1
|
Shu DH, Sidiropoulos DN. Maturation of Tertiary Lymphoid Structures. Methods Mol Biol 2025; 2864:43-55. [PMID: 39527216 DOI: 10.1007/978-1-0716-4184-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) are organized collections of B and T lymphocytes that arise in nonlymphoid tissue in response to chronic, unresolved inflammation. TLS have structural and functional similarities to germinal centers found in lymph nodes and are believed to support the establishment of lymph node-like adaptive immune responses at local sites of inflammation. However, understanding of the underlying biology of these structures remains limited, particularly the different stages of TLS life cycle and the signals governing the initiation, maturation, and termination of TLS. Here, we review current understanding of the maturation of TLS and the signals and cell types involved in various stages of development with particular emphasis on recent studies of TLS in cancer, where evidence suggests that TLS may play an important role in supporting antitumor immune responses in solid tumors.
Collapse
Affiliation(s)
- Daniel H Shu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
- Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Kherrour I, Mobarki M, Péoc'h M, Karpathiou G. High endothelial venules in the pleura: MECA-79 expression in mesothelioma, pleural metastasis and pleuritis. Pathol Res Pract 2024; 263:155661. [PMID: 39418778 DOI: 10.1016/j.prp.2024.155661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION High endothelial venules (HEVs) are vessels specialized in the extravasation of lymphocytes from the blood to the tissue implicated in the immune microenvironment of several tumors. Their presence has been never studied in the pleural tissue. MATERIAL AND METHODS We retrospectively studied 149 surgical pleural biopsies by immunohistochemistry for MECA-79 expression, a marker specifically recognizing HEVs. The tissues included 44 (44 %) inflammatory and 105 (56 %) neoplastic diseases. The latter corresponded to 34 (22.8 %) mesotheliomas and 71 (47.7 %) metastases from lung (n=50) or breast (n=21) primaries. RESULTS HEVs were present in 102 (68 %) of all pleural specimens with a mean number of foci containing HEVs of 13.33 (±20.64). Neoplastic pleural pathologies harbored HEVs in 73.3 % of the cases compared to the non-neoplastic pathologies which harbored HEVs in 56.8 % of the cases (p=0.048). Their presence did not differ between pulmonary or mammary metastasis (p=0.7). CONCLUSION We show for the first time that HEVs are present in the pleural cavity probably participating in the immune microenvironment of inflammatory and neoplastic pleural disease.
Collapse
Affiliation(s)
- Ikram Kherrour
- Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Mousa Mobarki
- Department of Basic Medical Sciences (Pathology), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Michel Péoc'h
- Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Georgia Karpathiou
- Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France.
| |
Collapse
|
3
|
Zhang X, Yao J, Xie M, Liang Y, Lin X, Song J, Bao X, Ma X, Wang Y, Zhang Y, Liu Y, Han W, Pan L, Xue X. Tertiary lymphoid structures as potential biomarkers for cancer prediction and prognosis. Int Immunopharmacol 2024; 140:112790. [PMID: 39088920 DOI: 10.1016/j.intimp.2024.112790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates formed in non-lymphoid tissues, including cancers, and are loci for the generation of in situ anti-tumor immune responses, which play a crucial role in cancer control. The state of TLS presence in cancer and its composition can significantly impact the treatment response and prognosis of patients. TLSs have the potential to serve as predictive and prognostic biomarkers for cancer. However, the mechanisms underlying TLS formation in cancer and how the essential components of TLSs affect cancer are not fully understood. In this review, we summarized TLS formation in cancer, the value of the TLS in different states of existence, and its key constituents for cancer prediction and prognosis. Finally, we discussed the impact of cancer treatment on TLSs.
Collapse
Affiliation(s)
- Xin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jialin Song
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xinyu Bao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shanxi, 710038, China
| | - Yinguang Zhang
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yiming Liu
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Wenya Han
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Xinying Xue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China; Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
4
|
Reste M, Ajazi K, Sayi-Yazgan A, Jankovic R, Bufan B, Brandau S, Bækkevold ES, Petitprez F, Lindstedt M, Adema GJ, Almeida CR. The role of dendritic cells in tertiary lymphoid structures: implications in cancer and autoimmune diseases. Front Immunol 2024; 15:1439413. [PMID: 39483484 PMCID: PMC11526390 DOI: 10.3389/fimmu.2024.1439413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Tertiary Lymphoid Structures (TLS) are organized aggregates of immune cells such as T cells, B cells, and Dendritic Cells (DCs), as well as fibroblasts, formed postnatally in response to signals from cytokines and chemokines. Central to the function of TLS are DCs, professional antigen-presenting cells (APCs) that coordinate the adaptive immune response, and which can be classified into different subsets, with specific functions, and markers. In this article, we review current data on the contribution of different DC subsets to TLS function in cancer and autoimmunity, two opposite sides of the immune response. Different DC subsets can be found in different tumor types, correlating with cancer prognosis. Moreover, DCs are also present in TLS found in autoimmune and inflammatory conditions, contributing to disease development. Broadly, the presence of DCs in TLS appears to be associated with favorable clinical outcomes in cancer while in autoimmune pathologies these cells are associated with unfavorable prognosis. Therefore, it is important to analyze the complex functions of DCs within TLS in order to enhance our fundamental understanding of immune regulation but also as a possible route to create innovative clinical interventions designed for the specific needs of patients with diverse pathological diseases.
Collapse
Affiliation(s)
- Mariana Reste
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Kristi Ajazi
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ayca Sayi-Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Radmila Jankovic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Espen S. Bækkevold
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Florent Petitprez
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catarina R. Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Yakushi A, Sugimoto M, Sasaki T. Co-expression network and survival analysis of breast cancer inflammation and immune system hallmark genes. Comput Biol Chem 2024; 113:108204. [PMID: 39270542 DOI: 10.1016/j.compbiolchem.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
The tertiary lymphoid structure (TLS) plays a central role in cancer immune response, and its gene expression pattern, called the TLS signature, has shown prognostic value in breast cancer. The formation of TLS and tumor-associated high endothelial venules (TA-HEVs), responsible for lymphocytic infiltration within the TLS, is associated with the expression of cancer hallmark genes (CHGs) related to immunity and inflammation. In this study, we performed co-expression network analysis of immune- and inflammation-related CHGs to identify predictive genes for breast cancer. In total, 382 immune- and inflammation-related CHGs with high expression variance were extracted from the GSE86166 microarray dataset of patients with breast cancer. CHGs were classified into five modules by applying weighted gene co-expression network analysis. The survival analysis results for each module showed that one module comprising 45 genes was statistically significant for relapse-free and overall survival. Four network properties identified key genes in this module with high prognostic prediction abilities: CD34, CXCL12, F2RL2, JAM2, PROS1, RAPGEF3, and SELP. The prognostic accuracy of the seven genes in breast cancer was synergistic and exceeded that of other predictors in both small and large public datasets. Enrichment analysis predicted that these genes had functions related to leukocyte infiltration of TA-HEVs. There was a positive correlation between key gene expression and the TLS signature, suggesting that gene expression levels are associated with TLS density. Co-expression network analysis of inflammation- and immune-related CHGs allowed us to identify genes that share a standard function in cancer immunity and have a high prognostic predictive value. This analytical approach may contribute to the identification of prognostic genes in TLS.
Collapse
Affiliation(s)
- Ayaka Yakushi
- Meiji University, Graduate School of Advanced Mathematical and Science, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Masahiro Sugimoto
- Keio University, Institute for Advanced Biosciences, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; Institute of Medical Science, Research and Development Center for Minimally Invasive Therapies Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takanori Sasaki
- Meiji University, Graduate School of Advanced Mathematical and Science, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan.
| |
Collapse
|
6
|
Teillaud JL, Houel A, Panouillot M, Riffard C, Dieu-Nosjean MC. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer 2024; 24:629-646. [PMID: 39117919 DOI: 10.1038/s41568-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates where adaptive antitumour cellular and humoral responses can be elaborated. Initially described in non-small cell lung cancer as functional immune lymphoid structures associated with better clinical outcome, TLS have also been found in many other carcinomas, as well as melanomas and sarcomas, and associated with improved response to immunotherapy. The manipulation of TLS as a therapeutic strategy is now coming of age owing to the likely role of TLS in the improved survival of patients with cancer receiving immune checkpoint inhibitor treatment. TLS have also garnered considerable interest as a predictive biomarker of the response to antitumour therapies, including immune checkpoint blockade and, possibly, chemotherapy. However, several important questions still remain regarding the definition of TLS in terms of both their cellular composition and functions. Here, we summarize the current views on the composition of TLS at different stages of their development. We also discuss the role of B cells and T cells associated with TLS and their dialogue in mounting antibody and cellular antitumour responses, as well as some of the various mechanisms that negatively regulate antitumour activity of TLS. The prognostic value of TLS to the clinical outcome of patients with cancer and the relationship between TLS and the response to therapy are then addressed. Finally, we present some preclinical evidence that favours the idea that manipulating the formation and function of TLS could lead to a potent next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Ana Houel
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Transgene, Illkirch-Graffenstaden, France
| | - Marylou Panouillot
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Sanofi, Vitry-sur-Seine, France
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France.
| |
Collapse
|
7
|
Niu L, Chen T, Yang A, Yan X, Jin F, Zheng A, Song X. Macrophages and tertiary lymphoid structures as indicators of prognosis and therapeutic response in cancer patients. Biochim Biophys Acta Rev Cancer 2024; 1879:189125. [PMID: 38851437 DOI: 10.1016/j.bbcan.2024.189125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tertiary lymphoid structures (TLS) can reflect cancer prognosis and clinical outcomes in various tumour tissues. Tumour-associated macrophages (TAMs) are indispensable components of the tumour microenvironment and play crucial roles in tumour development and immunotherapy. TAMs are associated with TLS induction via the modulation of the T cell response, which is a major component of the TLS. Despite their important roles in cancer immunology, the subtypes of TAMs that influence TLS and their correlation with prognosis are not completely understood. Here, we provide novel insights into the role of TAMs in regulating TLS formation. Furthermore, we discuss the prognostic value of these TAM subtypes and TLS, as well as the current antitumour therapies for inducing TLS. This study highlights an entirely new field of TLS regulation that may lead to the development of an innovative perspective on immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Li Niu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aodan Yang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Xiwen Yan
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China.
