1
|
Wang W, Jin Z, Kong M, Yan Z, Fu L, Du X. Single-Cell Transcriptomic Profiling Unveils Dynamic Immune Cell Responses during Haemonchus contortus Infection. Cells 2024; 13:842. [PMID: 38786064 PMCID: PMC11120485 DOI: 10.3390/cells13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Haemonchus contortus is a parasite widely distributed in tropical, subtropical, and warm temperate regions, causing significant economic losses in the livestock industry worldwide. However, little is known about the genetics of H. contortus resistance in livestock. In this study, we monitor the dynamic immune cell responses in diverse peripheral blood mononuclear cells (PBMCs) during H. contortus infection in goats through single-cell RNA sequencing (scRNA-Seq) analysis. METHODS AND RESULTS A total of four Boer goats, two goats with oral infection with the L3 larvae of H. contortus and two healthy goats as controls, were used in the animal test. The infection model in goats was established and validated by the fecal egg count (FEC) test and qPCR analysis of the gene expression of IL-5 and IL-6. Using scRNA-Seq, we identified seven cell types, including T cells, monocytes, natural killer cells, B cells, and dendritic cells with distinct gene expression signatures. After identifying cell subpopulations of differentially expressed genes (DEGs) in the case and control groups, we observed the upregulation of multiple inflammation-associated genes, including NFKBIA and NFKBID. Kyoto Encyclopedia of the Genome (KEGG) enrichment analysis revealed significant enrichment of NOD-like receptor pathways and Th1/Th2 cell differentiation signaling pathways in CD4 T cells DEGs. Furthermore, the analysis of ligand-receptor interaction networks showed a more active state of cellular communication in the PBMCs from the case group, and the inflammatory response associated MIF-(CD74 + CXCR4) ligand receptor complex was significantly more activated in the case group, suggesting a potential inflammatory response. CONCLUSIONS Our study preliminarily revealed transcriptomic profiling characterizing the cell type specific mechanisms in host PBMCs at the single-cell level during H. contortus infection.
Collapse
Affiliation(s)
- Wenxuan Wang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhe Jin
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Kong
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuofan Yan
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiaoyong Du
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zelante T, Paolicelli G, Fallarino F, Gargaro M, Vascelli G, De Zuani M, Fric J, Laznickova P, Kohoutkova MH, Macchiarulo A, Dolciami D, Pieraccini G, Gaetani L, Scalisi G, Trevisan C, Frossi B, Pucillo C, De Luca A, Nunzi E, Spaccapelo R, Pariano M, Borghi M, Boscaro F, Romoli R, Mancini A, Gentili L, Renga G, Costantini C, Puccetti M, Giovagnoli S, Ricci M, Antonini M, Calabresi P, Puccetti P, Di Filippo M, Romani L. A microbially produced AhR ligand promotes a Tph1-driven tolerogenic program in multiple sclerosis. Sci Rep 2024; 14:6651. [PMID: 38509264 PMCID: PMC10954611 DOI: 10.1038/s41598-024-57400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy.
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy.
| | - Giuseppe Paolicelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Gianluca Vascelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco De Zuani
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Fric
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 20, Prague, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petra Laznickova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Marcela Hortova Kohoutkova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Antonio Macchiarulo
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Daniela Dolciami
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Lorenzo Gaetani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Caterina Trevisan
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Barbara Frossi
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Carlo Pucillo
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Andrea Mancini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Lucia Gentili
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Martina Antonini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Paolo Calabresi
- Unità di Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Massimiliano Di Filippo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| |
Collapse
|
3
|
Guth C, Schumacher PP, Vijayakumar A, Borgmann H, Balles H, Koschel M, Risch F, Lenz B, Hoerauf A, Hübner MP, Ajendra J. Eosinophils Are an Endogenous Source of Interleukin-4 during Filarial Infections and Contribute to the Development of an Optimal T Helper 2 Response. J Innate Immun 2024; 16:159-172. [PMID: 38354709 PMCID: PMC10932553 DOI: 10.1159/000536357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Interleukin-4 (IL-4) is a central regulator of type 2 immunity, crucial for the defense against multicellular parasites like helminths. This study focuses on its roles and cellular sources during Litomosoides sigmodontis infection, a model for human filarial infections. METHODS Utilizing an IL-4 secretion assay, investigation into the sources of IL-4 during the progression of L. sigmodontis infection was conducted. The impact of eosinophils on the Th2 response was investigated through experiments involving dblGATA mice, which lack eosinophils and, consequently, eosinophil-derived IL-4. RESULTS The absence of eosinophils notably influenced Th2 polarization, leading to impaired production of type 2 cytokines. Interestingly, despite this eosinophil deficiency, macrophage polarization, proliferation, and antibody production remained unaffected. CONCLUSION Our research uncovers eosinophils as a major source of IL-4, especially during the early phase of filarial infection. Consequently, these findings shed new light on IL-4 dynamics and eosinophil effector functions in filarial infections.
