1
|
Nikolaidis I, Karakasi MV, Pilalas D, Boziki MK, Tsachouridou O, Kourelis A, Skoura L, Pavlidis P, Gargalianos-Kakoliris P, Metallidis S, Daniilidis M, Trypsiannis G, Nikolaidis P. Association of cytokine gene polymorphisms with peripheral neuropathy susceptibility in people living with HIV in Greece. J Neurovirol 2023; 29:626-639. [PMID: 37695541 DOI: 10.1007/s13365-023-01169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Relatively little research has been done in recent years to understand what leads to the unceasingly high rates of HIV sensory neuropathy despite successful antiretroviral treatment. In vivo and in vitro studies demonstrate neuronal damage induced by HIV and increasingly identified ART neurotoxicity involving mitochondrial dysfunction and innate immune system activation in peripheral nerves, ultimately all pathways resulting in enhanced pro-inflammatory cytokine secretion. Furthermore, many infectious/autoimmune/malignant diseases are influenced by the production-profile of pro-inflammatory and anti-inflammatory cytokines, due to inter-individual allelic polymorphism within cytokine gene regulatory regions. Associations of cytokine gene polymorphisms are investigated with the aim of identifying potential genetic markers for susceptibility to HIV peripheral neuropathy including ART-dependent toxic neuropathy. One hundred seventy-one people living with HIV in Northern Greece, divided into two sub-groups according to the presence/absence of peripheral neuropathy, were studied over a 5-year period. Diagnosis was based on the Brief Peripheral Neuropathy Screening. Cytokine genotyping was performed by sequence-specific primer-polymerase chain reaction. Present study findings identify age as an important risk factor (p < 0.01) and support the idea that cytokine gene polymorphisms are at least involved in HIV peripheral-neuropathy pathogenesis. Specifically, carriers of IL1a-889/rs1800587 TT genotype and IL4-1098/rs2243250 GG genotype disclosed greater relative risk for developing HIV peripheral neuropathy (OR: 2.9 and 7.7 respectively), while conversely, carriers of IL2+166/rs2069763 TT genotype yielded lower probability (OR: 3.1), all however, with marginal statistical significance. The latter, if confirmed in a larger Greek population cohort, may offer in the future novel genetic markers to identify susceptibility, while it remains significant that further ethnicity-oriented studies continue to be conducted in a similar pursuit.
Collapse
Affiliation(s)
- Ioannis Nikolaidis
- Second Department of Neurology, AHEPA University General Hospital - Department of neurosciences, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece.
| | - Maria-Valeria Karakasi
- Third Department of Psychiatry, AHEPA University General Hospital - Department of mental health, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece
| | - Dimitrios Pilalas
- First Department of Internal Medicine, AHEPA University General Hospital, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece
| | - Marina-Kleopatra Boziki
- Second Department of Neurology, AHEPA University General Hospital - Department of neurosciences, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece
| | - Olga Tsachouridou
- First Department of Internal Medicine, AHEPA University General Hospital, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece
| | - Andreas Kourelis
- Laboratory of Immunology, Department of Microbiology, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece
| | - Lemonia Skoura
- Laboratory of Immunology, Department of Microbiology, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece
| | - Pavlos Pavlidis
- Laboratory of Forensic Sciences, Democritus University of Thrace - School of Medicine, GR 68100, Dragana, Alexandroupolis, Greece
| | | | - Symeon Metallidis
- First Department of Internal Medicine, AHEPA University General Hospital, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece
| | - Michail Daniilidis
- First Department of Internal Medicine, AHEPA University General Hospital, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece
| | - Grigorios Trypsiannis
- Laboratory of Medical Statistics, Democritus University of Thrace - School of Medicine, GR 68100, Dragana, Alexandroupolis, Greece
| | - Pavlos Nikolaidis
- First Department of Internal Medicine, AHEPA University General Hospital, Aristotle University - School of Medicine, GR 54124, Thessaloniki, Greece
| |
Collapse
|
2
|
Canonico D, Casale S, Look T, Cao L. Effects of Morphine on Gp120-induced Neuroinflammation Under Immunocompetent Vs. Immunodeficient Conditions. J Neuroimmune Pharmacol 2023; 18:24-40. [PMID: 35059975 DOI: 10.1007/s11481-021-10040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is a common complication of HIV infection, whose development is known to be facilitated by inflammation and exacerbated by morphine. Previously, using the gp120 transgenic (tg) mouse model in combination with LP-BM5 (a murine retrovirus that can cause systemic immunodeficiency in susceptible mouse strains) we demonstrated differential gp120-associated central nervous system (CNS) neuroinflammatory responses under immunocompetent (-LP-BM5) vs. immunocompromised (+LP-BM5) conditions. Here, we further investigated the effects of morphine on gp120-associated neuroinflammatory response within the hippocampus under differential immune status. First, we confirmed that morphine treatment (2 × 25 mg pellets) did not significantly affect the development of immunodeficiency induced by LP-BM5 and all brain regions examined (hippocampus, striatum, and frontal lobe) had detectable LP-BM5 viral gag genes. Morphine notably reduced the performance of gp120tg+ mice in the alteration T-maze assay when 2-minute retention was used, regardless of LP-BM5 treatment. Morphine further enhanced GFAP expression in gp120tg+ mice regardless of host immune status, while promoted CD11b expression only in immunocompetent mice, regardless of gp120tg expression. In immunocompetent gp120tg+ mice, morphine increased the RNA expression of CCL2, CCL5, CXCL10, IL-12p40, and IFNβ; while under the immunodeficient condition, morphine downregulated the expression of CCL2, CCL5, CXCL10, IL-12p40, and IL-1β. Further, expression of TNFα and IFNγ were enhanced by morphine regardless of host immune status. Altogether, our results suggest that the effects of morphine are complex and dependent on the immune status of the host, and host immune status-specific, targeted anti-neuroinflammatory strategies are required for effective treatment of HAND.