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
9
|
Liu Y, Li CB, Zhai YP, Zhang SK, Li DY, Gao ZQ, Liang RP. Identification and Validation of a Novel Tertiary Lymphoid Structures-Related Prognostic Gene Signature in Hepatocellular Carcinoma. World J Oncol 2024; 15:695-710. [PMID: 38993245 PMCID: PMC11236367 DOI: 10.14740/wjon1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors originating from the digestive system. Tertiary lymphoid structures (TLS), non-lymphoid tissues outside of the lymphoid organs, are closely connected to chronic inflammation and tumorigenesis. However, the detailed relationship between TLS and HCC prognosis remained unclear. In this study, we aimed to construct a TLS-related gene signature for predicting the prognosis of HCC patients. Methods The Cancer Genome Atlas (TCGA) clinical data from 369 HCC tissues and 50 normal liver tissues were utilized to examine the differential expression of TLS-related genes. Based on least absolute shrinkage and selection operator (LASSO) Cox regression analysis, the prognostic model was constructed using the TCGA cohort and validated in the GSE14520 cohort and International Cancer Genome Consortium (ICGC) cohort. The Kaplan-Meier (KM) and receiver operating characteristic (ROC) curves were employed to validate the predictive ability of the prognostic model. Furthermore, Cox regression analysis was applied to identify whether the TLS score could be employed as an independent prognosis factor. A nomogram was developed to predict the survival probability of HCC patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for TLS-related genes. Genetic mutation analysis, the CIBERSORT algorithm, and single-sample gene set enrichment analysis (ssGSEA) were used to assess the tumor mutation landscape and immune infiltration. Finally, the role of the TLS score in HCC therapy was investigated. Results Six genes were included in the construction of our prognostic model (CETP, DNASE1L3, PLAC8, SKAP1, C7, and VNN2), and we validated its accuracy. Survival analysis showed that patients in the high-TLS score group had a significantly better overall survival than those in the low-TLS score group. Univariate, multivariate Cox regression analysis and the establishment of a nomogram indicated that the TLS score could independently function as a potential prognostic marker. A significant association between TLS score and immunity was revealed by an analysis of gene alterations and immune cell infiltration. In addition, two subtypes of the TLS score could accurately predict the effectiveness of sorafenib, transcatheter arterial chemoembolization (TACE), and immunotherapy in HCC patients. Conclusion In this research, we conducted and validated a prognostic model associated with TLS that may be helpful for predicting clinical outcomes and treatment responsiveness for HCC patients.
Collapse
Affiliation(s)
- Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Yin Liu and Chao Bo Li contributed equally to this work
| | - Chao Bo Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Yin Liu and Chao Bo Li contributed equally to this work
| | - Yun Peng Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shao Kang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Yang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Qiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruo Peng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Zhang J, Huang Y, Tan X, Wang Z, Cheng R, Zhang S, Chen Y, Jiang F, Tan W, Deng X, Li F. Integrated analysis of multiple transcriptomic approaches and machine learning integration algorithms reveals high endothelial venules as a prognostic immune-related biomarker in bladder cancer. Int Immunopharmacol 2024; 136:112184. [PMID: 38824904 DOI: 10.1016/j.intimp.2024.112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Despite the availability of established surgical and chemotherapy options, the treatment of bladder cancer (BCa) patients remains challenging. While immunotherapy has emerged as a promising approach, its benefits are limited to a subset of patients. The exploration of additional targets to enhance the efficacy of immunotherapy is a valuable research direction. METHOD High endothelial venules (HEV) ssGSEA analysis was conducted using BEST. Through the utilization of R packages Limma, Seurat, SingleR, and Harmony, analyses were performed on spatial transcriptomics, bulk RNA-sequencing (bulk RNA-seq), and single-cell RNA sequencing (scRNA-seq) data, yielding HEV-related genes (HEV.RGs). Molecular subtyping analysis based on HEV.RGs was conducted using R package MOVICS, and various machine learning-integrated algorithm was employed to construct prognostic model. LDLRAD3 was validated through subcutaneous tumor formation in mice, HEV induction, Western blot, and qPCR. RESULTS A correlation between higher HEV levels and improved immune response and prognosis was revealed by HEV ssGSEA analysis in BCa patients receiving immunotherapy. HEV.RGs were identified in subsequent transcriptomic analyses. Based on these genes, BCa patients were stratified into two molecular clusters with distinct survival and immune infiltration patterns using various clustering-integrated algorithm. Prognostic model was developed using multiple machine learning-integrated algorithm. Low LDLRAD3 expression may promote HEV generation, leading to enhanced immunotherapy efficacy, as suggested by bulk RNA-seq, scRNA-seq analyses, and experimental validation of LDLRAD3. CONCLUSIONS HEV served as a predictive factor for immune response and prognosis in BCa patients receiving immunotherapy. LDLRAD3 represented a potential target for HEV induction and enhancing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jinge Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuan Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Xing Tan
- Department of Nanfang Hospital Administration Office, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zihuan Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ranyang Cheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shenlan Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuwen Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Feifan Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Xiaolin Deng
- Department of Urology, Ganzhou People's Hospital, Ganzhou, PR China.
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
11
|
Wang B, Han Y, Liu J, Zhang X, Deng Y, Jiang Y. Intratumoral high endothelial venules in solid tumors: a pooled study. Front Immunol 2024; 15:1401118. [PMID: 39040120 PMCID: PMC11260642 DOI: 10.3389/fimmu.2024.1401118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Objective We performed this pooled analysis for the first time to comprehensively explore the prognostic value of tumor-associated high endothelial venules (TA-HEVs) and determine their relationships with clinicopathological features in solid tumors. Methods Four online databases, including PubMed, Web of Science, Embase, and Cochrane Library, were comprehensively searched to identify studies assessing the effect of TA-HEVs on prognosis or clinicopathological features. Hazard ratios (HRs) with 95% confidence intervals (CIs) were applied to evaluate survival outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and cancer-specific survival (CSS). The association between TA-HEV status and clinicopathological characteristics was assessed by odds ratios (ORs) combined with 95% CIs. Subgroup analysis was conducted to explore sources of heterogeneity. The sensitivity analysis was performed to evaluate the stability of our findings. Meanwhile, Funnel plots were employed to visually evaluate potential publication bias, and both Begg's and Egger's tests were adopted to quantitatively determine publication bias. Results A total of 13 retrospective cohort studies, involving 1,933 patients were finally included in this meta-analysis. Effect-size pooling analysis showed that the positivity of TA-HEVs was related to improved OS (pooled HR: 0.75, 95% CI: 0.62-0.93, P<0.01), and DFS (pooled HR = 0.54, 95% CI = 0.41-0.72, P< 0.01). However, TA-HEV positivity in solid tumors was not linked to PFS (pooled HR = 0.75, 95% CI 0.34-1.64, P = 0.47) or CSS (pooled HR: 0.58, 95% CI: 0.04-7.58, P= 0.68). Further subgroup analysis demonstrated that ethnicity and source of HR were the main factors contributing to heterogeneity. Moreover, TA-HEVs were inversely associated with lymph node metastasis and distant metastasis, but were positively related to worse tumor differentiation. However, TA-HEVs were not significantly correlated with sex, LVI, clinical stage, and depth of invasion. Sensitivity analysis suggested that the pooled results were stable and reliable, with no significant publication bias in all included articles. Conclusions This is the first comprehensive analysis of the prognostic value of TA-HEVs in solid tumors using existing literature. Overall, our study demonstrated a significant correlation between TA-HEVs and prognosis as well as clinicopathological features. TA-HEVs may serve as novel immune-related biomarkers for clinical assessments and prognosis prediction in solid tumors. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php, identifier CRD42023394998.
Collapse
Affiliation(s)
- Bin Wang
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Han
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jie Liu
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyao Zhang
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaotiao Deng
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Jiang
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Merali N, Jessel MD, Arbe-Barnes EH, Ruby Lee WY, Gismondi M, Chouari T, O'Brien JW, Patel B, Osei-Bordom D, Rockall TA, Sivakumar S, Annels N, Frampton AE. Impact of tertiary lymphoid structures on prognosis and therapeutic response in pancreatic ductal adenocarcinoma. HPB (Oxford) 2024; 26:873-894. [PMID: 38729813 DOI: 10.1016/j.hpb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Collapse
Affiliation(s)
- Nabeel Merali
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Edward H Arbe-Barnes
- UCL Institute of Immunity and Transplantation, The Pears Building, Pond Street, London, UK
| | - Wing Yu Ruby Lee
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martha Gismondi
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Tarak Chouari
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - James W O'Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Bhavik Patel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Daniel Osei-Bordom
- Liver and Digestive Health, University College London, Royal Free Hospital, Pond St, London, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Adam E Frampton
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| |
Collapse
|
13
|
Groen-van Schooten TS, Franco Fernandez R, van Grieken NCT, Bos EN, Seidel J, Saris J, Martínez-Ciarpaglini C, Fleitas TC, Thommen DS, de Gruijl TD, Grootjans J, Derks S. Mapping the complexity and diversity of tertiary lymphoid structures in primary and peritoneal metastatic gastric cancer. J Immunother Cancer 2024; 12:e009243. [PMID: 38955417 PMCID: PMC11218001 DOI: 10.1136/jitc-2024-009243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) are thought to stimulate antitumor immunity and positively impact prognosis and response to immune checkpoint blockade. In gastric cancers (GCs), however, TLSs are predominantly found in GC with poor prognosis and limited treatment response. We, therefore, hypothesize that immune cell composition and function of TLS depends on tumor location and the tumor immune environment. METHODS Spatial transcriptomics and immunohistochemistry were used to characterize the phenotype of CD45+ immune cells inside and outside of TLS using archival resection specimens from GC primary tumors and peritoneal metastases. RESULTS We identified significant intrapatient and interpatient diversity of the cellular composition and maturation status of TLS in GC. Tumor location (primary vs metastatic site) accounted for the majority of differences in TLS maturity, as TLS in peritoneal metastases were predominantly immature. This was associated with higher levels of tumor-infiltrating macrophages and Tregs and less plasma cells compared with tumors with mature TLS. Furthermore, mature TLSs were characterized by overexpression of antitumor immune pathways such as B cell-related pathways, MHC class II antigen presentation while immature TLS were associated with protumor pathways, including T cell exhaustion and enhancement of DNA repair pathways in the corresponding cancer. CONCLUSION The observation that GC-derived peritoneal metastases often contain immature TLS which are associated with immune suppressive regulatory tumor-infiltrating leucocytes, is in keeping with the lack of response to immune checkpoint blockade and the poor prognostic features of peritoneal metastatic GC, which needs to be taken into account when optimizing immunomodulatory strategies for metastatic GC.
