1
|
Fonte C, Jacob P, Vanet A, Ghislin S, Frippiat JP. Hindlimb unloading, a physiological model of microgravity, modifies the murine bone marrow IgM repertoire in a similar manner as aging but less strongly. Immun Ageing 2023; 20:64. [PMID: 37986079 PMCID: PMC10659048 DOI: 10.1186/s12979-023-00393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The spaceflight environment is an extreme environment that affects the immune system of approximately 50% of astronauts. With planned long-duration missions, such as the deployment of the Lunar Gateway and possible interplanetary missions, it is mandatory to determine how all components of the immune system are affected, which will allow the establishment of countermeasures to preserve astronaut health. However, despite being an important component of the immune system, antibody-mediated humoral immunity has rarely been investigated in the context of the effects of the space environment. It has previously been demonstrated that 30 days aboard the BION-M1 satellite and 21 days of hindlimb unloading (HU), a model classically used to mimic the effects of microgravity, decrease murine B lymphopoiesis. Furthermore, modifications in B lymphopoiesis reported in young mice subjected to 21 days of HU were shown to be similar to those observed in aged mice (18-22 months). Since the primary antibody repertoire composed of IgM is created by V(D) J recombination during B lymphopoiesis, the objective of this study was to assess the degree of similarity between changes in the bone marrow IgM repertoire and in the V(D)J recombination process in 2.5-month-old mice subjected to 21 days of HU and aged (18 months) mice. RESULTS We found that in 21 days, HU induced changes in the IgM repertoire that were approximately 3-fold less than those in aged mice, which is a rapid effect. Bone remodeling and epigenetics likely mediate these changes. Indeed, we previously demonstrated a significant decrease in tibial morphometric parameters from day 6 of HU and a progressive reduction in these parameters until day 21 of HU, and it has been shown that age and microgravity induce epigenetic changes. CONCLUSION These data reveal novel immune changes that are akin to advanced aging and underline the importance of studying the effects of spaceflight on antibody-mediated humoral immunity.
Collapse
Affiliation(s)
- Coralie Fonte
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Pauline Jacob
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Anne Vanet
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France.
| |
Collapse
|
2
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
4
|
Plantone D, Pardini M, Locci S, Nobili F, De Stefano N. B Lymphocytes in Alzheimer's Disease-A Comprehensive Review. J Alzheimers Dis 2022; 88:1241-1262. [PMID: 35754274 DOI: 10.3233/jad-220261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative dementia and is characterized by extracellular amyloid-β (Aβ) deposition, pathologic intracellular tau protein tangles, and neuronal loss. Increasing evidence has been accumulating over the past years, supporting a pivotal role of inflammation in the pathogenesis of AD. Microglia, monocytes, astrocytes, and neurons have been shown to play a major role in AD-associated inflammation. However recent studies showed that the role of both T and B lymphocytes may be important. In particular, B lymphocytes are the cornerstone of humoral immunity, they constitute a heterogenous population of immune cells, being their mature subsets significantly impacted by the inflammatory milieu. The role of B lymphocytes on AD pathogenesis is gaining interest for several reasons. Indeed, the majority of elderly people develop the process of "inflammaging", which is characterized by increased blood levels of proinflammatory molecules associated with an elevated susceptibility to chronic diseases. Epitope-specific alteration pattern of naturally occurring antibodies targeting the amino-terminus and the mid-domain of Aβ in both plasma and cerebrospinal fluid has been described in AD patients. Moreover, a possible therapeutic role of B lymphocytes depletion was recently demonstrated in murine AD models. Interestingly, active immunization against Aβ and tau, one of the main therapeutic strategies under investigation, depend on B lymphocytes. Finally. several molecules being tested in AD clinical trials can modify the homeostasis of B cells. This review summarizes the evidence supporting the role of B lymphocytes in AD from the pathogenesis to the possible therapeutic implications.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Myc-Interacting Zinc Finger Protein 1 (Miz-1) Is Essential to Maintain Homeostasis and Immunocompetence of the B Cell Lineage. BIOLOGY 2022; 11:biology11040504. [PMID: 35453704 PMCID: PMC9027237 DOI: 10.3390/biology11040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Aging of the immune system is described as a progressive loss of the ability to respond to immunologic stimuli and is commonly referred to as immunosenescence. B cell immunosenescence is characterized by a decreased differentiation rate in the bone marrow and accumulation of antigen-experienced and age-associated B cells in secondary lymphoid organs (SLOs). A specific deletion of the POZ-domain of the transcription factor Miz-1 in pro-B cells, which is known to be involved in bone marrow hematopoiesis, leads to premature aging of the B cell lineage. In mice, this causes a severe reduction in bone marrow-derived B cells with a drastic decrease from the pre-B cell stage on. Further, mature, naïve cells in SLOs are reduced at an early age, while post-activation-associated subpopulations increase prematurely. We propose that Miz-1 interferes at several key regulatory checkpoints, critical during B cell aging, and counteracts a premature loss of immunocompetence. This enables the use of our mouse model to gain further insights into mechanisms of B cell aging and it can significantly contribute to understand molecular causes of impaired adaptive immune responses to counteract loss of immunocompetence and restore a functional immune response in the elderly.
