1
|
Yüzen D, Urbschat C, Schepanski S, Thiele K, Arck PC, Mittrücker H. Pregnancy-induced transfer of pathogen-specific T cells from mother to fetus in mice. EMBO Rep 2023; 24:e56829. [PMID: 37610043 PMCID: PMC10561172 DOI: 10.15252/embr.202356829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Neonatal health is determined by the transfer of maternal antibodies from the mother to the fetus. Besides antibodies, maternal cells cross the placental barrier and seed into fetal organs. Contrary to maternal antibodies, maternal microchimeric cells (MMc) show a high longevity, as they can persist in the offspring until adulthood. Recent evidence highlights that MMc leukocytes promote neonatal immunity against early-life infections in mice and humans. As shown in mice, this promotion of immunity was attributable to an improved fetal immune development. Besides this indirect effect, MMc may be pathogen-specific and thus, directly clear pathogen threats in the offspring postnatally. By using ovalbumin recombinant Listeria monocytogenes (LmOVA), we here provide evidence that OVA-specific T cells are transferred from the mother to the fetus, which is associated with increased activation of T cells and a milder course of postnatal infection in the offspring. Our data highlight that maternally-derived passive immunity of the neonate is not limited to antibodies, as MMc have the potential to transfer immune memory between generations.
Collapse
Affiliation(s)
- Dennis Yüzen
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of ImmunologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christopher Urbschat
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steven Schepanski
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kristin Thiele
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Petra C Arck
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | |
Collapse
|
2
|
Fries-Craft K, Lamont SJ, Bobeck EA. Implementing real-time immunometabolic assays and immune cell profiling to evaluate systemic immune response variations to Eimeria challenge in three novel layer genetic lines. Front Vet Sci 2023; 10:1179198. [PMID: 37143494 PMCID: PMC10153671 DOI: 10.3389/fvets.2023.1179198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Evaluating differences in immune responses to Eimeria spp. between poultry genetic lines could be valuable for understanding favorable traits to address coccidiosis, a costly poultry disease. The objective was to compare peripheral blood mononuclear cell (PBMC) immunometabolism and composition during Eimeria challenge in three distinct and highly inbred genetic lines; Leghorn Ghs6, Leghorn Ghs13, and Fayoumi M5.1. Methods At hatch, 180 chicks (60/ line) were placed in wire-floor cages (10 chicks/cage) and fed a commercial diet. Baseline PBMC were isolated on d21 (10 chicks/line) and 25 chicks/line were inoculated with 10X Merck CocciVac®-B52 (Kenilworth, NJ), creating 6 genetic line × Eimeria groups total. Chicks were euthanized on 1, 3, 7, and 10d post-inoculation (pi; 5 chicks/ line × Eimeria group) for PBMC isolation with body weight and feed intake recorded throughout. Immunometabolic assays to determine PBMC ATP production profiles and glycolytic activity were implemented along with flow cytometric immune cell profiling. Genetic line × Eimeria challenge, and line´challenge fixed effects were analyzed using the MIXED procedure (SAS 9.4; P ≤ 0.05). Results and Discussion Before inoculation, M5.1 chicks had 14.4-25.4% greater average daily gain (ADG) with 19.0-63.6% increased monocyte/macrophage+, Bu-1+ B cell, and CD3+ T cell populations compared to both Ghs lines (P < 0.0001) but similar immunometabolic phenotype. The Eimeria main effect reduced ADG by 61.3% from 3-7dpi (P = 0.009) except in M5.1 chicks, where no ADG difference due to challenge was found. At 3dpi, Eimeria-challenged M5.1 chicks had 28.9 and 33.2% reduced PBMC CD3+ T cells and CD3+CD8α+ cytotoxic T cells than unchallenged chicks, suggesting early and preferential recruitment from systemic circulation to tissues local to Eimeria challenge (i.e., intestine; P ≤ 0.01). Both Ghs lines displayed 46.4-49.8% T cell reductions at 10dpi with 16.5-58.9% recruitment favoring underlying CD3+CD4+ helper T cells. Immunometabolic responses in Eimeria-challenged Ghs6 and Ghs13 chicks were characterized by a 24.0-31.8% greater proportion of ATP from glycolysis compared to unchallenged counterparts at 10dpi (P = 0.04). These results suggest that variable T cell subtype recruitment timelines in addition to altered systemic immunometabolic requirements may work synergistically to determine favorable immune responses to Eimeria challenge.
Collapse
|
3
|
Progress towards the Elusive Mastitis Vaccines. Vaccines (Basel) 2022; 10:vaccines10020296. [PMID: 35214754 PMCID: PMC8876843 DOI: 10.3390/vaccines10020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.
Collapse
|
4
|
Chen B, Zhu L, Yang S, Su W. Unraveling the Heterogeneity and Ontogeny of Dendritic Cells Using Single-Cell RNA Sequencing. Front Immunol 2021; 12:711329. [PMID: 34566965 PMCID: PMC8458576 DOI: 10.3389/fimmu.2021.711329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) play essential roles in innate and adaptive immunity and show high heterogeneity and intricate ontogeny. Advances in high-throughput sequencing technologies, particularly single-cell RNA sequencing (scRNA-seq), have improved the understanding of DC subsets. In this review, we discuss in detail the remarkable perspectives in DC reclassification and ontogeny as revealed by scRNA-seq. Moreover, the heterogeneity and multifunction of DCs during diseases as determined by scRNA-seq are described. Finally, we provide insights into the challenges and future trends in scRNA-seq technologies and DC research.
