1
|
Wang Y, Yang X, Liu M, Yan Y, Kong F, Wang J, Zhang Z, Chen Y, Chen L, Liang Z, Peng X, Liu F. Mesenchymal stem cell-loaded hydrogel to inhibit inflammatory reaction in surgical brain injury via mitochondria transfer. J Control Release 2024; 376:231-240. [PMID: 39389366 DOI: 10.1016/j.jconrel.2024.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Neurosurgical procedures are the key therapeutic interventions for the cerebral hemorrhage and brain tumors. However, neurosurgical procedures inevitably cause surgical brain injury (SBI), which will induce hemorrhage and inflammation. Gelatin Sponges are still the primary hemostatic materials used in clinical, but their anti-inflammatory efficacy is poor. Herein, we developed a cross-linked gelatin hydrogel (GelMA) to load mesenchymal stem cells (MSC) and directly implant them to the SBI site. Upon contacting the SBI site, the GelMA showed better clotting performance than Gelatin Sponges. Moreover, the MSC can reduce oxidative stress and enhance mitochondrial fusion via mitochondria transfer, resulting in ameliorating mitochondrial damage and reducing inflammation. Thus, the GelMA containing MSC can effectively reduce brain edema and inflammation and improve neurological function in SBI mouse models. In addition, GelMA exhibits excellent hemocompatibility and low cytotoxicity. It also enhances the proliferation of MSCs and decelerates the rapid depletion of MSCs. Therefore, MSC-loaded GelMA exhibits excellent hemostatic and anti-inflammatory effects, making it a potential new-generation biomaterial for SBI.
Collapse
Affiliation(s)
- Yunzhi Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Xin Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Menghui Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Yan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Fangen Kong
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zichen Zhang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yanlv Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Lei Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zibin Liang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Xin Peng
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
2
|
Dunbar H, Hawthorne IJ, Tunstead C, McNamee EN, Weiss DJ, Armstrong ME, Donnelly SC, English K. Mesenchymal stromal cells dampen trained immunity in house dust mite-primed macrophages expressing human macrophage migration inhibitory factor polymorphism. Cytotherapy 2024; 26:1245-1251. [PMID: 38819366 DOI: 10.1016/j.jcyt.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Trained immunity results in long-term immunological memory, provoking a faster and greater immune response when innate immune cells encounter a secondary, often heterologous, stimulus. We have previously shown that house dust mite (HDM)-induced innate training is amplified in mice expressing the human macrophage migration inhibitory factor (MIF) CATT7 functional polymorphism. AIM This study investigated the ability of mesenchymal stromal cells (MSCs) to modulate MIF-driven trained immunity both in vitro and in vivo. METHODS Compared with wild-type mice, in vivo HDM-primed bone marrow-derived macrophages (BMDMs) from CATT7 mice expressed significantly higher levels of M1-associated genes following lipopolysaccharide stimulation ex vivo. Co-cultures of CATT7 BMDMs with MSCs suppressed this HDM-primed effect, with tumor necrosis factor alpha (TNF-α) being significantly decreased in a cyclooxygenase 2 (COX-2)-dependent manner. Interestingly, interleukin 6 (IL-6) was suppressed by MSCs independently of COX-2. In an in vitro training assay, MSCs significantly abrogated the enhanced production of pro-inflammatory cytokines by HDM-trained CATT7 BMDMs when co-cultured at the time of HDM stimulus on day 0, displaying their therapeutic efficacy in modulating an overzealous human MIF-dependent immune response. Utilizing an in vivo model of HDM-induced trained immunity, MSCs administered systemically on day 10 and day 11 suppressed this trained phenomenon by significantly reducing TNF-α and reducing IL-6 and C-C motif chemokine ligand 17 (CCL17) production. CONCLUSIONS This novel study elucidates how MSCs can attenuate an MIF-driven, HDM-trained response in CATT7 mice in a model of allergic airway inflammation.
Collapse
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Ian J Hawthorne
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Courteney Tunstead
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Eóin N McNamee
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Daniel J Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Michelle E Armstrong
- Department of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Karen English
- Department of Biology, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland.
| |
Collapse
|
3
|
Wang H, Zhang Q, Wu S, Pan D, Ning Y, Wang C, Guo J, Gu Y. Mesenchymal stem cell therapy in eosinophilic granulomatosis with polyangiitis-related lower limb gangrene: a case report. Stem Cell Res Ther 2024; 15:307. [PMID: 39285456 PMCID: PMC11406883 DOI: 10.1186/s13287-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Eosinophilic granulomatosis with polyangiitis (EGPA), a rare but life-threatening systemic vasculitis, is distinguished by marked eosinophilia and presents with diverse symptoms, including asthma, cutaneous purpura, ecchymosis, skin necrosis, cardiac lesions, peripheral neuropathy, and necrotizing vasculitis. The etiology of EGPA involves a complex interaction among humoral, adaptive, innate, and allergic immune responses. Standard treatment employs prolonged high-dose glucocorticoid therapy, which is critical for survival; however, some patients' symptoms cannot be relieved. CASE REPORT This case report details the medical management of an 11-year-old patient with EGPA, who was at risk of bilateral lower limb amputation due to differential arterial occlusion and severe, necrotizing vasculitis-induced gangrene in both feet. Treatment modalities administered included systemic infusion of Umbilical Cord Mesenchymal Stem Cells (UC-MSCs), targeted gastrocnemius muscle injections, and application of a Placenta-Derived Mesenchymal Stem Cells (PD-MSCs) hydrogel. RESULTS After receiving a four-month regimen of allogeneic mesenchymal stem cell therapy via intravenous and local administration, the patient showed normalized eosinophil counts, reestablished blood flow in the dorsal arteries, and marked improvement in foot ulcerations. CONCLUSION Mesenchymal stem cell therapy is a promising option for severe EGPA cases refractory to glucocorticoids.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
- ShangRao Jingkai Health-Biotech United Hospital, ShangRao, 334000, Jiangxi, China
| | - Qian Zhang
- ShangRao Jingkai Health-Biotech United Hospital, ShangRao, 334000, Jiangxi, China
- Shangrao Normal University, ShangRao, 334000, Jiangxi, China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Yachan Ning
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China.
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China.
| |
Collapse
|
4
|
Yang Y, Li S, Peng Q, Guo Y, Gao Y, Gong Y, Lu J, Zhang Y, Shi X. Human umbilical cord mesenchymal stem cells promoted tumor cell growth associated with increased interleukin-18 in hepatocellular carcinoma. Mol Biol Rep 2024; 51:762. [PMID: 38874690 DOI: 10.1007/s11033-024-09688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is experiencing a concerning rise in both incidence and mortality rates. Current therapeutic strategies are limited in their effectiveness, largely due to the complex causes of the disease and significant levels of drug resistance. Given the latest developments in human umbilical cord mesenchymal stem cells (hUC-MSCs) research, there is a debate over the continued use of stem cell transplantation for treating tumors. Consequently, this study seeks to explore the role of hUC-MSCs in the management of HCC. METHODS AND RESULTS HUC-MSCs increased the number (10.75 ± 1.50) in the DEN/TCPOBOP-induced mice hepatoma model, compared with DMSO group (7.25 ± 1.71). Moreover, the liver index in hUC-MSCs group (0.21 ± 0.06) was greater than that in DMSO group (0.09 ± 0.01). Immunohistochemical (IHC) analysis revealed that while hUC-MSCs did not alter Foxp3 expression, they significantly stimulated Ki67 expression, indicative of increased tumor cellular proliferation. Additionally, immunofluorescence (IF) studies showed that hUC-MSCs increased CD8+ T cell counts without affecting macrophage numbers. Notably, granzyme B expression remained nearly undetectable. We observed that serum IL-18 levels were higher in the hUC-MSCs group (109.66 ± 0.38 pg/ml) compared to the DMSO group (91.14 ± 4.37 pg/ml). Conversely, IL-1β levels decreased in the hUC-MSCs group (63.00 ± 0.53 pg/ml) relative to the DMSO group (97.38 ± 9.08 pg/ml). CONCLUSIONS According to this study, hUC-MSCs promoted the growth of liver tumors. Therefore, we proposed that hUC-MSCs are not suitable for treating HCC, as they exhibit clinically prohibited abnormalities.
Collapse
Affiliation(s)
- Yanguang Yang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shenghao Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuman Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China.
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
5
|
Mao J, Qian S, Zhao Q, Zhao B, Lu B, Zhang L, Mao X, Zhang Y, Cui W, Sun X. Balancing macrophage polarization via stem cell-derived apoptotic bodies for diabetic wound healing. MED 2024; 5:148-168.e8. [PMID: 38340709 DOI: 10.1016/j.medj.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/18/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Adipose tissue-derived stem cell-derived apoptotic bodies (ADSC-ABs) have shown great potential for immunomodulation and regeneration, particularly in diabetic wound therapy. However, their local application has been limited by unclear regulatory mechanisms, rapid clearance, and short tissue retention times. METHODS We analyzed the key role molecules and regulatory pathways of ADSC-ABs in regulating inflammatory macrophages by mRNA sequencing and microRNA (miRNA) sequencing and then verified them by gene knockdown. To prevent rapid clearance, we employed microfluidics technology to prepare methacrylate-anhydride gelatin (GelMA) microspheres (GMS) for controlled release of ABs. Finally, we evaluated the effectiveness of ADSC-AB-laden GMSs (ABs@GMSs) in a diabetic rat wound model. FINDINGS Our results demonstrated that ADSC-ABs effectively balanced macrophage inflammatory polarization through the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, mediated by miR-20a-5p. Furthermore, we showed that AB@GMSs had good biocompatibility, significantly delayed local clearance of ABs, and ameliorated diabetic wound inflammation and promoted vascularization, thus facilitating its healing. CONCLUSIONS Our study reveals the regulatory mechanism of ADSC-ABs in balancing macrophage inflammatory polarization and highlightsthe importance of delaying their local clearance by GMSs. These findings have important implications for the development of novel therapies for diabetic wound healing. FUNDING This research was supported by the National Key Research and Development Program of China (2020YFA0908200), National Natural Science Foundation of China (82272263, 82002053, 32000937, and 82202467), Shanghai "Rising Stars of Medical Talents" Youth Development Program (22MC1940300), Shanghai Municipal Health Commission (20204Y0354), and Shanghai Science and Technology Development Funds (22YF1421400).