Collapse
Affiliation(s)
- Cécile Guth
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Pia Philippa Schumacher
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Archena Vijayakumar
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Hannah Borgmann
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Helene Balles
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Cunningham KT, Mills KHG. Modulation of haematopoiesis by protozoal and helminth parasites. Parasite Immunol 2023; 45:e12975. [PMID: 36797216 PMCID: PMC10909493 DOI: 10.1111/pim.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
During inflammation, haematopoietic stem cells (HSCs) in the bone marrow (BM) and periphery rapidly expand and preferentially differentiate into myeloid cells that mediate innate immune responses. HSCs can be directed into quiescence or differentiation by sensing alterations to the haematopoietic niche, including cytokines, chemokines, and pathogen-derived products. Most studies attempting to identify the mechanisms of haematopoiesis have focused on bacterial and viral infections. From intracellular protozoan infections to large multicellular worms, parasites are a global health burden and represent major immunological challenges that remain poorly defined in the context of haematopoiesis. Immune responses to parasites vary drastically, and parasites have developed sophisticated immunomodulatory mechanisms that allow development of chronic infections. Recent advances in imaging, genomic sequencing, and mouse models have shed new light on how parasites induce unique forms of emergency haematopoiesis. In addition, parasites can modify the haematopoiesis in the BM and periphery to improve their survival in the host. Parasites can also induce long-lasting modifications to HSCs, altering future immune responses to infection, inflammation or transplantation, a term sometimes referred to as central trained immunity. In this review, we highlight the current understanding of parasite-induced haematopoiesis and how parasites target this process to promote chronic infections.
Collapse
Affiliation(s)
- Kyle T. Cunningham
- Wellcome Centre for Integrative ParasitologyInstitute of Infection and Immunity, University of GlasgowGlasgowUK
| | - Kingston H. G. Mills
- Immune Regulation Research GroupTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
| |
Collapse
|
5
|
Pajulas A, Fu Y, Cheung CCL, Chu M, Cannon A, Alakhras N, Zhang J, Ulrich BJ, Nelson AS, Zhou B, Kaplan MH. Interleukin-9 promotes mast cell progenitor proliferation and CCR2-dependent mast cell migration in allergic airway inflammation. Mucosal Immunol 2023; 16:432-445. [PMID: 37172907 PMCID: PMC10482122 DOI: 10.1016/j.mucimm.2023.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Allergic asthma is a chronic lung disease characterized by airway hyperresponsiveness and cellular infiltration that is exacerbated by immunoglobulin E-dependent mast cell (MC) activation. Interleukin-9 (IL-9) promotes MC expansion during allergic inflammation but precisely how IL-9 expands tissue MCs and promotes MC function is unclear. In this report, using multiple models of allergic airway inflammation, we show that both mature MCs (mMCs) and MC progenitors (MCp) express IL-9R and respond to IL-9 during allergic inflammation. IL-9 acts on MCp in the bone marrow and lungs to enhance proliferative capacity. Furthermore, IL-9 in the lung stimulates the mobilization of CCR2+ mMC from the bone marrow and recruitment to the allergic lung. Mixed bone marrow chimeras demonstrate that these are intrinsic effects in the MCp and mMC populations. IL-9-producing T cells are both necessary and sufficient to increase MC numbers in the lung in the context of allergic inflammation. Importantly, T cell IL-9-mediated MC expansion is required for the development of antigen-induced and MC-dependent airway hyperreactivity. Collectively, these data demonstrate that T cell IL-9 induces lung MC expansion and migration by direct effects on the proliferation of MCp and the migration of mMC to mediate airway hyperreactivity.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Cherry C L Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Michelle Chu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Nada Alakhras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA.
| |
Collapse
|
6
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
7
|
St John AL, Rathore APS, Ginhoux F. New perspectives on the origins and heterogeneity of mast cells. Nat Rev Immunol 2023; 23:55-68. [PMID: 35610312 DOI: 10.1038/s41577-022-00731-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/06/2023]
Abstract
Mast cells are immune cells of the haematopoietic lineage that are now thought to have multifaceted functions during homeostasis and in various disease states. Furthermore, while mast cells have been known for a long time to contribute to allergic disease in adults, recent studies, mainly in mice, have highlighted their early origins during fetal development and potential for immune functions, including allergic responses, in early life. Our understanding of the imprinting of mast cells by particular tissues of residence and their potential for regulatory interactions with organ systems such as the peripheral immune, nervous and vascular systems is also rapidly evolving. Here, we discuss the origins of mast cells and their diverse and plastic phenotypes that are influenced by tissue residence. We explore how divergent phenotypes and functions might result from both their hard-wired 'nature' defined by their ontogeny and the 'nurture' they receive within specialized tissue microenvironments.