Collapse
Affiliation(s)
- Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shizhao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Gao M, Wang J, Zang J, An Y, Dong Y. The Mechanism of CD8 + T Cells for Reducing Myofibroblasts Accumulation during Renal Fibrosis. Biomolecules 2021; 11:biom11070990. [PMID: 34356613 PMCID: PMC8301885 DOI: 10.3390/biom11070990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is a hallmark of chronic kidney disease (CKD) and a common manifestation of end-stage renal disease that is associated with multiple types of renal insults and functional loss of the kidney. Unresolved renal inflammation triggers fibrotic processes by promoting the activation and expansion of extracellular matrix-producing fibroblasts and myofibroblasts. Growing evidence now indicates that diverse T cells and macrophage subpopulations play central roles in the inflammatory microenvironment and fibrotic process. The present review aims to elucidate the role of CD8+ T cells in renal fibrosis, and identify its possible mechanisms in the inflammatory microenvironment.
Collapse
|
6
|
Santos MF, Alexandre-Pires G, Pereira MA, Gomes L, Rodrigues AV, Basso A, Reisinho A, Meireles J, Santos-Gomes GM, Pereira da Fonseca I. Immunophenotyping of Peripheral Blood, Lymph Node, and Bone Marrow T Lymphocytes During Canine Leishmaniosis and the Impact of Antileishmanial Chemotherapy. Front Vet Sci 2020; 7:375. [PMID: 32760744 PMCID: PMC7373748 DOI: 10.3389/fvets.2020.00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022] Open
Abstract
Dogs are a major reservoir of Leishmania infantum, etiological agent of canine leishmaniosis (CanL) a zoonotic visceral disease of worldwide concern. Therapeutic protocols based on antileishmanial drugs are commonly used to treat sick dogs and improve their clinical condition. To better understand the impact of Leishmania infection and antileishmanial drugs on the dog's immune response, this study investigates the profile of CD4+ and CD8+ T cell subsets in peripheral blood, lymph node, and bone marrow of sick dogs and after two different CanL treatments. Two CanL groups of six dogs each were treated with either miltefosine or meglumine antimoniate combined with allopurinol. Another group of 10 clinically healthy dogs was used as control. Upon diagnosis and during the following 3 months of treatment, peripheral blood, popliteal lymph node, and bone marrow mononuclear cells were collected, labeled for surface markers CD45, CD3, CD4, CD8, CD25, and intracellular nuclear factor FoxP3, and T lymphocyte subpopulations were immunophenotyped by flow cytometry. CanL dogs presented an overall increased frequency of CD8+ and CD4+CD8+ double-positive T cells in all tissues and a decreased frequency of CD4+ T cells in the blood. Furthermore, there was a higher frequency of CD8+ T cells expressing CD25+FoxP3+ in the blood and bone marrow. During treatment, these subsets recovered to levels similar to those of healthy dogs. Nevertheless, antileishmanial therapy caused an increase of CD4+CD25+FoxP3+ T cells in all tissues, associated with the decrease of CD8+CD25−FoxP3− T cell percentages. These findings may support previous studies that indicate that L. infantum manipulates the dog's immune system to avoid the development of a protective response, ensuring the parasite's survival and the conditions that allow the completion of Leishmania life cycle. Both treatments used appear to have an effect on the dog's immune response, proving to be effective in promoting the normalization of T cell subsets.
Collapse
Affiliation(s)
- Marcos Ferreira Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Alexandre-Pires
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Maria A Pereira
- GHTM-Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova De Lisbon (UNL), Lisbon, Portugal
| | - Lídia Gomes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Armanda V Rodrigues
- GHTM-Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova De Lisbon (UNL), Lisbon, Portugal
| | - Alexandra Basso
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Reisinho
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - José Meireles
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Gabriela M Santos-Gomes
- GHTM-Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova De Lisbon (UNL), Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Yamane K, Anazawa T, Tada S, Fujimoto N, Inoguchi K, Emoto N, Nagai K, Masui T, Okajima H, Takaori K, Sumi S, Uemoto S. Mitomycin C treatment improves pancreatic islet graft longevity in intraportal islet transplantation by suppressing proinflammatory response. Sci Rep 2020; 10:12086. [PMID: 32694579 PMCID: PMC7374693 DOI: 10.1038/s41598-020-69009-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
The in vitro culture period prior to cell transplantation (i.e. pancreatic islet transplantation) enables cell modification and is thus advantageous. However, the islet preconditioning method has not been fully explored. Here we present a simple approach for islet preconditioning that uses the antibiotic mitomycin C (MMC), which has antitumor activity, to reduce islet immunogenicity and prevent proinflammatory events in an intraportal islet transplantation model. Freshly isolated mice islets were treated for 30 min with 10 μg/mL MMC or not, cultured for 20 h and transplanted into the livers of syngeneic or allogeneic diabetic mouse recipients. In the allogeneic model, MMC preconditioning significantly prolonged graft survival without requiring immunosuppressants. In vitro, MMC treatment suppressed the expression of proinflammatory cytokines in islet allografts, while immunohistochemical studies revealed the suppression of inflammatory cell infiltration into MMC-treated allografts relative to untreated allografts. Furthermore, MMC preconditioning significantly suppressed the mRNA expression of proinflammatory cytokines into the transplant site and induced the differentiation of regulatory T cells with the ability to suppress CD4+ T cell-mediated immune responses. In conclusion, islet preconditioning with MMC prolonged graft survival in an intraportal islet transplantation model by suppressing proinflammatory events and inducing potentially regulatory lymphocytes.