Collapse
|
6
|
Savage P. Chemotherapy Curability in Leukemia, Lymphoma, Germ Cell Tumors and Gestational Malignancies: A Reflection of the Unique Physiology of Their Cells of Origin. Front Genet 2020; 11:426. [PMID: 32582272 PMCID: PMC7295948 DOI: 10.3389/fgene.2020.00426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic DNA damaging chemotherapy brings clinical benefits in the treatment of many metastatic malignancies. However routine curative treatment remains restricted to a small number of malignancies including acute leukemia, high grade lymphoma, germ cell tumors, gestational malignancies and some of the rare childhood cancers. The detailed explanation for this dramatic divergence in outcomes remains to be elucidated. However, we have previously argued that there is a strong correlation between presence of the unique genetic events of immunoglobulin gene variable/diversity/joining (VDJ) recombination, somatic hypermutation (SHM), meiosis, nuclear fusion and gastrulation occurring in cells of origin of these malignancies and their high sensitivity to DNA damaging chemotherapy. In this study we have reviewed some of the basic physiological information relating to the specialized activity and sensitivity to DNA damage mediated apoptosis of normal cells undergoing these processes. In each of unique genetic events there are dramatic changes in apoptotic sensitivity. In VDJ recombination and somatic hypermutation over 95% of the cells involved undergo apoptosis, whilst in meiosis and nuclear fusion there are dramatic short term increases in the apoptotic sensitivity to DNA damage. It is apparent that each of the malignancies arising during these processes retains some of the unique phenotype associated with it. The impact of the physiological differences is most clearly seen in the two non-mutational malignancies. Gestational choriocarcinoma which arises shortly after nuclear fusion is routinely curable with chemotherapy whilst CIMP-positive ependymomas which is not linked to any of the unique genetic events is highly resistant. A similar pattern is found in a pair of malignancies driven by a single driver mutation. Infantile acute lymphoblastic leukemia (ALL) arises in a cell undergoing the early stages of VDJ recombination and has a 40% cure rate in contrast pediatric rhabdoid malignancy which is not linked to a unique genetic event responds very poorly to chemotherapy treatment. The physiological changes occurring in cancer cells at the time of the malignant transformation appear to have a major impact on the subsequent sensitivity to chemotherapy and curability. New therapies that impact on these pathways may be of therapeutic value.
Collapse
Affiliation(s)
- Philip Savage
- Department of Oncology, Brighton and Sussex University Hospitals, Brighton, United Kingdom
| |
Collapse
|
7
|
Labi V, Derudder E. Cell signaling and the aging of B cells. Exp Gerontol 2020; 138:110985. [PMID: 32504658 DOI: 10.1016/j.exger.2020.110985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
The uniqueness of each B cell lies in the structural diversity of the B-cell antigen receptor allowing the virtually limitless recognition of antigens, a necessity to protect individuals against a range of challenges. B-cell development and response to stimulation are exquisitely regulated by a group of cell surface receptors modulating various signaling cascades and their associated genetic programs. The effects of these signaling pathways in optimal antibody-mediated immunity or the aberrant promotion of immune pathologies have been intensely researched in the past in young individuals. In contrast, we are only beginning to understand the contribution of these pathways to the changes in B cells of old organisms. Thus, critical transcription factors such as E2A and STAT5 show differential expression or activity between young and old B cells. As a result, B-cell physiology appears altered, and antibody production is impaired. Here, we discuss selected phenotypic changes during B-cell aging and attempt to relate them to alterations of molecular mechanisms.