Collapse
Affiliation(s)
- Tessa S Groen-van Schooten
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Rosalia Franco Fernandez
- Oncode Institute, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology & Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Nicole C T van Grieken
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Emma N Bos
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jens Seidel
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Job Saris
- Oncode Institute, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology & Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | | | | | - Daniela S Thommen
- Oncode Institute, Amsterdam, The Netherlands
- Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Joep Grootjans
- Oncode Institute, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology & Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Li K, Ji J, Li S, Yang M, Che Y, Xu Z, Zhang Y, Wang M, Fang Z, Luo L, Wu C, Lai X, Dong J, Zhang X, Zhao N, Liu Y, Wang W. Analysis of the Correlation and Prognostic Significance of Tertiary Lymphoid Structures in Breast Cancer: A Radiomics-Clinical Integration Approach. J Magn Reson Imaging 2024; 59:1206-1217. [PMID: 37526043 DOI: 10.1002/jmri.28900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. PURPOSE To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. STUDY TYPE Retrospective. POPULATION Two hundred forty-two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC - TLS group (N = 120). FIELD STRENGTH/SEQUENCE 3.0T; Caipirinha-Dixon-TWIST-volume interpolated breath-hold sequence for dynamic contrast-enhanced (DCE) MRI and inversion-recovery turbo spin echo sequence for T2-weighted imaging (T2WI). ASSESSMENT Three models for differentiating BC + TLS and BC - TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis-free survival (DMFS), and disease-free survival (DFS) were compared to evaluate the prognostic value of TLSs. STATISTICAL TESTS LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan-Meier method was used to calculate the survival rate. RESULTS The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow-up time was 52 months. While there was no significant difference in 3-year OS (P = 0.22) between BC + TLS and BC - TLS patients, there were significant differences in 3-year DFS and 3-year DMFS between the two groups. DATA CONCLUSION The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long-term disease control rates and better prognoses than those without TLS. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kezhen Li
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Juan Ji
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Simin Li
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Man Yang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yurou Che
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhu Xu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Yiyao Zhang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zengyi Fang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Luo
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Wu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Lai
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Dong
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Chest, Meishan Cancer Hospital, Meishan, China
| | - Xinlan Zhang
- Department of Breast Surgery, Chengdu Women's and Children's Hospital, Chengdu, China
| | - Na Zhao
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Gu J, Wang J, Sun Y, Mao X, Qian C, Tang X, Wang J, Xie H, Ling L, Zhao Y, Liu X, Zhang K, Pan H, Wang S, Wang C, Zhou W. Immune cells within tertiary lymphoid structures are associated with progression-free survival in patients with locoregional recurrent breast cancer. Cancer Med 2024; 13:e6864. [PMID: 38133211 PMCID: PMC10807640 DOI: 10.1002/cam4.6864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Locoregional recurrent breast cancers have a poor prognosis. Little is known about the prognostic impact of immune microenvironment, and tertiary lymphoid structures (TLSs) in particular have not been reported. Thus, we aimed to characterize the immune microenvironment in locoregional recurrent breast tumors and to investigate its relationship with prognosis. METHODS We retrospectively included 112 patients with locoregional recurrent breast cancer, and hematoxylin-eosin staining and immunohistochemical staining (CD3, CD4, CD8, CD19, CD38, and CD68) were performed on locoregional recurrent tumor samples. The association of immune cells and TLSs with progression-free survival (PFS) were analyzed by survival analysis. RESULTS We found more immune cells in the peritumor than stroma. After grouping according to estrogen receptor (ER) status, a low level of peritumoral CD3+ cells in ER+ subgroup (p = 0.015) and a low level of stromal CD68+ cells in ER- subgroup (p = 0.047) were both associated with longer PFS. TLSs were present in 68% of recurrent tumors, and CD68+ cells within TLSs were significantly associated with PFS as an independent prognostic factor (p = 0.035). TLSs and immune cells (CD3, CD38, and CD68) within TLSs were associated with longer PFS in ER- recurrent tumors (p = 0.044, p = 0.012, p = 0.050, p < 0.001, respectively), whereas CD38+ cells within TLSs were associated with shorter PFS in ER+ recurrent tumors (p = 0.037). CONCLUSION Our study proposes potential predictors for the clinical prognosis of patients with locoregional recurrent breast cancer, emphasizing the prognostic value of immune cells within TLSs, especially CD68+ cells.
Collapse
Affiliation(s)
- Jinyuan Gu
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Jiaming Wang
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Yue Sun
- Department of OncologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Xinrui Mao
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Chao Qian
- Department of General SurgerySir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Xinyu Tang
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Ji Wang
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Hui Xie
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Lijun Ling
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Yi Zhao
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Xiaoan Liu
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Kai Zhang
- Pancreas Center & Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Hong Pan
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Shui Wang
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Cong Wang
- Department of PathologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Wenbin Zhou
- Department of Breast SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center For Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
16
|
Xu W, Lu J, Tian X, Ye S, Wei S, Wang J, Anwaier A, Qu Y, Liu W, Chang K, Zhang H, Ye D. Unveiling the impact of tertiary lymphoid structures on immunotherapeutic responses of clear cell renal cell carcinoma. MedComm (Beijing) 2024; 5:e461. [PMID: 38222314 PMCID: PMC10784869 DOI: 10.1002/mco2.461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that form under pathological conditions. However, the predictive value of TLS in clear cell renal cell carcinoma (ccRCC) for immunotherapies remains unclear. We comprehensively assessed the implications for prognosis and immunological responses of the TLS spatial and maturation heterogeneity in 655 ccRCC patients. A higher proportion of early-TLS was found in peritumoral TLS, while intratumoral TLS mainly comprised secondary follicle-like TLS (SFL-TLS), indicating markedly better survival. Notably, presence of TLS, especially intratumoral TLS and SFL-TLS, significantly correlated with better survival and objective reflection rate for ccRCC patients receiving anti-Programmed Cell Death Protein-1 (PD-1)/Programmed Cell Death-Ligand-1 (PD-L1) immunotherapies. In peritumoral TLS cluster, primary follicle-like TLS, the proportion of tumor-associated macrophages, and Treg infiltration in the peritumoral regions increased prominently, suggesting an immunosuppressive tumor microenvironment. Interestingly, spatial transcriptome annotation and multispectral fluorescence showed that an abundance of mature plasma cells within mature TLS has the capacity to produce IgA and IgG, which demonstrate significantly higher objective response rates and a superior prognosis for ccRCC patients subjected to immunotherapy. In conclusion, this study revealed the implications of TLS spatial and maturation heterogeneity on the immunological status and clinical responses, allowing the improvement of precise immunotherapies of ccRCC.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Jiahe Lu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | - Xi Tian
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Shiqi Ye
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Jun Wang
- State Key Laboratory of Oncology in South ChinaCollaborativeInnovation Center for Cancer MedicineDepartment of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Aihetaimujiang Anwaier
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Yuanyuan Qu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Wangrui Liu
- Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kun Chang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Hailiang Zhang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| |
Collapse
|
17
|
Zhou Y, Gu Q, Zhu L, Zhang S, Wu H, Pu X, Jiang C, Chen J. High endothelial venule is a prognostic immune-related biomarker in patients with resected intrahepatic cholangiocarcinoma. Cell Prolif 2023; 56:e13513. [PMID: 37401015 PMCID: PMC10693183 DOI: 10.1111/cpr.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Having been reported to be a crucial prognostic factor in solid tumours, the role of high endothelial venule (HEV) in intrahepatic cholangiocarcinoma (ICC) remains unclear, however. The data of ICC and healthy individuals were downloaded from the Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) databases. Meanwhile, a cutting-edge ICC high-resolution spatial transcriptome was also acquired before these data were comprehensively analysed using bioinformatics approaches. Moreover, 95 individuals with ICC who had undergone resection surgery were enrolled in this study to investigate the relationship between HEV and tumour microenvironment (TME) applying immunohistochemistry and multiple immunofluorescence techniques. The high-HEV subtype contains rich immune infiltrates including tertiary lymphoid structure (TLS), CD8+ T cells, and CD20+ B cells. Furthermore, HEV and TLS exhibited a strong relationship of spatial colocalization. Correlated with improved prognostic outcomes in ICC, the high-HEV subtype could be an independent prognostic indicator for individuals with ICC. This study revealed the association of HEV with immune function and observed a strong spatial colocalization correlation between HEV and TLS. Moreover, correlated with immunotherapeutic response, HEV could improve prognostic outcomes, which may be a potential indicator of immunotherapy pathology in ICC.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
| | - Qian Gu
- Department of CardiologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Linxi Zhu
- Department of Pancreatic surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Shuo Zhang
- Department of Pancreatic surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Hongyan Wu
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Xiaohong Pu
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chunping Jiang
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Pancreatic surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
18
|
Xu W, Lu J, Liu WR, Anwaier A, Wu Y, Tian X, Su JQ, Qu YY, Yang J, Zhang H, Ye D. Heterogeneity in tertiary lymphoid structures predicts distinct prognosis and immune microenvironment characterizations of clear cell renal cell carcinoma. J Immunother Cancer 2023; 11:e006667. [PMID: 38040418 PMCID: PMC10693897 DOI: 10.1136/jitc-2023-006667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop postnatally in non-lymphoid tissues and are associated with pathological conditions. TLS typically comprise B-cell follicles containing and are encompassed by T- cell zones and dendritic cells. The prognostic and predictive value of TLS in the tumor microenvironment (TME) as potential mediators of antitumor immunity have gained interest. However, the precise relationship between localization and maturation of TLS and the clinical outcome of their presence in clear cell renal cell carcinoma (ccRCC) is yet to be elucidated. METHODS Immunohistochemistry and multispectral fluorescence were used to evaluate the TLS heterogeneity along with TME cell-infiltrating characterizations. A thorough investigation of the prognostic implications of the TLS heterogeneity in 395 patients with ccRCC from two independent cohorts was conducted. Associations between TLS heterogeneity and immunologic activity were assessed by quantifying the immune cell infiltration. RESULTS Infiltrated TLS were identified in 34.2% of the ccRCC samples (N=395). These TLS were found to be tumor-proximal, tumor-distal, or both in 37.8%, 74.1%, and 11.9% of the TLS-positive cases, respectively. A higher proportion of early TLS was found in tumor-distal TLS (p=0.016), while tumor-proximal TLS primarily comprised secondary follicle-like structures (p=0.004). In the main study cohort (Fudan University Shanghai Cancer Center, N=290), Kaplan-Meier analyses revealed a significant correlation between the presence of tumor-proximal TLS and improved progression-free survival (PFS, p<0.001) and overall survival (OS, p=0.002). Conversely, the presence of tumor-distal TLS was associated with poor PFS (p=0.02) and OS (p=0.021). These findings were further validated in an external validation set of 105 patients with ccRCC. Notably, the presence of mature TLS (namely secondary follicle-like TLS, with CD23+ germinal center) was significantly associated with better clinical outcomes in patients with ccRCC. Furthermore, novel nomograms incorporating the presence of tumor-proximal TLS demonstrated remarkable predictability for the 8-year outcomes of resected ccRCC (area under the curve >0.80). Additionally, ccRCC samples with tumor-distal TLS enriched with primary follicle-like TLS exhibited higher programmed death-ligand 1 tumor-associated macrophages levels and regulatory T cells infiltration in the tumor-distal region, indicative of a suppressive TME. CONCLUSION This study for the first time elucidates the impact of TLS localization and maturation heterogeneities on the divergent clinical outcomes of ccRCC. The findings reveal that most TLS in ccRCC are located in the tumor-distal area and are associated with immature, immunosuppressive characterizations. Furthermore, our findings corroborate previous research demonstrating that tumor-proximal TLS were associated with favorable clinical outcomes.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, People's Republic of China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, People's Republic of China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Wang-Rui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, People's Republic of China
| | - Yuhao Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, People's Republic of China
| | - Jia-Qi Su
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, People's Republic of China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, People's Republic of China
| | - Jianfeng Yang
- Department of Surgery, ShangNan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, People's Republic of China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Vaccaro A, van de Walle T, Ramachandran M, Essand M, Dimberg A. Of mice and lymphoid aggregates: modeling tertiary lymphoid structures in cancer. Front Immunol 2023; 14:1275378. [PMID: 37954592 PMCID: PMC10639130 DOI: 10.3389/fimmu.2023.1275378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are lymph node-like aggregates that can form in association with chronic inflammation or cancer. Mature TLS are organized into B and T cell zones, and are not encapsulated but include all cell types necessary for eliciting an adaptive immune response. TLS have been observed in various cancer types and are generally associated with a positive prognosis as well as increased sensitivity to cancer immunotherapy. However, a comprehensive understanding of the roles of TLS in eliciting anti-tumor immunity as well as the mechanisms involved in their formation and function is still lacking. Further studies in orthotopic, immunocompetent cancer models are necessary to evaluate the influence of TLS on cancer therapies, and to develop new treatments that promote their formation in cancer. Here, we review key insights obtained from functional murine studies, discuss appropriate models that can be used to study cancer-associated TLS, and suggest guidelines on how to identify TLS and distinguish them from other antigen-presenting niches.
