1
|
Gao F, Shi Z, Shi J, Luo Y, Yu J, Fu H, Lai X, Liu L, Yuan Z, Zheng Z, Huang H, Zhao Y. Donor aKIR genes influence the risk of EBV and CMV reactivation after anti-thymocyte globulin-based haploidentical hematopoietic stem cell transplantation. HLA 2024; 103:e15320. [PMID: 38081622 DOI: 10.1111/tan.15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) offers the highest curative potential for patients with hematological malignancies. Complications including infection, graft-versus-host disease (GVHD), and relapse reflect delayed or dysregulated immune reconstitution. After transplantation, NK cells rapidly reconstitute and are crucial for immune surveillance and immune tolerance. NK cell function is tightly regulated by killer immunoglobin-like receptors (KIRs). Previous studies have revealed that donor KIRs, especially some activated KIRs (aKIRs) are closely related to transplant outcomes. Here, we performed a retrospective study, including 323 patients who received haploidentical (haplo) HSCT in our center. In univariate analysis, donor KIR2DS1, KIR2DS3 and KIR3DS1 gene protected patients with lymphoid disease from Epstein-Barr virus (EBV) and cytomegalovirus (CMV) reactivation, while donor KIR2DS1, KIR2DS5 and KIR3DS1 gene conferred a higher risk of CMV reactivation for patients with myeloid disease. Multivariate analysis confirmed that donor telomeric (Tel) B/x and KIR2DS3 gene best protected patients with lymphoid disease from EBV (p = 0.017) and CMV reactivation (p = 0.004). In myeloid disease, grafts lacking Tel B/x and KIR2DS5 gene correlated with the lowest risk of CMV reactivation (p = 0.018). Besides, donor aKIR genes did not influence the rates of GVHD, relapse, non-relapse mortality (NRM) and overall survival (OS) in this study. The reactivation of EBV and CMV was associated with poor prognosis of haplo-HSCT. In conclusion, we found that donor aKIR genes might have a synergistic effect on CMV and EBV reactivation after haplo-HSCT. Whether the influence of donor aKIR genes varies with disease types remained to be studied.
Collapse
Affiliation(s)
- Fei Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zhuoyue Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zhiyang Yuan
- Shanghai Tissuebank Biotechnology Co., Ltd, Shanghai, China
| | | | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
2
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Erbe AK, Diccianni MB, Mody R, Naranjo A, Zhang FF, Birstler J, Kim K, Feils AS, Hung JT, London WB, Shulkin BL, Mathew V, Parisi MT, Servaes S, Asgharzadeh S, Maris JM, Park J, Yu AL, Sondel PM, Bagatell R. KIR/KIR-ligand genotypes and clinical outcomes following chemoimmunotherapy in patients with relapsed or refractory neuroblastoma: a report from the Children's Oncology Group. J Immunother Cancer 2023; 11:e006530. [PMID: 36822669 PMCID: PMC9950969 DOI: 10.1136/jitc-2022-006530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND In the Children's Oncology Group ANBL1221 phase 2 trial for patients with first relapse/first declaration of refractory high-risk neuroblastoma, irinotecan and temozolomide (I/T) combined with either temsirolimus (TEMS) or immunotherapy (the anti-GD2 antibody dinutuximab (DIN) and granulocyte macrophage colony stimulating factory (GM-CSF)) was administered. The response rate among patients treated with I/T/DIN/GM-CSF in the initial cohort (n=17) was 53%; additional patients were enrolled to permit further evaluation of this chemoimmunotherapy regimen. Potential associations between immune-related biomarkers and clinical outcomes including response and survival were evaluated. METHODS Patients were evaluated for specific immunogenotypes that influence natural killer (NK) cell activity, including killer immunoglobulin-like receptors (KIRs) and their ligands, Fc gamma receptors, and NCR3. Total white cells and leucocyte subsets were assessed via complete blood counts, and flow cytometry of peripheral blood mononuclear cells was performed to assess the potential association between immune cell subpopulations and surface marker expression and clinical outcomes. Appropriate statistical tests of association were performed. The Bonferroni correction for multiple comparisons was performed where indicated. RESULTS Of the immunogenotypes assessed, the presence or absence of certain KIR and their ligands was associated with clinical outcomes in patients treated with chemoimmunotherapy rather than I/T/TEMS. While median values of CD161, CD56, and KIR differed in responders and non-responders, statistical significance was not maintained in logistic regression models. White cell and neutrophil counts were associated with differences in survival outcomes, however, increases in risk of event in patients assigned to chemoimmunotherapy were not clinically significant. CONCLUSIONS These findings are consistent with those of prior studies showing that KIR/KIR-ligand genotypes are associated with clinical outcomes following anti-GD2 immunotherapy in children with neuroblastoma. The current study confirms the importance of KIR/KIR-ligand genotype in the context of I/T/DIN/GM-CSF chemoimmunotherapy administered to patients with relapsed or refractory disease in a clinical trial. These results are important because this regimen is now widely used for treatment of patients at time of first relapse/first declaration of refractory disease. Efforts to assess the role of NK cells and genes that influence their function in response to immunotherapy are ongoing. TRIAL REGISTRATION NUMBER NCT01767194.
Collapse
Affiliation(s)
- Amy K Erbe
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Mitch B Diccianni
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Rajen Mody
- C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Michigan, USA
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, Florida, USA
| | - Fan F Zhang
- Children's Oncology Group Statistics and Data Center, Monrovia, California, USA
| | - Jen Birstler
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - Arika S Feils
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wendy B London
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Barry L Shulkin
- Departments of Diagnostic Imaging and Comprehensive Cancer Center, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Varsha Mathew
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Marguerite T Parisi
- Department of Pediatrics, Seattle Children's Hospital and the University, Seattle, Washington, USA
| | - Sabah Servaes
- Department of Pediatrics, The Children's Hospital, Philadelphia, Pennsylvania, USA
| | - Shahab Asgharzadeh
- Department Cancer and Blood Disease Institute, Childrens Hospital of Los Angeles, Los Angeles, California, USA
| | - John M Maris
- Department of Pediatrics, The Children's Hospital, Philadelphia, Pennsylvania, USA
| | - Julie Park
- Department of Pediatrics, Seattle Children's Hospital and the University, Seattle, Washington, USA
| | - Alice L Yu
- Department of Pediatrics, University of California, San Diego, California, USA
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Rochelle Bagatell
- Department of Pediatrics, The Children's Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Jennifer Zhang Q. Donor selection based on NK alloreactivity for patients with hematological malignancies. Hum Immunol 2022; 83:695-703. [PMID: 35965181 DOI: 10.1016/j.humimm.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are an important defender against infections and tumors. Their function is regulated by the balance of inhibitory and activating receptors. Among all inhibitory NK receptors: killer immunoglobulin-like receptors (KIR) and CD94/NKG2A recognize human leukocyte antigen (HLA) Class I molecules, allowing NK cells to be 'licensed' to avoid autoreactivity, but be fully functional at the same time. Licensed NK cells can target malignant cells with altered or downregulated/missing 'self' antigens. NK cell attacking malignant cells is one of the mechanisms of graft-versus-leukemia (GVL) effect. Numerous studies have demonstrated that NK cells improve hematopoietic stem cell transplantation (HCT) survival by reducing relapse mortality through GVL effect. Therapeutic strategies, such as adoptive alloreactive NK cell transfer, CAR-NK cells, antibodies against NKG2A and KIR2DL1-3, have been utilized to treat hematological malignancies in HCT. In this review, NK cell functions, NK cell receptors and ligands, as well as common alloreactive NK donor selection algorithms for patients with hematological malignancies in the setting of HCT are discussed. The goal of this review is to provide insights on the controversial results and provide better understanding and resources on how to perform alloreactive donor NK cell selection in HCT.
Collapse
Affiliation(s)
- Qiuheng Jennifer Zhang
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA.
| |
Collapse
|
5
|
Stefańska K, Tomaszewicz M, Dębska-Zielkowska J, Zamkowska D, Piekarska K, Sakowska J, Studziński M, Tymoniuk B, Adamski P, Jassem-Bobowicz J, Wydra P, Leszczyńska K, Świątkowska-Stodulska R, Kwiatkowski S, Preis K, Trzonkowski P, Marek-Trzonkowska N, Zieliński M. KIR- Ligand Interactions in Hypertensive Disorders in Pregnancy. Front Immunol 2022; 13:868175. [PMID: 35911739 PMCID: PMC9336683 DOI: 10.3389/fimmu.2022.868175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Hypothesis The activity of natural killer (NK) cells is considered an important factor for the tolerance of the fetus during pregnancy. The complications of pregnancy, such as hypertensive disorders (HDP), may be therefore associated with this immune compartment. Methods The current study included 41 pregnant women diagnosed with HDPs (Gestational Hypertension; GH or Preeclampsia; PE) and 21 healthy women. All the patients were under continuous obstetric care during the pregnancy and labour. The number of mother-child mismatches within killer immunoglobulin-like receptors (KIRs), their ligands [MM], and missing KIR ligands [MSLs] was assessed. KIRs and their ligands were assessed with Next Generation Sequencing (NGS) and Polymerase Chain Reaction Sequence-Specific Oligonucleotide (PCR-SSO) typing. The subsets of NK cells were assessed with multicolor flow cytometry and correlated to the number of MSLs. Results The number of MSLs was significantly higher in HDP patients when compared to healthy non-complicated pregnancy patients. Some MSLs, such as those with 2DS2 activating KIR, were present only in HDP patients. The percentage of CD56+CD16-CD94+ NK cells and CD56+CD16-CD279+ NK cells correlated with the number of MSLs with inhibiting KIRs only in healthy patients. In HDP patients, there was a correlation between the percentage of CD56-CD16+CD69+ NK cells and the number of MSLs with inhibiting and activating KIRs. As compared to the healthy group, the percentage of CD56+CD16-CD279+ NK cells and CD56-CD16+CD279+ NK cells were lower in HDP patients. HDP patients were also characterized by a higher percentage of CD56+CD16+perforin+ NK cells than their healthy counterparts. Conclusions Patients with HDP were characterized by a higher number of MSLs within the KIRs receptors. It seemed that the number of MSLs in the healthy group was balanced by various receptors, such as CD94 or inhibitory CD279, expressed on NK cells. Conversely, in HDP patients the number of MSLs was associated with the activation detected as the increased level of CD69+ NK cells.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Division of Gynecology and Obstetrics, Medical University of Gdansk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Martyna Tomaszewicz,
| | - Joanna Dębska-Zielkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Dorota Zamkowska
- Division of Gynecology and Obstetrics, Medical University of Gdansk, Gdańsk, Poland
| | - Karolina Piekarska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Sakowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Studziński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Bogusław Tymoniuk
- Department of Immunology and Allergy, Medical University of Lodz, Łódź, Poland
| | - Przemysław Adamski
- Division of Gynecology and Obstetrics, Medical University of Gdansk, Gdańsk, Poland
| | - Joanna Jassem-Bobowicz
- Department of Neonatology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Wydra
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Renata Świątkowska-Stodulska
- Department of Endocrinology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Krzysztof Preis
- Division of Gynecology and Obstetrics, Medical University of Gdansk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science Cancer Immunology Group, University of Gdansk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
6
|
Kaddu-Mulindwa D, Altmann B, Robrecht S, Ziepert M, Regitz E, Tausch E, Held G, Poeschel V, Lesan V, Bittenbring JT, Thurner L, Pfreundschuh M, Christofyllakis K, Truemper L, Loeffler M, Schmitz N, Hoth M, Hallek M, Fischer K, Stilgenbauer S, Bewarder M, Rixecker TM. KIR2DS1–HLA-C status as a predictive marker for benefit from rituximab: a post-hoc analysis of the RICOVER-60 and CLL8 trials. Lancet Haematol 2022; 9:e133-e142. [DOI: 10.1016/s2352-3026(21)00369-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
|
7
|
Wang X, Liu XF, Shang QN, Yu XX, Fan ZY, Cao XH, Huo MR, Chang YJ, Zhao XS, Wang Y, Zhang XH, Xu LP, Liu KY, Huang XJ, Zhao XY. Donor activating killer cell immunoglobulin-like receptors genes correlated with Epstein-Barr virus reactivation after haploidentical haematopoietic stem cell transplantation. Br J Haematol 2021; 196:1007-1017. [PMID: 34787307 DOI: 10.1111/bjh.17950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cells exert anti-viral effects after haematopoietic stem cell transplantation (HSCT). The balance between inhibition and activation of NK cells determined by the inherited repertoire of killer cell immunoglobulin-like receptors (KIR) genes may influence Epstein-Barr virus (EBV) reactivation after transplantation. To evaluate the relative contributions of KIR genotypes to EBV reactivation, we prospectively enrolled 300 patients with malignant haematological disease who were suitable for haploidentical HSCT. Univariate analysis showed that donors with KIR2DS1, KIR2DS3 or KIR3DS1 genes were associated with an increased risk of EBV reactivation [hazard ratio (HR) 1·86, 95% confidence interval (CI) 1·19-2·9, P = 0·0067; HR 1·78, 95% CI 1·07-2·97, P = 0·027; HR 1·86, 95% CI 1·19-2·91, P = 0·0065 respectively]. Multivariate analysis revealed that the presence of KIR2DS1, KIR2DS3 or KIR3DS1 genes was associated with increased EBV reactivation after HSCT. This effect was more evident in the absence of the cognate ligands for the corresponding activating receptors. Our present data firstly showed that donors with activating KIR genes, specifically activating KIR2DS1, KIR2DS3 and KIR3DS1, had an increased risk of EBV reactivation. Precaution for patients whose donors carry activating genes will help prevent EBV reactivation and improve patient prognosis after HSCT.