Collapse
Affiliation(s)
- Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China
| | - Shutong Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China
| | - Binfan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China
| | - Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China.
| | - Wenguo Cui
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China.
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China.
| |
Collapse
|
6
|
Peng YQ, Deng XH, Xu ZB, Wu ZC, Fu QL. Mesenchymal stromal cells and their small extracellular vesicles in allergic diseases: From immunomodulation to therapy. Eur J Immunol 2023; 53:e2149510. [PMID: 37572379 DOI: 10.1002/eji.202149510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) have long been considered a potential tool for treatment of allergic inflammatory diseases, owing to their immunomodulatory characteristics. In recent decades, the medical utility of MSCs has been evaluated both in vitro and in vivo, providing a foundation for therapeutic applications. However, the existing limitations of MSC therapy indicate the necessity for novel therapies. Notably, small extracellular vesicles (sEV) derived from MSCs have emerged rapidly as candidates instead of their parental cells. The acquisition of abundant and scalable MSC-sEV is an obstacle for clinical applications. The potential application of MSC-sEV in allergic diseases has attracted increasing attention from researchers. By carrying biological microRNAs or active proteins, MSC-sEV can modulate the function of various innate and adaptive immune cells. In this review, we summarise the recent advances in the immunomodulatory properties of MSCs in allergic diseases, the cellular sources of MSC-sEV, and the methods for obtaining high-quality human MSC-sEV. In addition, we discuss the immunoregulatory capacity of MSCs and MSC-sEV for the treatment of asthma, atopic dermatitis, and allergic rhinitis, with a special emphasis on their immunoregulatory effects and the underlying mechanisms of immune cell modulation.
Collapse
Affiliation(s)
- Ya-Qi Peng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Hernandez Pichardo A, Wilm B, Liptrott NJ, Murray P. Intravenous Administration of Human Umbilical Cord Mesenchymal Stromal Cells Leads to an Inflammatory Response in the Lung. Stem Cells Int 2023; 2023:7397819. [PMID: 37705699 PMCID: PMC10497368 DOI: 10.1155/2023/7397819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/25/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) administered intravenously (IV) have shown efficacy in preclinical models of various diseases. This is despite the cells not reaching the site of injury due to entrapment in the lungs. The immunomodulatory properties of MSCs are thought to underlie their therapeutic effects, irrespective of whether they are sourced from bone marrow, adipose tissue, or umbilical cord. To better understand how MSCs affect innate immune cell populations in the lung, we evaluated the distribution and phenotype of neutrophils, monocytes, and macrophages by flow cytometry and histological analyses after delivering human umbilical cord-derived MSCs (hUC-MSCs) IV into immunocompetent mice. After 2 hr, we observed a significant increase in neutrophils, and proinflammatory monocytes and macrophages. Moreover, these immune cells localized in close proximity to the MSCs, suggesting an active role in their clearance. By 24 hr, we detected an increase in anti-inflammatory monocytes and macrophages. These results suggest that the IV injection of hUC-MSCs leads to an initial inflammatory phase in the lung shortly after injection, followed by a resolution phase 24 hr later.
Collapse
Affiliation(s)
- Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Neill J. Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Abreu S, Alves L, Carvalho L, Xisto D, Blanco N, Castro L, Olsen P, Lapa E Silva JR, Morales MM, Lopes-Pacheco M, Weiss D, Rocco PRM. Serum from patients with asthma potentiates macrophage phagocytosis and human mesenchymal stromal cell therapy in experimental allergic asthma. Cytotherapy 2023; 25:967-976. [PMID: 37330732 DOI: 10.1016/j.jcyt.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND/AIMS Although several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma. METHODS hMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed. RESULTS Serum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-β, interleukin (IL)-10, tumor necrosis factor-α-stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs. CONCLUSIONS Serum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.
Collapse
Affiliation(s)
- Soraia Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Leonardo Alves
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Carvalho
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lígia Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla Olsen
- Laboratory of Immunological Studies, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Roberto Lapa E Silva
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Marcos Morales
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Daniel Weiss
- Department of Medicine, University of Vermont, College of Medicine, Burlington, Vermont, USA
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Liu L, Zhou L, Wang LL, Zheng PD, Zhang FQ, Mao ZY, Zhang HJ, Liu HG. Programmed Cell Death in Asthma: Apoptosis, Autophagy, Pyroptosis, Ferroptosis, and Necroptosis. J Inflamm Res 2023; 16:2727-2754. [PMID: 37415620 PMCID: PMC10321329 DOI: 10.2147/jir.s417801] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Bronchial asthma is a complex heterogeneous airway disease, which has emerged as a global health issue. A comprehensive understanding of the different molecular mechanisms of bronchial asthma may be an efficient means to improve its clinical efficacy in the future. Increasing research evidence indicates that some types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, contributed to asthma pathogenesis, and may become new targets for future asthma treatment. This review briefly discusses the molecular mechanism and signaling pathway of these forms of PCD focuses on summarizing their roles in the pathogenesis and treatment strategies of asthma and offers some efficient means to improve clinical efficacy of therapeutics for asthma in the near future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Ling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Peng-Dou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feng-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen-Yu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
10
|
Gholami M, Ghorban K, Sadeghi M, Dadmanesh M, Rouzbahani NH, Dehnavi S. Mesenchymal stem cells and allergic airway inflammation; a therapeutic approach to induce immunoregulatory responses. Int Immunopharmacol 2023; 120:110367. [PMID: 37230032 DOI: 10.1016/j.intimp.2023.110367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Allergic airway inflammations are among the essential disorders worldwide that are already considered a significant concern. Mesenchymal stem cells (MSCs) are stromal cells with regenerative potential and immunomodulatory characteristics and are widely administered for tissue repair as an immunoregulatory agent in different inflammatory diseases. The current review summarized primary studies conducted to evaluate the therapeutic potential of MSCs for allergic airway disorders. In this case, modulation of airway pathologic inflammation and infiltration of inflammatory cells were examined, and modulation of the Th1/Th2 cellular balance and humoral responses. Also, the effects of MSCs on the Th17/Treg ratio and inducing Treg immunoregulatory responses along with macrophage and dendritic cell function were evaluated.
Collapse
Affiliation(s)
- Mohammad Gholami
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran; Department of Medical Microbiology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Khodayar Ghorban
- Department of Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dadmanesh
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, School Of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Negin Hosseini Rouzbahani
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran; Department of Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Jerkic M, Szaszi K, Laffey JG, Rotstein O, Zhang H. Key Role of Mesenchymal Stromal Cell Interaction with Macrophages in Promoting Repair of Lung Injury. Int J Mol Sci 2023; 24:ijms24043376. [PMID: 36834784 PMCID: PMC9965074 DOI: 10.3390/ijms24043376] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Lung macrophages (Mφs) are essential for pulmonary innate immunity and host defense due to their dynamic polarization and phenotype shifts. Mesenchymal stromal cells (MSCs) have secretory, immunomodulatory, and tissue-reparative properties and have shown promise in acute and chronic inflammatory lung diseases and in COVID-19. Many beneficial effects of MSCs are mediated through their interaction with resident alveolar and pulmonary interstitial Mφs. Bidirectional MSC-Mφ communication is achieved through direct contact, soluble factor secretion/activation, and organelle transfer. The lung microenvironment facilitates MSC secretion of factors that result in Mφ polarization towards an immunosuppressive M2-like phenotype for the restoration of tissue homeostasis. M2-like Mφ in turn can affect the MSC immune regulatory function in MSC engraftment and tissue reparatory effects. This review article highlights the mechanisms of crosstalk between MSCs and Mφs and the potential role of their interaction in lung repair in inflammatory lung diseases.
Collapse
Affiliation(s)
- Mirjana Jerkic
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Correspondence:
| | - Katalin Szaszi
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - John G. Laffey
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Ori Rotstein
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Haibo Zhang
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Anesthesiology and Pain Medicine, Interdepartmental Division of Critical Care Medicine and Department of Physiology, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
12
|
Mo Y, Kang SY, Bang JY, Kim Y, Jeong J, Jeong EM, Kim HY, Cho SH, Kang HR. Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model. Mol Cells 2022; 45:833-845. [PMID: 36380733 PMCID: PMC9676992 DOI: 10.14348/molcells.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti- asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.
Collapse
Affiliation(s)
- Yosep Mo
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung-Yoon Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Korea
| | - Ji-Young Bang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yujin Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jiung Jeong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eui-Man Jeong
- Department of Pharmacy, Jeju National University College of Pharmacy, Jeju 63243, Korea
| | - Hye Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Medical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
13
|
Montuori-Andrade A, Nolasco A, Malacco N, Vaz L, Afonso L, Russo R, Vieira L, dos Santos L. Lactobacillus delbrueckii UFV-H2b20 increases IFN-γ production and CD39+CD73+ Treg cell numbers in lungs, and protects mice against experimental allergic asthma. Immunobiology 2022; 227:152284. [DOI: 10.1016/j.imbio.2022.152284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
14
|
Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects. Sci Rep 2022; 12:11728. [PMID: 35821386 PMCID: PMC9276742 DOI: 10.1038/s41598-022-14846-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess immunomodulatory properties that have therapeutic potential for the treatment of inflammatory diseases. This study investigates the effects of direct MSC administration on asthmatic airways. Umbilical cord MSCs (ucMSCs) were intratracheally administered to six-week-old female BALB/c mice sensitized and challenged with ovalbumin; airway hyperresponsiveness (AHR), analyses of airway inflammatory cells, lung histology, flow cytometry, and quantitative real-time PCR were performed. Furthermore, ex vivo and in vitro experiments were performed to assess the effects of ucMSC on M2 activation. Intratracheally administered ucMSCs decreased degree of airway resistance and the number of inflammatory cells such as T helper 2 (Th2) cells, type 2 innate lymphoid cells (ILC2), and macrophages in the murine asthma model. Particularly, MHCII and CD86 expression diminished in dendritic cells and alveolar macrophages (AMs) following ucMSC treatment. SiglecF+CD11c+CD11b- AMs show a negative correlation with type II inflammatory cells including Th2 cells, ILC2, and eosinophils in asthmatic mice and were restored following intratracheal ucMSCs treatment. In addition, ucMSCs decreased the macrophage polarization to M2, particularly M2a. The expression levels of markers associated with M2 polarization and Th2 inflammation were also decreased. ucMSC reduced Il-12 and Tnfa expression as well as that of M2 markers such as Cd206 and Retnla ex vivo. Furthermore, the in vitro study using IL-4 treated macrophages confirmed that both direct and indirect MSC treatment significantly reduced the expression of Il-5 and Il-13. In conclusion, ucMSCs appear to suppress type II inflammation by regulating lung macrophages via soluble mediators.