Collapse
Affiliation(s)
- Ashley L St John
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Florent Ginhoux
- Singapore Immunology Network, A*STAR, Singapore, Singapore.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
8
|
Puzzovio PG, Brüggemann TR, Pahima H, Mankuta D, Levy BD, Levi-Schaffer F. Cromolyn Sodium differentially regulates human mast cell and mouse leukocyte responses to control allergic inflammation. Pharmacol Res 2022; 178:106172. [PMID: 35278626 DOI: 10.1016/j.phrs.2022.106172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cromolyn Sodium (CS) has been used in the past as an anti-allergy drug owing to its mast cell (MC) stabilizing properties that impair histamine release. However, additional mechanisms for its clinical actions are likely and might help to identify new roles for MCs and leukocytes in regulating inflammation. Here, using human cord blood-derived MCs (CBMCs), murine bone marrow-derived MCs (BMMCs) and eosinophils (BMEos), and in vivo mouse models of allergic inflammation (AI), additional actions of CS on MCs were determined. METHODS The in vitro effects of CS on IgE-activated human and mouse MCs were assessed by measuring the levels of pro-inflammatory (tryptase, LTC4, IL-8, CD48) and pro-resolution effectors (IL-10, CD300a, Annexin A1) before and after CS treatment. The in vivo effects of daily CS injections on parameters of inflammation were assessed using mouse models of allergic peritonitis (AP) (Ovalbumin/Alum- or Ovalbumin/S. aureus enterotoxin B) and allergic airways inflammation (AAI) (house dust mite (HDM)). RESULTS In vitro, CS did not affect pro-inflammatory effectors but significantly increased the anti-inflammatory/pro-resolution CD300a levels and IL-10 release from IgE-activated CBMCs. BMMCs were not affected by CS. In vivo, CS injections decreased total cell and Eos numbers in the peritoneal cavity in the AP models and bronchoalveolar lavage and lungs in the AAI model. CS reduced EPX release from PAF-activated BMEos in vitro, possibly explaining the in vivo findings. CONCLUSION Together, these results demonstrate immunomodulatory actions for CS in AI that are broader than only MC stabilization.
Collapse
Affiliation(s)
- Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thayse R Brüggemann
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Mankuta
- Department of Obstetrics and Gynaecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Méndez-Enríquez E, Salomonsson M, Eriksson J, Janson C, Malinovschi A, Sellin ME, Hallgren J. IgE cross-linking induces activation of human and mouse mast cell progenitors. J Allergy Clin Immunol 2021; 149:1458-1463. [PMID: 34492259 DOI: 10.1016/j.jaci.2021.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The concept of innate and adaptive effector cells that are repleted by maturing inert progenitor cell populations is changing. Mast cells develop from rare mast cell progenitors populating peripheral tissues at homeostatic conditions, or as a result of induced recruitment during inflammatory conditions. OBJECTIVE Because FcεRI-expressing mast cell progenitors are the dominating mast cell type during acute allergic lung inflammation in vivo, we hypothesized that they are activated by IgE cross-linking. METHODS Mouse peritoneal and human peripheral blood cells were sensitized and stimulated with antigen, or stimulated with anti-IgE, and the mast cell progenitor population analyzed for signs of activation by flow cytometry. Isolated peritoneal mast cell progenitors were studied before and after anti-IgE stimulation at single-cell level by time-lapse fluorescence microscopy. Lung mast cell progenitors were analyzed for their ability to produce IL-13 by intracellular flow cytometry in a mouse model of ovalbumin-induced allergic airway inflammation. RESULTS Sensitized mouse peritoneal mast cell progenitors demonstrate increased levels of phosphorylation of tyrosines on intracellular proteins (total tyrosine phosphorylation), and spleen tyrosine kinase (Syk) phosphorylation after antigen exposure. Anti-IgE induced cell surface-associated lysomal-associated membrane protein-1 (LAMP-1) in naive mast cell progenitors, and prompted loss of fluorescence signal and altered morphology of isolated cells loaded with lysotracker. In human mast cell progenitors, anti-IgE increased total tyrosine phosphorylation, cell surface-associated LAMP-1, and CD63. Lung mast cell progenitors from mice with ovalbumin-induced allergic airway inflammation produce IL-13. CONCLUSIONS Mast cell progenitors become activated by IgE cross-linking and may contribute to the pathology associated with acute allergic airway inflammation.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Maya Salomonsson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Jens Eriksson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Dwyer DF, Austen KF. The Discovery of Discrete Developmental Pathways Directing Constitutive and Induced Mast Cells in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:359-361. [PMID: 34644258 DOI: 10.4049/jimmunol.2100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Daniel F Dwyer
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, MA
| | - K Frank Austen
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Identification of Murine Basophils by Flow Cytometry and Histology. Methods Mol Biol 2020. [PMID: 32766990 DOI: 10.1007/978-1-0716-0696-4_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Here, we describe how murine basophils can be detected in vivo by flow cytometry and immunofluorescence staining. Basophils constitute a homogeneous population of CD4-CD19-CD49b+IgE+ cells in flow cytometric analysis. When IgE levels are low, one can also use anti-FcεRI or anti-CD200R3 antibodies instead of anti-IgE. For immunofluorescence staining, we use an anti-Mcpt8 antibody since Mcpt8 is a specific marker for murine basophils. We describe how to prepare the tissue to cut cryo-sections and how to perform the staining using a tyramide-based amplification kit.