Collapse
Affiliation(s)
- Xiang Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xue-Fei Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Qian-Nan Shang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xing-Xing Yu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Ze-Ying Fan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xun-Hong Cao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ming-Rui Huo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ying-Jun Chang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Su Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Hui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Lan-Ping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Kai-Yan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Collaborative Innovation Center of Hematology, Beijing, China
| | - Xiang-Yu Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Collaborative Innovation Center of Hematology, Beijing, China
| |
Collapse
|
8
|
Increased donor inhibitory KIR with known HLA interactions provide protection from relapse following HLA matched unrelated donor HCT for AML. Bone Marrow Transplant 2021; 56:2714-2722. [PMID: 34234295 DOI: 10.1038/s41409-021-01393-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 01/13/2023]
Abstract
Killer immunoglobulin-like receptor (KIR) and KIR-ligand (KIRL) interactions play an important role in natural killer cell-mediated graft versus leukemia effect (GVL) after hematopoietic cell transplant (HCT) for AML. Accounting for known KIR-KIRL interactions may identify donors with optimal NK cell-mediated alloreactivity and GVL. A retrospective study of 2359 donor-recipient pairs (DRP) who underwent unrelated donor (URD) HCT for AML was performed. KIR-KIRL combinations were determined and associations with clinical outcomes examined. Relapse risk was reduced in DRP with both higher inhibitory KIR-KIRL (iKIR) and missing KIRL (mKIR) scores, with HR 0.86 (P = 0.01) & HR 0.84 (P = 0.02) respectively. The iKIR and mKIR score components were summed to give a maximal inhibitory KIR ligand (IM-KIR) score for each donor, which if it was 5, as opposed to <5, was also associated with a lower relapse risk, SHR 0.8 (P = 0.004). All IM = 5 donors possess KIR Haplotype B/x. Transplant-related mortality was increased among those with IM-KIR = 5, HR, 1.32 (P = 0.01). In a subset analysis of those transplanted with 8/8 HLA-matched DRP, anti-thymocyte globulin recipients with IM-KIR = 5, had a lower relapse rate HR, 0.61 (p = 0.001). This study demonstrates that HLA-matched unrelated donors with the highest inhibitory KIR content confer relapse protection, albeit with increased TRM. These donors all have KIR haplotype B. Clinical trials utilizing donors with a higher iKIR content in conjunction with novel strategies to reduce TRM should be considered for URD HCT in recipients with AML to optimize clinical outcomes.
Collapse
|
9
|
Makanga DR, Jullien M, David G, Legrand N, Willem C, Dubreuil L, Walencik A, Touzeau C, Gastinne T, Tessoulin B, Le Gouill S, Mahé B, Gagne K, Chevallier P, Clemenceau B, Retière C. Low number of KIR ligands in lymphoma patients favors a good rituximab-dependent NK cell response. Oncoimmunology 2021; 10:1936392. [PMID: 34178429 PMCID: PMC8204974 DOI: 10.1080/2162402x.2021.1936392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The antibody-dependent cellular cytotoxicity (ADCC) effector function of natural killer (NK) cells is one of the known mechanisms of action for rituximab-based anti-cancer immunotherapy. Inhibition of the ADCC function of NK cells through interactions between inhibitory killer cell immunoglobulin-like receptors (KIRs) and HLA class I ligands is associated with resistance of cancers to rituximab. In this study, we deeply investigated the impact of KIR, HLA class I, and CD16 genotypes on rituximab-dependent NK cell responses in both an in vitro cellular model from healthy blood donors and ex vivo rituximab-treated non-Hodgkin lymphoma (NHL) patients. We highlight that an HLA environment with limited KIR ligands is beneficial to promoting a higher frequency of KIR+ NK cells including both educated and uneducated NK cells, two NK cell compartments that demonstrate higher rituximab-dependent degranulation than KIR− NK cells. In contrast, a substantial KIR ligand environment favors a higher frequency of poorly effective KIR− NK cells and numerous functional KIR/HLA inhibitions of educated KIR+ NK cells. These phenomena explain why NHL patients with limited KIR ligands respond better to rituximab. In this HLA environment, CD16 polymorphism appears to have a collateral effect. Furthermore, we show the synergic effect of KIR2DS1, which strongly potentiates NK cell ADCC from C2− blood donors against C2+ target cells. Taken together, these results pave the way for stronger prediction of rituximab responses for NHL patients. HLA class I typing and peripheral blood KIR+ NK cell frequency could be simple and useful markers for predicting rituximab response.
Collapse
Affiliation(s)
- Dhon Roméo Makanga
- Etablissement Français Du Sang, Nantes, Nantes, France.,Université De Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | | | - Gaëlle David
- Etablissement Français Du Sang, Nantes, Nantes, France.,Université De Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Nolwenn Legrand
- Etablissement Français Du Sang, Nantes, Nantes, France.,Université De Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Catherine Willem
- Etablissement Français Du Sang, Nantes, Nantes, France.,Université De Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Léa Dubreuil
- Etablissement Français Du Sang, Nantes, Nantes, France.,Université De Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | | | | | | | | | | | | | - Katia Gagne
- Etablissement Français Du Sang, Nantes, Nantes, France.,Université De Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,LabEx Transplantex, Université De Strasbourg, Strasbourg, France
| | - Patrice Chevallier
- Université De Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,Hematology Clinic, CHU, Nantes, France
| | - Béatrice Clemenceau
- Université De Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Christelle Retière
- Etablissement Français Du Sang, Nantes, Nantes, France.,Université De Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
10
|
Yokoyama H, Kanda J, Kawahara Y, Uchida N, Tanaka M, Takahashi S, Onizuka M, Noguchi Y, Ozawa Y, Katsuoka Y, Ota S, Ohta T, Kimura T, Kanda Y, Ichinohe T, Atsuta Y, Nakasone H, Morishima S. Reduced leukemia relapse through cytomegalovirus reactivation in killer cell immunoglobulin-like receptor-ligand-mismatched cord blood transplantation. Bone Marrow Transplant 2021; 56:1352-1363. [PMID: 33420393 DOI: 10.1038/s41409-020-01203-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Cytomegalovirus (CMV) reactivation in cord blood transplantation (CBT) may result in the proliferation and maturation of natural killer (NK) cells. Similarly, a mismatch of the killer cell immunoglobulin-like receptor (KIR)-ligand induces NK cell activation. Therefore, if CMV reactivation occurs in the presence of KIR-ligand mismatch, it might improve CBT outcomes. We assessed the difference in the effect of CMV reactivation in the presence of KIR-ligand mismatch on disease relapse in the graft-versus-host direction. A total of 2840 patients with acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, and chronic myeloid leukemia were analyzed. Among those with a HLA-Bw4/A3/A11 (KIR3DL-ligand) mismatch, CMV reactivation up to 100 days following CBT had a favorable impact on relapse (18.9% vs. 32.9%, P = 0.0149). However, this effect was not observed in cases without the KIR3DL-ligand mismatch or in those with or without a HLA-C1/C2 (KIR2DL-ligand) mismatch. The multivariate analysis suggested that CMV reactivation had a favorable effect on relapse only in cases with a KIR3DL-ligand mismatch (hazard ratio 0.54, P = 0.032). Moreover, the interaction effect between CMV reactivation and KIR3DL-ligand mismatch on relapse was significant (P = 0.039). Thus, our study reveals the association between KIR-ligand mismatches and CMV reactivation, which will enhance CBT outcomes.