Collapse
Affiliation(s)
- Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Sadie Casale
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Tristan Look
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, United States, ME.
- , 11 Hills Beach Road, 04005, Biddeford, United States, ME.
| |
Collapse
|
3
|
Bellinger DL, Lorton D. Sympathetic Nerves and Innate Immune System in the Spleen: Implications of Impairment in HIV-1 and Relevant Models. Cells 2022; 11:cells11040673. [PMID: 35203323 PMCID: PMC8870141 DOI: 10.3390/cells11040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
The immune and sympathetic nervous systems are major targets of human, murine and simian immunodeficiency viruses (HIV-1, MAIDS, and SIV, respectively). The spleen is a major reservoir for these retroviruses, providing a sanctuary for persistent infection of myeloid cells in the white and red pulps. This is despite the fact that circulating HIV-1 levels remain undetectable in infected patients receiving combined antiretroviral therapy. These viruses sequester in immune organs, preventing effective cures. The spleen remains understudied in its role in HIV-1 pathogenesis, despite it hosting a quarter of the body’s lymphocytes and diverse macrophage populations targeted by HIV-1. HIV-1 infection reduces the white pulp, and induces perivascular hyalinization, vascular dysfunction, tissue infarction, and chronic inflammation characterized by activated epithelial-like macrophages. LP-BM5, the retrovirus that induces MAIDS, is a well-established model of AIDS. Immune pathology in MAIDs is similar to SIV and HIV-1 infection. As in SIV and HIV, MAIDS markedly changes splenic architecture, and causes sympathetic dysfunction, contributing to inflammation and immune dysfunction. In MAIDs, SIV, and HIV, the viruses commandeer splenic macrophages for their replication, and shift macrophages to an M2 phenotype. Additionally, in plasmacytoid dendritic cells, HIV-1 blocks sympathetic augmentation of interferon-β (IFN-β) transcription, which promotes viral replication. Here, we review viral–sympathetic interactions in innate immunity and pathophysiology in the spleen in HIV-1 and relevant models. The situation remains that research in this area is still sparse and original hypotheses proposed largely remain unanswered.
Collapse
|
4
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
5
|
Arabatzis TJ, Wakley AA, McLane VD, Canonico D, Cao L. Effects of HIV gp120 on Neuroinflammation in Immunodeficient vs. Immunocompetent States. J Neuroimmune Pharmacol 2021; 16:437-453. [PMID: 32627098 PMCID: PMC7785647 DOI: 10.1007/s11481-020-09936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
HIV affects 37 million people worldwide, 25-69% of which develop HIV-associated neurocognitive disorders (HAND) regardless of antiviral treatment. HIV infection of the brain decreases cognitive function, disrupts/impairs learning and memory, and reduces quality of life for those affected. HIV-induced neuroinflammation has been associated with viral proteins such as gp120 and Tat, which remain elevated in the CNS even in patients with low peripheral viremia counts. In this study, we examined the effects of gp120 on neuroinflammation in immunodeficient vs. immunocompetent states by examining neuroinflammatory markers in gp120tg mice with or without systemic immunodeficiency caused by murine retroviral administration (LP-BM5 murine AIDS). Changes in inflammatory cytokine/chemokine mRNA expression was complex and dependent upon expression of gp120 protein, immunodeficiency status, brain region (hippocampus, frontal lobe, or striatum), and age. Gp120 expression reduced hippocampal synaptophysin expression but did not affect animals' learning/memory on the spontaneous T-maze test in our experimental conditions. Our results emphasize the critical role of the neuroinflammatory micro-environment and the peripheral immune system context in which gp120 acts. Multiple factors, particularly system-level differences in the immune response of different brain regions, need to be considered when developing treatment for HAND. Graphical Abstract.