Collapse
Affiliation(s)
- Alessandra Vaccaro
- *Correspondence: Alessandra Vaccaro, ; Tiarne van de Walle, ; Anna Dimberg,
| | | | | | | | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Ye D, Jin Y, Weng Y, Cui X, Wang J, Peng M, Song Q. High endothelial venules predict response to PD-1 inhibitors combined with anti-angiogenesis therapy in NSCLC. Sci Rep 2023; 13:16468. [PMID: 37777573 PMCID: PMC10543372 DOI: 10.1038/s41598-023-43122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
Tumor-associated high endothelial venules (TA-HEVs) mediate lymphocyte entry into tumors. Therefore, combined anti-angiogenesis therapy and programmed death-1 (PD-1) inhibitors might stimulate tumor immunity. This study will explore the TA-HEVs and real-world data of the combination therapy in non-small cell lung cancer (NSCLC). Firstly, we found a certain relationship between HEVs and immune effector cells by multiple immunofluorescence staining. We then analyzed the efficacy of immunotherapy combined with anti-angiogenesis therapy in advanced NSCLC patients by collecting real-world clinical data. Finally, we explored the predictive value of HEVs in combination therapy by analyzing pre-treatment pathological slides of patients with multiple immunofluorescence and RNA sequencing. Immunofluorescence staining of high endothelial venules (PNAd+) reveals that the frequency of HEVs is positively correlated with tumor-infiltrating stem-like CD8+ T cells (TCF-1+PD-1+) in the TME of advanced NSCLC patients (P = 0.0221). We retrospectively analyzed the efficacy of 96 patients with advanced NSCLC who received PD-1 inhibitors combined with anti-angiogenesis therapy in the real-world. The median PFS of patients combined with anti-angiogenesis therapy was longer than that of patients without anti-angiogenesis therapy (9.7 vs 8.6 months, P = 0.041). Multiple immunofluorescence staining of tumor biopsies before treatment from 14 patients with advanced NSCLC reveals that PNAd+ is predictive of better response and survival upon PD-1 inhibitors combined with anti-angiogenesis therapy (P = 0.0274). In addition, we collected peripheral blood from an effective group of patients for RNA sequencing and found that immune cells activation-related gene expression scores were higher. Combined anti-angiogenic and anti-PD-1 therapy stimulates tumor immunity through TA-HEVs formation. TA-HEVs not only mediate immune cell entry into tumors, but also are associated with the efficacy of PD-1 inhibitors and anti-angiogenesis therapy in NSCLC.
Collapse
Affiliation(s)
- Dafu Ye
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yao Jin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yiming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xue Cui
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Qibin Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
21
|
Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 2023:10.1038/s41582-023-00838-7. [PMID: 37400550 DOI: 10.1038/s41582-023-00838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Owain W Howell
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Massimiliano Calabrese
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
22
|
Szpor J, Streb J, Glajcar A, Streb-Smoleń A, Łazarczyk A, Korta P, Brzuszkiewicz K, Jach R, Hodorowicz-Zaniewska D. Dendritic Cell Subpopulations Are Associated with Morphological Features of Breast Ductal Carcinoma In Situ. Int J Mol Sci 2023; 24:9918. [PMID: 37373062 DOI: 10.3390/ijms24129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is the preinvasive form of breast cancer (BC). It is disputed whether all cases of DCIS require extensive treatment as the overall risk of progression to BC is estimated at 40%. Therefore, the crucial objective for researchers is to identify DCIS with significant risk of transformation into BC. Dendritic cells (DC) are professional antigen presenting cells and as such play a pivotal role in the formation of immune cells that infiltrate in breast tumors. The aim of this study was to investigate the relationship between the density of DCs with different superficial antigens (CD1a, CD123, DC-LAMP, DC-SIGN) and various histopathological characteristics of DCIS. Our evaluation indicated that CD123+ and DC-LAMP+ cells were strongly associated with maximal tumor size, grading and neoductgenesis. Together with CD1a+ cells, they were negatively correlated with hormonal receptors expression. Furthermore, the number of DC-LAMP+ cells was higher in DCIS with comedo necrosis, ductal spread, lobular cancerization as well as comedo-type tumors, while CD1a+ cells were abundant in cases with Paget disease. We concluded that different subpopulations of DCs relate to various characteristics of DCIS. Of the superficial DCs markers, DC-LAMP seems particularly promising as a target for further research in this area.
Collapse
Affiliation(s)
- Joanna Szpor
- Department of Pathomorphology, Jagiellonian University Medical College, 31-008 Cracow, Poland
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Anna Glajcar
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Anna Streb-Smoleń
- Department of Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 31-115 Cracow, Poland
| | - Agnieszka Łazarczyk
- Department of Pathomorphology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Paulina Korta
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Karolina Brzuszkiewicz
- General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Robert Jach
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Diana Hodorowicz-Zaniewska
- General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, 31-008 Cracow, Poland
| |
Collapse
|
23
|
Milosevic V, Edelmann RJ, Winge I, Strell C, Mezheyeuski A, Knutsvik G, Askeland C, Wik E, Akslen LA, Östman A. Vessel size as a marker of survival in estrogen receptor positive breast cancer. Breast Cancer Res Treat 2023:10.1007/s10549-023-06974-4. [PMID: 37222874 DOI: 10.1007/s10549-023-06974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Angiogenesis is crucial for tumor growth and is one of the hallmarks of cancer. In this study, we analyzed microvessel density, vessel median size, and perivascular a-SMA expression as prognostic biomarkers in breast cancer. METHODS Dual IHC staining was performed where alpha-SMA antibodies were used together with antibodies against the endothelial cell marker CD34. Digital images of stainings were analyzed to extract quantitative data on vessel density, vessel size, and perivascular alpha-SMA status. RESULTS The analyses in the discovery cohort (n = 108) revealed a statistically significant relationship between large vessel size and shorter disease-specific survival (p = 0.007, log-rank test; p = 0.01, HR 3.1; 95% CI 1.3-7.4, Cox-regression analyses). Subset analyses indicated that the survival association of vessel size was strengthened in ER + breast cancer. To consolidate these findings, additional analyses were performed on a validation cohort (n = 267) where an association between large vessel size and reduced survival was also detected in ER + breast cancer (p = 0.016, log-rank test; p = 0.02; HR 2.3, 95% CI 1.1-4.7, Cox-regression analyses). CONCLUSION Alpha-SMA/CD34 dual-IHC staining revealed breast cancer heterogeneity regarding vessel size, vessel density, and perivascular a-SMA status. Large vessel size was linked to shorter survival in ER + breast cancer.
Collapse
Affiliation(s)
- Vladan Milosevic
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Reidunn J Edelmann
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gøril Knutsvik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Askeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
24
|
Wen Z, Liu H, Qiao D, Chen H, Li L, Yang Z, Zhu C, Zeng Z, Chen Y, Liu L. Nanovaccines Fostering Tertiary Lymphoid Structure to Attack Mimicry Nasopharyngeal Carcinoma. ACS NANO 2023; 17:7194-7206. [PMID: 37057967 DOI: 10.1021/acsnano.2c09619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tertiary lymphoid structures (TLSs) are formed in inflamed tissues, and recent studies demonstrated that the appearance of TLSs in tumor sites is associated with a good prognosis for tumor patients. However, the process of natural TLSs' formation was slow and uncontrollable. Herein, we developed a nanovaccine consisting of Epstein-Barr virus nuclear antigen 1 (EBNA1) and a bi-adjuvant of Mn2+ and cytosine-phosphate-guanine (CpG) formulated with tannic acid that significantly inhibited the development of mimicry nasopharyngeal carcinoma by fostering TLS formation. The nanovaccine activated LT-α and LT-β pathways, subsequently enhancing the expression of downstream chemokines, CCL19/CCL21, CXCL10 and CXCL13, in the tumor microenvironment. In turn, normalized blood and lymph vessels were detected in the tumor tissues of the nanovaccine group, correlated with increased infiltration of lymphocytes. Especially, the proportion of the B220+ CD8+ T, which was produced via trogocytosis between T and B cells during activation of T cells, was increased in tumors of the nanovaccine group. Furthermore, the intratumoral effector memory T cells (Tem), CD45+, CD3+, CD8+, CD44+, and CD62L-, did not decrease after blocking the egress of T cells from tumor-draining lymph nodes by FTY-720. These results demonstrated that the nanovaccine can foster TLS formation, which thus enhances local immune responses significantly, delays tumor outgrowth, and prolongs the median survival time of murine models of mimicry nasopharyngeal carcinoma, demonstrating a promising strategy for nanovaccine development.
Collapse
Affiliation(s)
- Zhenfu Wen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongdong Qiao
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Haolin Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Liyan Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zeyu Yang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Chenxu Zhu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhipeng Zeng
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
25
|
Vella G, Hua Y, Bergers G. High endothelial venules in cancer: Regulation, function, and therapeutic implication. Cancer Cell 2023; 41:527-545. [PMID: 36827979 DOI: 10.1016/j.ccell.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The lack of sufficient intratumoral CD8+ T lymphocytes is a significant obstacle to effective immunotherapy in cancer. High endothelial venules (HEVs) are organ-specific and specialized postcapillary venules uniquely poised to facilitate the transmigration of lymphocytes to lymph nodes (LNs) and other secondary lymphoid organs (SLOs). HEVs can also form in human and murine cancer (tumor HEVs [TU-HEVs]) and contribute to the generation of diffuse T cell-enriched aggregates or tertiary lymphoid structures (TLSs), which are commonly associated with a good prognosis. Thus, therapeutic induction of TU-HEVs may provide attractive avenues to induce and sustain the efficacy of immunotherapies by overcoming the major restriction of T cell exclusion from the tumor microenvironment. In this review, we provide current insight into the commonalities and discrepancies of HEV formation and regulation in LNs and tumors and discuss the specific function and significance of TU-HEVs in eliciting, predicting, and aiding anti-tumoral immunity.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Yichao Hua
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Chen H, Li G, Cui Y, Zhang Q, Li B, Liu X. High endothelial venules in intracranial germinomas: Implications for lymphocytes infiltration. Cancer Med 2023; 12:5450-5460. [PMID: 36259639 PMCID: PMC10028053 DOI: 10.1002/cam4.5367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Reactive lymphocytes are substantial components of germinoma, which are believed to be related to the favorable prognosis of this intracranial tumor and better response to immunotherapy. However, the mechanisms managing the recruitment of lymphocytes are poorly understood. High endothelial venules (HEVs) are specialized blood vessels that play key roles in lymphocyte trafficking in Lymph nodes. These vessels are associated with lymphocyte infiltration in chronic inflammatory diseases and various malignant tumors, but their distribution and implications in germinoma are unknown. This study aimed to investigate the distribution and implications of HEVs in intracranial germinomas. METHODS We investigated the presence and distribution of HEVs in 42 germinomas by immunohistochemical staining of peripheral node addressin (PNAd) and transmission electron microscopic examination. The correlation of the densities of HEVs with the extent of T and B lymphocyte infiltration and several clinicopathological characteristics were also analyzed to determine whether HEVs are responsible for lymphocyte recruitment and their roles in anti-tumor immunity in germinoma. RESULTS PNAd-positive HEVs were detected in 31% (13/42) of germinomas, and their presence correlated with abundant infiltrating CD3+ T cells, CD20 + B cells and CD8+ cytotoxic T lymphocytes (p = 0.0410, 0.0023, and 0.0061, respectively). Higher HEVs density was also correlated with several clinicopathological parameters, which are recognized indicators for favorable prognosis in germinomas, including typical tumor location (p = 0.0093), lower tumor cell content (p = 0.0428), and younger age at diagnosis (p = 0.0121). Furthermore, bioinformatics analysis showed HEVs-associated genes mainly enriched in immune-related Gene Ontology terms, including innate immune response, inflammatory response, and B cell receptor signaling pathway. The xCell analysis revealed that germinomas with higher HEVs enrichment scores had increased levels of the immune score, microenvironment score, dendritic cells, CD8+ central memory T-cells, CD4+ memory T-cells, and B-cells. CONCLUSIONS Our findings indicate that HEVs could contribute to lymphocyte recruitment in germinomas, thus may serve as a predictor of favorable prognosis and better response to immunotherapy in this intracranial tumor.