Collapse
|
15
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
16
|
Zheng D, Bhuvan T, Payne NL, Heng TSP. Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Front Immunol 2022; 13:892443. [PMID: 35784291 PMCID: PMC9243307 DOI: 10.3389/fimmu.2022.892443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in inflammatory models of human disease. However, clinical translation has fallen short of expectations, with many trials failing to meet primary endpoints. Failure to fully understand their mechanisms of action is a key factor contributing to the lack of successful commercialisation. Indeed, it remains unclear how the long-ranging immunomodulatory effects of MSCs can be attributed to their secretome, when MSCs undergo apoptosis in the lung shortly after intravenous infusion. Their apoptotic fate suggests that efficacy is not based solely on their viable properties, but also on the immune response to dying MSCs. The secondary lymphoid organs (SLOs) orchestrate immune responses and play a key role in immune regulation. In this review, we will discuss how apoptotic cells can modify immune responses and highlight the importance of MSC-immune cell interactions in SLOs for therapeutic outcomes.
Collapse
Affiliation(s)
- Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natalie L. Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Tracy S. P. Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
- *Correspondence: Tracy S. P. Heng,
| |
Collapse
|
17
|
Mesenchymal stem cells exert their anti-asthmatic effects through macrophage modulation in a murine chronic asthma model. Sci Rep 2022; 12:9811. [PMID: 35697721 PMCID: PMC9192777 DOI: 10.1038/s41598-022-14027-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
Despite numerous previous studies, the full action mechanism of the pathogenesis of asthma remains undiscovered, and the need for further investigation is increasing in order to identify more effective target molecules. Recent attempts to develop more efficacious treatments for asthma have incorporated mesenchymal stem cell (MSC)-based cell therapies. This study aimed to evaluate the anti-asthmatic effects of MSCs primed with Liproxstatin-1, a potent ferroptosis inhibitor. In addition, we sought to examine the changes within macrophage populations and their characteristics in asthmatic conditions. Seven-week-old transgenic mice, constitutively overexpressing lung-specific interleukin (IL)-13, were used to simulate chronic asthma. Human umbilical cord-derived MSCs (hUC-MSCs) primed with Liproxstatin-1 were intratracheally administered four days prior to sampling. IL-13 transgenic mice demonstrated phenotypes of chronic asthma, including severe inflammation, goblet cell hyperplasia, and subepithelial fibrosis. Ly6C+M2 macrophages, found within the pro-inflammatory CD11c+CD11b+ macrophages, were upregulated and showed a strong correlation with lung eosinophil counts. Liproxstatin-1-primed hUC-MSCs showed enhanced ability to downregulate the activation of T helper type 2 cells compared to naïve MSCs in vitro and reduced airway inflammation, particularly Ly6C+M2 macrophages population, and fibrosis in vivo. In conclusion, intratracheal administration is an effective method of MSC delivery, and macrophages hold great potential as an additional therapeutic target for asthma.
Collapse
|
18
|
da Silva RO, Hastreiter AA, Vivian GK, Dias CC, Santos ACA, Makiyama EN, Borelli P, Fock RA. The influence of association between aging and reduced protein intake on some immunomodulatory aspects of bone marrow mesenchymal stem cells: an experimental study. Eur J Nutr 2022; 61:3391-3406. [PMID: 35508740 DOI: 10.1007/s00394-022-02893-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Dietary protein deficiency is common in the elderly, compromising hematopoiesis and the immune response, and may cause a greater susceptibility to infections. Mesenchymal stem cells (MSCs) have immunomodulatory properties and are essential to hematopoiesis. Therefore, this study aimed to investigate, in an aging model subjected to malnutrition due a reduced protein intake, aspects related to the immunomodulatory capacity of MSCs. METHODS Male C57BL/6 mice from young and elderly groups were fed with normoproteic or hypoproteic diets (12% and 2% of protein, respectively) and nutritional, biochemical and hematological parameters were evaluated. MSCs from bone marrow were isolated, characterized and their secretory parameters evaluated, along with gene expression. Additionally, the effects of aging and protein malnutrition on MSC immunomodulatory properties were assessed. RESULTS Malnourished mice lost weight and demonstrated anemia, leukopenia, and bone marrow hypoplasia. MSCs from elderly animals from both groups showed reduced CD73 expression and higher senescence rate; also, the malnourished state affected CD73 expression in young animals. The production of IL-1β and IL-6 by MSCs was affected by aging and malnutrition, but the IL-10 production not. Aging also increased the expression of NFκB, reducing the expression of STAT-3. However, MSCs from malnourished groups, regardless of age, showed decreased TGF-β and PGE2 production. Evaluation of the immunomodulatory capacity of MSCs revealed that aging and malnutrition affected, mainly in lymphocytes, the production of IFN-γ and IL-10. CONCLUSION Aging and reduced protein intake are factors that, alone or together, influence the immunomodulatory properties of MSCs and provide basic knowledge that can be further investigated to explore whether MSCs' therapeutic potential may be affected.
Collapse
Affiliation(s)
- Renaira Oliveira da Silva
- Laboratory of Experimental Haematology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580-Bloco 17, São Paulo, SP, 05508-900, Brazil
| | - Araceli Aparecida Hastreiter
- Laboratory of Experimental Haematology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580-Bloco 17, São Paulo, SP, 05508-900, Brazil
| | - Gabriela Kodja Vivian
- Laboratory of Experimental Haematology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580-Bloco 17, São Paulo, SP, 05508-900, Brazil
| | - Carolina Carvalho Dias
- Laboratory of Experimental Haematology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580-Bloco 17, São Paulo, SP, 05508-900, Brazil
| | - Andressa Cristina Antunes Santos
- Laboratory of Experimental Haematology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580-Bloco 17, São Paulo, SP, 05508-900, Brazil
| | - Edson Naoto Makiyama
- Laboratory of Experimental Haematology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580-Bloco 17, São Paulo, SP, 05508-900, Brazil
| | - Primavera Borelli
- Laboratory of Experimental Haematology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580-Bloco 17, São Paulo, SP, 05508-900, Brazil
| | - Ricardo Ambrósio Fock
- Laboratory of Experimental Haematology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580-Bloco 17, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
19
|
Abstract
Tissue-resident immune cells span both myeloid and lymphoid cell lineages, have been found in multiple human tissues, and play integral roles at all stages of the immune response, from maintaining homeostasis to responding to infectious challenges to resolution of inflammation to tissue repair. In humans, studying immune cells and responses in tissues is challenging, although recent advances in sampling and high-dimensional profiling have provided new insights into the ontogeny, maintenance, and functional role of tissue-resident immune cells. Each tissue contains a specific complement of resident immune cells. Moreover, resident immune cells for each lineage share core properties, along with tissue-specific adaptations. Here we propose a five-point checklist for defining resident immune cell types in humans and describe the currently known features of resident immune cells, their mechanisms of development, and their putative functional roles within various human organs. We also consider these aspects of resident immune cells in the context of future studies and therapeutics.
Collapse
Affiliation(s)
- Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
- Department of Surgery, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
20
|
Abstract
Human mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are important adult stem cells for regenerative medicine, largely due to their regenerative characteristics such as self-renewal, secretion of trophic factors, and the capability of inducing mesenchymal cell lineages. MSCs also possess homing and trophic properties modulating immune system, influencing microenvironment around damaged tissues and enhancing tissue repair, thus offering a broad perspective in cell-based therapies. Therefore, it is not surprising that MSCs have been the broadly used adult stem cells in clinical trials. To gain better insights into the current applications of MSCs in clinical applications, we perform a comprehensive review of reported data of MSCs clinical trials conducted globally. We summarize the biological effects and mechanisms of action of MSCs, elucidating recent clinical trials phases and findings, highlighting therapeutic effects of MSCs in several representative diseases, including neurological, musculoskeletal diseases and most recent Coronavirus infectious disease. Finally, we also highlight the challenges faced by many clinical trials and propose potential solutions to streamline the use of MSCs in routine clinical applications and regenerative medicine.
Collapse
|
21
|
Tang XZ, Kreuk LSM, Cho C, Metzger RJ, Allen CDC. Bronchus-associated macrophages efficiently capture and present soluble inhaled antigens and are capable of local Th2 cell activation. eLife 2022; 11:63296. [PMID: 36173678 PMCID: PMC9560158 DOI: 10.7554/elife.63296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
In allergic asthma, allergen inhalation leads to local Th2 cell activation and peribronchial inflammation. However, the mechanisms for local antigen capture and presentation remain unclear. By two-photon microscopy of the mouse lung, we established that soluble antigens in the bronchial airway lumen were efficiently captured and presented by a population of CD11c+ interstitial macrophages with high CX3CR1-GFP and MHC class II expression. We refer to these cells as Bronchus-Associated Macrophages (BAMs) based on their localization underneath the bronchial epithelium. BAMs were enriched in collagen-rich regions near some airway branchpoints, where inhaled antigens are likely to deposit. BAMs engaged in extended interactions with effector Th2 cells and promoted Th2 cytokine production. BAMs were also often in contact with dendritic cells (DCs). After exposure to inflammatory stimuli, DCs migrated to draining lymph nodes, whereas BAMs remained lung resident. We propose that BAMs act as local antigen presenting cells in the lung and also transfer antigen to DCs.