Collapse
Affiliation(s)
- Taxiarhia J Arabatzis
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Alexa A Wakley
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Virginia D McLane
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980613, Richmond, VA, 23298-0613, USA
| | - Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
6
|
Antiallodynic Effects of Cannabinoid Receptor 2 (CB 2R) Agonists on Retrovirus Infection-Induced Neuropathic Pain. Pain Res Manag 2019; 2019:1260353. [PMID: 31354896 PMCID: PMC6637694 DOI: 10.1155/2019/1260353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
The most common neurological complication in patients receiving successful combination antiretroviral therapy (cART) is peripheral neuropathic pain. Data show that distal symmetric polyneuropathy (DSP) also develops along with murine acquired immunodeficiency syndrome (MAIDS) after infection with the LP-BM5 murine retrovirus mixture. Links between cannabinoid receptor 2 (CB2R) and peripheral neuropathy have been established in animal models using nerve transection, chemotherapy-induced pain, and various other stimuli. Diverse types of neuropathic pain respond differently to standard drug intervention, and little is currently known regarding the effects of modulation through CB2Rs. In this study, we evaluated whether treatment with the exogenous synthetic CB2R agonists JWH015, JWH133, Gp1a, and HU308 controls neuropathic pain and neuroinflammation in animals with chronic retroviral infection. Hind-paw mechanical hypersensitivity in CB2R agonist-treated versus untreated animals was assessed using the MouseMet electronic von Frey system. Multicolor flow cytometry was used to determine the effects of CB2R agonists on macrophage activation and T-lymphocyte infiltration into dorsal root ganglia (DRG) and lumbar spinal cord (LSC). Results demonstrated that, following weekly intraperitoneal injections starting at 5 wk p.i., JWH015, JWH133, and Gp1a, but not HU308 (5 mg/kg), significantly ameliorated allodynia when assessed 2 h after ligand injection. However, these same agonists (2x/wk) did not display antiallodynic effects when mechanical sensitivity was assessed 24 h after ligand injection. Infection-induced macrophage activation and T-cell infiltration into the DRG and LSC were observed at 12 wk p.i., but this neuroinflammation was not affected by treatment with any CB2R agonist. Activation of JAK/STAT3 has been shown to contribute to development of neuropathic pain in the LSC and pretreatment of primary murine microglia (2 h) with JWH015-, JWH133-, or Gp1a-blocked IFN-gamma-induced phosphorylation of STAT1 and STAT3. Taken together, these data show that CB2R agonists demonstrate acute, but not long-term, antiallodynic effects on retrovirus infection-induced neuropathic pain.
Collapse
|
7
|
Morphine-potentiated cognitive deficits correlate to suppressed hippocampal iNOS RNA expression and an absent type 1 interferon response in LP-BM5 murine AIDS. J Neuroimmunol 2018. [PMID: 29526406 DOI: 10.1016/j.jneuroim.2018.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Opioid use accelerates neurocognitive impairment in HIV/AIDS patients. We assessed the effect of chronic morphine treatment and LP-BM5/murine AIDS (MAIDS) infection on cognition, cytokine production, and type 1 interferon (IFN) expression in the murine CNS. Morphine treatment decreased expression of pro-inflammatory factors (CCL5, iNOS) and reduced cognitive performance in LP-BM5-infected mice, correlating to increased hippocampal viral load and a blunted type 1 IFN response. In the striatum, morphine reduced viral load while increasing IFN-α RNA expression. Our results suggest that differentially regulated type 1 IFN responses may contribute to distinct regional outcomes in the hippocampus and striatum in LP-BM5/MAIDS.