Collapse
Affiliation(s)
- Huiyuan Chen
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Guilin Li
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Yun Cui
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Qi Zhang
- Department of Ultrastructure Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Bo Li
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
27
|
Dyduch G, Miążek A, Laskowicz Ł, Szpor J. Distribution of DC Subtypes: CD83+, DC-LAMP+, CD1a+, CD1c+, CD123+, and DC-SIGN+ in the Tumor Microenvironment of Endometrial Cancers-Correlation with Clinicopathologic Features. Int J Mol Sci 2023; 24:ijms24031933. [PMID: 36768258 PMCID: PMC9915342 DOI: 10.3390/ijms24031933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Treatment options for endometrial cancer (EC) do not provide satisfactory survival improvement for advanced cases, hence the interest in novel therapies utilizing immunological regulatory mechanisms. Measures to modify the functionality of dendritic cells (DCs) found in TME are intensively investigated, given that DCs play a crucial role in inducing antitumor immunity. Samples of malignant endometrial neoplasms obtained from 94 patients were immunohistochemically stained with selected antibodies. Counts of positively identified DCs were correlated with clinical advancement and histological malignancy of cancers. The most prominent DC subtypes were immature DC-SIGN+ or CD123+. Mature CD83+ DCs were the fewest. We found a significant divergence of grade value distribution between cancers of different DCs' CD1a+ counts. The DC-LAMP+ count was positively associated with grade. Cancers with the least DC CD1c+ or DC CD123+ had higher pT scores than ones that were more heavily infiltrated. ECs can suppress immune cells, hence the predominance of immature DCs in our samples. Associations between DC counts and clinicopathological features of EC were observed only for a few subsets, which was plausibly due to the low diversity of the obtained samples or the small group size. Predictive abilities of particular DC immune subsets within EC's TME remain ambiguous, which calls for further research.
Collapse
Affiliation(s)
- Grzegorz Dyduch
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, 31-351 Krakow, Poland
- Correspondence:
| | - Apolonia Miążek
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, 31-351 Krakow, Poland
| | - Łukasz Laskowicz
- Gynaecology and Oncology Clinical Department, University Hospital, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, 31-351 Krakow, Poland
| |
Collapse
|
28
|
Devi-Marulkar P, Fastenackels S, Karapentiantz P, Goc J, Germain C, Kaplon H, Knockaert S, Olive D, Panouillot M, Validire P, Damotte D, Alifano M, Murris J, Katsahian S, Lawand M, Dieu-Nosjean MC. Regulatory T cells infiltrate the tumor-induced tertiary lymphoïd structures and are associated with poor clinical outcome in NSCLC. Commun Biol 2022; 5:1416. [PMID: 36566320 PMCID: PMC9789959 DOI: 10.1038/s42003-022-04356-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
On one hand, regulatory T cells (Tregs) play an immunosuppressive activity in most solid tumors but not all. On the other hand, the organization of tumor-infiltrating immune cells into tertiary lymphoid structures (TLS) is associated with long-term survival in most cancers. Here, we investigated the role of Tregs in the context of Non-Small Cell Lung Cancer (NSCLC)-associated TLS. We observed that Tregs show a similar immune profile in TLS and non-TLS areas. Autologous tumor-infiltrating Tregs inhibit the proliferation and cytokine secretion of CD4+ conventional T cells, a capacity which is recovered by antibodies against Cytotoxic T-Lymphocyte-Associated protein-4 (CTLA-4) and Glucocorticoid-Induced TNFR-Related protein (GITR) but not against other immune checkpoint (ICP) molecules. Tregs in the whole tumor, including in TLS, are associated with a poor outcome of NSCLC patients, and combination with TLS-dendritic cells (DCs) and CD8+ T cells allows higher overall survival discrimination. Thus, Targeting Tregs especially in TLS may represent a major challenge in order to boost anti-tumor immune responses initiated in TLS.
Collapse
Affiliation(s)
- Priyanka Devi-Marulkar
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418596.70000 0004 0639 6384Present Address: Institut Curie, Paris, France
| | - Solène Fastenackels
- grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Karapentiantz
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,Present Address: Inserm, Sorbonne Université, université Paris 13, Laboratoire d’informatique médicale et d’ingénierie des connaissances en e-santé, LIMICS, F-75006 Paris, France
| | - Jérémy Goc
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.5386.8000000041936877XPresent Address: Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology and The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, USA
| | - Claire Germain
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,Present Address: Biomunex Pharmaceuticals, Paris, France
| | - Hélène Kaplon
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418301.f0000 0001 2163 3905Present Address: Translational Medicine Department, Institut de Recherches Internationales Servier, Suresnes, France
| | - Samantha Knockaert
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418301.f0000 0001 2163 3905Present Address: Translational Medicine Department, Institut de Recherches Internationales Servier, Suresnes, France
| | - Daniel Olive
- Inserm U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France ,grid.463833.90000 0004 0572 0656Laboratory « Immunity and Cancer », Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Marylou Panouillot
- grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Validire
- grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418120.e0000 0001 0626 5681Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Diane Damotte
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.411784.f0000 0001 0274 3893Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin hospital, Paris, France
| | - Marco Alifano
- grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.50550.350000 0001 2175 4109Department of Thoracic Surgery, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Juliette Murris
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.5328.c0000 0001 2186 3954HeKA, INRIA, Paris, France ,Hôpital Européen Georges-Pompidou, Unité d’Epidémiologie et de Recherche Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Inserm, Centre d’Investigation Clinique 1418, Module Epidémiologie Clinique, Paris, France
| | - Sandrine Katsahian
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.5328.c0000 0001 2186 3954HeKA, INRIA, Paris, France ,Hôpital Européen Georges-Pompidou, Unité d’Epidémiologie et de Recherche Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Inserm, Centre d’Investigation Clinique 1418, Module Epidémiologie Clinique, Paris, France
| | - Myriam Lawand
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
29
|
Ware MB, Wolfarth AA, Goon JB, Ezeanya UI, Dhar S, Ferrando-Martinez S, Lee BH. The Role of Interleukin-7 in the Formation of Tertiary Lymphoid Structures and Their Prognostic Value in Gastrointestinal Cancers. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 5:105-117. [PMID: 36483588 PMCID: PMC9714415 DOI: 10.36401/jipo-22-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Immunotherapies for the treatment of solid tumors continue to develop in preclinical and clinical research settings. Unfortunately, for many patients the tumor fails to respond or becomes resistant to therapies such as checkpoint inhibitors (CPIs) targeting programmed cell death protein-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen-4 (CTLA-4). In many cancers, failed response to CPIs can be attributed to poor T cell infiltration, dominant immunosuppression, and exhausted immune responses. In gastrointestinal (GI) cancers T cell infiltration can be dismal, with several reports finding that CD8+ T cells compose less than 2% of all cells within the tumor. Organized aggregates of lymphocytes, antigen-presenting cells, and vessels, together termed tertiary lymphoid structures (TLSs), are hypothesized to be a major source of T cells within solid tumors. The intratumoral formation of these organized immune centers appears to rely on intricate cytokine and chemokine signaling to heterogeneous cell populations such as B and T cells, innate lymphoid cells, fibroblasts, and dendritic cells. In GI cancers, the presence and density of TLSs provide prognostic value for predicting outcome and survival. Further, TLS presence and density associates with favorable responses to CPIs in many cancers. This review highlights the prognostic value of TLSs in GI cancers, the role of the homeostatic cytokine interleukin-7 (IL-7) in TLS formation, and the induction of TLSs in solid tumors by novel therapeutics.
Collapse
|
30
|
Jia W, Zhang T, Yao Q, Li J, Nie Y, Lei X, Mao Z, Wang Y, Shi W, Song W. Tertiary Lymphatic Structures in Primary Hepatic Carcinoma: Controversy Cannot Overshadow Hope. Front Immunol 2022; 13:870458. [PMID: 35844587 PMCID: PMC9278517 DOI: 10.3389/fimmu.2022.870458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells found in the tumor microenvironment. TLS can influence primary hepatic carcinoma (PHC) occurrence and have an active role in cancer. TLS can promote or inhibit the growth of PHC depending on their location, and although available findings are controversial, they suggest that TLS have a protective role in PHC tissues and a non-protective role in paracancerous tissues. In addition, the cellular composition of TLS can also influence the outcome of PHC. As an immunity marker, TLS can act as a marker of immunotherapy to predict its effect and help to identify patients who will respond well to immunotherapy. Modulation of TLS formation through the use of chemokines/cytokines, immunotherapy, or induction of high endothelial vein to interfere with tumor growth has been studied extensively in PHC and other cancers. In addition, new tools such as genetic interventions, cellular crosstalk, preoperative radiotherapy, and advances in materials science have been shown to influence the prognosis of malignant tumors by modulating TLS production. These can also be used to develop PHC treatment.
Collapse
Affiliation(s)
- Weili Jia
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tianchen Zhang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qianyun Yao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianhui Li
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ye Nie
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinjun Lei
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenzhen Mao
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanfang Wang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wen Shi
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Wenjie Song,
| |
Collapse
|
31
|
Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci 2022; 79:359. [PMID: 35689679 PMCID: PMC9188279 DOI: 10.1007/s00018-022-04388-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid organs (TLOs) are collections of immune cells resembling secondary lymphoid organs (SLOs) that form in peripheral, non-lymphoid tissues in response to local chronic inflammation. While their formation mimics embryologic lymphoid organogenesis, TLOs form after birth at ectopic sites in response to local inflammation resulting in their ability to mount diverse immune responses. The structure of TLOs can vary from clusters of B and T lymphocytes to highly organized structures with B and T lymphocyte compartments, germinal centers, and lymphatic vessels (LVs) and high endothelial venules (HEVs), allowing them to generate robust immune responses at sites of tissue injury. Although our understanding of the formation and function of these structures has improved greatly over the last 30 years, their role as mediators of protective or pathologic immune responses in certain chronic inflammatory diseases remains enigmatic and may differ based on the local tissue microenvironment in which they form. In this review, we highlight the role of TLOs in the regulation of immune responses in chronic infection, chronic inflammatory and autoimmune diseases, cancer, and solid organ transplantation.