Collapse
|
12
|
Inclan-Rico JM, Hernandez CM, Henry EK, Federman HG, Sy CB, Ponessa JJ, Lemenze AD, Joseph N, Soteropoulos P, Beaulieu AM, Yap GS, Siracusa MC. Trichinella spiralis-induced mastocytosis and erythropoiesis are simultaneously supported by a bipotent mast cell/erythrocyte precursor cell. PLoS Pathog 2020; 16:e1008579. [PMID: 32421753 PMCID: PMC7259795 DOI: 10.1371/journal.ppat.1008579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/29/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Anti-helminth responses require robust type 2 cytokine production that simultaneously promotes worm expulsion and initiates the resolution of helminth-induced wounds and hemorrhaging. However, how infection-induced changes in hematopoiesis contribute to these seemingly distinct processes remains unknown. Recent studies have suggested the existence of a hematopoietic progenitor with dual mast cell-erythrocyte potential. Nonetheless, whether and how these progenitors contribute to host protection during an active infection remains to be defined. Here, we employed single cell RNA-sequencing and identified that the metabolic enzyme, carbonic anhydrase (Car) 1 marks a predefined bone marrow-resident hematopoietic progenitor cell (HPC) population. Next, we generated a Car1-reporter mouse model and found that Car1-GFP positive progenitors represent bipotent mast cell/erythrocyte precursors. Finally, we show that Car1-expressing HPCs simultaneously support mast cell and erythrocyte responses during Trichinella spiralis infection. Collectively, these data suggest that mast cell/erythrocyte precursors are mobilized to promote type 2 cytokine responses and alleviate helminth-induced blood loss, developmentally linking these processes. Collectively, these studies reveal unappreciated hematopoietic events initiated by the host to combat helminth parasites and provide insight into the evolutionary pressure that may have shaped the developmental relationship between mast cells and erythrocytes. Helminth parasites infect approximately 2 billion people and represent a significant public health concern. Helminths undertake complex developmental life cycles through multiple organs and as a result cause substantial tissue damage. To combat this, mammals have evolved mechanisms to initiate balanced immune responses that promote inflammation needed to seclude parasites in granulomas, reduce parasitic burdens and mitigate the consequences of helminth-induced wounds. Despite their clinical importance, the mechanisms that regulate these events remain poorly defined. Here we have uncovered a unique progenitor cell that supports both proinflammatory mast cell responses and red blood cell development, thereby simultaneously initiating both of these host-protective responses. Collectively, these studies reveal unappreciated events initiated by the host to combat pathogens that infect billions of individuals worldwide.
Collapse
Affiliation(s)
- Juan M. Inclan-Rico
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Everett K. Henry
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Chandler B. Sy
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - John J. Ponessa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Alexander D. Lemenze
- The Department of Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Nathanael Joseph
- The Genomics Center, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Patricia Soteropoulos
- The Genomics Center, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Aimee M. Beaulieu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - George S. Yap
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
13
|
Méndez-Enríquez E, Hallgren J. Mast Cells and Their Progenitors in Allergic Asthma. Front Immunol 2019; 10:821. [PMID: 31191511 PMCID: PMC6548814 DOI: 10.3389/fimmu.2019.00821] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mast cells and their mediators have been implicated in the pathogenesis of asthma and allergy for decades. Allergic asthma is a complex chronic lung disease in which several different immune cells, genetic factors and environmental exposures influence the pathology. Mast cells are key players in the asthmatic response through secretion of a multitude of mediators with pro-inflammatory and airway-constrictive effects. Well-known mast cell mediators, such as histamine and bioactive lipids are responsible for many of the physiological effects observed in the acute phase of allergic reactions. The accumulation of mast cells at particular sites of the allergic lung is likely relevant to the asthma phenotype, severity and progression. Mast cells located in different compartments in the lung and airways have different characteristics and express different mediators. According to in vivo experiments in mice, lung mast cells develop from mast cell progenitors induced by inflammatory stimuli to migrate to the airways. Human mast cell progenitors have been identified in the blood circulation. A high frequency of circulating human mast cell progenitors may reflect ongoing pathological changes in the allergic lung. In allergic asthma, mast cells become activated mainly via IgE-mediated crosslinking of the high affinity receptor for IgE (FcεRI) with allergens. However, mast cells can also be activated by numerous other stimuli e.g. toll-like receptors and MAS-related G protein-coupled receptor X2. In this review, we summarize research with implications on the role and development of mast cells and their progenitors in allergic asthma and cover selected activation pathways and mast cell mediators that have been implicated in the pathogenesis. The review places an emphasis on describing mechanisms identified using in vivo mouse models and data obtained by analysis of clinical samples.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Mast cells as protectors of health. J Allergy Clin Immunol 2018; 144:S4-S18. [PMID: 30468774 DOI: 10.1016/j.jaci.2018.10.054] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs), which are well known for their effector functions in TH2-skewed allergic and also autoimmune inflammation, have become increasingly acknowledged for their role in protection of health. It is now clear that they are also key modulators of immune responses at interface organs, such as the skin or gut. MCs can prime tissues for adequate inflammatory responses and cooperate with dendritic cells in T-cell activation. They also regulate harmful immune responses in trauma and help to successfully orchestrate pregnancy. This review focuses on the beneficial effects of MCs on tissue homeostasis and elimination of toxins or venoms. MCs can enhance pathogen clearance in many bacterial, viral, and parasitic infections, such as through Toll-like receptor 2-triggered degranulation, secretion of antimicrobial cathelicidins, neutrophil recruitment, or provision of extracellular DNA traps. The role of MCs in tumors is more ambiguous; however, encouraging new findings show they can change the tumor microenvironment toward antitumor immunity when adequately triggered. Uterine tissue remodeling by α-chymase (mast cell protease [MCP] 5) is crucial for successful embryo implantation. MCP-4 and the tryptase MCP-6 emerge to be protective in central nervous system trauma by reducing inflammatory damage and excessive scar formation, thereby protecting axon growth. Last but not least, proteases, such as carboxypeptidase A, released by FcεRI-activated MCs detoxify an increasing number of venoms and endogenous toxins. A better understanding of the plasticity of MCs will help improve these advantageous effects and hint at ways to cut down detrimental MC actions.