Collapse
|
8
|
Chauhan P, Sheng WS, Hu S, Prasad S, Lokensgard JR. Nitrosative damage during retrovirus infection-induced neuropathic pain. J Neuroinflammation 2018; 15:66. [PMID: 29506535 PMCID: PMC5836380 DOI: 10.1186/s12974-018-1107-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/26/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Peripheral neuropathy is currently the most common neurological complication in HIV-infected individuals, occurring in 35-50% of patients undergoing combination anti-retroviral therapy. Data have shown that distal symmetric polyneuropathy develops in mice by 6 weeks following infection with the LP-BM5 retrovirus mixture. Previous work from our laboratory has demonstrated that glial cells modulate antiviral T-cell effector responses through the programmed death (PD)-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. METHODS Using the MouseMet electronic von Frey system, we assessed hind-paw mechanical hypersensitivity in LP-BM5-infected wild-type (WT) and PD-1 KO animals. Using multi-color flow cytometry, we quantitatively assessed cellular infiltration and microglial activation. Using real-time RT-PCR, we assessed viral load, expression of IFN-γ, iNOS, and MHC class II. Using western blotting, we measured protein nitrosylation within the lumbar spinal cord (LSC) and dorsal root ganglion (DRG). Histochemical staining was performed to analyze the presence of CD3, ionized calcium binding adaptor molecule (Iba)-1, MHCII, nitrotyrosine, isolectin B4 (IB4) binding, and neurofilament 200 (NF200). Statistical analyses were carried out using graphpad prism. RESULTS Hind-paw mechanical hypersensitivity observed in LP-BM5-infected animals was associated with significantly increased lymphocyte infiltration into the spinal cord and DRG. We also observed elevated expression of IFN-γ (in LSC and DRG) and MHC II (on resident microglia in LSC). We detected elevated levels of 3-nitrotyrosine within the LSC and DRG of LP-BM5-infected animals, an indicator of nitric oxide (NO)-induced protein damage. Moreover, we observed 3-nitrotyrosine in both small (IB4+) and large (NF200+) DRG sensory neurons. Additionally, infected PD-1 KO animals displayed significantly greater mechanical hypersensitivity than WT or uninfected mice at 4 weeks post-infection (p.i.). Accelerated onset of hind-paw hypersensitivity in PD-1 KO animals was associated with significantly increased infiltration of CD4+ and CD8+ T lymphocytes, macrophages, and microglial activation at early time points. Importantly, we also observed elevated levels of 3-nitrotyrosine and iNOS in infected PD-1 KO animals when compared with WT animals. CONCLUSIONS Results reported here connect peripheral immune cell infiltration and reactive gliosis with nitrosative damage. These data may help elucidate how retroviral infection-induced neuroinflammatory networks contribute to nerve damage and neuropathic pain.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, 3-107 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455 USA
| | - Wen S. Sheng
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, 3-107 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455 USA
| | - Shuxian Hu
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, 3-107 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455 USA
| | - Sujata Prasad
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, 3-107 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455 USA
| | - James R. Lokensgard
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, 3-107 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455 USA
| |
Collapse
|
9
|
Cao L, Malon JT. Anti-nociceptive Role of CXCL1 in a Murine Model of Peripheral Nerve Injury-induced Neuropathic Pain. Neuroscience 2018; 372:225-236. [DOI: 10.1016/j.neuroscience.2017.12.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/05/2017] [Accepted: 12/26/2017] [Indexed: 01/10/2023]
|
10
|
Glutathione Depletion Is Linked with Th2 Polarization in Mice with a Retrovirus-Induced Immunodeficiency Syndrome, Murine AIDS: Role of Proglutathione Molecules as Immunotherapeutics. J Virol 2016; 90:7118-7130. [PMID: 27226373 DOI: 10.1128/jvi.00603-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/19/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Injection of the LP-BM5 murine leukemia virus into mice causes murine AIDS, a disease characterized by many dysfunctions of immunocompetent cells. To establish whether the disease is characterized by glutathione imbalance, reduced glutathione (GSH) and cysteine were quantified in different organs. A marked redox imbalance, consisting of GSH and/or cysteine depletion, was found in the lymphoid organs, such as the spleen and lymph nodes. Moreover, a significant decrease in cysteine and GSH levels in the pancreas and brain, respectively, was measured at 5 weeks postinfection. The Th2 immune response was predominant at all times investigated, as revealed by the expression of Th1/Th2 cytokines. Furthermore, investigation of the activation status of peritoneal macrophages showed that the expression of genetic markers of alternative activation, namely, Fizz1, Ym1, and Arginase1, was induced. Conversely, expression of inducible nitric oxide synthase, a marker of classical activation of macrophages, was detected only when Th1 cytokines were expressed at high levels. In vitro studies revealed that during the very early phases of infection, GSH depletion and the downregulation of interleukin-12 (IL-12) p40 mRNA were correlated with the dose of LP-BM5 used to infect the macrophages. Treatment of LP-BM5-infected mice with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152), an N-acetyl-cysteine supplier, restored GSH/cysteine levels in the organs, reduced the expression of alternatively activated macrophage markers, and increased the level of gamma interferon production, while it decreased the levels of Th2 cytokines, such as IL-4 and IL-5. Our findings thus establish a link between GSH deficiency and Th1/Th2 disequilibrium in LP-BM5 infection and indicate that I-152 can be used to restore the GSH level and a balanced Th1/Th2 response in infected mice. IMPORTANCE The first report of an association between Th2 polarization and alteration of the redox state in LP-BM5 infection is presented. Moreover, it provides evidence that LP-BM5 infection causes a decrease in the thiol content of peritoneal macrophages, which can influence IL-12 production. The restoration of GSH levels by GSH-replenishing molecules can represent a new therapeutic avenue to fight this retroviral infection, as it reestablishes the Th1/Th2 balance. Immunotherapy based on the use of pro-GSH molecules would permit LP-BM5 infection and probably all those viral infections characterized by GSH deficiency and a Th1/Th2 imbalance to be more effectively combated.