Collapse
Affiliation(s)
- Xin-Zi Tang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Lieselotte S M Kreuk
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Cynthia Cho
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Ross J Metzger
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
22
|
Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nat Commun 2021; 12:6495. [PMID: 34764248 PMCID: PMC8586224 DOI: 10.1038/s41467-021-26834-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) ameliorate a wide range of diseases in preclinical models, but the lack of clarity around their mechanisms of action has impeded their clinical utility. The therapeutic effects of MSCs are often attributed to bioactive molecules secreted by viable MSCs. However, we found that MSCs underwent apoptosis in the lung after intravenous administration, even in the absence of host cytotoxic or alloreactive cells. Deletion of the apoptotic effectors BAK and BAX prevented MSC death and attenuated their immunosuppressive effects in disease models used to define MSC potency. Mechanistically, apoptosis of MSCs and their efferocytosis induced changes in metabolic and inflammatory pathways in alveolar macrophages to effect immunosuppression and reduce disease severity. Our data reveal a mode of action whereby the host response to dying MSCs is key to their therapeutic effects; findings that have broad implications for the effective translation of cell-based therapies. Mesenchymal stromal cells (MSCs) demonstrate therapeutic benefits in multiple diseases, but the mechanisms remain unclear as infused MSCs do not persist in the body. Here, the authors show that MSC apoptosis is an important mechanistic element, as MSCs rendered genetically incapable of apoptosis lose their ability to ameliorate disease.
Collapse
|
23
|
Kim EY, Kim HS, Hong KS, Chung HM, Park SP, Noh G. Mesenchymal stem/stromal cell therapy in atopic dermatitis and chronic urticaria: immunological and clinical viewpoints. Stem Cell Res Ther 2021; 12:539. [PMID: 34635172 PMCID: PMC8503727 DOI: 10.1186/s13287-021-02583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Allergic diseases are immune-mediated diseases. Allergies share a common immunopathogenesis, with specific differences according to the specific disease. Mesenchymal stem/stromal cells (MSCs) have been applied to people suffering from allergic and many other diseases. In this review, the immunologic roles of MSCs are systemically reviewed according to disease immunopathogenesis from a clinical viewpoint. MSCs seem to be a promising therapeutic modality not only as symptomatic treatments but also as causative and even preventive treatments for allergic diseases, including atopic dermatitis and chronic urticaria.
Collapse
Affiliation(s)
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, The Graduate School of Dong-A University, Busan, Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | | | - Hyung-Min Chung
- Miraecellbio Co., Ltd., Seoul, Korea.,Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Se-Pill Park
- Miraecellbio Co., Ltd., Seoul, Korea. .,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Korea.
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center, Cheju Halla General Hospital, Doreongno 65, Jeju-si, 63127, Jeju Special Self-Governing Province, Korea.
| |
Collapse
|
24
|
Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol 2021; 12:708186. [PMID: 34456917 PMCID: PMC8397413 DOI: 10.3389/fimmu.2021.708186] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells. Rheumatoid arthritis (RA) is a chronic autoimmune-driven spectrum of diseases where persistent inflammation results in synovial hyperplasia and excessive immune cell accumulation, leading to remodeling and reduced function in affected joints. Macrophages are central to the pathophysiology of RA, driving episodic cycles of chronic inflammation and tissue destruction. RA patients have increased numbers of active M1 polarized pro-inflammatory macrophages and few or inactive M2 type cells. This imbalance in macrophage homeostasis is a main contributor to pro-inflammatory mediators in RA, resulting in continual activation of immune and stromal populations and accelerated tissue remodeling. Modulation of macrophage phenotype and function remains a key therapeutic goal for the treatment of this disease. Intriguingly, therapeutic intervention with glucocorticoids or other DMARDs promotes the re-polarization of M1 macrophages to an anti-inflammatory M2 phenotype; this reprogramming is dependent on metabolic changes to promote phenotypic switching. Allergic asthma is associated with Th2-polarised airway inflammation, structural remodeling of the large airways, and airway hyperresponsiveness. Macrophage polarization has a profound impact on asthma pathogenesis, as the response to allergen exposure is regulated by an intricate interplay between local immune factors including cytokines, chemokines and danger signals from neighboring cells. In the Th2-polarized environment characteristic of allergic asthma, high levels of IL-4 produced by locally infiltrating innate lymphoid cells and helper T cells promote the acquisition of an alternatively activated M2a phenotype in macrophages, with myriad effects on the local immune response and airway structure. Targeting regulators of macrophage plasticity is currently being pursued in the treatment of allergic asthma and other allergic diseases. Macrophages promote the re-balancing of pro-inflammatory responses towards pro-resolution responses and are thus central to the success of an inflammatory response. It has long been established that apoptosis supports monocyte and macrophage recruitment to sites of inflammation, facilitating subsequent corpse clearance. This drives resolution responses and mediates a phenotypic switch in the polarity of macrophages. However, the role of apoptotic cell-derived extracellular vesicles (ACdEV) in the recruitment and control of macrophage phenotype has received remarkably little attention. ACdEV are powerful mediators of intercellular communication, carrying a wealth of lipid and protein mediators that may modulate macrophage phenotype, including a cargo of active immune-modulating enzymes. The impact of such interactions may result in repair or disease in different contexts. In this review, we will discuss the origin, characterization, and activity of macrophages in sterile inflammatory diseases and the underlying mechanisms of macrophage polarization via ACdEV and apoptotic cell clearance, in order to provide new insights into therapeutic strategies that could exploit the capabilities of these agile and responsive cells.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Andrew Devitt
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Jill R Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
25
|
Affiliation(s)
- Zachary W Wagoner
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA. .,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, USA. .,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA. .,Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
27
|
Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, Mohd Isa SA, Chatar Singh GK, Then KY, Ooi GC, Yahaya BH. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Res Ther 2021; 12:54. [PMID: 33436065 PMCID: PMC7805108 DOI: 10.1186/s13287-020-02088-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs possess a therapeutic potential which is comparable to the cells of their origin. METHODS In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague-Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSC-derived EVs. Lung tissue was subjected to histological analysis using haematoxylin and eosin staining, Alcian blue-periodic acid-Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student's t test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median ± standard deviation (SD). RESULTS Both transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, and a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD. CONCLUSIONS In conclusion, we show that hUC-MSC-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free-based therapy for the treatment of COPD.
Collapse
Affiliation(s)
- Noridzzaida Ridzuan
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Norashikin Zakaria
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, RG6 6AP, UK
| | - Jonathan Sheard
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, RG6 6AP, UK
| | - Mitsuru Morimoto
- RIKEN Centre for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hirofumi Kiyokawa
- RIKEN Centre for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Seoparjoo Azmel Mohd Isa
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Malaysia
| | - Gurjeet Kaur Chatar Singh
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Kong-Yong Then
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Ghee-Chien Ooi
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
28
|
Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, Wang S, Song J. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res Ther 2020; 11:519. [PMID: 33261658 PMCID: PMC7705855 DOI: 10.1186/s13287-020-02011-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Human umbilical cord mesenchymal stem cells (HUC-MSCs) present in the umbilical cord tissue are self-renewing and multipotent. They can renew themselves continuously and, under certain conditions, differentiate into one or more cell types constituting human tissues and organs. HUC-MSCs differentiate, among others, into osteoblasts, chondrocytes, and adipocytes and have the ability to secrete cytokines. The possibility of noninvasive harvesting and low immunogenicity of HUC-MSCs give them a unique advantage in clinical applications. In recent years, HUC-MSCs have been widely used in clinical practice, and some progress has been made in their use for therapeutic purposes. Main body This article describes two aspects of the clinical therapeutic effects of HUC-MSCs. On the one hand, it explains the benefits and mechanisms of HUC-MSC treatment in various diseases. On the other hand, it summarizes the results of basic research on HUC-MSCs related to clinical applications. The first part of this review highlights several functions of HUC-MSCs that are critical for their therapeutic properties: differentiation into terminal cells, immune regulation, paracrine effects, anti-inflammatory effects, anti-fibrotic effects, and regulating non-coding RNA. These characteristics of HUC-MSCs are discussed in the context of diabetes and its complications, liver disease, systemic lupus erythematosus, arthritis, brain injury and cerebrovascular diseases, heart diseases, spinal cord injury, respiratory diseases, viral infections, and other diseases. The second part emphasizes the need to establish an HUC-MSC cell bank, discusses tumorigenicity of HUC-MSCs and the characteristics of different in vitro generations of these cells in the treatment of diseases, and provides technical and theoretical support for the clinical applications of HUC-MSCs. Conclusion HUC-MSCs can treat a variety of diseases clinically and have achieved good therapeutic effects, and the development of HUC-MSC assistive technology has laid the foundation for its clinical application.
Collapse
Affiliation(s)
- Qixin Xie
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Rui Liu
- Department of Medical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jia Jiang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Jing Peng
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Chunyan Yang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Wen Zhang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Sheng Wang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Jing Song
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China.
| |
Collapse
|
29
|
Mirershadi F, Ahmadi M, Rezabakhsh A, Rajabi H, Rahbarghazi R, Keyhanmanesh R. Unraveling the therapeutic effects of mesenchymal stem cells in asthma. Stem Cell Res Ther 2020; 11:400. [PMID: 32933587 PMCID: PMC7493154 DOI: 10.1186/s13287-020-01921-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Asthma is a chronic inflammatory disease associated with airway hyper-responsiveness, chronic inflammatory response, and excessive structural remodeling. The current therapeutic strategies in asthmatic patients are based on controlling the activity of type 2 T helper lymphocytes in the pulmonary tissue. However, most of the available therapies are symptomatic and expensive and with diverse side outcomes in which the interruption of these modalities contributes to the relapse of asthmatic symptoms. Up to date, different reports highlighted the advantages and beneficial outcomes regarding the transplantation of different stem cell sources, and relevant products from for the diseases' alleviation and restoration of injured sites. However, efforts to better understand by which these cells elicit therapeutic effects are already underway. The precise understanding of these mechanisms will help us to translate stem cells into the clinical setting. In this review article, we described current knowledge and future perspectives related to the therapeutic application of stem cell-based therapy in animal models of asthma, with emphasis on the underlying therapeutic mechanisms.
Collapse
Affiliation(s)
- Fatemeh Mirershadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, 51666-14766, Iran.,Department of Physiology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Mahdi Ahmadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, 51666-14766, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Koc University Research Center for Translational Medicine (KUTTAM), Koc University School of Medicine, Istanbul, Turkey.,Department of Pulmonary Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, 51548-53431, Iran.