Collapse
Affiliation(s)
- Kei Yamane
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Takayuki Anazawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan.
| | - Seiichiro Tada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Nanae Fujimoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Kenta Inoguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Norio Emoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Kazuyuki Nagai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Toshihiko Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Hideaki Okajima
- Department of Paediatric Surgery, Kanazawa Medical University, Kanazawa, 9200293, Japan
| | - Kyoichi Takaori
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 6068507, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| |
Collapse
|
8
|
Flippe L, Bézie S, Anegon I, Guillonneau C. Future prospects for CD8 + regulatory T cells in immune tolerance. Immunol Rev 2019; 292:209-224. [PMID: 31593314 PMCID: PMC7027528 DOI: 10.1111/imr.12812] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD8+ Tregs have been long described and significant progresses have been made about their phenotype, their functional mechanisms, and their suppressive ability compared to conventional CD4+ Tregs. They are now at the dawn of their clinical use. In this review, we will summarize their phenotypic characteristics, their mechanisms of action, the similarities, differences and synergies between CD8+ and CD4+ Tregs, and we will discuss the biology, development and induction of CD8+ Tregs, their manufacturing for clinical use, considering open questions/uncertainties and future technically accessible improvements notably through genetic modifications.
Collapse
Affiliation(s)
- Léa Flippe
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Bézie
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
9
|
Zhang S, Wu M, Wang F. Immune regulation by CD8 + Treg cells: novel possibilities for anticancer immunotherapy. Cell Mol Immunol 2019; 15:805-807. [PMID: 29503446 DOI: 10.1038/cmi.2018.170] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Shuping Zhang
- Department of Laboratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Meng Wu
- Department of Laboratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,National Key Clinical Department of Laboratory Medicine, Nanjing, 210029, China.
| |
Collapse
|
10
|
Abstract
Although cluster of differentiation (CD)8 regulatory T (Treg) cells have been in the last 20 years more studied since evidences of their role in tolerance as been demonstrated in transplantation, autoimmune diseases and cancer, their characteristics are still controversial. In this review, we will focus on recent advances on CD8 Treg cells and description of a role for CD8 Treg cells in tolerance in both solid organ transplantation and graft-versus-host disease and their potential for clinical trials.
Collapse
|
11
|
Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, Cohen EEW, Chen SY, Sharabi AB. A Threshold Model for T-Cell Activation in the Era of Checkpoint Blockade Immunotherapy. Front Immunol 2019; 10:491. [PMID: 30936880 PMCID: PMC6431643 DOI: 10.3389/fimmu.2019.00491] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Continued discoveries of negative regulators of inflammatory signaling provide detailed molecular insights into peripheral tolerance and anti-tumor immunity. Accumulating evidence indicates that peripheral tolerance is maintained at multiple levels of immune responses by negative regulators of proinflammatory signaling, soluble anti-inflammatory factors, inhibitory surface receptors & ligands, and regulatory cell subsets. This review provides a global overview of these regulatory machineries that work in concert to maintain peripheral tolerance at cellular and host levels, focusing on the direct and indirect regulation of T cells. The recent success of checkpoint blockade immunotherapy (CBI) has initiated a dramatic shift in the paradigm of cancer treatment. Unprecedented responses to CBI have highlighted the central role of T cells in both anti-tumor immunity and peripheral tolerance and underscored the importance of T cell exhaustion in cancer. We discuss the therapeutic implications of modulating the negative regulators of T cell function for tumor immunotherapy with an emphasis on inhibitory surface receptors & ligands—central players in T cell exhaustion and targets of checkpoint blockade immunotherapies. We then introduce a Threshold Model for Immune Activation—the concept that these regulatory mechanisms contribute to defining a set threshold of immunogenic (proinflammatory) signaling required to elicit an anti-tumor or autoimmune response. We demonstrate the value of the Threshold Model in understanding clinical responses and immune related adverse events in the context of peripheral tolerance, tumor immunity, and the era of Checkpoint Blockade Immunotherapy.