Collapse
Affiliation(s)
- Hisayuki Yokoyama
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Satoshi Takahashi
- Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Yuma Noguchi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Yuna Katsuoka
- Department of Hematology, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Takanori Ohta
- Department of Hematology, Kitakyushu City Hospital Organization, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Takafumi Kimura
- Preparation Department, Japanese Red Cross Kinki Block Blood Center, Ibaraki, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Shimotsuke, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan.,Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
11
|
Prospective KIR genotype evaluation of hematopoietic cell donors is feasible with potential to benefit patients with AML. Blood Adv 2021; 5:2003-2011. [PMID: 33843984 DOI: 10.1182/bloodadvances.2020002701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Donor KIR and recipient HLA combinations that minimize inhibition and favor activation of the NK repertoire are associated with improved outcomes after allogeneic hematopoietic cell transplantation (HCT) in patients with myeloid neoplasia. We prospectively evaluated a weighted donor ranking algorithm designed to prioritize HLA-compatible unrelated donors (URDs) with weak inhibitory KIR3DL1/HLA-Bw4 interaction, followed by donors with nontolerized activating KIR2DS1, and finally those with KIR centromeric B haplotype. During donor evaluation, we performed KIR genotyping and ranked 2079 URDs for 527 subjects with myelodysplastic syndrome (MDS) or acute myelogenous leukemia (AML). Among all patients, 394 (75%) had at least 1 KIR-advantageous donor, and 263 (50%) underwent HCT. In patients with AML, KIR3DL1 weak inhibition provided protection from relapse. Compared with KIR3DL1-Weak Inhibiting donors, KIR3DL1-Noninteracting donors were associated with increased risk of relapse (HR, 2.97; 95% CI, 1.33-6.64; P = .008) and inferior event-free survival (EFS; HR, 2.14; 95% CI, 1.16-3.95; P = .015). KIR3DL1-Strong Inhibiting donors were associated with HR, 1.65 (95% CI, 0.66-4.08; P = .25) for AML relapse and HR, 1.6 (95% CI, 0.81-3.17; P = .1) for EFS when compared with the use of KIR3DL1-weak inhibiting donors. Donor KIR2DS1/HLA-C1 status and centromeric KIR haplotype-B content were not associated with decreased risk of AML relapse. There was no benefit to KIR-based donor selection in patients with MDS. This study demonstrates that donor KIR typing is feasible, and prioritization of donors with certain KIR3DL1 genotypes may confer a protection from relapse after HCT in patients with AML.
Collapse
|
12
|
Arima N. Dual effects of natural killer cells in transplantation for leukemia. Crit Rev Oncol Hematol 2020; 158:103206. [PMID: 33388454 DOI: 10.1016/j.critrevonc.2020.103206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells were originally considered to belong to the innate immune system to play a protective role against tumor cells and viral infections. In human, they can recognize self and non-self HLA class 1 as their ligand. So, analyzing the outcomes of allogeneic hematopoietic stem cell transplantation is a good opportunity to know the antitumor effects and regulatory effects of NK cells through HLA class 1 matching and mismatching of donor and recipient. In this review, I looked back on the main analysis results of the past transplants, summarized our reports consisting of many cases in a single ethnic, and showed that NK cells might work oppositely depending on the type of leukemia. New treatment strategies based on these concepts may offer individualized treatment options and ultimately increase offer the possibility of a cure for patients with leukemia.
Collapse
Affiliation(s)
- Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, 1-4-47, Wakihamacho, Chuo-ku, Kobe, 651-0072, Hyogo, Japan.
| |
Collapse
|
13
|
Shaffer BC, Hsu KC. Selection of allogeneic hematopoietic cell transplant donors to optimize natural killer cell alloreactivity. Semin Hematol 2020; 57:167-174. [PMID: 33256909 DOI: 10.1053/j.seminhematol.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Natural killer (NK) cells are potent mediators of the graft versus leukemia phenomenon critical to the success of allogeneic hematopoietic cell transplantation. Central to calibrating NK effector function via their interaction with class I human leukocyte antigens are the numerous inhibitory killer Ig-like receptors (KIR). The KIR receptors are encoded by a family of polymorphic genes, whose expression is largely stochastic and uninfluenced by human leukocyte antigens genotype. These features provide the opportunity to select hematopoietic cell donors with favorable KIR genotypes that confer enhanced protection from relapse via NK-mediated graft versus leukemia. Over the last 2 decades, a large body of work has emerged examining the use of KIR genotyping to stratify potential donors based on anticipated NK alloreactivity. Overall, these results support KIR-based donor selection for patients undergoing allogeneic hematopoietic cell transplantation for a diagnosis of acute myelogenous leukemia. Despite this, the underlying factors that control NK cell responsiveness are not completely understood, and opportunities remain to refine donor selection using NK cell receptor genotyping. In this review, we will summarize the relevant findings with respect to KIR genotyping as a selection parameter for allogeneic hematopoietic cell donors and address practical considerations with respect to KIR-based selection of donors for patients with myeloid neoplasia.
Collapse
Affiliation(s)
- Brian C Shaffer
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell School of Medicine, New York, NY
| | - Katharine C Hsu
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell School of Medicine, New York, NY; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
14
|
Abstract
Pediatric acute lymphoblastic leukemia (ALL) is defined by recurrent chromosomal aberrations including hyperdiploidy and chromosomal translocations. Many of these aberrations originate in utero and the cells transform in early childhood through acquired secondary mutations. In this review, we will discuss the most common prenatal lesions that can lead to childhood ALL, with a special emphasis on the most common translocation in childhood ALL, t(12;21), which results in the ETV6-RUNX1 gene fusion. The ETV6-RUNX1 fusion arises prenatally and at a 500-fold higher frequency than the corresponding ALL. Even though the findings regarding the frequency of ETV6-RUNX1 were originally challenged, newer studies have confirmed the higher frequency. The prenatal origin has also been proven for other gene fusions, including KMT2A, the translocations t(1;19) and t(9;22) leading to TCF3-PBX1 and BCR-ABL1, respectively, as well as high hyperdiploidy. For most of these aberrations, there is evidence for more frequent occurrence than the corresponding leukemia incidences. We will briefly discuss what is known about the cells of origin, the mechanisms of leukemic transformation through lack of immunosurveillance, and why only a part of the carriers develops ALL.
Collapse
Affiliation(s)
- Daniel Hein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Arima N, Kanda J, Yabe T, Morishima Y, Tanaka J, Kako S, Sakaguchi H, Kato M, Ohashi K, Ozawa Y, Fukuda T, Ota S, Tachibana T, Onizuka M, Ichinohe T, Atsuta Y, Kanda Y. Increased Relapse Risk of Acute Lymphoid Leukemia in Homozygous HLA-C1 Patients after HLA-Matched Allogeneic Transplantation: A Japanese National Registry Study. Biol Blood Marrow Transplant 2019; 26:431-437. [PMID: 31704471 DOI: 10.1016/j.bbmt.2019.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
Natural killer (NK) cells expressing killer cell immunoglobulin-like receptors (KIRs) can recognize specific HLA class I molecules as their ligands. By studying a large Japanese transplant registry, we compared transplant outcomes between patients heterozygous for HLA-CAsn80/CLys80 (HLA-C1/C2) and those homozygous for HLA-C1 (HLA-C1/C1) among patients who had undergone HLA-matched hematopoietic stem cell transplantation (HSCT). A high frequency of KIR2DL1 with strong HLA-C2 binding capacity and a low frequency of HLA-C2 and KIR haplotype B are characteristic of the Japanese population. In our previous report, HLA-C1/C1 patients with myeloid leukemia were less likely to relapse than HLA-C1/C2 patients. We newly assessed 2884 patients with acute lymphoblastic leukemia (ALL) who received HLA-matched allogeneic HSCT and analyzed their leukemia relapses by using adjusted competing-risk methods. HLA-C1/C1 patients with ALL experienced significantly higher relapse rates than HLA-C1/C2 patients (hazard ratio [HR] = 1.55, P = .003), contrary to our results in patients with myeloid leukemia. We allocated patients with ALL to several subgroups and found a higher frequency of relapse (HR >1.8) in the HLA-C1/C1 group than in the HLA-C1/C2 group among patients with Ph-negative ALL, those who had no cytomegalovirus reactivation, those who received transplants from donors who were aged 41 years or older, and those who experienced acute graft-versus-host disease, especially if it required systemic treatment. One interpretation of our results is that KIR2DL1-positive NK cells disrupt T cells, antigen-presenting cells, or both from working efficiently in transplant immunity in HLA-C1/C1 patients with ALL. Another is that KIR2DS1-positive NK cells directly attack HLA-C2-positive ALL blasts in HLA-C1/C2 patients. Whether HLA-C2 can cause recurrence to decrease or increase in patients depending on the disease (ALL or myeloid leukemia) will be a very important finding. We hope that our results will provide clues to the real mechanisms behind relapse after transplantation in patients with different HLA profiles.
Collapse
Affiliation(s)
- Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, Kobe, Japan; Department of Hematology, Medical Research Institute Kitano Hospital, Osaka, Japan.
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Yabe
- Laboratory Department, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | | | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shinichi Kako
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hirotoshi Sakaguchi
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross, Nagoya First Hospital, Nagoya, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- The Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
16
|
The Evolutionary Arms Race between Virus and NK Cells: Diversity Enables Population-Level Virus Control. Viruses 2019; 11:v11100959. [PMID: 31627371 PMCID: PMC6832630 DOI: 10.3390/v11100959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses and natural killer (NK) cells have a long co-evolutionary history, evidenced by patterns of specific NK gene frequencies in those susceptible or resistant to infections. The killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) ligands together form the most polymorphic receptor-ligand partnership in the human genome and govern the process of NK cell education. The KIR and HLA genes segregate independently, thus creating an array of reactive potentials within and between the NK cell repertoires of individuals. In this review, we discuss the interplay between NK cell education and adaptation with virus infection, with a special focus on three viruses for which the NK cell response is often studied: human immunodeficiency virus (HIV), hepatitis C virus (HCV) and human cytomegalovirus (HCMV). Through this lens, we highlight the complex co-evolution of viruses and NK cells, and their impact on viral control.
Collapse
|
17
|
Le Luduec JB, Boudreau JE, Freiberg JC, Hsu KC. Novel Approach to Cell Surface Discrimination Between KIR2DL1 Subtypes and KIR2DS1 Identifies Hierarchies in NK Repertoire, Education, and Tolerance. Front Immunol 2019; 10:734. [PMID: 31024561 PMCID: PMC6460669 DOI: 10.3389/fimmu.2019.00734] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Cumulative activating and inhibitory receptor signaling controls the functional output of individual natural killer (NK) cells. Investigation of how competing signals impact response, however, has been hampered by the lack of available antibodies capable of distinguishing inhibitory and activating receptors with highly homologous ectodomains. Utilizing a novel combination of monoclonal antibodies with specificity for discrete inhibitory KIR2DL1 and activating KIR2DS1 allotypes found among 230 healthy donors, we investigated allele-specific receptor expression and function driven by KIR2DL1 and KIR2DS1 alleles. We found that co-expression of the HLA-C2 ligand diminishes KIR2DL1, but not KIR2DS1, cell surface staining, but does not impact the respective frequencies of KIR2DL1- and KIR2DS1-expressing cells within the NK repertoire. We can distinguish by flow cytometry NK cell populations expressing the most common KIR2DL1-C245 allotypes from those expressing the most common KIR2DL1-R245 allotypes, and we show that the informative differential binding anti-KIR2DL1/S1 clone 1127B is determined by amino acid residue T154. Although both KIR2DL1-C245 and KIR2DL1-R245 subtypes can be co-expressed in the same cell, NK cells preferentially express one or the other. Cells expressing KIR2DL1-C245 exhibited a lower KIR2DL1 cell surface density and lower missing-self reactivity in comparison to cells expressing KIR2DL1-R245. We found no difference, however, in sensitivity to inhibition or cell surface stability between the two KIR2DL1 isoforms, and both demonstrated similar expansion among NKG2C+ KIR2DL1+ NK cells in HCMV-seropositive healthy individuals. In addition to cell surface density of KIR2DL1, copy number of cognate HLA-C2 hierarchically impacted the effector capacity of both KIR2DL1+ cells and the tolerization of KIR2DS1+ NK cells. HLA-C2 tolerization of KIR2DS1+ NK cells could be overridden, however, by education via co-expressed self-specific inhibitory receptors, such as the heterodimer CD94/NKG2A. Our results demonstrate that effector function of NK cells expressing KIR2DL1 or KIR2DS1 is highly influenced by genetic variability and is calibrated by co-expression of additional NK receptors and cognate HLA-C2 ligands. These findings define the molecular conditions under which NK cells are activated or inhibited, potentially informing selection of donors for adoptive NK therapies.