Collapse
|
15
|
Modulation of TLR2 and TLR4 in Macrophages Following Trichinella Spiralis Infection. Helminthologia 2018; 55:195-203. [PMID: 31662647 PMCID: PMC6662015 DOI: 10.2478/helm-2018-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 02/20/2018] [Indexed: 11/20/2022] Open
Abstract
Parasitic helminthes can suppress and/or regulate the host immune response to allow long-term survival and chronic infection where toll-like receptors (TLRs) expressed on macrophages play essential roles in response to parasitic infection. Semi-quantitative PCR and flow cytometry studies about the modulation of TLRs and cytokine profiles in macrophages following T. spiralis infection were performed. TLRs, MyD88 and NF-κB were up-regulated by T. spiralis infection and essential to the parasite life cycles. Cytokines profiles (IL-6, IL-10, IL-12, TNF-α) were modulated during T. spiralis infection. Results suggest that T. spiralis infection may regulate the expression of TLR4 on macrophages and TLR4/MyD88/NF-κB signaling pathways. This study provides further insights into the mechanisms of TLR-mediated post-inflammatory response during T. spiralis infection.
Collapse
|
16
|
Toyoshima S, Wakamatsu E, Ishida Y, Obata Y, Kurashima Y, Kiyono H, Abe R. The spleen is the site where mast cells are induced in the development of food allergy. Int Immunol 2017; 29:31-45. [PMID: 28177443 DOI: 10.1093/intimm/dxx005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/25/2017] [Indexed: 12/18/2022] Open
Abstract
It has been reported that splenic immune responses play pivotal roles in the development of allergic diseases; however, the precise role of the spleen remains unclear. Herein, we demonstrated a novel role of the spleen in the pathogenesis of food allergy (FA). We found that mast cells (MCs) developed from progenitor cells present in spleen during an antigen-specific T-cell response in vitro. In a Th2 response-mediated FA model, significant expansion of MCs was also observed in spleen. The incidence of allergic diarrhea was profoundly reduced in splenectomized mice, whereas adoptive transfer of in vitro-induced splenic MCs into these mice restored allergic symptoms, suggesting that the splenic MCs functioned as the pathogenic cells in the development of FA. The in vitro-generated MCs required not only IL-3 but also IFN-γ, and treatment of FA-induced mice with anti-IFN-γ antibody suppressed expansion of MCs in spleen as well as diarrhea development, highlighting that IFN-γ in the spleen orchestrated the development of FA, which was followed by a Th2 response in the local lesion. Overall, we propose that the role of the spleen in the development of FA is to provide a unique site where antigen-specific T cells induce development of pathogenic MCs.
Collapse
Affiliation(s)
- Shota Toyoshima
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan.,Allergy and Immunology Project Group, Research Institute of Medical Science, Center for Institutional Research and Medical Education, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Ei Wakamatsu
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Yasuo Ishida
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Chiba 299-0111, Japan
| | - Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Yosuke Kurashima
- Division of Mucosal Immunology, Department of Microbiology and Immunology.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Innovative Medicine, Graduate School of Medicine.,Institute for Global Prominent Research.,Departments of Mucosal Immunology and Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Departments of Mucosal Immunology and Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| |
Collapse
|
17
|
The role of rare innate immune cells in Type 2 immune activation against parasitic helminths. Parasitology 2017; 144:1288-1301. [PMID: 28583216 DOI: 10.1017/s0031182017000488] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles - located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.