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, 51666-14766, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Guo TL, Lefever DE, Nagy T, Meng AH. In utero exposure to genistein decreased intranasal house dust mite-induced respiratory allergy in middle-aged male B6C3F1 offspring. Toxicol Lett 2020; 333:222-231. [PMID: 32798538 DOI: 10.1016/j.toxlet.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Despite many hypothesized benefits of dietary isoflavone genistein (GEN) deriving from soy-based products, questions surrounding GEN's developmental effects are increasing. To understand if in utero GEN exposure modulated postnatal respiratory allergies in the middle age, we conducted a time course study in the B6C3F1 offspring (PND 240-330) using a common household allergen (house dust mites: HDM; 10 μg/mouse for PND 240 and 290, and 50 μg/mouse for PND 330, a middle age in mice) following intranasal instillation, a physiological route of allergen exposure. GEN was administered to dams by gavage from gestational day 14 to parturition at a physiologically relevant dose (20 mg/kg body weight). Female and male offspring were sensitized with HDM allergens beginning about one month prior to sacrifice followed by challenges with three weekly dosings of HDM extracts, and they were euthanized at day 3 following the final HDM exposure. In utero exposure to GEN decreased HDM allergen-induced respiratory allergy in male B6C3F1 offspring at PND 330 as reflected by decreases in airway hyperresponsiveness (e.g., Penh value), HDM-specific IgG1 (a Th2 type Ab) and the activity of eosinophil peroxidase in the lung (an indication of eosinophil recruitment to the lungs). However, in utero exposure to GEN had minimal effects on HDM allergen-induced respiratory allergy in the middle-aged female offspring. Changes in serum total IgE, HDM-specific IgE, and lung histopathology scores in both male and female offspring were not biologically significant. Overall, in utero GEN exposure exerted a protective effect on respiratory allergy in the middle-aged male, but not female, B6C3F1 offspring following later-life HDM exposures.
Collapse
Affiliation(s)
- Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, United States.
| | - Daniel E Lefever
- Department of Veterinary Biosciences and Diagnostic Imaging, United States
| | - Tamas Nagy
- Department of Veterinary Pathology, University of Georgia, Athens, GA 30602-7382, United States
| | - Andrew H Meng
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, United States
| |
Collapse
|
31
|
Wu X, Wu D, Mu Y, Zhao Y, Ma Z. Serum-Free Medium Enhances the Therapeutic Effects of Umbilical Cord Mesenchymal Stromal Cells on a Murine Model for Acute Colitis. Front Bioeng Biotechnol 2020; 8:586. [PMID: 32671030 PMCID: PMC7332562 DOI: 10.3389/fbioe.2020.00586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
The usage of animal serum may ultimately prevent the application of ex vivo cultured mesenchymal stromal cells (MSCs) in a clinical setting due to safety concerns and batch-to-batch variability. Increasing regulatory pressure to limit use of animal serum has been issued and serum-free, xeno-free, and chemically defined media (S&XFM-CD) is encouraged to replace serum-containing media (SCM) in the stem cell preparation process. We previously developed a S&XFM-CD for the expansion of umbilical cord-derived MSCs (UCMSCs). Different culture conditions affect the function of MSCs, which may further affect the therapeutic efficiency and mechanisms of action. In this study, we compared the therapeutic effect and mechanism of UCMSCs in S&XFM-CD (UCMSCS&XFM−CD) in experimental colitis with those in SCM (UCMSCSCM). UCMSCS&XFM−CD exhibited better therapeutic effects than UCMSCSCM by body weight, disease activity index, and histological colitis score. UCMSCS&XFM−CD or UCMSCSCM migrated to the inflammation site of injured colon, but exhibited low levels of recruitment and persistence. Systemic depletion of endogenous macrophages impaired the therapeutic effects of UCMSCSCM and UCMSCS&XFM−CD. Furthermore, UCMSCS&XFM−CD more markedly promoted intestinal macrophage polarisation from M1 to M2 phenotype to produce higher levels of IL-10 and lower levels of TNF-α in colon tissue than UCMSCSCM, while a higher level of IL-4 was produced in UCMSCSCM-treated group. UCMSCS&XFM−CD cocultured with RAW264.7 cells in a transwell system promoted the release of TSG-6 and IL-6, whereas UCMSCSCM increased PGE2 levels. Taken together, we demonstrated that UCMSCs in S&XFM-CD exhibited improved therapeutic effects with altered cytokine secretion in an experimental acute colitis model.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China.,Department of Technology, Stem Cell Medicine Engineering & Technology Research Center of Inner Mongolia, Huhhot, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yongxu Mu
- Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yuxia Zhao
- Department of Blood, The People's Hospital of Xing'an League, Ulanhot, China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Hur J, Kang JY, Kim YK, Lee SY, Jeon S, Kim Y, Jung CK, Rhee CK. Evaluation of Human MSCs Treatment Frequency on Airway Inflammation in a Mouse Model of Acute Asthma. J Korean Med Sci 2020; 35:e188. [PMID: 32537953 PMCID: PMC7295606 DOI: 10.3346/jkms.2020.35.e188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Studies in experimental models of allergic asthma have shown that mesenchymal stem cells (MSCs) have therapeutic potential for T-helper 2 (TH2) cell-mediated inflammation. However, the mechanisms underlying these therapeutic effects are not fully understood and their safety has not been confirmed. METHODS Using a mouse model of experimental allergic asthma, we investigated the efficacy of human adipose-derived mesenchymal stem cells (hADSCs) or human bone marrow-derived mesenchymal stem cells (hBMSCs) according to treatment frequency and timing. RESULTS Ovalbumin (OVA)-sensitized and -challenged mice exhibited airway hyperresponsiveness (AHR), airway inflammation, and significant increases in TH2 cytokine levels. Both double and single human mesenchymal stem cell (hMSC) treatments significantly decreased AHR and bronchoalveolar lavage fluid counts. In addition, single treatment with hMSCs showed significant attenuation of allergic airway inflammation. However, double treatment with hMSCs during OVA -sensitization and -challenge further increased inflammatory cell infiltration, and TH2 cytokine levels. CONCLUSION The results of treatment with hADSCs or hBMSCs suppresses AHR and airway inflammation. However, double hMSC treatment significantly induces eosinophilic airway inflammation and lung histological changes. Therefore, double hMSC treatment is ineffective against asthma and single injection frequency appears to be more important for the treatment of asthma. These results suggest that hMSC therapy can be used for treatment of asthma patients but that it should be used carefully.
Collapse
Affiliation(s)
- Jung Hur
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Young Kang
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Kyoon Kim
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Young Lee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sora Jeon
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yourha Kim
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Chin Kook Rhee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
33
|
Fang SB, Zhang HY, Meng XC, Wang C, He BX, Peng YQ, Xu ZB, Fan XL, Wu ZJ, Wu ZC, Zheng SG, Fu QL. Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis 2020; 11:409. [PMID: 32483121 PMCID: PMC7264182 DOI: 10.1038/s41419-020-2606-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Allergic airway inflammation is a major public health disease that affects up to 300 million people in the world. However, its management remains largely unsatisfactory. The dysfunction of pulmonary macrophages contributes greatly to the development of allergic airway inflammation. It has been reported that small extracellular vesicles derived from mesenchymal stromal cells (MSC-sEV) were able to display extensive therapeutic effects in some immune diseases. This study aimed to investigate the effects of MSC-sEV on allergic airway inflammation, and the role of macrophages involved in it. We successfully isolated MSC-sEV by using anion exchange chromatography, which were morphologically intact and positive for the specific EV markers. MSC-sEV significantly reduced infiltration of inflammatory cells and number of epithelial goblet cells in lung tissues of mice with allergic airway inflammation. Levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid were also significantly decreased. Importantly, levels of monocytes-derived alveolar macrophages and M2 macrophages were significantly reduced by MSC-sEV. MSC-sEV were excreted through spleen and liver at 24 h post-administration in mice, and were able to be taken in by macrophages both in vivo and in vitro. In addition, proteomics analysis of MSC-sEV revealed that the indicated three types of MSC-sEV contained different quantities of proteins and shared 312 common proteins, which may be involved in the therapeutic effects of MSC-sEV. In total, our study demonstrated that MSC-sEV isolated by anion exchange chromatography were able to ameliorate Th2-dominant allergic airway inflammation through immunoregulation on pulmonary macrophages, suggesting that MSC-sEV were promising alternative therapy for allergic airway inflammation in the future.
Collapse
Affiliation(s)
- Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Hong-Yu Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Xiang-Ci Meng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Cong Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Ya-Qi Peng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Zhi-Bin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Zhang-Jin Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Song-Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China.
| |
Collapse
|
34
|
Cherian DS, Bhuvan T, Meagher L, Heng TSP. Biological Considerations in Scaling Up Therapeutic Cell Manufacturing. Front Pharmacol 2020; 11:654. [PMID: 32528277 PMCID: PMC7247829 DOI: 10.3389/fphar.2020.00654] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Cell therapeutics - using cells as living drugs - have made advances in many areas of medicine. One of the most clinically studied cell-based therapy products is mesenchymal stromal cells (MSCs), which have shown promising results in promoting tissue regeneration and modulating inflammation. However, MSC therapy requires large numbers of cells, the generation of which is not feasible via conventional planar tissue culture methods. Scale-up manufacturing methods (e.g., propagation on microcarriers in stirred-tank bioreactors), however, are not specifically tailored for MSC expansion. These processes may, in principle, alter the cell secretome, a vital component underlying the immunosuppressive properties and clinical effectiveness of MSCs. This review outlines our current understanding of MSC properties and immunomodulatory function, expansion in commercial manufacturing systems, and gaps in our knowledge that need to be addressed for effective up-scaling commercialization of MSC therapy.
Collapse
Affiliation(s)
- Darshana S Cherian
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
35
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020; 9:145-147. [PMID: 31951320 PMCID: PMC7194746 DOI: 10.1002/sctm.20-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
|
36
|
Yuan Y, Li L, Zhu L, Liu F, Tang X, Liao G, Liu J, Cheng J, Chen Y, Lu Y. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy. Stem Cells 2020; 38:639-652. [PMID: 31904160 DOI: 10.1002/stem.3144] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. Chronic inflammation is recognized as a key causal factor in the development and progression of DN, and the imbalance of M1/M2 macrophages (Mφ) contributes to this process. Mesenchymal stem cells (MSCs) have been reported to prevent renal injuries via immune regulation in diabetic models, but whether these benefits are owing to the regulation of Mφ, and the underlying signaling pathways are unknown. Here, we showed that MSCs elicited Mφ into M2 phenotype and prevented renal injuries in DN mice, but these effects were abolished when the Mφ were depleted by clodronate liposomes (Lipo-Clod), suggesting that Mφ were necessary for renal protection of MSCs in DN mice. Moreover, the MSCs promoted M2 polarization was attributable to the activation of transcription factor EB (TFEB) and subsequent restore of lysosomal function and autophagy activity in Mφ. Furthermore, in vivo adoptive transfer of Mφin vivo (Mφ from DN + MSCs mice) or MφMSCs (Mφ cocultured with MSCs in vitro) to DN mice improved renal function. While, TFEB knockdown in Mφ significantly abolished the protective role of MφMSCs . Altogether, these findings revealed that MSCs suppress inflammatory response and alleviate renal injuries in DN mice via TFEB-dependent Mφ switch.