Collapse
Affiliation(s)
- Jean-Benoît Le Luduec
- Immunology Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Jeanette E. Boudreau
- Immunology Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Julian C. Freiberg
- Immunology Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Katharine C. Hsu
- Immunology Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
18
|
Wagner AK, Alici E, Lowdell MW. Characterization of human natural killer cells for therapeutic use. Cytotherapy 2019; 21:315-326. [PMID: 30910383 DOI: 10.1016/j.jcyt.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 11/25/2022]
Abstract
As a part of the innate immune system, natural killer (NK) cells are cytotoxic lymphocytes that can exert cytotoxic activity against infected or transformed cells. Furthermore, due to their expression of a functional Fc receptor, they have also been eluded as a major effector fraction in antibody-dependent cellular cytotoxicity. These characteristics have led to multiple efforts to use them for adoptive immunotherapy against various malignancies. There are now at least 70 clinical trials testing the safety and efficacy of NK cell products around the world in early-phase clinical trials. NK cells are also being tested in the context of tumor retargeting via chimeric antigen receptors, other genetic modification strategies, as well as tumor-specific activation strategies such as bispecific engagers with or without cytokine stimulations. One advantage of the use of NK cells for adoptive immunotherapy is their potential to overcome HLA barriers. This has led to a plethora of sources, such as cord blood hematopoietic stem cells and induced pluripotent stem cells, which can generate comparatively high cytotoxic NK cells to peripheral blood counterparts. However, the variety of the sources has led to a heterogeneity in the characterization of the final infusion product. Therefore, in this review, we will discuss a comparative assessment strategy, from characterization of NK cells at collection to final product release by various phenotypic and functional assays, in an effort to predict potency of the cellular product.
Collapse
Affiliation(s)
- Arnika K Wagner
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Evren Alici
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mark W Lowdell
- Department of Haematology, Cancer Institute, University College London, London, UK.
| |
Collapse
|
19
|
Boudreau JE, Hsu KC. Natural killer cell education in human health and disease. Curr Opin Immunol 2018; 50:102-111. [PMID: 29413815 DOI: 10.1016/j.coi.2017.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells maintain immune homeostasis by detecting and eliminating damaged cells. Simultaneous activating and inhibitory input are integrated by NK cells, with the net signal prompting cytotoxicity and cytokine production, or inhibition. Chief among the inhibitory ligands for NK cells are 'self' human leukocyte antigen (HLA) molecules, which are sensed by killer immunoglobulin-like receptors (KIR). Through a process called 'education', the functional capabilities of each NK cell are counterbalanced by their sensitivity for inhibition by co-inherited 'self' HLA. HLA and their ligands, the killer immunoglobulin-like receptors (KIR), are encoded by polymorphic, polygenic gene loci that segregate independently, therefore, NK education and function differ even between related individuals. In this review, we describe how variation in NK education, reactivity and sensitivity for inhibition impacts reproductive success, infection, cancer, inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada; Department of Pathology, Dalhousie University, Halifax, Canada
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
20
|
Boudreau JE, Hsu KC. Natural Killer Cell Education and the Response to Infection and Cancer Therapy: Stay Tuned. Trends Immunol 2018; 39:222-239. [PMID: 29397297 DOI: 10.1016/j.it.2017.12.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 12/29/2022]
Abstract
The functional capacities of natural killer (NK) cells differ within and between individuals, reflecting considerable genetic variation. 'Licensing/arming', 'disarming', and 'tuning' are models that have been proposed to explain how interactions between MHC class I molecules and their cognate inhibitory receptors - Ly49 in mice and KIR in humans - 'educate' NK cells for variable reactivity and sensitivity to inhibition. In this review we discuss recent progress toward understanding the genetic, epigenetic, and molecular features that titrate NK effector function and inhibition, and the impact of variable NK cell education on human health and disease.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada; Department of Pathology, Dalhousie University, Halifax, Canada.
| | - Katharine C Hsu
- Immunology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
21
|
Mehta RS, Randolph B, Daher M, Rezvani K. NK cell therapy for hematologic malignancies. Int J Hematol 2018; 107:262-270. [PMID: 29383623 DOI: 10.1007/s12185-018-2407-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
Natural killer (NK) cells are part of the innate immune system and represent the first line of defense against infections and tumors. In contrast to T cells, NK cells do not require prior antigen sensitization to induce cytotoxicity and do not cause graft-versus-host disease. These, along with other advantages, make NK cells an attractive candidate for adoptive cellular therapy. Herein, we describe the mechanisms of NK cell cytotoxicity, which is governed by an intricate balance between various activating and inhibitory receptors, including the killer cell immunoglobulin-like receptors (KIRs). We illustrate the advantages of NK alloreactivity as demonstrated in various types of hematopoietic stem cell transplants (HSCT), such as haploidentical, human leukocyte antigen-matched related or unrelated donor and umbilical cord blood transplant. We elaborate on different models used to predict NK cell alloreactivity in these studies, which are either based on the absence of the ligands for inhibitory KIRs, presence of activating NK cell receptors and KIR genes content in donors, or a combination of these. We will review clinical studies demonstrating anti-tumor efficacy of NK cells used either as a stand-alone immunotherapy or as an adjunct to HSCT and novel genetic engineering strategies to improve the anti-tumor activity of NK cells.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Unit 0423, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Brion Randolph
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Unit 0423, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - May Daher
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Unit 0423, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Unit 0423, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
22
|
Su N, Wang H, Zhang B, Kang Y, Guo Q, Xiao H, Yang H, Liao S. Maternal natural killer cell immunoglobulin receptor genes and human leukocyte antigen-C ligands influence recurrent spontaneous abortion in the Han Chinese population. Exp Ther Med 2018; 15:327-337. [PMID: 29387191 PMCID: PMC5769230 DOI: 10.3892/etm.2017.5406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
The underlying mechanism of recurrent spontaneous abortion (RSA) has remained elusive for many years. Several previous studies have suggested that the killer cell immunoglobulin receptor (KIR) gene family is associated with RSA, however, it is not clear exactly how. The present study detected KIR and human leukocyte antigen-C (HLA-C) genes in 110 Han Chinese women with unexplained RSA and 105 Han Chinese healthy females. The aim of the present study was to determine if certain genotypes were more susceptible to the occurrence of miscarriage. The frequency of KIR genes and different KIR haplotypes in the 2 groups demonstrated no statistical differences. However, in women who had miscarried ≥3 times, the frequency of KIR3DL1 was significantly reduced and the BB haplotype frequency was significantly higher compared with the control group. HLA-C2C2 was significantly increased in the KIR AB and KIR BB groups in the RSA groups compared with the control group. The women in the RSA group who had a homozygous HLA-C2C2 had a significantly higher frequency of the 2DS1 gene compared with the control group. The reduction of inhibitory gene and increased activation combinations may induce the activation of uterine natural killer cells, which may reduce the probability of fetal survival. To the best of our knowledge, the present study is the first report demonstrating the association between maternal KIR and HLA-C genes and RSA in women of a Han Chinese ethnicity. The present study revealed that females who miscarry ≥3 times may be used as selection criteria for RSA and so may exhibit higher research value.
Collapse
Affiliation(s)
- Ning Su
- Department of Obstetrics and Gynecology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hongdan Wang
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bowei Zhang
- International Office for Research and Development, Henan Red Cross Blood Center, Zhengzhou, Henan 450000, P.R. China
| | - Yiqing Kang
- International Office for Research and Development, Henan Red Cross Blood Center, Zhengzhou, Henan 450000, P.R. China
| | - Qiannan Guo
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hai Xiao
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hecai Yang
- International Office for Research and Development, Henan Red Cross Blood Center, Zhengzhou, Henan 450000, P.R. China
| | - Shixiu Liao
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
23
|
Baltner K, Kübler A, Pal M, Balvočiūte M, Mezger M, Handgretinger R, André MC. Expression of KIR2DS1 does not significantly contribute to NK cell cytotoxicity in HLA-C1/C2 heterozygous haplotype B donors. Int Immunol 2017; 29:423-429. [DOI: 10.1093/intimm/dxx052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Karla Baltner
- Department of Pediatric Hematology and Oncology, University Children’s Hospital, Eberhard Karls University, 72076 Tübingen, Germany
| | - Ayline Kübler
- Department of Pediatric Hematology and Oncology, University Children’s Hospital, Eberhard Karls University, 72076 Tübingen, Germany
| | - Marina Pal
- Department of Pediatric Hematology and Oncology, University Children’s Hospital, Eberhard Karls University, 72076 Tübingen, Germany
| | - Monika Balvočiūte
- Algorithms in Bioinformatics, Faculty of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Markus Mezger
- Department of Pediatric Hematology and Oncology, University Children’s Hospital, Eberhard Karls University, 72076 Tübingen, Germany
| | - Rupert Handgretinger
- Department of Pediatric Hematology and Oncology, University Children’s Hospital, Eberhard Karls University, 72076 Tübingen, Germany
| | - Maya C André
- Department of Pediatric Hematology and Oncology, University Children’s Hospital, Eberhard Karls University, 72076 Tübingen, Germany
- Department of Pediatric Intensive Care, University Children’s Hospital, 4056 Basel, Switzerland
| |
Collapse
|
24
|
Nabekura T, Lanier LL. Activating Receptors for Self-MHC Class I Enhance Effector Functions and Memory Differentiation of NK Cells during Mouse Cytomegalovirus Infection. Immunity 2017; 45:74-82. [PMID: 27438766 DOI: 10.1016/j.immuni.2016.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
Natural killer (NK) cells are important in host defense against pathogens, and they can subsequently differentiate into memory NK cells. The Ly49 and KIR gene families in rodents and humans encode both inhibitory and activating receptors for MHC class I. The physiological role of activating KIR or Ly49 receptors that recognize self-MHC class I during immune response to viral infections is unknown. Here, we address how the activating Ly49D receptor impacts the NK cell response to mouse cytomegalovirus (MCMV) infection by comparing the activation and differentiation of Ly49D-bearing NK cells in mice lacking or expressing H-2D(d), the cognate MHC class I ligand of Ly49D. After MCMV infection, Ly49D augmented IFN-γ production by MCMV-specific Ly49H(+) NK cells and preferentially promoted the generation of memory Ly49H(+) NK cells. Thus, activating receptors for self-MHC class I modulate the differentiation of MCMV-specific NK cells and are beneficial for host defense against MCMV infection.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143, USA; Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Colucci F. The role of KIR and HLA interactions in pregnancy complications. Immunogenetics 2017; 69:557-565. [PMID: 28695287 PMCID: PMC5537332 DOI: 10.1007/s00251-017-1003-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 11/26/2022]
Abstract
Combinations of KIR and HLA genes associate with pregnancy complications as well as with many other clinical scenarios. Understanding how certain KIR and HLA genes influence the biology of a disease is, however, a formidable challenge. These are the two most variable gene families in the human genome. Moreover, the biology of a disease is best understood by studying the cells of the affected tissue. Natural Killer (NK) cells express KIR and are the most abundant leukocytes in the uterus. Most of our knowledge of NK cells is based on what we have learned from cells isolated from blood, but these are different from their tissue resident counterparts, including uterine NK (uNK) cells. Reproductive immunology faces an additional challenge: Two genotypes must be considered because both maternal and foetal HLA class I molecules may influence the outcome of pregnancy, most likely through interactions with maternal KIR expressed on uNK cells. Maternal uNK cells are not spontaneously cytotoxic and instead engage in interactions with trophoblast. We hypothesise that these interactions regulate allocation of resources between the foetus and the mother and may go wrong in diseases of pregnancy.