Collapse
|
18
|
Li X, Chen S, Huang S, Lu F. Mast cell activator compound 48/40 is not an effective adjuvant for UV-attenuated Toxoplasma gondii vaccine. Parasitol Res 2017; 116:2347-2353. [PMID: 28573462 DOI: 10.1007/s00436-017-5522-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/22/2017] [Indexed: 12/23/2022]
Abstract
Toxoplasma gondii (T. gondii, Tg) is a globally distributed parasitic protozoan causing different forms of toxoplasmosis in humans. Mast cells (MCs) play a role during T. gondii infection. Several studies suggest that MC activator compound 48/80 (C48/80) may be an effective vaccine adjuvant resulting in a potent and protective antigen-specific immune response against bacteria or virus infections. The present study was performed to determine whether C48/80 had adjuvant activity for ultraviolet (UV)-attenuated T. gondii vaccine to induce protective immune responses against T. gondii in mouse model. Kunming mice were divided into the following groups: naive mice, naive mice administrated with C48/80 intraperitoneal (i.p.) injection, mice infected by i.p. injection of 104 T. gondii RH strain alone (Tg group), mice infected with 104 RH tachyzoites plus C48/80 administration (Tg + C48/80), mice immunized with UV-Tg alone, and mice immunized with UV-Tg plus C48/80 administration (UV-Tg + C48/80). All the vaccinated mice were challenged with 104 tachyzoites of T. gondii RH strain at the same time as the primary infection. The survival rates, liver histopathologies, liver parasite burdens, and mRNA expression levels of Th1 and Th2 cytokines in the livers and spleens detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were compared among the aforementioned groups after primary infection or challenge infection. The results showed that, compared to the Tg group or Tg + C48/80 group, the UV-Tg + Tg group and UV-Tg + C48/80 + Tg group had significantly prolonged survival time, lower liver histopathological scores, decreased liver parasite burdens, and increased levels of Th1 and Th2 cytokines in the livers and spleens. There was no significant difference of survival time between the UV-Tg + Tg group and the UV-Tg + C48/80 + Tg group; however, the UV-Tg + C48/80 + Tg group showed higher parasite burden, more severe liver histopathology, and decreased IL-4 level compared to the UV-Tg + Tg group. These results indicate that C48/80 had no adjuvant activity for the immunization induced by UV-attenuated T. gondii vaccine.
Collapse
Affiliation(s)
- Xi Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shengjie Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shiguang Huang
- Jinan University School of Stomatology, Guangzhou, 510632, Guangdong, China.
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
19
|
Barrett NA, Austen KF. Licensed to Ill: IL-9 Generation in Immature Mast Cells Permits Food-Elicited Anaphylaxis. Immunity 2016; 43:626-8. [PMID: 26488812 DOI: 10.1016/j.immuni.2015.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Food-specific IgE is central to the pathobiology of food allergy, but not sufficient to induce disease. Chen et al. (2015) demonstrate that food-elicited reactions require an immature mast cell that generates IL-9 to induce its own maturation.
Collapse
Affiliation(s)
- Nora A Barrett
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - K Frank Austen
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Huang X, Nie S, Xie M. Interaction between gut immunity and polysaccharides. Crit Rev Food Sci Nutr 2015; 57:2943-2955. [DOI: 10.1080/10408398.2015.1079165] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Induction of Interleukin-9-Producing Mucosal Mast Cells Promotes Susceptibility to IgE-Mediated Experimental Food Allergy. Immunity 2015; 43:788-802. [PMID: 26410628 DOI: 10.1016/j.immuni.2015.08.020] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 01/03/2023]
Abstract
Experimental IgE-mediated food allergy depends on intestinal anaphylaxis driven by interleukin-9 (IL-9). However, the primary cellular source of IL-9 and the mechanisms underlying the susceptibility to food-induced intestinal anaphylaxis remain unclear. Herein, we have reported the identification of multifunctional IL-9-producing mucosal mast cells (MMC9s) that can secrete prodigious amounts of IL-9 and IL-13 in response to IL-33, and mast cell protease-1 (MCPt-1) in response to antigen and IgE complex crosslinking, respectively. Repeated intragastric antigen challenge induced MMC9 development that required T cells, IL-4, and STAT6 transcription factor, but not IL-9 signals. Mice ablated of MMC9 induction failed to develop intestinal mastocytosis, which resulted in decreased food allergy symptoms that could be restored by adoptively transferred MMC9s. Finally, atopic patients that developed food allergy displayed increased intestinal expression of Il9- and MC-specific transcripts. Thus, the induction of MMC9s is a pivotal step to acquire the susceptibility to IgE-mediated food allergy.
Collapse
|
22
|
Estrada-Reyes ZM, López-Reyes AG, Lagunas-Martínez A, Ramírez- Vargas G, Olazarán-Jenkins S, Hernández-Romano J, Mendoza-de-Gives P, López-Arellano ME. Relative expression analysis ofIL-5andIL-6genes in tropical sheep breed Pelibuey infected withHaemonchus contortus. Parasite Immunol 2015; 37:446-52. [DOI: 10.1111/pim.12211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/12/2014] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - G. Ramírez- Vargas
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Jiutepec Morelos Mexico
| | - S. Olazarán-Jenkins
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Jiutepec Morelos Mexico
| | | | - P. Mendoza-de-Gives
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Jiutepec Morelos Mexico
| | - M. E. López-Arellano
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Jiutepec Morelos Mexico
| |
Collapse
|
23
|
Murine and human mast cell progenitors. Eur J Pharmacol 2015; 778:2-10. [PMID: 26164789 DOI: 10.1016/j.ejphar.2015.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
The development of mature mast cells (MCs) from hematopoietic progenitor cells as well as the identification and characterization of committed progenitor cells are a current focus of mast cell research. Most published reports in this area are on the origin and differentiation of MCs in mice. Evidence for the human system, i.e. derived from primary human MCs, is widely lacking. Based on the published data, MCs develop either from a committed progenitor or from a common basophil/mast cell precursor. This review summarizes the current knowledge on MC development and MC differentiation.