Collapse
|
11
|
Shi Y, Shu J, Liang Z, Yuan S, Tang SJ. EXPRESS: Oligodendrocytes in HIV-associated pain pathogenesis. Mol Pain 2016; 12:12/0/1744806916656845. [PMID: 27306410 PMCID: PMC4956145 DOI: 10.1177/1744806916656845] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Although the contributions of microglia and astrocytes to chronic pain pathogenesis have been a focal point of investigation in recent years, the potential role of oligodendrocytes, another major type of glial cells in the CNS that generates myelin, remains largely unknown. Results We report here that cell markers of the oligodendrocyte lineage, including NG2, PDGFRα, and Olig2, are significantly increased in the spinal dorsal horn of HIV patients who developed chronic pain. The levels of myelin proteins myelin basic protein and proteolipid protein are also aberrant in the spinal dorsal horn of “pain-positive” HIV patients. Similarly, the oligodendrocyte and myelin markers are up-regulated in the spinal dorsal horn of a mouse model of HIV-1 gp120-induced pain. Surprisingly, the expression of gp120-induced mechanical allodynia appears intact up to 4 h after myelin basic protein is knocked down or knocked out. Conclusion These findings suggest that oligodendrocytes are reactive during the pathogenesis of HIV-associated pain. However, interfering with myelination does not alter the induction of gp120-induced pain.
Collapse
Affiliation(s)
- Yuqiang Shi
- University of Texas Medical Branch at Galveston
| | | | - Zongsuo Liang
- University of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at Galveston
| | - Subo Yuan
- University of Texas Medical Branch at Galveston
| | - Shao-Jun Tang
- University of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at Galveston
| |
Collapse
|
12
|
Malon JT, Cao L. Calcitonin gene-related peptide contributes to peripheral nerve injury-induced mechanical hypersensitivity through CCL5 and p38 pathways. J Neuroimmunol 2016; 297:68-75. [PMID: 27397078 DOI: 10.1016/j.jneuroim.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/30/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022]
Abstract
The role of calcitonin gene related peptide (CGRP) in neuropathic pain was investigated in a mouse model of neuropathic pain, spinal nerve L5 transection (L5Tx). Intrathecal injection (i.t.) of CGRP8-37, a CGRP antagonist, significantly reduced L5Tx-induced mechanical hypersensitivity and lumbar spinal cord CCL5 expression. i.t. injection of a CCL5 neutralizing antibody significantly inhibited L5Tx-induced mechanical hypersensitivity. Further, pre-treatment with a p38-inhibitor, SB203580, was able to reduce CGRP-induced mechanical hypersensitivity, but not CGRP-induced CCL5 production. Our data indicate that CGRP can play its pro-nociceptive role through both a spinal cord CCL5-dependent, p38-independent pathway, and a p38-depenented, CCL5-independent pathway.
Collapse
Affiliation(s)
- Jennifer T Malon
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, 11 Hills Beach Road, ME 04005, USA.
| | - Ling Cao
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, 11 Hills Beach Road, ME 04005, USA.