Collapse
Affiliation(s)
- Kripa Guram
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sangwoo S Kim
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Victoria Wu
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - P Dominick Sanders
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sandip Patel
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Stephen P Schoenberger
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Ezra E W Cohen
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
12
|
Rostamzadeh D, Haghshenas MR, Daryanoosh F, Samadi M, Hosseini A, Ghaderi A, Mojtahedi Z, Babaloo Z. Altered frequency of CD8
+
CD11c
+
T cells and expression of immunosuppressive molecules in lymphoid organs of mouse model of colorectal cancer. J Cell Physiol 2019; 234:11986-11998. [DOI: 10.1002/jcp.27856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Davood Rostamzadeh
- Department of Immunology School of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences Shiraz Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences Shiraz Iran
| | | | - Mahdi Samadi
- Department of Sports Sciences Shiraz University Shiraz Iran
| | - Ahmad Hosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences Shiraz Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences Shiraz Iran
| | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences Shiraz Iran
| | - Zohreh Babaloo
- Immunology Unit, Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Head of Immunology Department Medicine Faculty, Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
13
|
Albeituni S, Stiban J. Roles of Ceramides and Other Sphingolipids in Immune Cell Function and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:169-191. [PMID: 31562630 DOI: 10.1007/978-3-030-21735-8_15] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ceramides are bioactive sphingolipids that support the structure of the plasma membrane and mediate numerous cell-signaling events in eukaryotic cells. The finding that ceramides act as second messengers transducing cellular signals has attracted substantial attention in several fields of Biology. Since all cells contain lipid plasma membranes, the impact of various ceramides, ceramide synthases, ceramide metabolites, and other sphingolipids has been implicated in a vast range of cellular functions including, migration, proliferation, response to external stimuli, and death. The roles of lipids in these functions widely differ among the diverse cell types. Herein, we discuss the roles of ceramides and other sphingolipids in mediating the function of various immune cells; particularly dendritic cells, neutrophils, and macrophages. In addition, we highlight the main studies describing effects of ceramides in inflammation, specifically in various inflammatory settings including insulin resistance, graft-versus-host disease, immune suppression in cancer, multiple sclerosis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Sabrin Albeituni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
14
|
Ben-Akiva E, Est Witte S, Meyer RA, Rhodes KR, Green JJ. Polymeric micro- and nanoparticles for immune modulation. Biomater Sci 2018; 7:14-30. [PMID: 30418444 PMCID: PMC6664797 DOI: 10.1039/c8bm01285g] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New advances in biomaterial-based approaches to modulate the immune system are being applied to treat cancer, infectious diseases, and autoimmunity. Particulate systems are especially well-suited to deliver immunomodulatory factors to immune cells since their small size allows them to engage cell surface receptors or deliver cargo intracellularly after internalization. Biodegradable polymeric particles are a particularly versatile platform for the delivery of signals to the immune system because they can be easily surface-modified to target specific receptors and engineered to release encapsulated cargo in a precise, sustained manner. Micro- and nanoscale systems have been used to deliver a variety of therapeutic agents including monoclonal antibodies, peptides, and small molecule drugs that function to activate the immune system against cancer or infectious disease, or suppress the immune system to combat autoimmune diseases and transplant rejection. This review provides an overview of recent advances in the development of polymeric micro- and nanoparticulate systems for the presentation and delivery of immunomodulatory agents targeted to a variety of immune cell types including APCs, T cells, B cells, and NK cells.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Department of Biomedical Engineering and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
15
|
Ratajczak W, Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W. Immunological memory cells. Cent Eur J Immunol 2018; 43:194-203. [PMID: 30135633 PMCID: PMC6102609 DOI: 10.5114/ceji.2018.77390] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/16/2018] [Indexed: 02/03/2023] Open
Abstract
This article reviews immunological memory cells, currently represented by T and B lymphocytes and natural killer (NK) cells, which determine a rapid and effective response against a second encounter with the same antigen. Among T lymphocytes, functions of memory cells are provided by their subsets: central memory, effector memory, tissue-resident memory, regulatory memory and stem memory T cells. Memory T and B lymphocytes have an essential role in the immunity against microbial pathogens but are also involved in autoimmunity and maternal-fetal tolerance. Furthermore, the evidence of immunological memory has been established for NK cells. NK cells can respond to haptens or viruses, which results in generation of antigen-specific memory cells. T, B and NK cells, which have a role in immunological memory, have been characterized phenotypically and functionally. During the secondary immune response, these cells are involved in the reaction against foreign antigens, including pathogens, and take part in autoimmune diseases, but also are crucial to immunological tolerance and vaccine therapy.
Collapse
Affiliation(s)
- Weronika Ratajczak
- Scientific Circle of Microbiologists, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | | | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Wiesław Deptuła
- Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
16
|
Kaiser Y, Lakshmikanth T, Chen Y, Mikes J, Eklund A, Brodin P, Achour A, Grunewald J. Mass Cytometry Identifies Distinct Lung CD4 + T Cell Patterns in Löfgren's Syndrome and Non-Löfgren's Syndrome Sarcoidosis. Front Immunol 2017; 8:1130. [PMID: 28955342 PMCID: PMC5601005 DOI: 10.3389/fimmu.2017.01130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/28/2017] [Indexed: 11/27/2022] Open
Abstract
Sarcoidosis is a granulomatous disorder of unknown etiology, characterized by accumulation of activated CD4+ T cells in the lungs. Disease phenotypes Löfgren’s syndrome (LS) and “non-LS” differ in terms of clinical manifestations, genetic background, HLA association, and prognosis, but the underlying inflammatory mechanisms largely remain unknown. Bronchoalveolar lavage fluid cells from four HLA-DRB1*03+ LS and four HLA-DRB1*03− non-LS patients were analyzed by mass cytometry, using a panel of 33 unique markers. Differentially regulated CD4+ T cell populations were identified using the Citrus algorithm, and t-stochastic neighborhood embedding was applied for dimensionality reduction and single-cell data visualization. We identified 19 individual CD4+ T cell clusters differing significantly in abundance between LS and non-LS patients. Seven clusters more frequent in LS patients were characterized by significantly higher expression of regulatory receptors CTLA-4, PD-1, and ICOS, along with low expression of adhesion marker CD44. In contrast, 12 clusters primarily found in non-LS displayed elevated expression of activation and effector markers HLA-DR, CD127, CD39, as well as CD44. Hierarchical clustering further indicated functional heterogeneity and diverse origins of T cell receptor Vα2.3/Vβ22-restricted cells in LS. Finally, a near-complete overlap of CD8 and Ki-67 expression suggested larger influence of CD8+ T cell activity on sarcoid inflammation than previously appreciated. In this study, we provide detailed characterization of pulmonary T cells and immunological parameters that define separate disease pathways in LS and non-LS. With direct association to clinical parameters, such as granuloma persistence, resolution, or chronic inflammation, these results provide a valuable foundation for further exploration and potential clinical application.