Collapse
|
24
|
Fang Y, Xiang Z. Roles and relevance of mast cells in infection and vaccination. J Biomed Res 2015; 30:253-63. [PMID: 26565602 PMCID: PMC4946316 DOI: 10.7555/jbr.30.20150038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/08/2015] [Accepted: 04/26/2015] [Indexed: 01/06/2023] Open
Abstract
In addition to their well-established role in allergy mast cells have been described as contributing to functional regulation of both innate and adaptive immune responses in host defense. Mast cells are of hematopoietic origin but typically complete their differentiation in tissues where they express immune regulatory functions by releasing diverse mediators and cytokines. Mast cells are abundant at mucosal tissues which are portals of entry for common infectious agents in addition to allergens. Here, we review the current understanding of the participation of mast cells in defense against infection. We also discuss possibilities of exploiting mast cell activation to provide adequate adjuvant activity that is needed in high-quality vaccination against infectious diseases.
Collapse
Affiliation(s)
- Yu Fang
- Department of Microbiology and Immunology; Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg 40530, Sweden.
| |
Collapse
|
25
|
Graham AC, Temple RM, Obar JJ. Mast cells and influenza a virus: association with allergic responses and beyond. Front Immunol 2015; 6:238. [PMID: 26042121 PMCID: PMC4435071 DOI: 10.3389/fimmu.2015.00238] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/01/2015] [Indexed: 12/07/2022] Open
Abstract
Influenza A virus (IAV) is a widespread infectious agent commonly found in mammalian and avian species. In humans, IAV is a respiratory pathogen that causes seasonal infections associated with significant morbidity in young and elderly populations, and has a large economic impact. Moreover, IAV has the potential to cause both zoonotic spillover infection and global pandemics, which have significantly greater morbidity and mortality across all ages. The pathology associated with these pandemic and spillover infections appear to be the result of an excessive inflammatory response leading to severe lung damage, which likely predisposes the lungs for secondary bacterial infections. The lung is protected from pathogens by alveolar epithelial cells, endothelial cells, tissue resident alveolar macrophages, dendritic cells, and mast cells. The importance of mast cells during bacterial and parasitic infections has been extensively studied; yet, the role of these hematopoietic cells during viral infections is only beginning to emerge. Recently, it has been shown that mast cells can be directly activated in response to IAV, releasing mediators such histamine, proteases, leukotrienes, inflammatory cytokines, and antiviral chemokines, which participate in the excessive inflammatory and pathological response observed during IAV infections. In this review, we will examine the relationship between mast cells and IAV, and discuss the role of mast cells as a potential drug target during highly pathological IAV infections. Finally, we proposed an emerging role for mast cells in other viral infections associated with significant host pathology.
Collapse
Affiliation(s)
- Amy C Graham
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA
| | - Rachel M Temple
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA
| | - Joshua J Obar
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA
| |
Collapse
|
26
|
Bankova LG, Dwyer DF, Liu AY, Austen KF, Gurish MF. Maturation of mast cell progenitors to mucosal mast cells during allergic pulmonary inflammation in mice. Mucosal Immunol 2015; 8:596-606. [PMID: 25291985 PMCID: PMC4390399 DOI: 10.1038/mi.2014.91] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/04/2014] [Indexed: 02/04/2023]
Abstract
In contrast to resident constitutive mast cells (CMCs), mucosal MCs (MMCs) appear in the lung and trachea of sensitized mice only following inhalation challenge. We monitored the influx and maturation of MCs by their expression of Kit, FcɛRI, β7-integrin and side scatter (SSC) by flow cytometry. Influx of MC progenitors (MCps) (FcɛRI(lo), Kit(int), β7(hi), and SSC(lo)) peaks 1 day after challenges and subsides to baseline by day 7 after challenge. The mature MMCs appear as a distinct population on day 7 and peak at day 14 with higher SSC and FcɛRI expression, but lower β7 and Kit expression. A distinct transitional population is present between 1 and 7 days after challenge. Maturation occurs more rapidly in the trachea. The resident tracheal CMCs had higher SSC, FcɛRI, and Kit and lower β7-integrin expression than the MMCs. By histology, the MMCs follow similar kinetics to the flow cytometry-identified mature MMCs and are notably persistent for >42 days. Steroid treatment reduced inflammation and MCp influx but had no effect on established MMCs. Thus, changes in SSC, FcɛRI, and Kit together with the expression of αE/α4:β7-integrins characterizes the development of induced MMCs from MCps and distinguishes them from resident CMCs in the trachea and large airways.