Collapse
Affiliation(s)
- Francesco Colucci
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Box 111, Hills Road, Cambridge, CB2 0SP, UK.
- Centre for Trophoblast Research, University of Cambridge, Physiology Building, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
26
|
Blokhuis JH, Hilton HG, Guethlein LA, Norman PJ, Nemat-Gorgani N, Nakimuli A, Chazara O, Moffett A, Parham P. KIR2DS5 allotypes that recognize the C2 epitope of HLA-C are common among Africans and absent from Europeans. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:461-468. [PMID: 28685972 PMCID: PMC5691316 DOI: 10.1002/iid3.178] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 01/23/2023]
Abstract
Introduction KIR2DS5 is an activating human NK cell receptor of lineage III KIR. These include both inhibitory KIR2DL1, 2 and 3 and activating KIR2DS1 that recognize either the C1 or C2 epitope of HLA‐C. In Europeans KIR2DS5 is essentially monomorphic, with KIR2DS5*002 being predominant. Pioneering investigations showed that KIR2DS5*002 has activating potential, but cannot recognize HLA‐A, ‐B, or ‐C. Subsequent studies have shown that KIR2DS5 is highly polymorphic in Africans, and that KIR2DS5*006 protects pregnant Ugandan women from preeclampsia. Because inhibitory C2‐specific KIR2DL1 correlates with preeclampsia, whereas activating C2‐specific KIR2DS1 protects, this association pointed to KIR2DS5*006 being an activating C2‐specific receptor. To test this hypothesis we made KIR‐Fc fusion proteins from all ten KIR2DS5 allotypes and tested their binding to a representative set of HLA‐A, ‐B and ‐C allotypes. Results Six African‐specific KIR2DS5 bound to C2+HLA‐C but not to other HLA class I. Their avidity for C2 is ∼20% that of C2‐specific KIR2DL1 and ∼40% that of C2‐specific KIR2DS1. Among the African C2 receptors is KIR2DS5*006, which protected a cohort of pregnant Ugandans from pre‐eclampsia. Three African KIR2DS5 allotypes and KIR2DS5*002, bound no HLA‐A, ‐B or ‐C. As a group the C2‐binding KIR2DS5 allotypes protect against pre‐eclampsia compared to the non‐binding KIR2DS5 allotypes. Natural substitutions that contribute to loss or reduction of C2 receptor function are at positions 127, 158, and 176 in the D2 domain. Conclusions KIR2DS5*005 has the KIR2DS5 consensus sequence, is the only allele found at both centromeric and telomeric locations of KIR2DS5, and is likely the common ancestor of all KIR2DS5 alleles. That KIR2DS5*005 has C2 receptor activity, points to KIR2DS5*002, and other allotypes lacking C2 receptor function, being products of attenuation, a characteristic feature of most KIR B haplotype genes. Alleles encoding attenuated and active KIR2DS5 are present in both centromeric and telomeric locations.
Collapse
Affiliation(s)
- Jeroen H Blokhuis
- Departments of Structural Biology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Departments of Structural Biology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Annettee Nakimuli
- Department of Obstetrics and Gynaecology, Makerere University, Kampala, Uganda
| | - Olympe Chazara
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Moffett
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Peter Parham
- Departments of Structural Biology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
Bernson E, Hallner A, Sander FE, Wilsson O, Werlenius O, Rydström A, Kiffin R, Brune M, Foà R, Aurelius J, Martner A, Hellstrand K, Thorén FB. Impact of killer-immunoglobulin-like receptor and human leukocyte antigen genotypes on the efficacy of immunotherapy in acute myeloid leukemia. Leukemia 2017; 31:2552-2559. [PMID: 28529313 PMCID: PMC5729331 DOI: 10.1038/leu.2017.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
Abstract
Interactions between killer-immunoglobulin-like receptors (KIRs) and their HLA class I ligands are instrumental in natural killer (NK) cell regulation and protect normal tissue from NK cell attack. Human KIR haplotypes comprise genes encoding mainly inhibitory receptors (KIR A) or activating and inhibitory receptors (KIR B). A substantial fraction of humans lack ligands for inhibitory KIRs (iKIRs), that is, a ‘missing ligand’ genotype. KIR B/x and missing ligand genotypes may thus give rise to potentially autoreactive, unlicensed NK cells. Little is known regarding the impact of such genotypes in untransplanted acute myeloid leukemia (AML). For this study, NK cell phenotypes and KIR/HLA genotypes were determined in 81 AML patients who received immunotherapy with histamine dihydrochloride and low-dose IL-2 for relapse prevention (NCT01347996). We observed that presence of unlicensed NK cells impacted favorably on clinical outcome, in particular among patients harboring functional NK cells reflected by high expression of the natural cytotoxicity receptor (NCR) NKp46. Genotype analyses suggested that the clinical benefit of high NCR expression was restricted to patients with a missing ligand genotype and/or a KIR B/x genotype. These data imply that functional NK cells are significant anti-leukemic effector cells in patients with KIR/HLA genotypes that favor NK cell autoreactivity.
Collapse
Affiliation(s)
- E Bernson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - A Hallner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - F E Sander
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - O Wilsson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - O Werlenius
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - A Rydström
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - R Kiffin
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - M Brune
- Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - R Foà
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - J Aurelius
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - A Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - K Hellstrand
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - F B Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
van der Ploeg K, Chang C, Ivarsson MA, Moffett A, Wills MR, Trowsdale J. Modulation of Human Leukocyte Antigen-C by Human Cytomegalovirus Stimulates KIR2DS1 Recognition by Natural Killer Cells. Front Immunol 2017; 8:298. [PMID: 28424684 PMCID: PMC5372792 DOI: 10.3389/fimmu.2017.00298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 02/02/2023] Open
Abstract
The interaction of inhibitory killer cell Ig-like receptors (KIRs) with human leukocyte antigen (HLA) class I molecules has been characterized in detail. By contrast, activating members of the KIR family, although closely related to inhibitory KIRs, appear to interact weakly, if at all, with HLA class I. KIR2DS1 is the best studied activating KIR and it interacts with C2 group HLA-C (C2-HLA-C) in some assays, but not as strongly as KIR2DL1. We used a mouse 2B4 cell reporter system, which carries NFAT-green fluorescent protein with KIR2DS1 and a modified DAP12 adaptor protein. KIR2DS1 reporter cells were not activated upon coculture with 721.221 cells transfected with different HLA-C molecules, or with interferon-γ stimulated primary dermal fibroblasts. However, KIR2DS1 reporter cells and KIR2DS1+ primary natural killer (NK) cells were activated by C2-HLA-C homozygous human fetal foreskin fibroblasts (HFFFs) but only after infection with specific clones of a clinical strain of human cytomegalovirus (HCMV). Active viral gene expression was required for activation of both cell types. Primary NKG2A-KIR2DS1+ NK cell subsets degranulated after coculture with HCMV-infected HFFFs. The W6/32 antibody to HLA class I blocked the KIR2DS1 reporter cell interaction with its ligand on HCMV-infected HFFFs but did not block interaction with KIR2DL1. This implies a differential recognition of HLA-C by KIR2DL1 and KIR2DS1. The data suggest that modulation of HLA-C by HCMV is required for a potent KIR2DS1-mediated NK cell activation.
Collapse
Affiliation(s)
| | - Chiwen Chang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| |
Collapse
|
29
|
Mehta RS, Rezvani K. Can we make a better match or mismatch with KIR genotyping? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:106-118. [PMID: 27913469 PMCID: PMC6142490 DOI: 10.1182/asheducation-2016.1.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Natural killer (NK) cell function is regulated by a fine balance between numerous activating and inhibitory receptors, of which killer-cell immunoglobulin-like receptors (KIRs) are among the most polymorphic and comprehensively studied. KIRs allow NK cells to recognize downregulation or the absence of HLA class I molecules on target cells (known as missing-self), a phenomenon that is commonly observed in virally infected cells or cancer cells. Because KIR and HLA genes are located on different chromosomes, in an allogeneic environment such as after hematopoietic stem cell transplantation, donor NK cells that express an inhibitory KIR for an HLA class I molecule that is absent on recipient targets (KIR/KIR-ligand mismatch), can recognize and react to this missing self and mediate cytotoxicity. Accumulating data indicate that epistatic interactions between KIR and HLA influence outcomes in several clinical conditions. Herein, we discuss the genetic and functional features of KIR/KIR-ligand interactions in hematopoietic stem cell transplantation and how these data can guide donor selection. We will also review clinical studies of adoptive NK cell therapy in leukemia and emerging data on the use of genetically modified NK cells that could broaden the scope of cancer immunotherapy.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
30
|
Kennedy PR, Chazara O, Gardner L, Ivarsson MA, Farrell LE, Xiong S, Hiby SE, Colucci F, Sharkey AM, Moffett A. Activating KIR2DS4 Is Expressed by Uterine NK Cells and Contributes to Successful Pregnancy. THE JOURNAL OF IMMUNOLOGY 2016; 197:4292-4300. [PMID: 27815424 PMCID: PMC5114884 DOI: 10.4049/jimmunol.1601279] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022]
Abstract
Tissue-specific NK cells are abundant in the pregnant uterus and interact with invading placental trophoblast cells that transform the maternal arteries to increase the fetoplacental blood supply. Genetic case-control studies have implicated killer cell Ig-like receptor (KIR) genes and their HLA ligands in pregnancy disorders characterized by failure of trophoblast arterial transformation. Activating KIR2DS1 or KIR2DS5 (when located in the centromeric region as in Africans) lower the risk of disorders when there is a fetal HLA-C allele carrying a C2 epitope. In this study, we investigated another activating KIR, KIR2DS4, and provide genetic evidence for a similar effect when carried with KIR2DS1 KIR2DS4 is expressed by ∼45% of uterine NK (uNK) cells. Similarly to KIR2DS1, triggering of KIR2DS4 on uNK cells led to secretion of GM-CSF and other chemokines, known to promote placental trophoblast invasion. Additionally, XCL1 and CCL1, identified in a screen of 120 different cytokines, were consistently secreted upon activation of KIR2DS4 on uNK cells. Inhibitory KIR2DL5A, carried in linkage disequilibrium with KIR2DS1, is expressed by peripheral blood NK cells but not by uNK cells, highlighting the unique phenotype of uNK cells compared with peripheral blood NK cells. That KIR2DS4, KIR2DS1, and some alleles of KIR2DS5 contribute to successful pregnancy suggests that activation of uNK cells by KIR binding to HLA-C is a generic mechanism promoting trophoblast invasion into the decidua.