Collapse
Affiliation(s)
- Ylva Kaiser
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Chen
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jaromir Mikes
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Abstract
Regulatory T cells (Tregs) represent a cell type that promotes immune tolerance to autologous components and maintains immune system homeostasis. The abnormal function of Tregs is relevant to the pathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and other autoimmune diseases. Therefore, therapeutic modulation of Tregs could be a potent means of treating autoimmune diseases. Human Tregs are diverse, however, and not all of them have immunosuppressive effects. Forkhead box P3 (Foxp3), a pivotal transcription factor of Tregs that is crucial in maintaining Treg immunosuppressive function, can be expressed heterogeneously or unstably across Treg subpopulations. Insights into modulating Treg differentiation on the level of DNA transcription or protein modification may improve the success of Treg modifying immunotherapies. In this review, we will summarize three main prospects: the regulatory mechanism of Foxp3, the influence on Foxp3 and Tregs in autoimmune diseases, then finally, how Tregs can be used to treat autoimmune diseases.
Collapse
|
18
|
CD11c⁺ CD8⁺ T Cells Reduce Renal Fibrosis Following Ureteric Obstruction by Inducing Fibroblast Apoptosis. Int J Mol Sci 2016; 18:ijms18010001. [PMID: 28025478 PMCID: PMC5297636 DOI: 10.3390/ijms18010001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/05/2016] [Accepted: 12/11/2016] [Indexed: 02/07/2023] Open
Abstract
Tubulointerstitial fibrosis is a common consequence of various kidney diseases that lead to end-stage renal failure, and lymphocyte infiltration plays an important role in renal fibrosis. We previously found that depletion of cluster of differentiation 8+ (CD8+) T cells increases renal fibrosis following ureteric obstruction, and interferon-γ (IFN-γ)-expressing CD8+ T cells contribute to this process. CD8+ T cells are cytotoxic T cells; however, whether their cytotoxic effect reduces fibrosis remains unknown. This study showed that CD8+ T cells isolated from obstructed kidney showed mRNA expression of the cytotoxicity-related genes perforin 1, granzyme A, granzyme B, and FAS ligand; additionally, CD8 knockout significantly reduced the expression levels of these genes in obstructed kidney. Infiltrated CD8+ T cells were distributed around fibroblasts, and they are associated with fibroblast apoptosis in obstructed kidney. Moreover, CD11c+ CD8+ T cells expressed higher levels of the cytotoxicity-related genes than CD11c− CD8+ T cells, and infiltrated CD11c+ CD8+ T cells in obstructed kidney could induce fibroblast death in vitro. Results indicated that induction of fibroblast apoptosis partly contributed to the effect of CD8+ T cells on reduction of renal fibrosis. Given that inflammatory cells are involved in fibrosis, our results suggest that kidney fibrosis is a multifactorial process involving different arms of the immune system.
Collapse
|
19
|
Wu M, Lou J, Zhang S, Chen X, Huang L, Sun R, Huang P, Pan S, Wang F. Gene expression profiling of CD8 + T cells induced by ovarian cancer cells suggests a possible mechanism for CD8 + Treg cell production. Cell Prolif 2016; 49:669-677. [PMID: 27641758 DOI: 10.1111/cpr.12294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/30/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate a possible mechanism of CD8+ regulatory T-cell (Treg) production in an ovarian cancer (OC) microenvironment. MATERIALS AND METHODS Agilent microarray was used to detect changes in gene expression between CD8+ T cells cultured with and without the SKOV3 ovarian adenocarcinoma cell line. QRT-PCR was performed to determine glycolysis gene expression in CD8+ T cells from a transwell culturing system and OC patients. We also detected protein levels of glycolysis-related genes using Western blot analysis. RESULTS Comparing gene expression profiles revealed significant differences in expression levels of 1420 genes, of which 246 were up-regulated and 1174 were down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that biological processes altered in CD8+ Treg are particularly associated with energy metabolism. CD8+ Treg cells induced by co-culture with SKOV3 had lower glycolysis gene expression compared to CD8+ T cells cultured alone. Glycolysis gene expression was also decreased in the CD8+ T cells of OC patients. CONCLUSIONS These findings provide a comprehensive bioinformatics analysis of DEGs in CD8+ T cells cultured with and without SKOV3 and suggests that metabolic processes may be a possible mechanism for CD8+ Treg induction.