Collapse
Affiliation(s)
- LG Bankova
- Division of Rheumatology, Immunology and Allergy, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - DF Dwyer
- Division of Rheumatology, Immunology and Allergy, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - AY Liu
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - KF Austen
- Division of Rheumatology, Immunology and Allergy, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - MF Gurish
- Division of Rheumatology, Immunology and Allergy, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
27
|
Methods for the study of mast cell recruitment and accumulation in different tissues. Methods Mol Biol 2014; 1220:69-78. [PMID: 25388245 DOI: 10.1007/978-1-4939-1568-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mast cells (MC) are important effector cells involved in a wide range of inflammatory diseases. The lineage-committed, tissue-localized progenitor (MCp) is not easily identified histochemically like the mature MC because they lack the distinctive cytoplasmic granules. However, they can be identified by their unique cell surface phenotype and by their ability to be expanded in culture using selective growth factors. Here we describe the methods that allow evaluation of MCp and mature MC in peripheral tissues under basal and inflammatory conditions. Thus, one can enumerate mature MC as well as immature committed progenitors in order to study basal homing, inflammatory recruitment, maturation, and life span. We also provide an analysis of difficulties that could emerge during these procedures.
Collapse
|
28
|
Deho' L, Leoni C, Brodie TM, Montagner S, De Simone M, Polletti S, Barozzi I, Natoli G, Monticelli S. Two functionally distinct subsets of mast cells discriminated By IL-2-independent CD25 activities. THE JOURNAL OF IMMUNOLOGY 2014; 193:2196-206. [PMID: 25063866 DOI: 10.4049/jimmunol.1400516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We identified two mast cell subsets characterized by the differential expression of surface CD25 (IL-2Rα) and by different abilities to produce cytokines and to proliferate, both in vitro and in vivo. CD25 can be expressed on the surface of immune cells in the absence of the other chains of the IL-2R, which are indispensable for IL-2 signaling. We show that functional differences between the two mast cell populations were dependent on CD25 itself, which directly modulated proliferation and cytokine responses. These effects were completely independent from IL-2 or the expression of the other chains of the high-affinity IL-2R, indicating an autonomous and previously unappreciated role for CD25 in regulating cell functions. Cells genetically ablated for CD25 completely recapitulated the CD25-negative phenotype and never acquired the properties characteristic of CD25-positive mast cells. Finally, adoptive transfer experiments in the mouse demonstrated a different impact of these populations in models of anaphylaxis and contact sensitivity. Our findings indicate a general role for CD25 in contexts where IL-2 signaling is not involved, and may have important implications for all mast cell-related diseases, as well as in all cell types expressing CD25 independently of its IL-2-related functions.
Collapse
Affiliation(s)
- Lorenzo Deho'
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | - Tess M Brodie
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | - Sara Montagner
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | - Marco De Simone
- National Institute for Molecular Genetics, 20122 Milan, Italy; and
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Iros Barozzi
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland;
| |
Collapse
|
29
|
Bakocevic N, Claser C, Yoshikawa S, Jones LA, Chew S, Goh CC, Malleret B, Larbi A, Ginhoux F, de Lafaille MC, Karasuyama H, Renia L, Ng LG. CD41 is a reliable identification and activation marker for murine basophils in the steady state and during helminth and malarial infections. Eur J Immunol 2014; 44:1823-34. [DOI: 10.1002/eji.201344254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/29/2014] [Accepted: 02/27/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Nadja Bakocevic
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Carla Claser
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Soichiro Yoshikawa
- Department of Immune Regulation; Tokyo Medical and Dental University Graduate School; Tokyo Japan
| | - Leigh Ann Jones
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Samantha Chew
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Maria Curotto de Lafaille
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Hajime Karasuyama
- Department of Immune Regulation; Tokyo Medical and Dental University Graduate School; Tokyo Japan
| | - Laurent Renia
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN); Agency for Science Technology and Research (A*STAR); Biopolis Singapore
| |
Collapse
|
30
|
Dahlin JS, Hallgren J. Mast cell progenitors: origin, development and migration to tissues. Mol Immunol 2014; 63:9-17. [PMID: 24598075 DOI: 10.1016/j.molimm.2014.01.018] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
Mast cells in tissues are developed from mast cell progenitors emerging from the bone marrow in a process highly regulated by transcription factors. Through the advancement of the multicolor flow cytometry technique, the mast cell progenitor population in the mouse has been characterized in terms of surface markers. However, only cell populations with enriched mast cell capability have been described in human. In naïve mice, the peripheral tissues have a constitutive pool of mast cell progenitors. Upon infections in the gut and in allergic inflammation in the lung, the local mast cell progenitor numbers increase tremendously. This review focuses on the origin and development of mast cell progenitors. Furthermore, the evidences for cells and molecules that govern the migration of these cells in mice in vivo are described.
Collapse
Affiliation(s)
- Joakim S Dahlin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|