 synthase-1 that convert arachidonic acid to PGE2. Furthermore, they expressed PGE2 receptors E-prostanoid (EP) 2 and EP4. Thus, treatment with a COX-2 inhibitor or EP2 and/or EP4 receptor antagonists inhibited RBBP9-induced IL-33 production. Nematode infection induced pulmonary Il33 mRNA expression, which was inhibited by the COX-2 inhibitor or EP2 and EP4 antagonists, suggesting that nematode infection induced pulmonary Il33 mRNA via PGE2. RBBP9 was expressed constitutively in the lung in the steady state, which did not increase after nematode infection. Finally, we found that Rbbp9-deficient mice had a significantly diminished capacity to increase pulmonary Il33 mRNA expression following nematode infection. Thus, the PGE2-EP2/EP4 pathway activated by RBBP9 released from damaged lungs is important for pulmonary IL-33 production in nematode-infected animals.
Collapse
Affiliation(s)
- Takumi Adachi
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Taichiro Muto
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Pediatrics, Aichi Medical University, Nagakute, Aichi, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Tomohiro Yoshimoto
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Kenji Nakanishi
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
43
|
Mandlik DS, Mandlik SK. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol Immunotoxicol 2020; 42:521-544. [PMID: 32938247 DOI: 10.1080/08923973.2020.1824238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is the most common, long-lasting inflammatory airway disease that affects more than 10% of the world population. It is characterized by bronchial narrowing, airway hyperresponsiveness, vasodilatation, airway edema, and stimulation of sensory nerve endings that lead to recurring events of breathlessness, wheezing, chest tightness, and coughing. It is the main reason for global morbidity and occurs as a result of the weakening of the immune system in response to exposure to allergens or environmental exposure. In asthma condition, it results in the activation of numerous inflammatory cells like the mast and dendritic cells along with the accumulation of activated eosinophils and lymphocytes at the inflammation site. The structural cells such as airway epithelial cells and smooth muscle cells release inflammatory mediators that promote the bronchial inflammation. Long-lasting bronchial inflammation can cause pathological alterations, viz. the improved thickness of the bronchial epithelium and friability of airway epithelial cells, epithelium fibrosis, hyperplasia, and hypertrophy of airway smooth muscle, angiogenesis, and mucus gland hyperplasia. The stimulation of bronchial epithelial cell would result in the release of inflammatory cytokines and chemokines that attract inflammatory cells into bronchial airways and plays an important role in asthma. Asthma patients who do not respond to marketed antiasthmatic drugs needed novel biological medications to regulate the asthmatic situation. The present review enumerates various types of asthma, etiological factors, and in vivo animal models for the induction of asthma. The underlying pathological, immunological mechanism of action, the role of inflammatory mediators, the effect of inflammation on the bronchial airways, newer treatment approaches, and novel biological targets of asthma have been discussed in this review.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth Deemed University, Poona College of Pharmacy, Erandawane, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon, Maharashtra, India
| |
Collapse
|
44
|
Boberg E, Johansson K, Malmhäll C, Weidner J, Rådinger M. House Dust Mite Induces Bone Marrow IL-33-Responsive ILC2s and T H Cells. Int J Mol Sci 2020; 21:E3751. [PMID: 32466530 PMCID: PMC7312993 DOI: 10.3390/ijms21113751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) and their adaptive counterpart type 2 T helper (TH2) cells respond to interleukin-33 (IL-33) by producing IL-5, which is a crucial cytokine for eosinophil development in the bone marrow. The aim of this study was to determine if bone marrow ILC2s, TH cells, and eosinophils are locally regulated by IL-33 in terms of number and activation upon exposure to the common aeroallergen house dust mite (HDM). Mice that were sensitized and challenged with HDM by intranasal exposures induced eosinophil development in the bone marrow with an initial increase of IL5Rα+ eosinophil progenitors, following elevated numbers of mature eosinophils and the induction of airway eosinophilia. Bone marrow ILC2s, TH2, and eosinophils all responded to HDM challenge by increased IL-33 receptor (ST2) expression. However, only ILC2s, but not TH cells, revealed increased ST2 expression at the onset of eosinophil development, which significantly correlated with the number of eosinophil progenitors. In summary, our findings suggest that airway allergen challenges with HDM activates IL-33-responsive ILC2s, TH cells, and eosinophils locally in the bone marrow. Targeting the IL-33/ST2 axis in allergic diseases including asthma may be beneficial by decreasing eosinophil production in the bone marrow.