Collapse
Affiliation(s)
- Meng Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Jianfang Lou
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Shuping Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Xian Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Lei Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Ruihong Sun
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Peijun Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China. .,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China.
| |
Collapse
|
20
|
Takeda Y, Azuma M, Matsumoto M, Seya T. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:143. [PMID: 27619885 PMCID: PMC5020536 DOI: 10.1186/s13046-016-0416-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/01/2016] [Indexed: 01/07/2023]
Abstract
Background Dendritic cells (DCs) mount tumor-associated antigens (TAAs), and the double-stranded RNA adjuvant Poly(I:C) stimulates Toll-like receptor 3 (TLR3) signal in DC, which in turn induces type I interferon (IFN) and interleukin-12 (IL-12), then cross-primes cytotoxic T lymphocytes (CTLs). Proliferation of CTLs correlates with tumor regression. How these potent cells expand with high quality is crucial to the outcome of CTL therapy. However, good markers reflecting the efficacy of DC-target immunotherapy have not been addressed. Methods Using an EG7 (ovalbumin, OVA-positive) tumor-implant mouse model, we examined what is a good marker for active CTL induction in treatment with Poly(I:C)/OVA. Results Simultaneous administration of Poly(I:C) and antigen (Ag) OVA significantly increased a minor population of CD8+ T cells, that express CD11c in lymphoid and tumor sites. The numbers of the CD11c+ CD8+ T cells correlated with those of induced Ag-specific CD8+ T cells and tumor regression. The CD11c+ CD8+ T cell moiety was characterized by its high killing activity and IFN-γ-producing ability, which represent an active phenotype of the effector CTLs. Not only a TLR3-specific (TICAM-1-dependent) signal but also TLR2 (MyD88) signal in DC triggered the expansion of CD11c+ CD8+ T cells in tumor-bearing mice. Notably, human CD11c+ CD8+ T cells also proliferated in peripheral blood mononuclear cells (PBMC) stimulated with cytomegalovirus (CMV) Ag. Conclusions CD11c expression in CD8+ T cells reflects anti-tumor CTL activity and would be a marker for immunotherapeutic efficacy in mouse models and probably cancer patients as well. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0416-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohei Takeda
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahiro Azuma
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
21
|
Qualai J, Cantero J, Li LX, Carrascosa JM, Cabré E, Dern O, Sumoy L, Requena G, McSorley SJ, Genescà M. Adhesion Molecules Associated with Female Genital Tract Infection. PLoS One 2016; 11:e0156605. [PMID: 27272720 PMCID: PMC4896633 DOI: 10.1371/journal.pone.0156605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Efforts to develop vaccines that can elicit mucosal immune responses in the female genital tract against sexually transmitted infections have been hampered by an inability to measure immune responses in these tissues. The differential expression of adhesion molecules is known to confer site-dependent homing of circulating effector T cells to mucosal tissues. Specific homing molecules have been defined that can be measured in blood as surrogate markers of local immunity (e.g. α4β7 for gut). Here we analyzed the expression pattern of adhesion molecules by circulating effector T cells following mucosal infection of the female genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2, CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial vaginosis in women. Other homing molecules previously suggested as required for homing to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T cell immunity, was the most consistently elevated in all activated effector CD8+ T cell subsets analyzed. This molecule was also induced after systemic infection in mice, suggesting that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital tract disorders may represent a novel surrogate marker of mucosal immunity in women, and warrants further exploration for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Jamal Qualai
- Mucosal Immunology Unit, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), AIDS Research Institute IrsiCaixa-HIVACAT, Can Ruti Campus, Badalona, Spain
| | - Jon Cantero
- Mucosal Immunology Unit, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), AIDS Research Institute IrsiCaixa-HIVACAT, Can Ruti Campus, Badalona, Spain
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - José Manuel Carrascosa
- Department of Dermatology, University Hospital “Germans Trias i Pujol,” Badalona, Universitat Autònoma de Barcelona, Spain
| | - Eduard Cabré
- Department of Gastroenterology, University Hospital “Germans Trias i Pujol,” Can Ruti Campus, Badalona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Olga Dern
- Atenció Salut Sexual i Reproductiva (ASSIR), Centre d'Atenció Primària (CAP) Sant Fèlix, Institut Català de la Salut (ICS), Sabadell, Spain
| | - Lauro Sumoy
- Genomics and Bioinformatics Group, Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Can Ruti Campus, Badalona, Spain
| | - Gerard Requena
- Flow Cytometry Unit, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Stephen J. McSorley
- Center for Comparative Medicine (CCM), Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Meritxell Genescà
- Mucosal Immunology Unit, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), AIDS Research Institute IrsiCaixa-HIVACAT, Can Ruti Campus, Badalona, Spain
- * E-mail: (MG)
| |
Collapse
|
22
|
Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS One 2016; 11:e0154253. [PMID: 27119555 PMCID: PMC4847787 DOI: 10.1371/journal.pone.0154253] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential.