| |
Collapse
|
13
|
Huang L, Ou R, Rabelo de Souza G, Cunha TM, Lemos H, Mohamed E, Li L, Pacholczyk G, Randall J, Munn DH, Mellor AL. Virus Infections Incite Pain Hypersensitivity by Inducing Indoleamine 2,3 Dioxygenase. PLoS Pathog 2016; 12:e1005615. [PMID: 27168185 PMCID: PMC4863962 DOI: 10.1371/journal.ppat.1005615] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 04/14/2016] [Indexed: 01/06/2023] Open
Abstract
Increased pain sensitivity is a comorbidity associated with many clinical diseases, though the underlying causes are poorly understood. Recently, chronic pain hypersensitivity in rodents treated to induce chronic inflammation in peripheral tissues was linked to enhanced tryptophan catabolism in brain mediated by indoleamine 2,3 dioxygenase (IDO). Here we show that acute influenza A virus (IAV) and chronic murine leukemia retrovirus (MuLV) infections, which stimulate robust IDO expression in lungs and lymphoid tissues, induced acute or chronic pain hypersensitivity, respectively. In contrast, virus-induced pain hypersensitivity did not manifest in mice lacking intact IDO1 genes. Spleen IDO activity increased markedly as MuLV infections progressed, while IDO1 expression was not elevated significantly in brain or spinal cord (CNS) tissues. Moreover, kynurenine (Kyn), a tryptophan catabolite made by cells expressing IDO, incited pain hypersensitivity in uninfected IDO1-deficient mice and Kyn potentiated pain hypersensitivity due to MuLV infection. MuLV infection stimulated selective IDO expression by a discreet population of spleen cells expressing both B cell (CD19) and dendritic cell (CD11c) markers (CD19+ DCs). CD19+ DCs were more susceptible to MuLV infection than B cells or conventional (CD19neg) DCs, proliferated faster than B cells from early stages of MuLV infection and exhibited mature antigen presenting cell (APC) phenotypes, unlike conventional (CD19neg) DCs. Moreover, interactions with CD4 T cells were necessary to sustain functional IDO expression by CD19+ DCs in vitro and in vivo. Splenocytes from MuLV-infected IDO1-sufficient mice induced pain hypersensitivity in uninfected IDO1-deficient recipient mice, while selective in vivo depletion of DCs alleviated pain hypersensitivity in MuLV-infected IDO1-sufficient mice and led to rapid reduction in splenomegaly, a hallmark of MuLV immune pathogenesis. These findings reveal critical roles for CD19+ DCs expressing IDO in host responses to MuLV infection that enhance pain hypersensitivity and cause immune pathology. Collectively, our findings support the hypothesis elevated IDO activity in non-CNS due to virus infections causes pain hypersensitivity mediated by Kyn. Previously unappreciated links between host immune responses to virus infections and pain sensitivity suggest that IDO inhibitors may alleviate heightened pain sensitivity during infections.
Collapse
Affiliation(s)
- Lei Huang
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Rong Ou
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Guilherme Rabelo de Souza
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Henrique Lemos
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Eslam Mohamed
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Lingqian Li
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Gabriela Pacholczyk
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Janice Randall
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - David H. Munn
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Andrew L. Mellor
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
14
|
Lakritz JR, Bodair A, Shah N, O'Donnell R, Polydefkis MJ, Miller AD, Burdo TH. Monocyte Traffic, Dorsal Root Ganglion Histopathology, and Loss of Intraepidermal Nerve Fiber Density in SIV Peripheral Neuropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1912-23. [PMID: 25956030 DOI: 10.1016/j.ajpath.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 12/16/2022]
Abstract
HIV-associated sensory neuropathy remains the most common neurological complication of HIV infection and is characterized by dorsal root ganglion (DRG) inflammation and intraepidermal nerve fiber density (IENFD) loss. Chronic peripheral immune cell activation and accumulation may cause damage to the DRG, but has not been fully investigated yet. By using an SIV-infected, CD8-lymphocyte-depleted rhesus macaque model, we defined immune cells surrounding DRG neurons and their role in DRG pathology, measured cell traffic from the bone marrow to the DRGs using 5-bromo-2-deoxyuridine (BrdU) pulse, and serially measured IENFD. We found an increase in CD68(+) and CD163(+) macrophages in DRGs of SIV-infected animals. MAC387(+) recently recruited monocytes/macrophages were increased, along with BrdU(+) cells, in the DRGs of SIV-infected macaques. We demonstrated that 78.1% of all BrdU(+) cells in DRGs were also MAC387(+). The number of BrdU(+) monocytes correlated with severe DRG histopathology, which included neuronophagia, neuronal loss, and Nageotte nodules. These data demonstrate that newly recruited MAC387(+)BrdU(+) macrophages may play a significant role in DRG pathogenesis. IENFD decreased early (day 21), consistent with the development of sensory neuropathy in SIV-infected macaques. Decreased IENFD was associated with elevated BrdU(+) cells in the DRG. These data suggest that increased recruitment of macrophages to DRG is associated with severe DRG histopathology and IENFD loss.
Collapse
Affiliation(s)
| | - Ayman Bodair
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | - Neal Shah
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | - Ryan O'Donnell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, New York
| | - Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.