Collapse
Affiliation(s)
- Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
8
|
Hagen M, Derudder E. Inflammation and the Alteration of B-Cell Physiology in Aging. Gerontology 2019; 66:105-113. [PMID: 31553969 DOI: 10.1159/000501963] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Aging results for the immune system in a departure from the optimal homeostatic state seen in young organisms. This divergence regrettably contributes to a higher frequency of compromised responses to infections and inefficient classical vaccination in aged populations. In B cells, the cornerstone of humoral immunity, the development and distribution of the various mature B cell subsets are impacted by aging in both humans and mice. In addition, aged mature B cells demonstrate limited capacity to mount efficient antibody responses. An expected culprit for the decline in effective immunity is the rise of the systemic levels of pro-inflammatory molecules during aging, establishing a chronic low-grade inflammation. Indeed, numerous alterations affecting directly or indirectly B cells in old people and mice are reminiscent of various effects of acute inflammation on this cell type in young adults. The present mini-review will highlight the possible adverse contributions of the persistent low-level inflammation observed in susceptible older organisms to the inadequate B-cell physiology.
Collapse
Affiliation(s)
- Magdalena Hagen
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria,
| |
Collapse
|
9
|
Ma S, Wang C, Mao X, Hao Y. B Cell Dysfunction Associated With Aging and Autoimmune Diseases. Front Immunol 2019; 10:318. [PMID: 30873171 PMCID: PMC6400972 DOI: 10.3389/fimmu.2019.00318] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Impaired humoral responses, as well as an increased propensity for autoimmunity, play an important role in the development of immune system dysfunction associated with aging. Accumulation of a subset of atypical B cells, termed age-associated B cells (ABCs), is one of the key age-related changes in B cell compartments. ABCs are characterized by their distinct phenotypes, gene expression profiles, special survival requirements, variations in B cell receptor repertoires, and unique functions. Here, we summarize recent progress in the knowledge base related to the features of ABCs, their potential role in immune senescence, and their relationship with autoimmune diseases.
Collapse
Affiliation(s)
- Shiliang Ma
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengwei Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinru Mao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Wu H, Shao Q. The role of inhibitor of binding or differentiation 2 in the development and differentiation of immune cells. Immunobiology 2018; 224:142-146. [PMID: 30340915 DOI: 10.1016/j.imbio.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022]
Abstract
Inhibitor of binding or differentiation 2 (Id2), a member of helix-loop-helix (HLH) transcriptional factors, is recently reported as an important regulator of the development or differentiation of immune cells. It has been demonstrated that Id2 plays a critical role in the early lymphopoiesis. However, it has been discovered recently that Id2 displays new functions in different immune cells. In the adaptive immune cells, Id2 is required for determining T-cell subsets and B cells. In addition, Id2 is also involved in the development of innate immune cells, including dendritic cells (DCs), natural killer (NK) cells, and other innate lymphoid cells (ILCs). Here, we review the current reports about the role of Id2 in the development or differentiation of main immune cells.
Collapse
Affiliation(s)
- Haojie Wu
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang 212001, Jiangsu, P.R. China; Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China
| | - Qixiang Shao
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang 212001, Jiangsu, P.R. China; Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| |
Collapse
|
11
|
Rother MB, Jensen K, van der Burg M, van de Bovenkamp FS, Kroek R, van IJcken WFJ, van der Velden VHJ, Cupedo T, Olstad OK, van Dongen JJM, van Zelm MC. Decreased IL7Rα and TdT expression underlie the skewed immunoglobulin repertoire of human B-cell precursors from fetal origin. Sci Rep 2016; 6:33924. [PMID: 27658954 PMCID: PMC5034271 DOI: 10.1038/srep33924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022] Open
Abstract
Newborns are unable to mount antibody responses towards certain antigens. This has been related to the restricted repertoire of immunoglobulin (Ig) genes of their B cells. The mechanisms underlying the restricted fetal Ig gene repertoire are currently unresolved. We here addressed this with detailed molecular and cellular analysis of human precursor-B cells from fetal liver, fetal bone marrow (BM), and pediatric BM. In the absence of selection processes, fetal B-cell progenitors more frequently used proximal V, D and J genes in complete IGH gene rearrangements, despite normal Ig locus contraction. Fewer N-nucleotides were added in IGH gene rearrangements in the context of low TdT and XRCC4 expression. Moreover, fetal progenitor-B cells expressed lower levels of IL7Rα than their pediatric counterparts. Analysis of progenitor-B cells from IL7Rα-deficient patients revealed that TdT expression and N-nucleotides additions in Dh-Jh junctions were dependent on functional IL7Rα. Thus, IL7Rα affects TdT expression, and decreased expression of this receptor underlies at least in part the skewed Ig repertoire formation in fetal B-cell precursors. These new insights provide a better understanding of the formation of adaptive immunity in the developing fetus.