Collapse
Affiliation(s)
- Philippa R Kennedy
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; .,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom.,Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Olympe Chazara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Martin A Ivarsson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Lydia E Farrell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Shiqiu Xiong
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom.,Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and
| | - Susan E Hiby
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom.,Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
| | - Andrew M Sharkey
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; .,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| |
Collapse
|
31
|
Wang W, Erbe AK, Alderson KA, Phillips E, Gallenberger M, Gan J, Campana D, Hank JA, Sondel PM. Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion. Cancer Immunol Immunother 2016; 65:1047-59. [PMID: 27392940 PMCID: PMC5477646 DOI: 10.1007/s00262-016-1864-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/29/2016] [Indexed: 01/18/2023]
Abstract
Infusion of allogeneic NK cells is a potential immunotherapy for both hematopoietic malignancies and solid tumors. Interactions between killer immunoglobulin-like receptors (KIR) on human NK cells and KIR-ligands on tumor cells influence the magnitude of NK function. To obtain sufficient numbers of activated NK cells for infusion, one potent method uses cells from the K562 human erythroleukemia line that have been transfected to express activating 41BB ligand (41BBL) and membrane-bound interleukin 15 (mbIL15). The functional importance of KIRs on ex vivo expanded NK cells has not been studied in detail. We found that after a 12-day co-culture with K562-mbIL15-41BBL cells, expanded NK cells maintained inhibition specificity and prior in vivo licensing status determined by KIR/KIR-ligand interactions. Addition of an anti-CD20 antibody (rituximab) induced NK-mediated antibody-dependent cellular cytotoxicity and augmented killing of CD20+ target cells. However, partial inhibition induced by KIR/KIR-ligand interactions persisted. Finally, we found that extended co-cultures of NK cells with stimulatory cells transduced to express various KIR-ligands modified both the inhibitory and activating KIR repertoires of the expanded NK cell product. These studies demonstrate that the licensing interactions known to occur during NK ontogeny also influence NK cell function following NK expansion ex vivo with HLA-null stimulatory cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Kory A Alderson
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Emily Phillips
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Mikayla Gallenberger
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jacek Gan
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Dario Campana
- Department of Pediatrics, National University of Singapore, Singapore, Singapore
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
32
|
Boudreau JE, Liu XR, Zhao Z, Zhang A, Shultz LD, Greiner DL, Dupont B, Hsu KC. Cell-Extrinsic MHC Class I Molecule Engagement Augments Human NK Cell Education Programmed by Cell-Intrinsic MHC Class I. Immunity 2016; 45:280-91. [PMID: 27496730 DOI: 10.1016/j.immuni.2016.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/23/2016] [Accepted: 05/22/2016] [Indexed: 11/19/2022]
Abstract
The effector potential of NK cells is counterbalanced by their sensitivity to inhibition by "self" MHC class I molecules in a process called "education." In humans, interactions between inhibitory killer immunoglobulin-like receptors (KIR) and human MHC (HLA) mediate NK cell education. In HLA-B(∗)27:05(+) transgenic mice and in patients undergoing HLA-mismatched hematopoietic cell transplantation (HCT), NK cells derived from human CD34(+) stem cells were educated by HLA from both donor hematopoietic cells and host stromal cells. Furthermore, mature human KIR3DL1(+) NK cells gained reactivity after adoptive transfer to HLA-B(∗)27:05(+) mice or bone marrow chimeric mice where HLA-B(∗)27:05 was restricted to either the hematopoietic or stromal compartment. Silencing of HLA in primary NK cells diminished NK cell reactivity, while acquisition of HLA from neighboring cells increased NK cell reactivity. Altogether, these findings reveal roles for cell-extrinsic HLA in driving NK cell reactivity upward, and cell-intrinsic HLA in maintaining NK cell education.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiao-Rong Liu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zeguo Zhao
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aaron Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Dale L Greiner
- Program in Molecular Medicine Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Bo Dupont
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katharine C Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
33
|
Goodridge JP, Önfelt B, Malmberg KJ. Newtonian cell interactions shape natural killer cell education. Immunol Rev 2016; 267:197-213. [PMID: 26284479 PMCID: PMC4832384 DOI: 10.1111/imr.12325] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Newton's third law of motion states that for every action on a physical object there is an equal and opposite reaction. The dynamic change in functional potential of natural killer (NK) cells during education bears many features of such classical mechanics. Cumulative physical interactions between cells, under a constant influence of homeostatic drivers of differentiation, lead to a reactive spectrum that ultimately shapes the functionality of each NK cell. Inhibitory signaling from an array of self‐specific receptors appear not only to suppress self‐reactivity but also aid in the persistence of effector functions over time, thereby allowing the cell to gradually build up a functional potential. Conversely, the frequent non‐cytolytic interactions between normal cells in the absence of such inhibitory signaling result in continuous stimulation of the cells and attenuation of effector function. Although an innate cell, the degree to which the fate of the NK cell is predetermined versus its ability to adapt to its own environment can be revealed through a Newtonian view of NK cell education, one which is both chronological and dynamic. As such, the development of NK cell functional diversity is the product of qualitatively different physical interactions with host cells, rather than simply the sum of their signals or an imprint based on intrinsically different transcriptional programs.
Collapse
Affiliation(s)
- Jodie P Goodridge
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Björn Önfelt
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Department of Applied Physics, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Karl-Johan Malmberg
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Kitpoka P, Tammakorn C, Chaisri S, Leelayuwat C, Mongkolsuk T, Thammanichanond D. Genetic profiles of killer-cell immunoglobulin-like receptors and HLA ligands in Thai blood donors. Hum Immunol 2016; 77:470-5. [PMID: 27131859 DOI: 10.1016/j.humimm.2016.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/13/2016] [Accepted: 04/25/2016] [Indexed: 01/10/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) play an important role in natural killer (NK) cell regulation. Interaction of KIRs with human leukocyte antigen (HLA) class I molecules can transmit signals to regulate the function of NK cells. In this study, the diversities of KIR genes and their ligands in 500 Thai blood donors were investigated. The coexistence of inhibitory KIRs (iKIR), activating KIRs (aKIR) and their ligands in the same individuals were also analyzed. Overall, 36 KIR genotypes were identified. The most common genotype was genotype AA1 (40.8%). All individuals carried at least one iKIR-HLA pair whereas 18% of the individuals lacked aKIR-HLA pair. The most common compound KIR-HLA profile was the presence of 3 iKIR-HLA pairs with 1 aKIR-HLA pair (21.4%). The most common compound gene profile of KIR-HLA pairs was the combined presence of KIR2DL3-C1, 3DL1-Bw4, 3DL2-A3/A11 and the full length KIR2DS4-its ligands (8%). This study provided a comprehensive analysis of the KIR-HLA profiles in Thai blood donors in regards to KIR genotypes, HLA ligands, KIR-HLA ligand pairs and compound gene profiles of both iKIRs and aKIRs and their ligands. These findings will be useful as baseline information for further studies in the associations of KIR genes and various diseases.
Collapse
Affiliation(s)
- Pimpun Kitpoka
- Histocompatibility and Immunogenetics Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Chutima Tammakorn
- Histocompatibility and Immunogenetics Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suwit Chaisri
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Chulabhorn International College of Medicine (CICM), Thammasat University Rangsit campus, Pathum Thani 12120, Thailand
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tasanee Mongkolsuk
- Histocompatibility and Immunogenetics Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Duangtawan Thammanichanond
- Histocompatibility and Immunogenetics Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
35
|
Hens J, Jennes W, Kestens L. The role of NK cells in HIV-1 protection: autologous, allogeneic or both? AIDS Res Ther 2016; 13:15. [PMID: 26997965 PMCID: PMC4799629 DOI: 10.1186/s12981-016-0099-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 12/03/2022] Open
Abstract
Natural killer (NK) cells specialize in killing virally infected- or tumor cells and are part of the innate immune system. The activational state of NK cells is determined by the balance of incoming activating and inhibitory signals mediated by receptor-ligand binding with the target cell. These receptor-ligand bonds mainly consist of the killer immunoglobulin-like receptors (KIR), which are expressed at the cell surface of NK cells, and their ligands: the highly variable human leukocyte antigen -class I molecules (HLA). Absence of an inhibitory receptor-ligand bond lowers the NK cell activation threshold, whereas an activating receptor-ligand bond stimulates the cell, potentially overcoming this threshold and triggering NK cell activation. NK cells influence the course of infection as well as the acquisition of HIV-1. Several lines of evidence relate the activating NK cell receptor KIR3DS1, in the presence or absence of its putative ligand HLA-Bw4, with slower disease progression as well as resistance to HIV-1 infection. Overall, resistance to HIV-1 infection predominantly correlates with activating KIR/HLA profiles, consisting of e.g. activating KIRs, group B haplotypes, or inhibitory KIRs in absence of their ligands. Such a conclusion is less evident for studies of HIV-1 disease progression, with studies reporting beneficial as well as detrimental effects of activating KIR/HLA genotypes. It is likely that KIR/HLA association studies are complicated by the complexity of the KIR and HLA loci and their mutual interactions, as well as by additional factors like route of HIV exposure, immune activation, presence of co-infections, and the effect of anti-HIV-1 antibodies. One newly discovered NK cell activation pathway associated with resistance to HIV-1 infection involves the presence of an iKIR/HLA mismatch between partners. The absence of such an iKIR/HLA bond renders donor-derived allogeneic HIV-1 infected cells vulnerable to NK cell responses during HIV-1 transmission. Therefore, theoretically, HIV-1 would be eliminated before it has the chance to infect the autologous cells in the recipient. While this “alloreactive” NK cell mechanism is especially relevant to HIV transmission in monogamous couples, it would be interesting to investigate how it could influence resistance to HIV in other settings. The objective of this review is to summarize the knowledge about these autologous and alloreactive NK cell responses with regard to HIV-1 outcome.