Collapse
Affiliation(s)
| | | | | | | | - Madeleine Rådinger
- Krefting Research Centre, Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (E.B.); (K.J.); (C.M.); (J.W.)
| |
Collapse
|
45
|
Yasuda Y, Nagano T, Kobayashi K, Nishimura Y. Group 2 Innate Lymphoid Cells and the House Dust Mite-Induced Asthma Mouse Model. Cells 2020; 9:E1178. [PMID: 32397396 PMCID: PMC7290734 DOI: 10.3390/cells9051178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Asthma is an important issue not only in health but also in economics worldwide. Therefore, asthma animal models have been frequently used to understand the pathogenesis of asthma. Recently, in addition to acquired immunity, innate immunity has also been thought to be involved in asthma. Among innate immune cells, group 2 innate lymphoid cells (ILC2s) have been considered to be crucial for eosinophilic airway inflammation by releasing T helper 2 cytokines. Moreover, house dust mites (HDMs) belonging to group 1 act on airway epithelial cells not only as allergens but also as cysteine proteases. The production of interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP) from airway epithelial cells was induced by the protease activity of HDMs. These cytokines activate ILC2s, and activated ILC2s produce IL-5, IL-9, IL-13, and amphiregulin. Hence, the HDM-induced asthma mouse model greatly contributes to understanding asthma pathogenesis. In this review, we highlight the relationship between ILC2s and the HDM in the asthma mouse model to help researchers and clinicians not only choose a proper asthma mouse model but also to understand the molecular mechanisms underlying HDM-induced asthma.
Collapse
Affiliation(s)
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Kobe, Hyogo 650-0017, Japan; (Y.Y.); (K.K.); (Y.N.)
| | | | | |
Collapse
|
46
|
Saku A, Suehiro KI, Nakamura K, Nishimura N, Yokota M, Hirose K, Nakajima H. Mice lacking fucosyltransferase 2 show reduced innate allergic inflammation in the airways. Allergy 2020; 75:1253-1256. [PMID: 31709563 DOI: 10.1111/all.14101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/17/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Aiko Saku
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ken-Ichi Suehiro
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kaito Nakamura
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nozomi Nishimura
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaya Yokota
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Rheumatology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
47
|
Wang S, Zhao G, Zhao S, Qiao Y, Yang H. The Effects of Interleukin-33 (IL-33) on Osteosarcoma Cell Viability, Apoptosis, and Epithelial-Mesenchymal Transition are Mediated Through the PI3K/AKT Pathway. Med Sci Monit 2020; 26:e920766. [PMID: 32312946 PMCID: PMC7191962 DOI: 10.12659/msm.920766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma is the most common primary tumor of bone. Interleukin-33 (IL-33) is a pro-inflammatory cytokine that also participates in tumor progression. This study aimed to investigate the role of IL-33 in human osteosarcoma cell viability, proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) in vitro and the molecular mechanisms involved. Material/Methods The normal osteoblast cell line, hFOB 1.19, and the human osteosarcoma cell lines SOSP-9607, SAOS2, MG63, and U2OS were studied. The expression of IL-33 mRNA and protein in human osteosarcoma cell lines were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. The effects of IL-33 on human osteosarcoma cell viability, apoptosis, EMT, and the signaling pathways were studied using the MTT assay, flow cytometry, qRT-PCR, and Western blot. Results IL-33 was upregulated in human osteosarcoma cell lines, including U2OS cells. The use of an IL-33 gene plasmid promoted osteosarcoma cell viability, inhibited cell apoptosis, increased the expression of Bcl-2, and reduced the expression of Bax. IL-33 reduced the level of E-cadherin and increased the levels of N-cadherin and matrix metalloproteinase-9 (MMP-9) in osteosarcoma cells at the mRNA and protein level. The use of the IL-33 plasmid increased the protein expression levels of p-AKT and the p-AKT/AKT ratio in osteosarcoma cells, and IL-33 siRNA reversed these findings. Conclusions IL-33 was highly expressed in human osteosarcoma cells. Down-regulation of IL-33 reduced cell viability and EMT of osteosarcoma cells, and induced cell apoptosis through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shenyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Gongyin Zhao
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu, China (mainland)
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
48
|
Kabata H, Flamar AL, Mahlakõiv T, Moriyama S, Rodewald HR, Ziegler SF, Artis D. Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunol 2020; 13:626-636. [PMID: 32066836 PMCID: PMC7311324 DOI: 10.1038/s41385-020-0266-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 02/04/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is a critical upstream cytokine inducing type 2 inflammation in various diseases, including asthma and atopic dermatitis. Accumulating evidence suggests that TSLP can directly stimulate a variety of immune cells, such as dendritic cells (DCs), basophils, T cells, and group 2 innate lymphoid cells (ILC2s). However, which cell types directly respond to TSLP in vivo and how TSLP initiates type 2 inflammation has remained controversial. To define the precise role of TSLP in vivo, for the first time we generated multiple cell lineage-specific TSLP receptor-deficient mice to systematically dissect the cell-intrinsic requirements for TSLP responsiveness in type 2 inflammation in the lung. In papain-induced innate immune-mediated type 2 airway inflammation, TSLP directly stimulated ILC2s, but not basophils, leading to enhanced type 2 inflammation. On the other hand, in OVA-induced adaptive immune-mediated type 2 airway inflammation, TSLP principally acted on DCs and CD4 + T cells during the sensitization phase, but not basophils or ILC2s, and facilitated the development of Th2 cell-mediated airway inflammation. Together, these findings reveal that TSLP activates distinct immune cell cascades in the context of innate and adaptive immune-mediated type 2 inflammation.