Collapse
|
32
|
Asrir A, Tardiveau C, Coudert J, Laffont R, Blanchard L, Bellard E, Veerman K, Bettini S, Lafouresse F, Vina E, Tarroux D, Roy S, Girault I, Molinaro I, Martins F, Scoazec JY, Ortega N, Robert C, Girard JP. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 2022; 40:318-334.e9. [PMID: 35120598 DOI: 10.1016/j.ccell.2022.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/23/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Recruitment of lymphocytes into tumors is critical for anti-tumor immunity and efficacious immunotherapy. We show in murine models that tumor-associated high endothelial venules (TA-HEVs) are major sites of lymphocyte entry into tumors at baseline and upon treatment with anti-PD-1/anti-CTLA-4 immune checkpoint blockade (ICB). TA-HEV endothelial cells (TA-HECs) derive from post-capillary venules, co-express MECA-79+ HEV sialomucins and E/P-selectins, and are associated with homing and infiltration into tumors of various T cell subsets. Intravital microscopy further shows that TA-HEVs are the main sites of lymphocyte arrest and extravasation into ICB-treated tumors. Increasing TA-HEC frequency and maturation increases the proportion of tumor-infiltrating stem-like CD8+ T cells, and ameliorates ICB efficacy. Analysis of tumor biopsies from 93 patients with metastatic melanoma reveals that TA-HEVs are predictive of better response and survival upon treatment with anti-PD-1/anti-CTLA-4 combination. These studies provide critical insights into the mechanisms governing lymphocyte trafficking in cancer immunity and immunotherapy.
Collapse
Affiliation(s)
- Assia Asrir
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Tardiveau
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Juliette Coudert
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Robin Laffont
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Krystle Veerman
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Bettini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fanny Lafouresse
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Estefania Vina
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dorian Tarroux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Severine Roy
- Department of Medicine, Gustave Roussy, Villejuif, France; INSERM U981, Gustave Roussy, Villejuif, France
| | - Isabelle Girault
- Department of Medicine, Gustave Roussy, Villejuif, France; INSERM U981, Gustave Roussy, Villejuif, France
| | - Irma Molinaro
- Department of Pathology, Gustave Roussy, Villejuif, France
| | - Frédéric Martins
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, UMR1048, INSERM, UPS, Toulouse, France; Plateforme Genome et Transcriptome, GeT, Genopole Toulouse, France
| | - Jean-Yves Scoazec
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Pathology, Gustave Roussy, Villejuif, France; Paris-Saclay University, Orsay, France; AMMICa, CNRS-UAR 3655 and INSERM-US23, Gustave Roussy, Villejuif, France
| | - Nathalie Ortega
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Caroline Robert
- Department of Medicine, Gustave Roussy, Villejuif, France; INSERM U981, Gustave Roussy, Villejuif, France; Paris-Saclay University, Orsay, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
33
|
Pei Y, Zhu Y, Wang X, Xu L. The expression and clinical value of tumor infiltrating dendritic cells in tumor tissues of patients with esophageal cancer. J Gastrointest Oncol 2021; 12:1996-2003. [PMID: 34790367 DOI: 10.21037/jgo-21-578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 11/06/2022] Open
Abstract
Background As dendritic cells (DCs) are the major antigen-presenting cells of the immune system, understanding their role in esophageal cancer is essential for the development of preventative and treatment strategies. This study investigated the expression level and clinical value of tumor infiltrating dendritic cells (TIDCs) in tumor tissues of patients with esophageal cancer. Methods From January 2019 to January 2021, 184 patients with esophageal cancer treated were prospectively enrolled as the observation group and 184 patients with benign esophageal tumors were selected as the control group. Tumor tissue samples were obtained and the expression level and phenotypes of the TIDCs were analyzed. The correlation between TIDC expression and clinical characteristics of patients with esophageal cancer was investigated. Results The density of the TIDCs in the observation group was lower than that in the control group (8.76±2.25 vs. 9.97±2.19; P=0.000). Furthermore, the percentage of major histocompatibility complex-II (MHC-II) positive DCs and the percentage of CD54 positive DCs were relatively lower in the observation group compared to the control group (6.60%±2.12% vs. 9.34%±2.41%; P=0.000 and 7.41%±2.36% vs. 9.98%±2.47%; P=0.000, respectively). Esophageal cancer patients with lymph node metastasis had lower TIDC density, lower percentage of MHC-II positive DCs, and lower percentage of CD54 positive DCs compared to patients without node metastasis (P<0.05). Patients with stage III esophageal cancer also showed significantly lower TIDC density, lower percentage of MHC-II positive DCs, and lower percentage of CD54 positive DCs compared to patients with stage I/II esophageal cancer (P<0.05). Esophageal cancer patients with tumor diameter ≥4 cm presented with decreased TIDC density, decreased percentage of MHC-II positive DCs, and decreased percentage of CD54 positive DCs compared to patients with tumor diameter <4 cm (P<0.05). In addition, the density of TIDCs, the percentage of MHC-II positive DCs, and the percentage of CD54 positive DCs were significantly negatively correlated with the percentage of CD4+ T-lymphocytes and positively correlated with the percentage of CD8+ T-lymphocytes (P<0.05). Conclusions Patients with esophageal cancer had low expression and function of TIDCs, and this was related to the imbalance of T-lymphocyte subsets, lymph node metastasis, TNM stage, and lesion size.
Collapse
Affiliation(s)
- Yanzhi Pei
- Department of Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yanzhi Zhu
- Hepatobiliary and Pancreatic Surgery, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, China
| | - Xiaolin Wang
- Department of Pathology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lin Xu
- Department of Gastroenterology, Xuzhou Cancer Hospital, Xuzhou, China
| |
Collapse
|
34
|
Qin M, Jin Y, Pan LY. Tertiary lymphoid structure and B-cell-related pathways: A potential target in tumor immunotherapy. Oncol Lett 2021; 22:836. [PMID: 34712360 PMCID: PMC8548801 DOI: 10.3892/ol.2021.13097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023] Open
Abstract
The tertiary lymphoid structure (TLS), also referred to as the ectopic lymphoid structure, has recently become a focus of attention. The TLS consists of T-cell and B-cell-rich regions, as well as plasma cells, follicular helper T cells, follicular dendritic cells (FDCs), germinal centers (GCs) and high endothelial venules. TLSs can be divided into different subtypes and mature stages according to the density of FDCs and GCs. The TLS serves as an effective site in which an antitumor inflammatory response is generated through infiltrating immune cells. B-cell-related pathways, known as the CXC chemokine ligand 13/CXC chemokine receptor type 5 axis and the CC chemokine ligand (CCL)19/CCL21/CC-chemokine receptor 7 axis, play a key role in the generation and formation of TLSs. The aim of the present review was to systematically summarize updated research progress on the formation, subtypes, evaluation and B-cell-related pathways of TLSs. Furthermore, researchers have previously reported that TLSs are present in several types of solid cancers and that they are associated with survival outcomes. Therefore, studies on TLS in breast, lung, colorectal and ovarian cancers and melanoma were summarized and compared. The TLS and B-cell-related pathways require further investigation as important immune signals and promising new immunotherapy targets in the era of T-cell therapy revolution.
Collapse
Affiliation(s)
- Meng Qin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| | - Ying Jin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| | - Ling-Ya Pan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| |
Collapse
|
35
|
Park HS, Kim YM, Kim S, Lee WS, Kong SJ, Yang H, Kang B, Cheon J, Shin SJ, Kim C, Chon HJ. High endothelial venule is a surrogate biomarker for T-cell inflamed tumor microenvironment and prognosis in gastric cancer. J Immunother Cancer 2021; 9:jitc-2021-003353. [PMID: 34670828 PMCID: PMC8529985 DOI: 10.1136/jitc-2021-003353] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Background High endothelial venule (HEV) is a specialized vasculature for lymphocyte trafficking. While HEVs are frequently observed within gastric cancer (GC), the vascular–immune interaction between HEV and tumor-infiltrating lymphocytes (TILs) has not been well elucidated. In this study, we aimed to unveil the potential value of HEVs as a surrogate marker for T-cell inflamed immune microenvironment in GC using a large number of prospectively collected surgical specimens of GC. Methods We included 460 patients with GC who underwent surgical resection. Nanostring PanCancer immune profiling was performed to evaluate the immunological phenotype of GCs. HEV density and three distinct patterns of TILs (Crohn-like lymphoid reaction, peritumoral lymphoid reaction, and intratumoral lymphoid reaction) were analyzed for their relationship and evaluated as prognostic factors for relapse-free survival (RFS) and overall survival (OS). Results HEV-high GC revealed increased infiltration by immune cell subsets, including dendritic cells, CD8+ cytotoxic T cells, and CD4+ helper T cells. In addition, HEV-high GC demonstrated increased immune-modulating chemokines, type I or II interferon pathway, and immune checkpoints, all of which indicate the inflamed tumor microenvironment (TME). All three distinct patterns of TILs were associated with HEV density. In survival analysis, patients with HEV-high GC displayed significantly longer RFS and OS than those with HEV-low GC (p<0.001 for RFS, p<0.001 for OS). Multivariate analysis demonstrated that HEV was the most significant immunological prognostic factor for RFS (patients with high HEV compared with those with low HEV; HR 0.412, 95% CI 0.241 to 0.705, p=0.001) and OS (HR 0.547, 95% CI 0.329 to 0.909, p=0.02) after adjustment for age, stage, and TIL. Conclusion HEV is the most significant immunological prognosticator for RFS and OS in resected GC, indicating inflamed TME.
Collapse
Affiliation(s)
- Hyung Soon Park
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (the Republic of)
| | - Yoo Min Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sewha Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Won Suk Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - So Jung Kong
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Hannah Yang
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Beodeul Kang
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Jaekyung Cheon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| |
Collapse
|
36
|
Mustapha R, Ng K, Monypenny J, Ng T. Insights Into Unveiling a Potential Role of Tertiary Lymphoid Structures in Metastasis. Front Mol Biosci 2021; 8:661516. [PMID: 34568423 PMCID: PMC8455920 DOI: 10.3389/fmolb.2021.661516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) develop in non-lymphatic tissue in chronic inflammation and cancer. TLS can mature to lymph node (LN) like structures with germinal centers and associated vasculature. TLS neogenesis in cancer is highly varied and tissue dependent. The role of TLS in adaptive antitumor immunity is of great interest. However, data also show that TLS can play a role in cancer metastasis. The importance of lymphatics in cancer distant metastasis is clear yet the precise detail of how various immunosurveillance mechanisms interplay within TLS and/or draining LN is still under investigation. As part of the tumor lymphatics, TLS vasculature can provide alternative routes for the establishment of the pre-metastatic niche and cancer dissemination. The nature of the cytokine and chemokine signature at the heart of TLS induction can be key in determining the success of antitumor immunity or in promoting cancer invasiveness. Understanding the biochemical and biomechanical factors underlying TLS formation and the resulting impact on the primary tumor will be key in deciphering cancer metastasis and in the development of the next generation of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Rami Mustapha
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Medical School Campus, London, United Kingdom
- Cancer Research UK King’s Health Partners Centre, London, United Kingdom
| | - Kenrick Ng
- UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College Hospitals NHS Foundation Trust, London, United Kingdom
| | - James Monypenny
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Medical School Campus, London, United Kingdom
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Medical School Campus, London, United Kingdom
- Cancer Research UK King’s Health Partners Centre, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Research UK City of London Centre, London, United Kingdom
| |
Collapse
|
37
|
Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front Immunol 2021; 12:736670. [PMID: 34484246 PMCID: PMC8416033 DOI: 10.3389/fimmu.2021.736670] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules composed of cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also been identified in human and murine tumors in predominantly CD3+T cell-enriched areas with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like structures (TLS). While HEV/TLS areas in human tumors are predominantly associated with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-enriched immune centers and boost an immune response combined with different immunotherapies. Here, we discuss the current insight into TU-HEV formation, function, and regulation in tumors and elaborate on the functional implication, opportunities, and challenges of TU-HEV formation for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sophie Guelfi
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
38
|
Zhang N, Zhang G, Wang D, Liu H, Zhang Y, Ayarick VA, Han X, Lv Y, Wang Y. The relationship of the tertiary lymphoid structures with the tumor-infiltrating lymphocytes and its prognostic value in gastric cancer. Arch Med Sci 2021; 20:255-266. [PMID: 38414448 PMCID: PMC10895974 DOI: 10.5114/aoms/140622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/30/2021] [Indexed: 02/29/2024] Open
Abstract
Introduction To explore the relationship between the tertiary lymphoid structures (TLSs) and tumor-infiltrating lymphocytes (TILs), and their distribution characteristics as well as the prognostic value in gastric cancer (GC). Material and methods The TLSs and four subtypes of TILs were assessed by immunohistochemical (IHC) staining. The presence of MECA-79 positive high endothelial venules (HEVs) identified among the ectopic lymphocyte aggregation area in the GC tissue was defined as valid TLSs. The number of labeled TILs was observed in 5 fields of the most positive cells in the tumor center, invasive edge and within the TLSs, at a field of vision ×40. Results The TLS distribution was significantly higher in the tumor invasive edge than the tumor center (p < 0.001). Similarly, the infiltrating density of CD8+ T cells and GrB+ T cells was statistically significantly higher in the tumor infiltrating edge than the tumor center. The total number of TILs and FOXP3+ T cells showed a contrary distribution. There was a positive correlation of the density of TLSs and TILs with both the location and the immune phenotype. A higher frequency of TILs and TLSs is often associated with favorable clinicopathologic parameters. Higher numbers of peri-TLSs (p = 0.007), peri-CD8+ (p = 0.019) and peri-GrB+TILs (p = 0.032) were significantly correlated with the favorable overall survival. Multivariate analysis revealed that the densities of TILs (p = 0.019) and TLSs (p = 0.037) were independent prognostic predictor for GC patients. Conclusions We provide evidence that TLSs were positively associated with lymphocyte infiltration in GC. Thus, the formation of TLSs predicts advantageous immune system function and can be considered as a novel biomarker to stratify the overall survival risk of untreated GC patients.