Collapse
Affiliation(s)
- Yujia Yuan
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lan Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lingling Zhu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fei Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xi Tang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guangneng Liao
- Animal Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Younan Chen
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanrong Lu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
37
|
Li H, Tian Y, Xie L, Liu X, Huang Z, Su W. Mesenchymal stem cells in allergic diseases: Current status. Allergol Int 2020; 69:35-45. [PMID: 31445840 DOI: 10.1016/j.alit.2019.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases, which include asthma, allergic skin diseases, allergic rhinitis and allergic conjunctivitis, have already garnered worldwide public health attention over recent decades. Mesenchymal stem cells (MSCs) have gradually emerged as a potential method for treating allergic diseases due to their immunosuppressive characteristics, tissue repair ability and secretion of various biological factors. This potential of MSC-based therapy has been confirmed in clinical and preclinical studies, which report the therapeutic benefits of MSCs for various allergic diseases and explore the antiallergic mechanisms. In this review, we focus on the discoveries and biological mechanisms of MSCs as a therapeutic tool in allergic diseases. We discuss the challenges of conducting MSC studies as well as future directions.
Collapse
|
38
|
Sadeghi S, Mosaffa N, Hashemi SM, Mehdi Naghizadeh M, Ghazanfari T. The immunomodulatory effects of mesenchymal stem cells on long term pulmonary complications in an animal model exposed to a sulfur mustard analog. Int Immunopharmacol 2019; 80:105879. [PMID: 31767545 DOI: 10.1016/j.intimp.2019.105879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Sulfur Mustard (SM) is one of the most lethal chemicals with major complications manifested in the lungs. Although the pathogenesis behind SM-induced lung injury still remains poorly understood, prolonged activation and the imbalance of two major macrophage populations (M1 and M2) have been suggested to be involved. Here, we tried to investigate the effectiveness of adipose-derived mesenchymal stem cells (AD-MSC) on long-term lesions induced by CEES, an SM analog. The modulation of pulmonary immune cells and alveolar macrophage phenotype alteration was studied in the animal model used. METHODS Histopathological changes were investigated in the lungs and analysis of surface markers of alveolar macrophages as well as their cytokine expression in the BAL fluid was carried out by flow cytometry and ELISA, respectively. RESULTS Treatment of mice with AD-MSC after intraperitoneal administration of CEES (10 mg/kg) reduces progressive histopathologic changes in the lung. Flow cytometric analysis of isolated alveolar macrophages in the bronchoalveolar lavage showed that the accumulation of both M1 and M2 macrophages in response to CEES was reduced by MSC administration. AD-MSCs caused a marked reduction in the CD86- and CD206-expressing macrophages compared to the untreated groups. The modulating effect of AD-MSCs in the M1-subset was much more significant compared to M2. These findings suggest that AD-MSCs understand their environment and restore the balance in disorders associated with Th1 or Th2 imbalance. Our results indicate that MSCs may represent an effective approach to repair lung injury induced by mustards.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| |
Collapse
|
39
|
Castro LL, Kitoko JZ, Xisto DG, Olsen PC, Guedes HLM, Morales MM, Lopes-Pacheco M, Cruz FF, Rocco PRM. Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Transl Med 2019; 9:250-260. [PMID: 31746562 PMCID: PMC6988761 DOI: 10.1002/sctm.19-0120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
In experimental house dust mite (HDM)‐induced allergic asthma, therapeutic administration of a single dose of adipose tissue‐derived mesenchymal stromal cells (MSCs) ameliorates lung inflammation but is unable to reverse remodeling. We hypothesized that multiple doses of MSCs might exert better therapeutic effects by reducing lung inflammation and remodeling but might also result in immunosuppressive effects in experimental asthma. HDM was administered intranasally in C57BL/6 mice. After the last HDM challenge, mice received two or three doses of MSCs (105 cells per day) or saline intravenously. An additional cohort of mice received dexamethasone as a positive control for immunosuppression. Two and three doses of MSCs reduced lung inflammation, levels of interleukin (IL)‐4, IL‐13, and eotaxin; total leukocyte, CD4+ T‐cell, and eosinophil counts in bronchoalveolar lavage fluid; and total leukocyte counts in bone marrow, spleen, and mediastinal lymph nodes. Two and three doses of MSCs also reduced collagen fiber content and transforming growth factor‐β levels in lung tissue; however, the three‐dose regimen was more effective, and reduced these parameters to control levels, while also decreasing α‐actin content in lung tissue. Two and three doses of MSCs improved lung mechanics. Dexamethasone, two and three doses of MSCs similarly increased galectin levels, but only the three‐dose regimen increased CD39 levels in the thymus. Dexamethasone and the three‐dose, but not the two‐dose regimen, also increased levels of programmed death receptor‐1 and IL‐10, while reducing CD4+CD8low cell percentage in the thymus. In conclusion, multiple doses of MSCs reduced lung inflammation and remodeling while causing immunosuppression in HDM‐induced allergic asthma.
Collapse
Affiliation(s)
- Ligia L Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L M Guedes
- Laboratory of Glycobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Curtis BJ, Shults JA, Boe DM, Ramirez L, Kovacs EJ. Mesenchymal stem cell treatment attenuates liver and lung inflammation after ethanol intoxication and burn injury. Alcohol 2019; 80:139-148. [PMID: 30217504 DOI: 10.1016/j.alcohol.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022]
Abstract
Cutaneous burn injury is one of the most devastating injuries one can obtain, with tissue damage extending beyond the skin wound to distal organs, including the gastrointestinal tract, liver, and lungs. Multiple organ failure is a leading cause of death after burn injury, resulting in excessive systemic and localized inflammation directly contributing to end organ damage. We postulated that the gut-liver-lung inflammatory axis underscores multiple organ failure in the context of burn injury and is hyper-activated when ethanol intoxication precedes burn. Mesenchymal stem cells (MSCs) are regenerative and anti-inflammatory, and MSC treatment has been shown to be beneficial in several immune disorders and injury models. Our objective was to determine whether intravenous infusion of exogenous bone marrow-derived MSCs could reduce post-burn and intoxication pulmonary, hepatic, and systemic inflammation. Vehicle- or ethanol- (1.6 g/kg) treated mice were subjected to sham or 15% total body surface area scald burn. One hour post-injury, mice were given 5 × 105 CFSE-labeled MSCs or phosphate-buffered saline intravenously (i.v.) and were euthanized 24 h later. We assessed circulating biomarkers of inflammation and liver damage, measured cytokine and chemokine production, and quantified apoptosis in lung and liver tissue. Compared to intoxicated and burned mice, those treated with MSCs had less cellularity, limited apoptosis, and a slight reduction in the pro-inflammatory cytokine interleukin-6 (IL-6) and the neutrophil chemokine, KC (CXCL1) in lung tissue. Mice with MSCs treatment had more dramatic anti-inflammatory effects on systemic and hepatic inflammation, as serum IL-6 levels were diminished by 43%, and il6 and kc expression in liver tissue were markedly reduced, as were biomarkers of liver damage, aspartate transaminase (AST) and alanine transaminase (AST), compared with intoxicated and burned mice. Taken together, our results suggest intravenous MSCs treatment can diminish systemic inflammation, lessen hepatic damage, and decrease liver and lung apoptosis and inflammation, indicating MSCs as a novel therapy for restoring homeostasis of multiple organ systems in intoxicated burn patients.
Collapse
Affiliation(s)
- Brenda J Curtis
- Burn Research and Alcohol Research Programs, Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Jill A Shults
- Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, IL, United States
| | - Devin M Boe
- Burn Research and Alcohol Research Programs, Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Luis Ramirez
- Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, IL, United States
| | - Elizabeth J Kovacs
- Burn Research and Alcohol Research Programs, Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
41
|
Li R, Shang Y, Hu X, Yu Y, Zhou T, Xiong W, Zou X. ATP/P2X7r axis mediates the pathological process of allergic asthma by inducing M2 polarization of alveolar macrophages. Exp Cell Res 2019; 386:111708. [PMID: 31682811 DOI: 10.1016/j.yexcr.2019.111708] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Recent studies revealed that macrophages are polarized towards the M2 phenotype in an ovalbumin (OVA)-induced asthmatic model. Alveolar macrophages (AMs) are immune barriers in alveoli to various pathogens in the respiratory tract; AMs suppress Th2 cell proliferation, inhibit interleukin (IL)-4, IL-5, and IL-13 secretion, and protect against airway hyperresponsiveness in allergic asthma. However, the polarization status and effects of different types of AMs in the pathogenesis of asthma are not known. ATP/P2X7r, expressed mainly on macrophages and dendritic cells, is associated with acute and chronic asthmatic airway inflammation and Th2 immune responses in mice and humans and functions by activating the NLRP3 inflammasome complex and inducing proinflammatory cytokine release (IL-1β and IL-18). Therefore, we evaluated the association between the ATP/P2X7r axis and different types of AMs in the pathology of allergic asthma. A murine AM-depleted asthma model was established by administration of clodronate-encapsulated liposomes, and M1-or M2-AMs were adoptively transferred to confirm the effects of different AMs in allergic asthma. Brilliant Blue G and BzATP were administered to OVA/HDM-induced mice in vivo. Lipopolysaccharide + OVA, ATP, Brilliant Blue G, and BzATP were used to stimulate AMs isolated from control and asthmatic mice. We found that selective depletion of AMs aggravated lung inflammation in asthmatic mice. Further, M2-type AMs may play a key role in mediating asthmatic inflammatory responses via the adoptive transfer of M2-type AMs to AM-depleted asthmatic mice, and the phenotype of AMs differentiated to M2 type in asthma. P2X7r expression in M2-type AMs was higher than that in M1-type AMs. Activating P2X7r induced polarization of M2-type AMs and inhibited polarization of M1-type AMs, while blockage of P2X7r had the opposite effect. The ATP/P2X7r axis may participate in the pathogenesis of asthma by mediating the M2-type AM polarization.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Xuemei Hu
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China.