Collapse
|
23
|
Ivanov S, Scallan JP, Kim KW, Werth K, Johnson MW, Saunders BT, Wang PL, Kuan EL, Straub AC, Ouhachi M, Weinstein EG, Williams JW, Briseño C, Colonna M, Isakson BE, Gautier EL, Förster R, Davis MJ, Zinselmeyer BH, Randolph GJ. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. J Clin Invest 2016; 126:1581-91. [PMID: 26999610 PMCID: PMC4811132 DOI: 10.1172/jci84518] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Lymphatic collecting vessels direct lymph into and from lymph nodes (LNs) and can become hyperpermeable as the result of a previous infection. Enhanced permeability has been implicated in compromised immunity due to reduced flow of lymph and immune cells to LNs, which are the primary site of antigen presentation to T cells. Presently, very little is known about the molecular signals that affect lymphatic collecting vessel permeability. Here, we have shown that lymphatic collecting vessel permeability is controlled by CCR7 and that the chronic hyperpermeability of collecting vessels observed in Ccr7-/- mice is followed by vessel fibrosis. Reexpression of CCR7 in DCs, however, was sufficient to reverse the development of such fibrosis. IFN regulatory factor 4-positive (IRF4+) DCs constitutively interacted with collecting lymphatics, and selective ablation of this DC subset in Cd11c-Cre Irf4fl/fl mice also rendered lymphatic collecting vessels hyperpermeable and fibrotic. Together, our data reveal that CCR7 plays multifaceted roles in regulating collecting vessel permeability and fibrosis, with one of the key players being IRF4-dependent DCs.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
| | - Joshua P. Scallan
- Department of Medical Pharmacology and Physiology, University of
Missouri, Columbia, Missouri, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover,
Germany
| | - Michael W. Johnson
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
- Division of Biostatistics, Washington University School of
Medicine, St. Louis, Missouri, USA
| | - Brian T. Saunders
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
| | - Peter L. Wang
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
| | - Emma L. Kuan
- Immunology Institute, Icahn School of Medicine at Mount Sinai,
New York, New York, USA
| | - Adam C. Straub
- Robert M. Berne Cardiovascular Research Center, University of
Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Melissa Ouhachi
- INSERM UMRS 1166, Sorbonne Universités, University Pierre and
Marie Curie (UPMC), University of Paris 06, Pitié-Salpêtrière Hospital, Paris, France
| | - Erica G. Weinstein
- Immunology Institute, Icahn School of Medicine at Mount Sinai,
New York, New York, USA
| | - Jesse W. Williams
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
| | - Carlos Briseño
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of
Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Emmanuel L. Gautier
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
- INSERM UMRS 1166, Sorbonne Universités, University Pierre and
Marie Curie (UPMC), University of Paris 06, Pitié-Salpêtrière Hospital, Paris, France
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover,
Germany
| | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of
Missouri, Columbia, Missouri, USA
| | - Bernd H. Zinselmeyer
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity. Proc Natl Acad Sci U S A 2016; 113:2460-5. [PMID: 26869716 DOI: 10.1073/pnas.1525098113] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis.
Collapse
|
25
|
Advances on Non-CD4 + Foxp3+ T Regulatory Cells: CD8+, Type 1, and Double Negative T Regulatory Cells in Organ Transplantation. Transplantation 2015; 99:1553-9. [PMID: 26193065 DOI: 10.1097/tp.0000000000000813] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The overwhelming body of research on T regulatory cells (Treg) has focused on CD4 + CD25 + Foxp3+ T cells. However, recent years have witnessed a resurgence in interest in CD4 - CD8+, CD4 - CD8- (double negative [DN]), and CD4 + Foxp3- type 1 Treg (Tr1) Treg and their role in controlling autoimmune diseases and in promoting the survival of organ allografts and xenografts. CD8+ and DN Treg can arise spontaneously (natural Treg) or can be induced in situ. Both CD8+ and DN Treg have been shown to enhance the survival of organ allografts and xenografts. Additionally, both can suppress alloimmune responses by contact-dependent mechanisms by either inducing apoptosis or mediating direct cytolysis of effector T cells. CD8+, DN, and Tr1 Treg can also act in a contact-independent manner by elaborating soluble immunosuppressive factors, such as TGF-β and IL-10. Applying CD8+, DN, and Tr1 Treg for enhancing the survival of organ allografts and xenografts is still in its infancy but holds significant potential. Furthermore, there is a need for a more comprehensive understanding of how current immunosuppressive therapies applied to organ transplantations affect the wide array of Treg populations.
Collapse
|
26
|
Grimm AJ, Kontos S, Diaceri G, Quaglia-Thermes X, Hubbell JA. Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens. Sci Rep 2015; 5:15907. [PMID: 26511151 PMCID: PMC4625129 DOI: 10.1038/srep15907] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
New approaches based on induction of antigen-specific immunological tolerance are being explored for treatment of autoimmunity and prevention of immunity to protein drugs. Antigens associated with apoptotic debris are known to be processed tolerogenically in vivo. Our group is exploring an approach toward antigen-specific tolerization using erythrocyte-binding antigens, based on the premise that as the erythrocytes circulate, age and are cleared, the erythrocyte surface-bound antigen payload will be cleared tolerogenically along with the eryptotic debris. Here, we characterized the phenotypic signatures of CD8+ T cells undergoing tolerance in response to soluble and erythrocyte-targeted antigen. Signaling through programmed death-1/programmed death ligand-1 (PD-1/PD-L1), but not through cytotoxic T lymphocyte antigen 4 (CTLA4), was shown to be required for antigen-specific T cell deletion, anergy and expression of regulatory markers. Generation of CD25+FOXP3+ regulatory T cells in response to erythrocyte-targeted antigens but not soluble antigen at an equimolar dose was observed, and these cells were required for long-term maintenance of immune tolerance in both the CD4+ and CD8+ T cell compartments. Evidence of infectious tolerance was observed, in that tolerance to a one antigenic epitope was able to regulate responses to other epitopes in the same protein antigen.