Collapse
Affiliation(s)
- Hiroki Kabata
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA ,0000 0004 1936 9959grid.26091.3cPresent Address: Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582 Japan
| | - Anne-Laure Flamar
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA
| | - Tanel Mahlakõiv
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA
| | - Saya Moriyama
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA ,0000 0001 2220 1880grid.410795.ePresent Address: Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640 Japan
| | - Hans-Reimer Rodewald
- 0000 0004 0492 0584grid.7497.dDivision of Cellular Immunology, German Cancer Research Center (DKFZ), Heidelberg, 69120 Germany
| | - Steven F. Ziegler
- 0000 0000 9949 9403grid.263306.2Benaroya Research Institute, Immunology Research Program, Seattle, Washington, 98101 USA
| | - David Artis
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA
| |
Collapse
|
49
|
Jacquet A, Robinson C. Proteolytic, lipidergic and polysaccharide molecular recognition shape innate responses to house dust mite allergens. Allergy 2020; 75:33-53. [PMID: 31166610 DOI: 10.1111/all.13940] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
House dust mites (HDMs) are sources of an extensive repertoire of allergens responsible for a range of allergic conditions. Technological advances have accelerated the identification of these allergens and characterized their putative roles within HDMs. Understanding their functional bioactivities is illuminating how they interact with the immune system to cause disease and how interrelations between them are essential to maximize allergic responses. Two types of allergen bioactivity, namely proteolysis and peptidolipid/lipid binding, elicit IgE and stimulate bystander responses to unrelated allergens. Much of this influence arises from Toll-like receptor (TLR) 4 or TLR2 signalling and, in the case of protease allergens, the activation of additional pleiotropic effectors with strong disease linkage. Of related interest is the interaction of HDM allergens with common components of the house dust matrix, through either their binding to allergens or their autonomous modulation of immune receptors. Herein, we provide a contemporary view of how proteolysis, lipid-binding activity and interactions with polysaccharides and polysaccharide molecular recognition systems coordinate the principal responses which underlie allergy. The power of the catalytically competent group 1 HDM protease allergen component is demonstrated by a review of disclosures surrounding the efficacy of novel inhibitors produced by structure-based design.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC) Chulalongkorn University Bangkok Thailand
| | - Clive Robinson
- Institute for Infection and Immunity St George's, University of London London UK
| |
Collapse
|
50
|
Park SC, Kim H, Bak Y, Shim D, Kwon KW, Kim CH, Yoon JH, Shin SJ. An Alternative Dendritic Cell-Induced Murine Model of Asthma Exhibiting a Robust Th2/Th17-Skewed Response. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:537-555. [PMID: 32141265 PMCID: PMC7061158 DOI: 10.4168/aair.2020.12.3.537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Simple and reliable animal models of human diseases contribute to the understanding of disease pathogenesis as well as the development of therapeutic interventions. Although several murine models to mimic human asthma have been established, most of them require anesthesia, resulting in variability among test individuals, and do not mimic asthmatic responses accompanied by T-helper (Th) 17 and neutrophils. As dendritic cells (DCs) are known to play an important role in initiating and maintaining asthmatic inflammation, we developed an asthma model via adoptive transfer of allergen-loaded DCs. METHODS Ovalbumin (OVA)-loaded bone marrow-derived DCs (BMDCs) (OVA-BMDCs) were injected intravenously 3 times into non-anesthetized C57BL/6 mice after intraperitoneal OVA-sensitization. RESULTS OVA-BMDC-transferred mice developed severe asthmatic immune responses when compared with mice receiving conventional OVA challenge intranasally. Notably, remarkable increases in systemic immunoglobulin (Ig) E and IgG1 responses, Th2/Th17-associated cytokines (interleukin [IL]-5, IL-13 and IL-17), Th2/Th17-skewed T-cell responses, and cellular components, including eosinophils, neutrophils, and goblet cells, were observed in the lungs of OVA-BMDC-transferred mice. Moreover, the asthmatic immune responses and severity of inflammation were correlated with the number of OVA-BMDCs transferred, indicating that the disease severity and asthma type may be adjusted according to the experimental purpose by this method. Furthermore, this model exhibited less variation among the test individuals than the conventional model. In addition, this DCs-based asthma model was partially resistant to steroid treatment. CONCLUSIONS A reliable murine model of asthma by intravenous (i.v.) transfer of OVA-BMDCs was successfully established without anesthesia. This model more accurately reflects heterogeneous human asthma, exhibiting a robust Th2/Th17-skewed response and eosinophilic/neutrophilic infiltration with good reproducibility and low variation among individuals. This model will be useful for understanding the pathogenesis of asthma and would serve as an alternative tool for immunological studies on the function of DCs, T-cell responses and new drugs.
Collapse
Affiliation(s)
- Sang Chul Park
- Department of Otorhinolaryngology-Head and Neck surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Hongmin Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yeeun Bak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dahee Shim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Department of Life Science, Research Institute for Natural Sciences, Hanyang University College of Natural Sciences, Seoul, Korea
| | - Kee Woong Kwon
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Diseases, Seoul, Korea.
| | - Sung Jae Shin
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Diseases, Seoul, Korea.,Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|