| |
Collapse
|
42
|
Zhang LB, He M. Effect of mesenchymal stromal (stem) cell (MSC) transplantation in asthmatic animal models: A systematic review and meta-analysis. Pulm Pharmacol Ther 2018; 54:39-52. [PMID: 30496803 DOI: 10.1016/j.pupt.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/17/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Over the years, mesenchymal stromal (stem) cells (MSCs) have been pre-clinically applied in the treatment of variety kinds of diseases including asthma and chronic lung diseases. Aim of the current study was to systematically review and to conduct meta-analysis on the published studies of MSC treatment in asthma animal models. METHODS Publications on the MSC and asthma treatment was thoroughly searched in the electronic databases. Statistical analysis was then performed using the Comprehensive Meta-Analysis software (Version 3). Effect of MSC therapy on asthma model was assessed by Hedges's g with 95% confidence intervals (95% CIs). Random effect model was used due to the heterogeneity between the studies. RESULTS Meta-analysis of the 32 included studies showed that MSC transplantation was significantly in favor of attenuating lung injury and remodeling (Hedges's g = -9.104 ± 0.951 with 95% CI: -10.969 ∼ -7.240, P < 0.001) and airway inflammation (Hedges's g = -4.146 ± 0.688 with 95% CI: -5.495 ∼ -2.797, P < 0.001). The mechanism of MSC therapy in asthma seems to be regulating the balance of Th1 cytokine and Th2 cytokines (IFN-γ: Hedges's g = 4.779 ± 1.408 with 95% CI: 1.099-2.725, P < 0.001; IL-4: Hedges's g = -10.781 ± 1.062 with 95% CI: -12.863 ∼ -8.699, P < 0.001; IL-5: Hedges's g = -10.537 ± 1.269 with 95% CI: -13.025 ∼ -8.050, P < 0.001; IL-13: Hedges's g = -6.773 ± 0.788 with 95% CI: -8.318 ∼ -5.229, P < 0.001). CONCLUSION Findings of the current systemic review suggested a potential role for MSCs in asthma treatment although it is still challenging in clinical practice. The mechanisms of MSCs in pre-clinical asthma treatment may be associated with attenuating airway inflammation through regulating Th1 and Th2 cytokines.
Collapse
Affiliation(s)
- Li-Bo Zhang
- Department of Respiratory Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Min He
- Department of Respiratory Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
43
|
Abreu SC, Xisto DG, de Oliveira TB, Blanco NG, de Castro LL, Kitoko JZ, Olsen PC, Lopes-Pacheco M, Morales MM, Weiss DJ, Rocco PRM. Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma. Stem Cells Transl Med 2018; 8:301-312. [PMID: 30426724 PMCID: PMC6392406 DOI: 10.1002/sctm.18-0056] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/30/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway inflammation and remodeling, which can lead to progressive decline of lung function. Although mesenchymal stromal cells (MSCs) have shown beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been limited. Mounting evidence suggests that prior exposure of MSCs to specific inflammatory stimuli or environments can enhance their immunomodulatory properties. Therefore, we investigated whether stimulating MSCs with bronchoalveolar lavage fluid (BALF) or serum from asthmatic mice could potentiate their therapeutic properties in experimental asthma. In a house dust mite (HDM) extract asthma model in mice, unstimulated, asthmatic BALF‐stimulated, or asthmatic serum‐stimulated MSCs were administered intratracheally 24 hours after the final HDM challenge. Lung mechanics and histology; BALF protein, cellularity, and biomarker levels; and lymph‐node and bone marrow cellularity were assessed. Compared with unstimulated or BALF‐stimulated MSCs, serum‐stimulated MSCs further reduced BALF levels of interleukin (IL)‐4, IL‐13, and eotaxin, total and differential cellularity in BALF, bone marrow and lymph nodes, and collagen fiber content, while increasing BALF IL‐10 levels and improving lung function. Serum stimulation led to higher MSC apoptosis, expression of various mediators (transforming growth factor‐β, interferon‐γ, IL‐10, tumor necrosis factor‐α‐stimulated gene 6 protein, indoleamine 2,3‐dioxygenase‐1, and IL‐1 receptor antagonist), and polarization of macrophages to M2 phenotype. In conclusion, asthmatic serum may be a novel strategy to potentiate therapeutic effects of MSCs in experimental asthma, leading to further reductions in both inflammation and remodeling than can be achieved with unstimulated MSCs. stem cells translational medicine2019;8:301&312
Collapse
Affiliation(s)
- Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainá B de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia G Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lígia Lins de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamil Zola Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, College of Medicine, Burlington, Vermont, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Dai R, Yu Y, Yan G, Hou X, Ni Y, Shi G. Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model. BMC Pulm Med 2018; 18:131. [PMID: 30089474 PMCID: PMC6083609 DOI: 10.1186/s12890-018-0701-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 07/31/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cell (ASCs) exerts immunomodulatory roles in asthma. However, the underlying mechanism remains unclear. The present study aimed to explore the effects and mechanisms of ASCs on chronic asthma using an ovalbumin (OVA)-sensitized asthmatic mouse model. METHODS Murine ASCs (mASCs) were isolated from male Balb/c mice and identified by the expression of surface markers using flow cytometry. The OVA-sensitized asthmatic mouse model was established and then animals were treated with the mASCs through intratracheal delivery. The therapy effects were assessed by measuring airway responsiveness, performing immuohistochemical analysis, and examining bronchoalveolar lavage fluid (BALF). Additionally, the expression of inflammatory cytokines and lgE was detected by CHIP and ELISA, respectively. The mRNA levels of serum indices were detected using qRT-PCR. RESULTS The mASCs grew by adherence with fibroblast-like morphology, and showed the positive expression of CD90, CD44, and CD29 as well as the negative expression of CD45 and CD34, indicating that the mASCs were successfully isolated. Administering mASCs to asthmatic model animals through intratracheal delivery reduced airway responsiveness, the number of lymphocytes (P < 0.01) and the expression of lgE (P < 0.01), IL-1β (P < 0.05), IL-4 (P < 0.001), and IL-17F (P < 0.001), as well as increased the serum levels of IL-10 and Foxp3, and the percentage of CD4 + CD25 + Foxp3+ Tregs in the spleen, and reduced the expression of IL-17 (P < 0.05) and RORγ. CONCLUSIONS Intratracheal administration of mASCs alleviated airway inflammation, improved airway remodeling, and relieved airway hyperresponsiveness in an OVA-sensitized asthma model, which might be associated with the restoration of Th1/Th2 cell balance by mASCs.
Collapse
Affiliation(s)
- Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Youchao Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Guofeng Yan
- School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Xiaoxia Hou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
45
|
Al-Rubaie A, Wise AF, Sozo F, De Matteo R, Samuel CS, Harding R, Ricardo SD. The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice. Respir Res 2018; 19:114. [PMID: 29884181 PMCID: PMC5994120 DOI: 10.1186/s12931-018-0816-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/21/2018] [Indexed: 02/03/2023] Open
Abstract
Background Exposure to high levels of oxygen (hyperoxia) after birth leads to lung injury. Our aims were to investigate the modulation of myeloid cell sub-populations and the reduction of fibrosis in the lungs following administration of human mesenchymal stem cells (hMSC) to neonatal mice exposed to hyperoxia. Method Newborn mice were exposed to 90% O2 (hyperoxia) or 21% O2 (normoxia) from postnatal days 0–4. A sub-group of hyperoxia mice were injected intratracheally with 2.5X105 hMSCs. Using flow cytometry we assessed pulmonary immune cells at postnatal days 0, 4, 7 and 14. The following markers were chosen to identify these cells: CD45+ (leukocytes), Ly6C+Ly6G+ (granulocytes), CD11b+CD11c+ (macrophages); macrophage polarisation was assessed by F4/80 and CD206 expression. hMSCs expressing enhanced green fluorescent protein (eGFP) and firefly luciferase (fluc) were administered via the trachea at day 4. Lung macrophages in all groups were profiled using next generation sequencing (NGS) to assess alterations in macrophage phenotype. Pulmonary collagen deposition and morphometry were assessed at days 14 and 56 respectively. Results At day 4, hyperoxia increased the number of pulmonary Ly6C+Ly6G+ granulocytes and F4/80lowCD206low macrophages but decreased F4/80highCD206high macrophages. At days 7 and 14, hyperoxia increased numbers of CD45+ leukocytes, CD11b+CD11c+ alveolar macrophages and F4/80lowCD206low macrophages but decreased F4/80highCD206high macrophages. hMSCs administration ameliorated these effects of hyperoxia, notably reducing numbers of CD11b+CD11c+ and F4/80lowCD206low macrophages; in contrast, F4/80highCD206high macrophages were increased. Genes characteristic of anti-inflammatory ‘M2’ macrophages (Arg1, Stat6, Retnla, Mrc1, Il27ra, Chil3, and Il12b) were up-regulated, and pro-inflammatory ‘M1’ macrophages (Cd86, Stat1, Socs3, Slamf1, Tnf, Fcgr1, Il12b, Il6, Il1b, and Il27ra) were downregulated in isolated lung macrophages from hyperoxia-exposed mice administered hMSCs, compared to mice without hMSCs. Hydroxyproline assay at day 14 showed that the 2-fold increase in lung collagen following hyperoxia was reduced to control levels in mice administered hMSCs. By day 56 (early adulthood), hMSC administration had attenuated structural changes in hyperoxia-exposed lungs. Conclusions Our findings suggest that hMSCs reduce neonatal lung injury caused by hyperoxia by modulation of macrophage phenotype. Not only did our cell-based therapy using hMSC induce structural repair, it limited the progression of pulmonary fibrosis. Electronic supplementary material The online version of this article (10.1186/s12931-018-0816-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ali Al-Rubaie
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrea F Wise
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Foula Sozo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
46
|
Abreu SC, Lopes-Pacheco M, da Silva AL, Xisto DG, de Oliveira TB, Kitoko JZ, de Castro LL, Amorim NR, Martins V, Silva LHA, Gonçalves-de-Albuquerque CF, de Castro Faria-Neto HC, Olsen PC, Weiss DJ, Morales MM, Diaz BL, Rocco PRM. Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma. Front Immunol 2018; 9:1147. [PMID: 29881388 PMCID: PMC5976792 DOI: 10.3389/fimmu.2018.01147] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in the understanding of its pathophysiology, asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodeling. Mesenchymal stromal cell (MSC)-based therapy mitigates lung inflammation in experimental allergic asthma; however, its ability to reduce airway remodeling is limited. We aimed to investigate whether pre-treatment with eicosapentaenoic acid (EPA) potentiates the therapeutic properties of MSCs in experimental allergic asthma. Seventy-two C57BL/6 mice were used. House dust mite (HDM) extract was intranasally administered to induce severe allergic asthma in mice. Unstimulated or EPA-stimulated MSCs were administered intratracheally 24 h after final HDM challenge. Lung mechanics, histology, protein levels of biomarkers, and cellularity in bronchoalveolar lavage fluid (BALF), thymus, lymph nodes, and bone marrow were analyzed. Furthermore, the effects of EPA on lipid body formation and secretion of resolvin-D1 (RvD1), prostaglandin E2 (PGE2), interleukin (IL)-10, and transforming growth factor (TGF)-β1 by MSCs were evaluated in vitro. EPA-stimulated MSCs, compared to unstimulated MSCs, yielded greater therapeutic effects by further reducing bronchoconstriction, alveolar collapse, total cell counts (in BALF, bone marrow, and lymph nodes), and collagen fiber content in airways, while increasing IL-10 levels in BALF and M2 macrophage counts in lungs. In conclusion, EPA potentiated MSC-based therapy in experimental allergic asthma, leading to increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-β), modulation of macrophages toward an anti-inflammatory phenotype, and reduction in the remodeling process. Taken together, these modifications may explain the greater improvement in lung mechanics obtained. This may be a promising novel strategy to potentiate MSCs effects.