| |
Collapse
|
15
|
Altman KW, Noordzij JP, Rosen CA, Cohen S, Sulica L. Neurogenic cough. Laryngoscope 2015; 125:1675-81. [DOI: 10.1002/lary.25186] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/01/2014] [Accepted: 01/08/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Kenneth W. Altman
- Department of Otolaryngology-Head & Neck Surgery; Baylor College of Medicine; Houston Texas
| | - J. Pieter Noordzij
- Department of Otolaryngology-Head & Neck Surgery; Boston University Medical Center; Boston Massachusetts
| | - Clark A. Rosen
- Department of Otolaryngology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Seth Cohen
- Division of Otolaryngology-Head & Neck Surgery; Duke University Medical Center; Durham North Carolina
| | - Lucian Sulica
- Department of Otolaryngology-Head & Neck Surgery; Weill Cornell Medical College; New York New York
| |
Collapse
|
16
|
Microglial content-dependent inhibitory effects of calcitonin gene-related peptide (CGRP) on murine retroviral infection of glial cells. J Neuroimmunol 2015; 279:64-70. [PMID: 25670002 PMCID: PMC4325278 DOI: 10.1016/j.jneuroim.2015.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/17/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022]
Abstract
C57BL/6 (B6) mice develop peripheral neuropathy post-LP-BM5 infection, a murine model of HIV-1 infection, along with the up-regulation of select spinal cord cytokines. We investigated if calcitonin gene-related peptide (CGRP) contributed to the development of peripheral neuropathy by stimulating glial responses. An increased expression of lumbar spinal cord CGRP was observed in vivo, post-LP-BM5 infection. Consequently, in vitro CGRP co-treatments led to a microglial content-dependent attenuation of viral loads in spinal cord mixed glia infected with selected doses of LP-BM5. This inhibition was neither caused by the loss of glia nor induced via the direct inhibition of LP-BM5 by CGRP.
Collapse
|
17
|
Percie du Sert N, Rice ASC. Improving the translation of analgesic drugs to the clinic: animal models of neuropathic pain. Br J Pharmacol 2014; 171:2951-63. [PMID: 24527763 PMCID: PMC4055199 DOI: 10.1111/bph.12645] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/30/2014] [Accepted: 02/10/2014] [Indexed: 12/17/2022] Open
Abstract
Neuropathic pain remains an area of considerable unmet clinical need. Research based on preclinical animal models has failed to deliver truly novel treatment options, questioning the predictive value of these models. This review addresses the shortcomings of rodent in vivo models commonly used in the field and highlights approaches which could increase their predictivity, including more clinically relevant assays, outcome measures and animal characteristics. The methodological quality of animal studies also needs to be improved. Low internal validity and incomplete reporting lead to a waste of valuable research resources and animal lives, and ultimately prevent an objective assessment of the true predictivity of in vivo models.
Collapse
Affiliation(s)
- N Percie du Sert
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | | |
Collapse
|
18
|
Yuan SB, Shi Y, Chen J, Zhou X, Li G, Gelman BB, Lisinicchia JG, Carlton SM, Ferguson MR, Tan A, Sarna SK, Tang SJ. Gp120 in the pathogenesis of human immunodeficiency virus-associated pain. Ann Neurol 2014; 75:837-50. [PMID: 24633867 DOI: 10.1002/ana.24139] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Chronic pain is a common neurological comorbidity of human immunodeficiency virus (HIV)-1 infection, but the etiological cause remains elusive. The objective of this study was to identify the HIV-1 causal factor that critically contributes to the pathogenesis of HIV-associated pain. METHODS We first compared the levels of HIV-1 proteins in postmortem tissues of the spinal cord dorsal horn (SDH) from HIV-1/acquired immunodeficiency syndrome patients who developed chronic pain (pain-positive HIV-1 patients) and HIV-1 patients who did not develop chronic pain (pain-negative HIV-1 patients). Then we used the HIV-1 protein that was specifically increased in the pain-positive patients to generate mouse models. Finally, we performed comparative analyses on the pathological changes in the models and the HIV-1 patients. RESULTS We found that HIV-1 gp120 was significantly higher in pain-positive HIV-1 patients (vs pain-negative HIV-1 patients). This finding suggested that gp120 was a potential causal factor of the HIV-associated pain. To test this hypothesis, we used a mouse model generated by intrathecal injection of gp120 and compared the pathologies of the model and the pain-positive human HIV-1 patients. The results showed that the mouse model and pain-positive human HIV-1 patients developed extensive similarities in their pathological phenotypes, including pain behaviors, peripheral neuropathy, glial reactivation, synapse degeneration, and aberrant activation of pain-related signaling pathways in the SDH. INTERPRETATION Our findings suggest that gp120 may critically contribute to the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Su-Bo Yuan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The use of animal models in the study of HIV and AIDS has advanced our understanding of the underlying pathophysiologic mechanisms of infection. Of the multitude of HIV disease manifestations, peripheral neuropathy remains one of the most common long-term side effects. Several of the most important causes of peripheral neuropathy in AIDS patients include direct association with HIV infection with or without antiretroviral medication and infection with opportunistic agents. Because the pathogeneses of these diseases are difficult to study in human patients, animal models have allowed for significant advancement in the understanding of the role of viral infection and the immune system in disease genesis. This review focuses on rodent, rabbit, feline and rhesus models used to study HIV-associated peripheral neuropathies, focusing specifically on sensory neuropathy and antiretroviral-associated neuropathies.