Collapse
|
36
|
Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol Immunother 2016; 65:477-84. [PMID: 26810567 PMCID: PMC4826432 DOI: 10.1007/s00262-016-1792-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 01/01/2016] [Indexed: 01/19/2023]
Abstract
Natural killer (NK) cells have been used in several clinical trials as adaptive immunotherapy. The low numbers of these cells in peripheral blood mononuclear cells (PBMC) have resulted in various approaches to preferentially expand primary NK cells from PBMC. While some clinical trials have used the addition of interleukin 2 (IL-2) to co-stimulate the expansion of purified NK cells from allogeneic donors, recent studies have shown promising results in achieving in vitro expansion of NK cells to large numbers for adoptive immunotherapy. NK cell expansion requires multiple cell signals for survival, proliferation and activation. Thus, expansion strategies have been focused either to substitute these factors using autologous feeder cells or to use genetically modified allogeneic feeder cells. Recent developments in the clinical use of genetically modified NK cell lines with chimeric antigen receptors, the development of expansion protocols for the clinical use of NK cell from human embryonic stem cells and induced pluripotent stem cells are challenging improvements for NK cell-based immunotherapy. Transfer of several of these protocols to clinical-grade production of NK cells necessitates adaptation of good manufacturing practice conditions, and the development of freezing conditions to establish NK cell stocks will require some effort and, however, should enhance the therapeutic options of NK cells in clinical medicine.
Collapse
|
37
|
Shen M, Linn YC, Ren EC. KIR-HLA profiling shows presence of higher frequencies of strong inhibitory KIR-ligands among prognostically poor risk AML patients. Immunogenetics 2015; 68:133-44. [PMID: 26649563 DOI: 10.1007/s00251-015-0888-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022]
Abstract
The expression and interaction between killer cell immunoglobulin-like receptors (KIRs) and HLA are known to be associated with pathogenesis of diseases, including hematological malignancies. Presence of B haplotype KIR in donors is associated with a lower relapse risk for acute myeloid leukemia (AML) after hematopoietic stem cell transplants (HSCT). However, the association of KIR and HLA repertoire with disease development and other clinical features is not well studied for AML. In this study, 206 Chinese patients with AML were analyzed for their FAB subtypes, risk groups, and chemo-responsiveness to assess possible association with their KIR and HLA profile. The results revealed that a B-content score of 2 was significantly more prevalent in AML patients when compared to normal controls. Notably, there is also a differential frequency in the distribution of B haplotype KIR across distinct FAB subtypes, where the M3 subtype had significantly lower frequencies of B haplotype KIR compared to the M5 subtype (p < 0.05). In addition, the stronger inhibitory KIR ligands HLA-C2 and HLA-Bw4-80I were present in significantly higher frequencies in the prognostically "poor" risk group compared to those with "favourable" risk (p < 0.01). Taken together, these associations with clinical features of AML suggest a role of the KIR-HLA repertoire in the development and biological behavior of AML.
Collapse
Affiliation(s)
- Meixin Shen
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos #03-06, Singapore, 138648, Singapore
| | - Yeh-Ching Linn
- Department of Haematology, Singapore General Hospital, Academia, 20 College Road, Singapore, 169856, Singapore.
| | - Ee-Chee Ren
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos #03-06, Singapore, 138648, Singapore. .,Department of Microbiology, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| |
Collapse
|
38
|
Dambaeva SV, Lee DH, Sung N, Chen CY, Bao S, Gilman-Sachs A, Kwak-Kim J, Beaman KD. Recurrent Pregnancy Loss in Women with Killer Cell Immunoglobulin-Like Receptor KIR2DS1 is Associated with an Increased HLA-C2 Allelic Frequency. Am J Reprod Immunol 2015; 75:94-103. [PMID: 26589762 DOI: 10.1111/aji.12453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
PROBLEM During human pregnancy, the uterine lining is highly populated with killer-immunoglobulin-like receptor (KIR)-expressing NK cells that recognize HLA-C molecules on trophoblast cells. The goal of this study was to analyze the KIR gene contents and frequencies in a N. American cohort of women with RPL of unknown etiology to evaluate whether there is a genetic susceptibility to RPL based on a woman's KIR repertoire and her HLA-C group, as well as the HLA-C group of the partner. METHOD OF STUDY The frequencies of KIR and HLA-C1 and HLA-C2 genes were evaluated in 139 Caucasian women with RPL; HLA-C1, and HLA-C2 group genes were analyzed in their partners (n = 42). The gene frequencies were compared with data reported from corresponding populations. RESULTS Overall, the frequencies of HLA-C groups and KIR genes and genotypes in RPL cohort resembled the frequencies for US Caucasians. The HLA-C1 and HLA-C2 group distribution was significantly different between women with or without KIR2DS1. Women positive for KIR2DS1 (45.3% of the study cohort) had an increased frequency of its ligand, HLA-C2 (0.5159 versus 0.3684 in KIR2DS1 negative women, P = 0.014). CONCLUSION Our results indicate that among KIR2DS1 pos women, the co-expression of HLA-C2 is associated with RPL.
Collapse
Affiliation(s)
- Svetlana V Dambaeva
- Clinical Immunology Laboratory, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Dong Hyung Lee
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Nayoung Sung
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Chi-Yao Chen
- Clinical Immunology Laboratory, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Shihua Bao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alice Gilman-Sachs
- Clinical Immunology Laboratory, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joanne Kwak-Kim
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Clinical Immunology Laboratory, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
39
|
Sobecks RM, Wang T, Askar M, Gallagher MM, Haagenson M, Spellman S, Fernandez-Vina M, Malmberg KJ, Müller C, Battiwalla M, Gajewski J, Verneris MR, Ringdén O, Marino S, Davies S, Dehn J, Bornhäuser M, Inamoto Y, Woolfrey A, Shaw P, Pollack M, Weisdorf D, Milller J, Hurley C, Lee SJ, Hsu K. Impact of KIR and HLA Genotypes on Outcomes after Reduced-Intensity Conditioning Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2015; 21:1589-96. [PMID: 25960307 PMCID: PMC4537837 DOI: 10.1016/j.bbmt.2015.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/01/2015] [Indexed: 02/08/2023]
Abstract
Natural killer cells are regulated by killer cell immunoglobulin-like receptor (KIR) interactions with HLA class I ligands. Several models of natural killer cell reactivity have been associated with improved outcomes after myeloablative allogeneic hematopoietic cell transplantation (HCT), but this issue has not been rigorously addressed in reduced-intensity conditioning (RIC) unrelated donor (URD) HCT. We studied 909 patients undergoing RIC-URD HCT. Patients with acute myeloid leukemia (AML, n = 612) lacking ≥ 1 KIR ligands experienced higher grade III to IV acute graft-versus-host disease (GVHD) (HR, 1.6; 95% CI, 1.16 to 2.28; P = .005) compared to those with all ligands present. Absence of HLA-C2 for donor KIR2DL1 was associated with higher grade II to IV (HR, 1.4; P = .002) and III to IV acute GVHD (HR, 1.5; P = .01) compared with HLA-C2(+) patients. AML patients with KIR2DS1(+), HLA-C2 homozygous donors had greater treatment-related mortality compared with others (HR, 2.4; 95% CI, 1.4 to 4.2; P = .002) but did not experience lower relapse. There were no significant associations with outcomes for AML when assessing donor-activating KIRs or centromeric KIR content or for any donor-recipient KIR-HLA assessments in patients with myelodysplastic syndrome (n = 297). KIR-HLA combinations in RIC-URD HCT recapitulate some but not all KIR-HLA effects observed in myeloablative HCT.
Collapse
Affiliation(s)
- Ronald M Sobecks
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Medhat Askar
- Transplant Center, Cleveland Clinic, Cleveland, Ohio
| | - Meighan M Gallagher
- The Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | | | | | | | - Minoo Battiwalla
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - James Gajewski
- Division of Hematology & Medical Oncology, Center for Hematologic Malignancies, Oregon Health and Science University, Portland, Oregon
| | - Michael R Verneris
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Olle Ringdén
- Department of Therapeutic Immunology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susana Marino
- Department of Pathology, University of Chicago Hospitals, Chicago, Illinois
| | - Stella Davies
- Department of Pediatrics, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Jason Dehn
- Immunogenetic Operations and Research, National Marrow Donor Program, Minneapolis, Minnesota
| | | | - Yoshihiro Inamoto
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ann Woolfrey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Pediatrics, University of Washington, Seattle, Washington
| | - Peter Shaw
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Marilyn Pollack
- Department of Pathology, Histocompatibility and Immunogenetics Laboratory, Children's Hospital, Oakland, California
| | - Daniel Weisdorf
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey Milller
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Carolyn Hurley
- Department of Oncology, Georgetown University Hospital, Washington, DC
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Katharine Hsu
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
40
|
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol 2015; 6:368. [PMID: 26284063 PMCID: PMC4515552 DOI: 10.3389/fimmu.2015.00368] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
41
|
Pittari G, Filippini P, Gentilcore G, Grivel JC, Rutella S. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies. Front Immunol 2015; 6:230. [PMID: 26029215 PMCID: PMC4429635 DOI: 10.3389/fimmu.2015.00230] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/29/2015] [Indexed: 01/29/2023] Open
Abstract
Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors, NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols. Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.
Collapse
Affiliation(s)
- Gianfranco Pittari
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation , Doha , Qatar
| | - Perla Filippini
- Deep Immunophenotyping Core, Division of Translational Medicine, Sidra Medical and Research Center , Doha , Qatar
| | - Giusy Gentilcore
- Deep Immunophenotyping Core, Division of Translational Medicine, Sidra Medical and Research Center , Doha , Qatar
| | - Jean-Charles Grivel
- Deep Immunophenotyping Core, Division of Translational Medicine, Sidra Medical and Research Center , Doha , Qatar
| | - Sergio Rutella
- Clinical Research Center, Division of Translational Medicine, Sidra Medical and Research Center , Doha , Qatar
| |
Collapse
|
42
|
Sullivan EM, Jeha S, Kang G, Cheng C, Rooney B, Holladay M, Bari R, Schell S, Tuggle M, Pui CH, Leung W. NK cell genotype and phenotype at diagnosis of acute lymphoblastic leukemia correlate with postinduction residual disease. Clin Cancer Res 2014; 20:5986-94. [PMID: 25281696 DOI: 10.1158/1078-0432.ccr-14-0479] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Not all natural killer (NK) cells are equally cytotoxic against leukemia because of differences in receptor gene content and surface expression. We correlated NK cell genotype and phenotype at diagnosis of childhood acute lymphoblastic leukemia (ALL) with minimal residual disease (MRD) after induction chemotherapy. EXPERIMENTAL DESIGN The NK cells and leukemia blasts of 244 patients were analyzed at diagnosis by killer-cell immunoglobulin-like receptor (KIR) typing and immunophenotyping. The results were correlated statistically with postinduction MRD status. RESULTS The odds of being MRD positive in patients with KIR telomeric (Tel)-A/B genotype were 2.85 times the odds in those with Tel-A/A genotype (P = 0.035). MRD-positive patients were more likely to have KIR2DL5A (P = 0.006) and expressed less activating receptor NKp46 and FASL on their NK cells (P = 0.0074 and P = 0.029, respectively). The odds of being MRD positive increased by 2.01-fold for every percentage increase in NK cells expressing KIR2DL1 in the presence of HLA-C2 ligand (P = 0.034). The quantity of granzyme B inhibitor PI-9 in the leukemia blasts was greater in patients who were MRD positive (P = 0.038). Collectively, five NK cell-related factors (Tel-B-associated KIR2DL5A, NKp46, FASL, granzyme B, and PI-9) are strongly associated with MRD positivity at the end of induction with 100% sensitivity and 80% specificity. CONCLUSIONS Our data support the hypothesis that NK cells with a strong effector phenotype in the setting of decreased leukemia resistance are associated with better leukemia control.