Collapse
Affiliation(s)
- Nana Zhang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, The First Affiliated Hospital of Xian JiaoTong University, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, China
- Institute for Cancer Research School of Basic Medical Science of Xi'an Jiaotong University, China
| | - Guanjun Zhang
- Institute for Cancer Research School of Basic Medical Science of Xi'an Jiaotong University, China
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Depu Wang
- Institute for Cancer Research School of Basic Medical Science of Xi'an Jiaotong University, China
- Department of Science and Technology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Hao Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, The First Affiliated Hospital of Xian JiaoTong University, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, China
- Institute for Cancer Research School of Basic Medical Science of Xi'an Jiaotong University, China
| | - Yuchi Zhang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, The First Affiliated Hospital of Xian JiaoTong University, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Vivian Adiila Ayarick
- Institute for Cancer Research School of Basic Medical Science of Xi'an Jiaotong University, China
| | - Xuan Han
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, The First Affiliated Hospital of Xian JiaoTong University, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, The First Affiliated Hospital of Xian JiaoTong University, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yili Wang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, The First Affiliated Hospital of Xian JiaoTong University, China
- Institute for Cancer Research School of Basic Medical Science of Xi'an Jiaotong University, China
| |
Collapse
|
39
|
Johansson-Percival A, Ganss R. Therapeutic Induction of Tertiary Lymphoid Structures in Cancer Through Stromal Remodeling. Front Immunol 2021; 12:674375. [PMID: 34122434 PMCID: PMC8191417 DOI: 10.3389/fimmu.2021.674375] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023] Open
Abstract
Improving the effectiveness of anti-cancer immunotherapy remains a major clinical challenge. Cytotoxic T cell infiltration is crucial for immune-mediated tumor rejection, however, the suppressive tumor microenvironment impedes their recruitment, activation, maturation and function. Nevertheless, solid tumors can harbor specialized lymph node vasculature and immune cell clusters that are organized into tertiary lymphoid structures (TLS). These TLS support naïve T cell infiltration and intratumoral priming. In many human cancers, their presence is a positive prognostic factor, and importantly, predictive for responsiveness to immune checkpoint blockade. Thus, therapeutic induction of TLS is an attractive concept to boost anti-cancer immunotherapy. However, our understanding of how cancer-associated TLS could be initiated is rudimentary. Exciting new reagents which induce TLS in preclinical cancer models provide mechanistic insights into the exquisite stromal orchestration of TLS formation, a process often associated with a more functional or "normalized" tumor vasculature and fueled by LIGHT/LTα/LTβ, TNFα and CC/CXC chemokine signaling. These emerging insights provide innovative opportunities to induce and shape TLS in the tumor microenvironment to improve immunotherapies.
Collapse
Affiliation(s)
- Anna Johansson-Percival
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Ruth Ganss
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
40
|
Immunohistochemical analysis of L1 cell adhesion molecule and high endothelial venules in breast cancer brain metastasis. Pathol Res Pract 2021; 223:153484. [PMID: 34022682 DOI: 10.1016/j.prp.2021.153484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The vasculature is a crucial factor in tumor development. Vascular co-option achieved by the L1 cell adhesion molecule (L1CAM) and lymphocyte recruitment inside tumors by high endothelial venules (HEVs) are important prognostic factors in primary breast cancer. Their status in breast cancer brain metastasis is unknown. AIM OF THE STUDY To explore the status of L1CAMs and HEVs in this tumor compartment. MATERIAL AND METHODS Thirty resected breast cancer brain metastases were immunohistochemically studied for L1CAM and MECA-79, an HEV marker. Clinicopathological factors were recorded. RESULTS Age at brain metastasis diagnosis ranged from 37 to 80 years (median 55). The time to brain metastasis development after primary tumor diagnosis ranged from 12 to 187 months (median 57). Median overall survival after brain metastasis diagnosis was 29 months. None of the tumors expressed the factors studied. CONCLUSION L1CAM and high endothelial venules are not found in breast cancer brain metastasis.
Collapse
|
41
|
Filderman JN, Appleman M, Chelvanambi M, Taylor JL, Storkus WJ. STINGing the Tumor Microenvironment to Promote Therapeutic Tertiary Lymphoid Structure Development. Front Immunol 2021; 12:690105. [PMID: 34054879 PMCID: PMC8155498 DOI: 10.3389/fimmu.2021.690105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Tertiary lymphoid structures (TLS), also known as ectopic lymphoid structures (ELS) or tertiary lymphoid organs (TLO), represent a unique subset of lymphoid tissues noted for their architectural similarity to lymph nodes, but which conditionally form in peripheral tissues in a milieu of sustained inflammation. TLS serve as regional sites for induction and expansion of the host B and T cell repertoires via an operational paradigm involving mature dendritic cells (DC) and specialized endothelial cells (i.e. high endothelial venules; HEV) in a process directed by TLS-associated cytokines and chemokines. Recent clinical correlations have been reported for the presence of TLS within tumor biopsies with overall patient survival and responsiveness to interventional immunotherapy. Hence, therapeutic strategies to conditionally reinforce TLS formation within the tumor microenvironment (TME) via the targeting of DC, vascular endothelial cells (VEC) and local cytokine/chemokine profiles are actively being developed and tested in translational tumor models and early phase clinical trials. In this regard, a subset of agents that promote tumor vascular normalization (VN) have been observed to coordinately support the development of a pro-inflammatory TME, maturation of DC and VEC, local production of TLS-inducing cytokines and chemokines, and therapeutic TLS formation. This mini-review will focus on STING agonists, which were originally developed as anti-angiogenic agents, but which have recently been shown to be effective in promoting VN and TLS formation within the therapeutic TME. Future application of these drugs in combination immunotherapy approaches for greater therapeutic efficacy is further discussed.
Collapse
Affiliation(s)
- Jessica N Filderman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mark Appleman
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Manoj Chelvanambi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jennifer L Taylor
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
42
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
43
|
Apatinib combined with PD-L1 blockade synergistically enhances antitumor immune responses and promotes HEV formation in gastric cancer. J Cancer Res Clin Oncol 2021; 147:2209-2222. [PMID: 33891173 DOI: 10.1007/s00432-021-03633-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Apatinib, an antiangiogenic drug, has shown beneficial effects only in a fraction of advanced gastric cancer (GC) patients. Given the recent success of immunotherapies, combination of apatinib with immune checkpoint inhibitor may provide sustained and potent antitumor responses. METHODS Immunocompetent mice with subcutaneous MFC tumors grown were given a combination of apatinib and anti-PD-L1 antibody therapy. GC tissues from patients undergoing curative resection in China were collected, and the density of HEVs, MSI status and tumor-infiltrated lymphocytes were analyzed by immunohistochemical staining. RESULTS Combined apatinib and PD-L1 blockade therapy synergistically delayed tumor growth and increased survival in MFC-bearing immunocompetent mice. The combination therapy promoted antitumor immunity by increasing the ratio of CD8+ cytotoxic T cells to Foxp3+ Treg cells, the accumulation of CD20+ B cells and the Th1/Th2 cytokine ratio (IFN-γ/IL-10). The combination therapy induced the formation of HEVs through activation of LTβR signaling, thus promoting CD8+ cytotoxic T cell and CD20+ B cell infiltration in tumors. In clinical GC samples, the density of HEVs positively correlated with the intratumoral infiltration of CD8+ cytotoxic T cells and CD20+ B cells. MSI-high GC showed a higher density of HEVs, CD8+ cytotoxic T cells and CD20+ B cells than MSS/MSI-low GC. GC patients with high densities of HEVs, CD8+ cytotoxic T cells and CD20+ B cells had an improved prognosis with superior overall survival. CONCLUSION Combining apatinib with PD-L1 blockade treatment synergistically enhances antitumor immune responses and promotes HEV formation in GC.
Collapse
|
44
|
Mungenast F, Fernando A, Nica R, Boghiu B, Lungu B, Batra J, Ecker RC. Next-Generation Digital Histopathology of the Tumor Microenvironment. Genes (Basel) 2021; 12:538. [PMID: 33917241 PMCID: PMC8068063 DOI: 10.3390/genes12040538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Progress in cancer research is substantially dependent on innovative technologies that permit a concerted analysis of the tumor microenvironment and the cellular phenotypes resulting from somatic mutations and post-translational modifications. In view of a large number of genes, multiplied by differential splicing as well as post-translational protein modifications, the ability to identify and quantify the actual phenotypes of individual cell populations in situ, i.e., in their tissue environment, has become a prerequisite for understanding tumorigenesis and cancer progression. The need for quantitative analyses has led to a renaissance of optical instruments and imaging techniques. With the emergence of precision medicine, automated analysis of a constantly increasing number of cellular markers and their measurement in spatial context have become increasingly necessary to understand the molecular mechanisms that lead to different pathways of disease progression in individual patients. In this review, we summarize the joint effort that academia and industry have undertaken to establish methods and protocols for molecular profiling and immunophenotyping of cancer tissues for next-generation digital histopathology-which is characterized by the use of whole-slide imaging (brightfield, widefield fluorescence, confocal, multispectral, and/or multiplexing technologies) combined with state-of-the-art image cytometry and advanced methods for machine and deep learning.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- TissueGnostics GmbH, 1020 Vienna, Austria;
| | - Achala Fernando
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Bogdan Boghiu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Bianca Lungu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Jyotsna Batra
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Rupert C. Ecker
- TissueGnostics GmbH, 1020 Vienna, Austria;
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
45
|
Marchetti P, Antonov A, Anemona L, Vangapandou C, Montanaro M, Botticelli A, Mauriello A, Melino G, Catani MV. New immunological potential markers for triple negative breast cancer: IL18R1, CD53, TRIM, Jaw1, LTB, PTPRCAP. Discov Oncol 2021; 12:6. [PMID: 35201443 PMCID: PMC8777524 DOI: 10.1007/s12672-021-00401-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women worldwide, and settings of specific prognostic factors and efficacious therapies are made difficult by phenotypic heterogeneity of BC subtypes. Therefore, there is a current urgent need to define novel predictive genetic predictors that may be useful for stratifying patients with distinct prognostic outcomes. Here, we looked for novel molecular signatures for triple negative breast cancers (TNBCs). By a bioinformatic approach, we identified a panel of genes, whose expression was positively correlated with disease-free survival in TNBC patients, namely IL18R1, CD53, TRIM, Jaw1, LTB, and PTPRCAP, showing specific immune expression profiles linked to survival prediction; most of these genes are indeed expressed in immune cells and are required for productive lymphocyte activation. According to our hypothesis, these genes were not, or poorly, expressed in different TNBC cell lines, derived from either primary breast tumours or metastatic pleural effusions. This conclusion was further supported in vivo, as immuno-histochemical analysis on biopsies of TNBC invasive ductal carcinomas highlighted differential expression of these six genes in cancer cells, as well as in intra- and peri-tumoral infiltrating lymphocytes. Our data open to the possibility that inter-tumour heterogeneity of immune markers might have predictive value; further investigations are recommended in order to establish the real power of cancer-related immune profiles as prognostic factors.