Collapse
Affiliation(s)
- Alizée J. Grimm
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephan Kontos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Anokion SA, Ecublens, Switzerland
- Kanyos Bio, Inc., Cambridge, Massachusetts, USA
| | - Giacomo Diaceri
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xavier Quaglia-Thermes
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Anokion SA, Ecublens, Switzerland
- Kanyos Bio, Inc., Cambridge, Massachusetts, USA
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
27
|
Pathogen-expanded CD11b+ invariant NKT cells feedback inhibit T cell proliferation via membrane-bound TGF-β1. J Autoimmun 2015; 58:21-35. [DOI: 10.1016/j.jaut.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/13/2014] [Accepted: 12/21/2014] [Indexed: 12/23/2022]
|
28
|
Yeaman MR, Filler SG, Schmidt CS, Ibrahim AS, Edwards JE, Hennessey JP. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus. Front Immunol 2014; 5:463. [PMID: 25309545 PMCID: PMC4176462 DOI: 10.3389/fimmu.2014.00463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022] Open
Abstract
Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S. aureus.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; Division of Molecular Medicine, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | - Scott G Filler
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | | | - Ashraf S Ibrahim
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | - John E Edwards
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | | |
Collapse
|
29
|
Human hepatocellular carcinoma-infiltrating CD4⁺CD69⁺Foxp3⁻ regulatory T cell suppresses T cell response via membrane-bound TGF-β1. J Mol Med (Berl) 2014; 92:539-50. [PMID: 24668348 DOI: 10.1007/s00109-014-1143-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/05/2014] [Accepted: 01/29/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Tumors can recruit, induce, and expand regulatory T cells (Tregs) to suppress antitumor immune responses for survival and progression. The complicated tumor-related Treg subsets and their functional mechanisms are not fully addressed yet. We have previously identified a novel CD4⁺CD69⁺Foxp3⁻ Treg subset in tumor-bearing mice, which suppresses CD4 T cell response via membrane-bound transforming growth factor beta 1 (mTGF-β1) and then promotes tumor progression. In hepatocellular carcinoma patients, here, we identified tumor-infiltrating human CD4⁺CD69⁺ Tregs which represent ~67.2 % of tumor-infiltrating CD4 T cells that is significantly higher than conventional CD4⁺CD25⁺Foxp3⁺ Tregs. They expressed mTGF-β1, PD-1, and CTLA-4, but not CD25 or Foxp3, and only produced a little interleukin (IL)-10 and TGF-β1. More importantly, they significantly suppressed CD4 T cell response via mTGF-β1 in vitro. Furthermore, the percentage of these CD4⁺CD69⁺ Tregs in tumor tissue was significantly correlated with tumor progression, which is more pronounced at the late stage of cancer patients. Thus, we have identified a tumor-induced new population of human CD4⁺CD69⁺ Tregs in cancer patients with phenotype of CD25⁻Foxp3⁻mTGF-β1⁺CTLA-4⁺PD-1⁺, and these Tregs can suppress antitumor immune response via mTGF-β1. Our results not only enrich the family of Treg subsets, providing new mechanistic insight to tumor-induced immune suppression in human, but also suggest a potential target for cancer immunotherapy. KEY MESSAGE CD4⁺CD69⁺Foxp3⁻ regulatory T cells were identified in hepatocellular carcinoma patients. These Treg cells inhibit T cell response via membrane-bound TGF-β. The percentage of these cells was significantly correlated with tumor progression. The percentage of these cells was higher than conventional CD4⁺CD25⁺Foxp3⁺ Tregs. These Treg cells not only exist in tumor-bearing mice, but also in cancer patients.
Collapse
|
30
|
Su J, Xie Q, Xu Y, Li XC, Dai Z. Role of CD8(+) regulatory T cells in organ transplantation. BURNS & TRAUMA 2014; 2:18-23. [PMID: 27574642 PMCID: PMC4994507 DOI: 10.4103/2321-3868.126086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CD8+ T cells are regulatory T cells (Tregs) that suppress both alloimmunity and autoimmunity in many animal models. This class of regulatory cells includes the CD8+CD28−, CD8+CD103+, CD8+FoxP3+ and CD8+CD122+ subsets. The mechanisms of action of these regulatory cells are not fully understood; however, the secretion of immunosuppressive cytokines, such as interleukin (IL)-4, IL-10 and transforming growth factor beta (TGF-β) as well as the direct killing of target cells via Fas L/Fas and the perforin/granzyme B pathways have been demonstrated in various models. Further studies are necessary to fully understand the mechanisms underlying the suppressive effects of Tregs and to provide experimental support for potential clinical trials. We recently observed that CD8+CD122+ Tregs more potently suppressed allograft rejection compared to their CD4+CD25+ counterparts, supporting the hypothesis that CD8+ Tregs may represent a new and promising Treg family that can be targeted to prevent allograft rejection in the clinic. In this review, we summarize the progress in the field during the past 7–10 years and discuss CD8+ Treg phenotypes, mechanisms of action, and their potential clinical applications; particularly in composite tissue transplants in burn and trauma patients.
Collapse
Affiliation(s)
- Jiyan Su
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine and Guangzhou University of Chinese Medicine School of Chinese Material Medica, Guangzhou, Guangdong, China
| | - Qingfeng Xie
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine and Guangzhou University of Chinese Medicine School of Chinese Material Medica, Guangzhou, Guangdong, China
| | - Yang Xu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine and Guangzhou University of Chinese Medicine School of Chinese Material Medica, Guangzhou, Guangdong, China
| | - Xian C Li
- Immunobiology and Transplantation Research Center, Houston, Methodist Research Institute, Houston, Texas USA ; Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine and Guangzhou University of Chinese Medicine School of Chinese Material Medica, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine and Guangzhou University of Chinese Medicine School of Chinese Material Medica, Guangzhou, Guangdong, China
| |
Collapse
|