Collapse
Affiliation(s)
- Soraia Carvalho Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, United States
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Lopes da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Gonçalves Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainá Batista de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamil Zola Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lígia Lins de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Recardo Amorim
- Laboratory of Inflammation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Martins
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luisa H A Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Priscilla Christina Olsen
- Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Jay Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, United States
| | - Marcelo Marcos Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Bruno Lourenço Diaz
- Laboratory of Inflammation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Takeda K, Webb TL, Ning F, Shiraishi Y, Regan DP, Chow L, Smith MJ, Ashino S, Guth AM, Hopkins S, Gelfand EW, Dow S. Mesenchymal Stem Cells Recruit CCR2 + Monocytes To Suppress Allergic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 200:1261-1269. [PMID: 29352000 DOI: 10.4049/jimmunol.1700562] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/03/2017] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSC) exert immune modulatory properties and previous studies demonstrated suppressive effects of MSC treatment in animal models of allergic airway inflammation. However, the underlying mechanisms have not been fully elucidated. We studied the role of MSC in immune activation and subsequent recruitment of monocytes in suppressing airway hyperresponsiveness and airway inflammation using a mouse model of allergic airway inflammation. MSC administration prior to or after allergen challenge inhibited the development of airway inflammation in allergen-sensitized mice. This was accompanied by an influx of CCR2-positive monocytes, which were localized around injected MSC in the lungs. Notably, IL-10-producing monocytes and/or macrophages were also increased in the lungs. Systemic administration of liposomal clodronate or a CCR2 antagonist significantly prevented the suppressive effects of MSC. Activation of MSC by IFN-γ leading to the upregulation of CCL2 expression was essential for the suppressive effects, as administration of wild-type MSC into IFN-γ-deficient recipients, or IFN-γ receptor-deficient or CCL2-deficient MSC into wild-type mice failed to suppress airway inflammation. These results suggest that MSC activation by IFN-γ, followed by increased expression of CCL2 and recruitment of monocytes to the lungs, is essential for suppression by MSC in allergen-induced airway hyperresponsiveness and airway inflammation.
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206; and
| | - Tracy L Webb
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Fangkun Ning
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206; and
| | - Yoshiki Shiraishi
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206; and
| | - Daniel P Regan
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Lyndah Chow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Mia J Smith
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Shigeru Ashino
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206; and
| | - Amanda M Guth
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Sophie Hopkins
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Erwin W Gelfand
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206; and
| | - Steven Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
48
|
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W, Osowski A, Engelgardt P, Wojtkiewicz J. Role of Stem Cells in Pathophysiology and Therapy of Spondyloarthropathies-New Therapeutic Possibilities? Int J Mol Sci 2017; 19:ijms19010080. [PMID: 29283375 PMCID: PMC5796030 DOI: 10.3390/ijms19010080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 12/14/2022] Open
Abstract
Considerable progress has been made recently in understanding the complex pathogenesis and treatment of spondyloarthropathies (SpA). Currently, along with traditional disease modifying anti-rheumatic drugs (DMARDs), TNF-α, IL-12/23 and IL-17 are available for treatment of such diseases as ankylosing spondylitis (AS) and psoriatic arthritis (PsA). Although they adequately control inflammatory symptoms, they do not affect the abnormal bone formation processes associated with SpA. However, the traditional therapeutic approach does not cover the regenerative treatment of damaged tissues. In this regards, stem cells may offer a promising, safe and effective therapeutic option. The aim of this paper is to present the role of mesenchymal stromal cells (MSC) in pathogenesis of SpA and to highlight the opportunities for using stem cells in regenerative processes and in the treatment of inflammatory changes in articular structures.
Collapse
Affiliation(s)
- Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, Municipal Hospital in Olsztyn, 10-900 Olsztyn, Poland.
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Adam Osowski
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Piotr Engelgardt
- Department of Forensic Medicine, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Foundation for Nerve Cell Regeneration, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland.
| |
Collapse
|
49
|
Kitoko JZ, de Castro LL, Nascimento AP, Abreu SC, Cruz FF, Arantes AC, Xisto DG, Martins MA, Morales MM, Rocco PRM, Olsen PC. Therapeutic administration of bone marrow-derived mesenchymal stromal cells reduces airway inflammation without up-regulating Tregs in experimental asthma. Clin Exp Allergy 2017; 48:205-216. [PMID: 29068567 DOI: 10.1111/cea.13048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Prophylactic administration of mesenchymal stromal cells (MSCs) derived from adipose (AD-MSC) and bone marrow tissue (BM-MSC) in ovalbumin-induced asthma hinders inflammation in a Treg-dependent manner. It is uncertain whether MSCs act through Tregs when inflammation is already established in asthma induced by a clinically relevant allergen. OBJECTIVE Evaluate the effect of therapeutic administration of MSCs on inflammation and Treg cells in house dust mite (HDM)-induced asthma. METHODS BM-MSCs and AD-MSCs were administered intratracheally to C57BL/6 mice 1 day after the last HDM challenge. Lung function, remodelling and parenchymal inflammation were assayed 3 or 7 days after MSCs treatment, through invasive plethysmography and histology, respectively. Bronchoalveolar lavage fluid (BALF) and mediastinal lymph nodes (mLNs) were assessed regarding the inflammatory profile by flow cytometry, ELISA and qRT-PCR. MSCs were studied regarding their potential to induce Treg cells from primed and unprimed lymphocytes in vitro. RESULTS BM-MSCs, but not AD-MSCs, reduced lung influx of eosinophils and B cells and increased IL-10 levels in HDM-challenged mice. Neither BM-MSCs nor AD-MSCs reduced lung parenchymal inflammation, airway hyperresponsiveness or mucus hypersecretion. BM-MSCs and AD-MSCs did not up-regulate Treg cell counts within the airways and mLNs, but BM-MSCs decreased the pro-inflammatory profile of alveolar macrophages. Co-culture of BM-MSCs and AD-MSCs with allergen-stimulated lymphocytes reduced Treg cell counts in a cell-to-cell contact-independent manner, although co-culture of both MSCs with unprimed lymphocytes up-regulated Treg cell counts. CONCLUSIONS MSCs therapeutically administered exert anti-inflammatory effects in the airway of HDM-challenged mice, but do not ameliorate lung function or remodelling. Although MSC pre-treatment can increase Treg cell numbers, it is highly unlikely that the MSCs will induce Treg cell expansion when lymphocytes are allergenically primed in an established lung inflammation.
Collapse
Affiliation(s)
- J Z Kitoko
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L L de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P Nascimento
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - S C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C Arantes
- Laboratory of Inflammation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - D G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A Martins
- Laboratory of Inflammation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - M M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P C Olsen
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Ko JH, Lee HJ, Jeong HJ, Oh JY. Ly6C hi monocytes are required for mesenchymal stem/stromal cell-induced immune tolerance in mice with experimental autoimmune uveitis. Biochem Biophys Res Commun 2017; 494:6-12. [PMID: 29056505 DOI: 10.1016/j.bbrc.2017.10.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
The cells of the innate immune system, in addition to their capacity to elicit immunity, play a substantial role in immune tolerance induction. Our group has recently shown that a distinct subset of MHC IIhiB220hiCD11bmid suppressive macrophages is increased in the lung by intravenous (IV) administration of mesenchymal stem/stromal cells (MSC) and induces immune tolerance. Herein, we demonstrate that circulating CD11bhiLy6Chi monocytes are precursors to MHC IIhiB220hiCD11bmid macrophages in the lung and required for MSC-induced tolerance in a mouse model of experimental autoimmune uveitis (EAU). Analysis revealed that IV MSC induced an increase in IL-10-expressing MHC IIhiB220hiCD11bmid macrophages in the lung with a concomitant decrease in CD11bhiLy6Chi monocytes. Selective depletion of circulating CD11bhiLy6Chi cells abrogated the effects of MSC in the induction of IL-10hiMHC IIhiB220hiCD11bmid macrophages and immune tolerance in EAU mice. Similarly, an increase in CD4+CD25+Foxp3+ Tregs by MSCs was also reversed by CD11bhiLy6Chi cell depletion. These results suggest that CD11bhiLy6Chi monocytes are critical for MSC-induced immune tolerance.
Collapse
Affiliation(s)
- Jung Hwa Ko
- Department of Ophthalmology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyun Ju Lee
- Department of Ophthalmology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyun Jeong Jeong
- Department of Ophthalmology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|