Collapse
Affiliation(s)
- Magdalena B. Rother
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kristin Jensen
- Department of Medical Biochemistry, Oslo University Hospital, Norway
- Volvat Medical Center, Oslo, Norway
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Roel Kroek
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | - Tom Cupedo
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ole K. Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Norway
- Volvat Medical Center, Oslo, Norway
| | | | - Menno C. van Zelm
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Rother MB, Schreurs MWJ, Kroek R, Bartol SJW, van Dongen JJM, van Zelm MC. The Human Thymus Is Enriched for Autoreactive B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:441-8. [DOI: 10.4049/jimmunol.1501992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/06/2016] [Indexed: 01/26/2023]
|
13
|
Rother MB, Palstra RJ, Jhunjhunwala S, van Kester KAM, van IJcken WFJ, Hendriks RW, van Dongen JJM, Murre C, van Zelm MC. Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci. Nucleic Acids Res 2016; 44:175-86. [PMID: 26384565 PMCID: PMC4705691 DOI: 10.1093/nar/gkv928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/31/2022] Open
Abstract
Progenitor-B cells recombine their immunoglobulin (Ig) loci to create unique antigen receptors. Despite a common recombination machinery, the Ig heavy and Ig light chain loci rearrange in a stepwise manner. We studied pre-pro-B cells and Rag(-/-) progenitor-B cells to determine whether Ig locus contraction or nuclear positioning is decisive for stepwise rearrangements. We found that both Ig loci were contracted in pro-B and pre-B cells. Igh relocated from the nuclear lamina to central domains only at the pro-B cell stage, whereas, Igκ remained sequestered at the lamina, and only at the pre-B cell stage located to central nuclear domains. Finally, in vitro induced re-positioning of Ig alleles away from the nuclear periphery increased germline transcription of Ig loci in pre-pro-B cells. Thus, Ig locus contraction juxtaposes genomically distant elements to mediate efficient recombination, however, sequential positioning of Ig loci away from the nuclear periphery determines stage-specific accessibility of Ig loci.
Collapse
Affiliation(s)
- Magdalena B Rother
- Department of Immunology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Suchit Jhunjhunwala
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Kevin A M van Kester
- Department of Immunology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Cornelis Murre
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
14
|
Polgárová K, Vášková M, Froňková E, Slámová L, Kalina T, Mejstříková E, Dobiášová A, Fišer K, Hrušák O. Quantitative expression of regulatory and differentiation-related genes in the key steps of human hematopoiesis: The LeukoStage Database. Differentiation 2015; 91:19-28. [PMID: 26674556 DOI: 10.1016/j.diff.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/23/2015] [Accepted: 11/13/2015] [Indexed: 11/28/2022]
Abstract
Differentiation during hematopoiesis leads to the generation of many cell types with specific functions. At various stages of maturation, the cells may change pathologically, leading to diseases including acute leukemias (ALs). Expression levels of regulatory molecules (such as the IKZF, GATA, HOX, FOX, NOTCH and CEBP families, as well as SPI-1/PU1 and PAX5) and lineage-specific molecules (including CD2, CD14, CD79A, and BLNK) may be compared between pathological and physiological cells. Although the key steps of differentiation are known, the available databases focus mainly on fully differentiated cells as a reference. Precursor cells may be a more appropriate reference point for diseases that evolve at immature stages. Therefore, we developed a quantitative real-time polymerase chain reaction (qPCR) array to investigate 90 genes that are characteristic of the lymphoid or myeloid lineages and/or are thought to be involved in their regulation. Using this array, sorted cells of granulocytic, monocytic, T and B lineages were analyzed. For each of these lineages, 3-5 differentiation stages were selected (17 stages total), and cells were sorted from 3 different donors per stage. The qPCR results were compared to similarly processed AL cells of lymphoblastic (n=18) or myeloid (n=6) origins and biphenotypic AL cells of B cell origin with myeloid involvement (n=5). Molecules characteristic of each lineage were found. In addition, cells of a newly discovered switching lymphoblastic AL (swALL) were sorted at various phases during the supposed transdifferentiation from an immature B cell to a monocytic phenotype. As demonstrated previously, gene expression changed along with the immunophenotype. The qPCR data are publicly available in the LeukoStage Database in which gene expression in malignant and non-malignant cells of different lineages can be explored graphically and differentially expressed genes can be identified. In addition, the LeukoStage Database can aid the functional analyses of next-generation sequencing data.