Collapse
Affiliation(s)
- Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
McLane VD, Cao L, Willis CL. Morphine increases hippocampal viral load and suppresses frontal lobe CCL5 expression in the LP-BM5 AIDS model. J Neuroimmunol 2014; 269:44-51. [PMID: 24629894 DOI: 10.1016/j.jneuroim.2014.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 01/26/2023]
Abstract
Chronic opiate abuse accelerates the development of cognitive deficits in human immunodeficiency virus (HIV)-1 patients. To investigate morphine's effects on viral infection of the central nervous system, we applied chronic morphine treatment to the LP-BM5 murine acquired immunodeficiency syndrome (MAIDS) model. LP-BM5 infection induces proinflammatory cytokine/chemokine production, correlating to increased blood-brain barrier permeability. Morphine treatment significantly increased LP-BM5 viral load in the hippocampus, but not in the frontal lobe. Morphine reduced the chemokine CCL5 to non-infected levels in the frontal lobe, but not in the hippocampus. These data indicate a region-specific mechanism for morphine's effects on virally-induced neurocognitive deficits.
Collapse
Affiliation(s)
- Virginia D McLane
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04473, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA.
| | - Ling Cao
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - Colin L Willis
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
21
|
Involvement of microglial CD40 in murine retrovirus-induced peripheral neuropathy. J Neuroimmunol 2013; 261:37-43. [PMID: 23726765 DOI: 10.1016/j.jneuroim.2013.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Abstract
B6 mice infected with LP-BM5 develop severe immunodeficiency (termed murine acquired immunodeficiency syndrome (MAIDS)) and peripheral neuropathy. To determine whether microglial CD40 is involved in LP-BM5-induced peripheral neuropathy, B6-CD40 knockout (KO) mice and B6-CD40 KO mice adoptively transferred either total leukocytes or B cells were examined for behavioral sensitivity, tissue viral loads, cytokine responses, and the development of MAIDS. All three CD40 KO groups developed MAIDS, the severity of which was correlated with peripheral cytokine responses. CD40 KO mice displayed significantly reduced mechanical hypersensitivity post-infection compared to wild-type mice regardless of cell transfer. These findings support microglial CD40 involvement in LP-BM5-induced peripheral neuropathy.
Collapse
|
22
|
The connection of monocytes and reactive oxygen species in pain. PLoS One 2013; 8:e63564. [PMID: 23658840 PMCID: PMC3642180 DOI: 10.1371/journal.pone.0063564] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/02/2013] [Indexed: 12/21/2022] Open
Abstract
The interplay of specific leukocyte subpopulations, resident cells and proalgesic mediators results in pain in inflammation. Proalgesic mediators like reactive oxygen species (ROS) and downstream products elicit pain by stimulation of transient receptor potential (TRP) channels. The contribution of leukocyte subpopulations however is less clear. Local injection of neutrophilic chemokines elicits neutrophil recruitment but no hyperalgesia in rats. In meta-analyses the monocytic chemoattractant, CCL2 (monocyte chemoattractant protein-1; MCP-1), was identified as an important factor in the pathophysiology of human and animal pain. In this study, intraplantar injection of CCL2 elicited thermal and mechanical pain in Wistar but not in Dark Agouti (DA) rats, which lack p47phox, a part of the NADPH oxidase complex. Inflammatory hyperalgesia after complete Freund's adjuvant (CFA) as well as capsaicin-induced hyperalgesia and capsaicin-induced current flow in dorsal root ganglion neurons in DA were comparable to Wistar rats. Macrophages from DA expressed lower levels of CCR2 and thereby migrated less towards CCL2 and formed limited amounts of ROS in vitro and 4-hydroxynonenal (4-HNE) in the tissue in response to CCL2 compared to Wistar rats. Local adoptive transfer of peritoneal macrophages from Wistar but not from DA rats reconstituted CCL2-triggered hyperalgesia in leukocyte-depleted DA and Wistar rats. A pharmacological stimulator of ROS production (phytol) restored CCL2-induced hyperalgesia in vivo in DA rats. In Wistar rats, CCL2-induced hyperalgesia was completely blocked by superoxide dismutase (SOD), catalase or tempol. Likewise, inhibition of NADPH oxidase by apocynin reduced CCL2-elicited hyperalgesia but not CFA-induced inflammatory hyperalgesia. In summary, we provide a link between CCL2, CCR2 expression on macrophages, NADPH oxidase, ROS and the development CCL2-triggered hyperalgesia, which is different from CFA-induced hyperalgesia. The study further supports the impact of CCL2 and ROS as potential targets in pain therapy.
Collapse
|