Collapse
Affiliation(s)
- Paolo Marchetti
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alexey Antonov
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR UK
| | - Lucia Anemona
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Chaitania Vangapandou
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Andrea Botticelli
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - M. Valeria Catani
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
46
|
Goff SL, Danforth DN. The Role of Immune Cells in Breast Tissue and Immunotherapy for the Treatment of Breast Cancer. Clin Breast Cancer 2021; 21:e63-e73. [PMID: 32893093 PMCID: PMC7775885 DOI: 10.1016/j.clbc.2020.06.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Immune cells are present in normal breast tissue and in breast carcinoma. The nature and distribution of the immune cell subtypes in these tissues are reviewed to promote a better understanding of their important role in breast cancer prevention and treatment. We conducted a review of the literature to define the type, location, distribution, and role of immune cells in normal breast tissue and in in situ and invasive breast cancer. Immune cells in normal breast tissue are located predominantly within the epithelial component in breast ductal lobules. Immune cell subtypes representing innate immunity (NK, CD68+, and CD11c+ cells) and adaptive immunity (most commonly CD8+, but CD4+ and CD20+ as well) are present; CD8+ cells are the most common subtype and are primarily effector memory cells. Immune cells may recognize neoantigens and endogenous and exogenous ligands and may serve in chronic inflammation and immunosurveillance. Progression to breast cancer is characterized by increased immune cell infiltrates in tumor parenchyma and stroma, including CD4+ and CD8+ granzyme B+ cytotoxic T cells, B cells, macrophages and dendritic cells. Tumor-infiltrating lymphocytes in breast cancer may serve as prognostic indicators for response to chemotherapy and for survival. Experimental strategies of adoptive transfer of breast tumor-infiltrating lymphocyte may allow regression of metastatic breast cancer and encourage development of innovative T-cell strategies for the immunotherapy of breast cancer. In conclusion, immune cells in breast tissues play an important role throughout breast carcinogenesis. An understanding of these roles has important implications for the prevention and the treatment of breast cancer.
Collapse
Affiliation(s)
- Stephanie L Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
47
|
Dieu-Nosjean MC. Tumor-Associated Tertiary Lymphoid Structures: A Cancer Biomarker and a Target for Next-generation Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:51-68. [PMID: 34664233 DOI: 10.1007/978-3-030-73119-9_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The different forms of lymphoid organization that coexist in our bodies appeared at distinct time points during the evolution of the animal kingdom. Some of these forms are constitutive, either in fully dedicated organs, such as lymph nodes, or in tissue interfacing with the external environment, such as mucosal-associated lymphoid tissues. Others, known as tertiary lymphoid structures (TLS), are selectively induced in response to inflammation in any peripheral tissues and organs. In this chapter, we discuss the functional interest of each of these lymphoid organizations under different physiopathological conditions. In the context of cancer, recent findings have identified TLS formation as a hallmark of active T- and B-cell immune responses against tumors. TLS are thus a powerful prognostic factor in nearly all solid cancers, which must be taken into account along with the tumor microenvironment. The presence of TLS also predicts the response to immunotherapy including immune checkpoint blockade. With tumor-associated TLS now a key target for the next generation of immunotherapy, this chapter discusses their potential therapeutic manipulations in oncology.
Collapse
Affiliation(s)
- Marie-Caroline Dieu-Nosjean
- Sorbonne Université, UMRS1135, Paris, France. .,INSERM U1135, Paris, France. .,Laboratory "Immune Microenvironment and Immunotherapy", Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMRS 1135 Sorbonne Université, INSERM U1135, Faculté de Médecine Sorbonne Université, Paris, France.
| |
Collapse
|
48
|
Rodriguez AB, Engelhard VH. Insights into Tumor-Associated Tertiary Lymphoid Structures: Novel Targets for Antitumor Immunity and Cancer Immunotherapy. Cancer Immunol Res 2020; 8:1338-1345. [PMID: 33139300 PMCID: PMC7643396 DOI: 10.1158/2326-6066.cir-20-0432] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates that phenotypically resemble conventional secondary lymphoid organs and are commonly found at sites of chronic inflammation. They are also found in a wide variety of primary and metastatic human tumors. The presence of tumor-associated TLS (TA-TLS) is associated with prolonged patient survival, higher rates of disease-free survival, and a favorable response to current cancer therapies. However, the immune responses that occur in these structures, and how they contribute to improved clinical outcomes, remain incompletely understood. In addition, it is unknown how heterogeneity in TA-TLS cellular composition, structural organization, and anatomic location influences their functionality and prognostic significance. Understanding more about TA-TLS development, formation, and function may offer new therapeutic options to modulate antitumor immunity.
Collapse
Affiliation(s)
- Anthony B Rodriguez
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Victor H Engelhard
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
49
|
Windsperger K, Vondra S, Lackner AI, Kunihs V, Haslinger P, Meinhardt G, Dietrich B, Dekan S, Fiala C, Knöfler M, Saleh L, Pollheimer J. Densities of decidual high endothelial venules correlate with T-cell influx in healthy pregnancies and idiopathic recurrent pregnancy losses. Hum Reprod 2020; 35:2467-2477. [PMID: 32940686 DOI: 10.1093/humrep/deaa234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Do high endothelial venules (HEVs) appear in the uterus of healthy and pathological pregnancies? SUMMARY ANSWER Our study reveals that HEVs are present in the non-pregnant endometrium and decidua parietalis (decP) but decline upon placentation in decidua basalis (decB) and are less abundant in decidual tissues from idiopathic, recurrent pregnancy losses (RPLs). WHAT IS KNOWN ALREADY RPL is associated with a compromised decidual vascular phenotype. STUDY DESIGN, SIZE, DURATION Endometrial (n = 29) and first trimester decidual (n = 86, 6-12th week of gestation) tissue samples obtained from endometrial biopsies or elective pregnancy terminations were used to determine the number of HEVs and T cells. In addition, quantification of HEVs and immune cells was performed in a cohort of decidual tissues from RPL (n = 25). PARTICIPANTS/MATERIALS, SETTING, METHODS Position and frequency of HEVs were determined in non-pregnant endometrial as well as decidual tissue sections using immunofluorescence (IF) staining with antibodies against E-selectin, intercellular adhesion molecule, von Willebrand factor, ephrin receptor B4, CD34 and a carbohydrate epitope specific to HEVs (MECA-79). Immune cell distribution and characterization was determined by antibodies recognizing CD45 and CD3 by IF staining- and flow cytometry-based analyses. Antibodies against c-c motif chemokine ligand 21 (CCL21) and lymphotoxin-beta were used in IF staining and Western blot analyses of decidual tissues. MAIN RESULTS AND THE ROLE OF CHANCE Functional HEVs are found in high numbers in the secretory endometrium and decP but decline in numbers upon placentation in decB (P ≤ 0.001). Decidua parietalis tissues contain higher levels of the HEV-maintaining factor lymphotoxin beta and decP-associated HEVs also express CCL21 (P ≤ 0.05), a potent T-cell chemoattractant. Moreover, there is a positive correlation between the numbers of decidual HEVs and the abundance of CD3+ cells in decidual tissue sections (P ≤ 0.001). In-depth analysis of a RPL tissue collection revealed a decreased decB (P ≤ 0.01) and decP (P ≤ 0.01) HEV density as well as reduced numbers of T cells in decB (P ≤ 0.05) and decP (P ≤ .001) sections when compared with age-matched healthy control samples. Using receiver-operating characteristics analyses, we found significant predictive values for the ratios of CD3/CD45 (P < 0.001) and HEVs/total vessels (P < 0.001) for the occurrence of RPL. LIMITATIONS, REASONS FOR CAUTION Analyses were performed in first trimester decidual tissues from elective terminations of pregnancy or non-pregnant endometrium samples from patients diagnosed with non-endometrial pathologies including cervical polyps, ovarian cysts and myomas. First trimester decidual tissues may include pregnancies which potentially would have developed placental disorders later in gestation. In addition, our cohort of non-pregnant endometrium may not reflect the endometrial vascular phenotype of healthy women. Finally, determination of immune cell distributions in the patient cohorts studied may be influenced by the different modes of tissue derivation. Pregnancy terminations were performed by surgical aspiration, endometrial tissues were obtained by biopsies and RPL tissues were collected after spontaneous loss of pregnancy. WIDER IMPLICATIONS OF THE FINDINGS In this study, we propose an inherent mechanism by which the endometrium and in particular the decidua control T-cell recruitment. By demonstrating reduced HEV densities and numbers of T cells in decB and decP tissues of RPL samples we further support previous findings reporting an altered vascular phenotype in early pregnancy loss. Altogether, the findings provide important information to further decipher the etiologies of unexplained RPL. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Austrian Science Fund (P31470 B30 to M.K.) and by the Austrian National Bank (17613ONB to J.P.). There are no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Karin Windsperger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Andreas Ian Lackner
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Bianca Dietrich
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Sabine Dekan
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Abstract
Dendritic cells are a specialized subset of hematopoietic cells essential for mounting immunity against tumors and infectious disease as well as inducing tolerance for maintenance of homeostasis. DCs are equipped with number of immunoregulatory or stimulatory molecules that interact with other leukocytes to modulate their functions. Recent advances in DC biology identified a specific role for the conventional dendritic cell type 1 (cDC1) in eliciting cytotoxic CD8+ T cells essential for clearance of tumors and infected cells. The critical role of this subset in eliciting immune responses or inducing tolerance has largely been defined in mice whereas the biology of human cDC1 is poorly characterized owing to their extremely low frequency in tissues. A detailed characterization of the functions of many immunoregulatory and stimulatory molecules expressed by human cDC1 is critical for understanding their biology to exploit this subset for designing novel therapeutic modalities against cancer, infectious disease and autoimmune disorders.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Extramural member Parker Institute of Cancer Immunotherapy, CA, United States.
| |
Collapse
|