Collapse
Affiliation(s)
- K Polgárová
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic
| | - M Vášková
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic
| | - E Froňková
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic
| | - L Slámová
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic; University Hospital Motol, Czech Republic
| | - T Kalina
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic; University Hospital Motol, Czech Republic
| | - E Mejstříková
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic; University Hospital Motol, Czech Republic
| | - A Dobiášová
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic
| | - K Fišer
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic
| | - O Hrušák
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic; University Hospital Motol, Czech Republic.
| |
Collapse
|
15
|
Savage P. Clinical observations on chemotherapy curable malignancies: unique genetic events, frozen development and enduring apoptotic potential. BMC Cancer 2015; 15:11. [PMID: 25605631 PMCID: PMC4308945 DOI: 10.1186/s12885-015-1006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/31/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A select number of relatively rare metastatic malignancies comprising trophoblast tumours, the rare childhood cancers, germ cells tumours, leukemias and lymphomas have been routinely curable with chemotherapy for more than 30 years. However for the more common metastatic malignancies chemotherapy treatment frequently brings clinical benefits but cure is not expected. Clinically this clear divide in outcome between the tumour types can appear at odds with the classical theories of chemotherapy sensitivity and resistance that include rates of proliferation, genetic development of drug resistance and drug efflux pumps. We have looked at the clinical characteristics of the chemotherapy curable malignancies to see if they have any common factors that could explain this extreme differential sensitivity to chemotherapy. DISCUSSION It has previously been noted how the onset of malignancy can leave malignant cells fixed with some key cellular functions remaining frozen at the point in development at which malignant transformation occurred. In the chemotherapy curable malignancies the onset of malignancy is in each case closely linked to one of the unique genetic events of; nuclear fusion for molar pregnancies, choriocarcinoma and placental site trophoblast tumours, gastrulation for the childhood cancers, meiosis for testicular cancer and ovarian germ cell tumours and VDJ rearrangement and somatic hypermutation for acute leukemia and lymphoma. These processes are all linked to natural periods of supra-physiological apoptotic potential and it appears that the malignant cells arising from them usually retain this heightened sensitivity to DNA damage. To investigate this hypothesis we have examined the natural history of the healthy cells during these processes and the chemotherapy sensitivity of malignancies arising before, during and after the events. To add to the debate on chemotherapy resistance and sensitivity, we would argue that malignancies can be functionally divided into 2 groups. Firstly those that arise in cells with naturally heightened apoptotic potential as a result of their proximity to the unique genetic events, where the malignancies are generally chemotherapy curable and then the more common malignancies that arise in cells of standard apoptotic potential that are not curable with classical cytotoxic drugs.
Collapse
Affiliation(s)
- Philip Savage
- BCCA Vancouver Island, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada.
| |
Collapse
|
16
|
García-Muñoz R, Llorente L. Chronic lymphocytic leukaemia: could immunological tolerance mechanisms be the origin of lymphoid neoplasms? Immunology 2014; 142:536-50. [PMID: 24645778 PMCID: PMC4107664 DOI: 10.1111/imm.12285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022] Open
Abstract
Immunological tolerance theory in chronic lymphocytic leukaemia (CLL): we suggest that B cells that express B-cell receptors (BCR) that recognize their own BCR epitopes are viewed by immune system as 'dangerous cells'. BCR autonomous signalling may induce constant receptor editing and mistakes in allelic exclusion. The fact that whole BCR recognizes a self-antigen or foreing antigen may be irrelevant in early B cell development. In early B cells, autonomous signalling induced by recognition of the BCR's own epitopes simulates an antigen-antibody engagement. In the bone marrow this interaction is viewed as recognition of self-molecules and induces receptor editing. In mature B cells autonomous signalling by the BCR may promote 'reversible anergy' and also may correct self-reactivity induced by the somatic hypermutation mechanisms in mutated CLL B cells. However, in unmutated CLL B cells, BCR autonomous signalling in addition to self-antigen recognition augments B cell activation, proliferation and genomic instability. We suggest that CLL originates from a coordinated normal immunologic tolerance mechanism to destroy self-reactive B cells. Additional genetic damage induced by tolerance mechanisms may immortalize self-reactive B cells and transform them into a leukemia.
Collapse
Affiliation(s)
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City, México
| |
Collapse
|