Collapse
Affiliation(s)
- Erin M Sullivan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee. University of Tennessee Health Science Center, Memphis, Tennessee
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Barbara Rooney
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martha Holladay
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rafijul Bari
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sarah Schell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - MaCal Tuggle
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee. University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wing Leung
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee. University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
43
|
Zhao XY, Chang YJ, Xu LP, Zhang XH, Liu KY, Li D, Huang XJ. HLA and KIR genotyping correlates with relapse after T-cell-replete haploidentical transplantation in chronic myeloid leukaemia patients. Br J Cancer 2014; 111:1080-8. [PMID: 25077441 PMCID: PMC4453853 DOI: 10.1038/bjc.2014.423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 11/21/2022] Open
Abstract
Background: Conflicting results have been reported regarding the predicative roles of alloreactive natural killer (NK) cells on the outcomes of transplantation in leukaemia patients. Methods: We prospectively analysed the human leukocyte antigen (HLA) typing of donor–recipient pairs and the KIR typing of the donors in 97 CML patients to address the predictive roles of NK cells in relapse undergoing T-cell-replete haploidentical transplantation. Results: Patients with class I ligands for the donor-inhibitory KIR gene exhibited decreased molecular and haematologic relapse rates (P=0.003 and P=0.015, respectively). There was a significantly reduced risk of molecular and haematologic relapse in patients with HLA-C1C2 or C2C2 who accepted donors with KIR2DS1 or in patients with HLA-Bw4 who accepted donors with KIR3DS1 (‘recipient with relevant KIR ligand for donor-activating KIR', n=25), compared with the remaining transplants (n=72, P=0.009 and P=0.009, respectively). In addition, the presence of class I ligand in the recipients of donor-activating KIR contributed to a decreased relapse rate in patients lacking class I ligand in the recipient of donor-inhibitory KIR (P=0.04 and P=0.03, respectively). Conclusions: This study suggests that the presence of class I ligands for the donor-activating or donor-inhibitory KIR gene in the recipient might confer some protection against leukaemic relapse in T-cell-replete haploidentical transplantation.
Collapse
Affiliation(s)
- X-Y Zhao
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y-J Chang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L-P Xu
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X-H Zhang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - K-Y Liu
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - D Li
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X-J Huang
- 1] Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China [2] Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
44
|
Rolstad B. The early days of NK cells: an example of how a phenomenon led to detection of a novel immune receptor system - lessons from a rat model. Front Immunol 2014; 5:283. [PMID: 24982659 PMCID: PMC4058755 DOI: 10.3389/fimmu.2014.00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023] Open
Abstract
In this review, I summarize some of the early research on NK cell biology and function that led to the discovery of a totally new receptor system for polymorphic MHC class I molecules. That NK cells both could recognize and kill tumor cells but also normal hematopoietic cells through expression of MHC class I molecules found a unifying explanation in the “missing self” hypothesis. This initiated a whole new area of leukocyte receptor research. The common underlying mechanism was that NK cells expressed receptors that were inhibited by recognition of unmodified “self” MHC-I molecules. This could explain both the killing of tumor cells with poor expression of MHC-I molecules and hybrid resistance, i.e., that F1 hybrid mice sometimes could reject parental bone marrow cells. However, a contrasting phenomenon termed allogeneic lymphocyte cytotoxicity in rats gave strong evidence that some of these receptors were activated rather than inhibited by recognition of polymorphic MHC-I. This was soon followed by molecular identification of both inhibitory and stimulatory Ly49 receptors in mice and rats and killer cell immunoglobulin-like receptors in humans that could be either inhibited or activated when recognizing their cognate MHC-I ligand. Since most of these receptors now have been molecularly characterized, their ligands and the intracellular pathways leading to activation or inhibition identified, we still lack a more complete understanding of how the repertoire of activating and inhibitory receptors is formed and how interactions between these receptors for MHC-I molecules on a single NK cell are integrated to generate a productive immune response. Although several NK receptor systems have been characterized that recognize MHC-I or MHC-like molecules, I here concentrate on the repertoires of NK receptors encoded by the natural killer cell gene complex and designed to recognize polymorphic MHC-I molecules in rodents, i.e., Ly49 (KLRA) receptors.
Collapse
Affiliation(s)
- Bent Rolstad
- Immunobiological Laboratory, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| |
Collapse
|
45
|
Ivarsson MA, Michaëlsson J, Fauriat C. Activating killer cell Ig-like receptors in health and disease. Front Immunol 2014; 5:184. [PMID: 24795726 PMCID: PMC4001058 DOI: 10.3389/fimmu.2014.00184] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/07/2014] [Indexed: 01/08/2023] Open
Abstract
Expression of non-rearranged HLA class I-binding receptors characterizes human and mouse NK cells. The postulation of the missing-self hypothesis some 30 years ago triggered the subsequent search and discovery of inhibitory MHC-receptors, both in humans and mice. These receptors have two functions: (i) to control the threshold for NK cell activation, a process termed “licensing” or “education,” and (ii) to inhibit NK cell activation during interactions with healthy HLA class I-expressing cells. The discovery of activating forms of KIRs (aKIR) challenged the concept of NK cell tolerance in steady state, as well as during immune challenge: what is the biological role of the activating KIR, in particular when NK cells express aKIRs in the absence of inhibitory receptors? Recently it was shown that aKIRs also participate in the education of NK cells. However, instead of lowering the threshold of activation like iKIRs, the expression of aKIRs has the opposite effect, i.e., rendering NK cells hyporesponsive. These findings may have consequences during NK cell response to viral infection, in cancer development, and in the initial stages of pregnancy. Here we review the current knowledge of activating KIRs, including the biological concept of aKIR-dependent NK cell education, and their impact in health and disease.
Collapse
Affiliation(s)
- Martin A Ivarsson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Cyril Fauriat
- U1068, CRCM, Immunity and Cancer, INSERM , Marseille , France ; Institut Paoli-Calmettes , Marseille , France ; UM 105, Aix-Marseille Université , Marseille , France ; UMR 7258, CNRS , Marseille , France ; U1068, CRCM, Plateforme d'Immunomonitoring en Cancérologie, INSERM , Marseille , France
| |
Collapse
|
46
|
Chouaib S, Pittari G, Nanbakhsh A, El Ayoubi H, Amsellem S, Bourhis JH, Spanholtz J. Improving the outcome of leukemia by natural killer cell-based immunotherapeutic strategies. Front Immunol 2014; 5:95. [PMID: 24672522 PMCID: PMC3956082 DOI: 10.3389/fimmu.2014.00095] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/23/2014] [Indexed: 12/31/2022] Open
Abstract
Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells are widely recognized as potent anti-leukemia mediators. Alloreactive donor NK cells have been shown to improve the outcome of allogeneic stem-cell transplantation for leukemia. In addition, in vivo transfer of NK cells may soon reveal an important therapeutic tool for leukemia, if tolerance to NK-mediated anti-leukemia effects is overcome. This will require, at a minimum, the ex vivo generation of a clinically safe NK cell product containing adequate numbers of NK cells with robust anti-leukemia potential. Ideally, ex vivo generated NK cells should also have similar anti-leukemia potential in different patients, and be easy to obtain for convenient clinical scale-up. Moreover, optimal clinical protocols for NK therapy in leukemia and other cancers are still lacking. These and other issues are being currently addressed by multiple research groups. This review will first describe current laboratory NK cell expansion and differentiation techniques by separately addressing different NK cell sources. Subsequently, it will address the mechanisms known to be responsible for NK cell alloreactivity, as well as their clinical impact in the hematopoietic stem cells transplantation setting. Finally, it will briefly provide insight on past NK-based clinical trials.
Collapse
Affiliation(s)
- Salem Chouaib
- INSERM U753, Institut de Cancérologie Gustave Roussy , Villejuif , France
| | - Gianfranco Pittari
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation , Doha , Qatar
| | - Arash Nanbakhsh
- INSERM U753, Institut de Cancérologie Gustave Roussy , Villejuif , France
| | - Hanadi El Ayoubi
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation , Doha , Qatar
| | - Sophie Amsellem
- Centre d'Investigation Clinique Biothérapies, Institut Gustave Roussy , Villejuif , France
| | - Jean-Henri Bourhis
- Département d'Hématologie Clinique, Institut de Cancérologie Gustave Roussy , Villejuif , France
| | - Jan Spanholtz
- Glycostem Therapeutics , Hertogenbosch , Netherlands
| |
Collapse
|
47
|
Czaja K, Borer AS, Schmied L, Terszowski G, Stern M, Gonzalez A. A comprehensive analysis of the binding of anti-KIR antibodies to activating KIRs. Genes Immun 2013; 15:33-7. [DOI: 10.1038/gene.2013.58] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/23/2013] [Accepted: 10/03/2013] [Indexed: 11/09/2022]
|
48
|
O'Reilly RJ. Allelic polymorphisms of inhibitory killer immunoglobulin-like receptor natural killer cell function can also influence the graft-versus-leukemia response. J Clin Oncol 2013; 31:3742-5. [PMID: 24043738 DOI: 10.1200/jco.2013.50.2138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Xiong S, Sharkey AM, Kennedy PR, Gardner L, Farrell LE, Chazara O, Bauer J, Hiby SE, Colucci F, Moffett A. Maternal uterine NK cell-activating receptor KIR2DS1 enhances placentation. J Clin Invest 2013; 123:4264-72. [PMID: 24091323 DOI: 10.1172/jci68991] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
Reduced trophoblast invasion and vascular conversion in decidua are thought to be the primary defect of common pregnancy disorders including preeclampsia and fetal growth restriction. Genetic studies suggest these conditions are linked to combinations of polymorphic killer cell Ig-like receptor (KIR) genes expressed by maternal decidual NK cells (dNK) and HLA-C genes expressed by fetal trophoblast. Inhibitory KIR2DL1 and activating KIR2DS1 both bind HLA-C2, but confer increased risk or protection from pregnancy disorders, respectively. The mechanisms underlying these genetic associations with opposing outcomes are unknown. We show that KIR2DS1 is highly expressed in dNK, stimulating strong activation of KIR2DS1+ dNK. We used microarrays to identify additional responses triggered by binding of KIR2DS1 or KIR2DL1 to HLA-C2 and found different responses in dNK coexpressing KIR2DS1 with KIR2DL1 compared with dNK only expressing KIR2DL1. Activation of KIR2DS1+ dNK by HLA-C2 stimulated production of soluble products including GM-CSF, detected by intracellular FACS and ELISA. We demonstrated that GM-CSF enhanced migration of primary trophoblast and JEG-3 trophoblast cells in vitro. These findings provide a molecular mechanism explaining how recognition of HLA class I molecules on fetal trophoblast by an activating KIR on maternal dNK may be beneficial for placentation.
Collapse
|