1
|
Yee MEM, Zerra PE, McCoy JW, Covington ML, Stowell SR, Joiner CH, Lough CM, Delvadia BB, Josephson CD, Roback JD, Fasano RM. Post-transfusion biotin-labeled red blood cell survival studies in pediatric sickle cell disease with antibodies of uncertain significance. Transfusion 2024; 64:800-807. [PMID: 38506450 PMCID: PMC11088511 DOI: 10.1111/trf.17800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Red blood cell (RBC) antibodies are common in multiply transfused patients with sickle cell disease (SCD). Unlike RBC alloantibodies, the potential of autoantibodies to cause post-transfusion hemolysis may be uncertain. Biotin-labeling provides a direct measurement of red cell survival (RCS) over time, thus can be used to assess the clinical significance of RBC antibodies. Antibodies to biotinylated RBC (B-RBC) occasionally are detected after exposure, which may impact B-RBC survival in subsequent RCS studies. STUDY DESIGN AND METHODS Pediatric patients with SCD receiving monthly chronic transfusions underwent RCS studies, receiving aliquots of allogeneic RBC labeled at distinct densities of biotin (2-18 μg/mL). B-RBC survival was followed for 4 months post-transfusion, and B-RBC antibody screening for 6 months. Patients with warm autoantibodies (WAA) or B-RBC antibodies are reported here. RESULTS RBC antibodies were detected during RCS in four patients: one with WAA, one with WAA followed by B-RBC-specific antibodies, and two with transient B-RBC antibodies within the first 5 weeks of exposure. B-RBC half-lives (T50) ranged 37.6-61.7 days (mean 47.8 days). There was no evidence of increased hemolysis or accelerated B-RBC clearance in the presence of WAA or B-RBC antibodies. DISCUSSION Biotinylation of allogenic RBC can be used to assess the possible effects of RBC antibodies on transfusion survival in individual cases, particularly when it is uncertain if the detected antibodies may result in hemolysis. In the cases presented here, neither WAA nor B-RBC antibodies were associated with significant shortening of B-RBC survival in individuals with SCD.
Collapse
Affiliation(s)
- Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Patricia E Zerra
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James W McCoy
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mischa L Covington
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clinton H Joiner
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher M Lough
- Medical Services, Lifesouth Community Blood Centers, Gainesville, Florida, USA
| | | | - Cassandra D Josephson
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ross M Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Chang DY, Wankier Z, Arthur CM, Stowell SR. The ongoing challenge of RBC alloimmunization in the management of patients with sickle cell disease. Presse Med 2023; 52:104211. [PMID: 37981194 DOI: 10.1016/j.lpm.2023.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
RBC transfusion remains a cornerstone in the treatment of sickle cell disease (SCD). However, as with many interventions, transfusion of RBCs is not without risk. Allogeneic RBC exposure can result in the development of alloantibodies, which can make it difficult to find compatible RBCs for future transfusion and increases the likelihood of life-threatening complications. The development of RBC alloantibodies occurs when a patient's immune system produces alloantibodies against foreign alloantigens present on RBCs. Despite its longstanding recognition, RBC alloimmunization has increasingly become a challenge when caring for patients with SCD. The growing prominence of alloimmunization can be attributed to several factors, including expanded indications for transfusions, increased lifespan of patients with SCD, and inadequate approaches to prevent alloimmunization. Recognizing these challenges, recent observational studies and preclinical models have begun to elucidate the immune pathways that underpin RBC alloimmunization. These emerging data hold promise in paving the way for innovative prevention strategies, with the goal of increasing the safety and efficacy of RBC transfusion in patients with SCD who are most vulnerable to alloimmunization.
Collapse
Affiliation(s)
- Daniel Y Chang
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Zakary Wankier
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Fasano RM, Doctor A, Stowell SR, Spinella PC, Carson JL, Maier CL, Josephson CD, Triulzi DJ. Optimizing RBC Transfusion Outcomes in Patients with Acute Illness and in the Chronic Transfusion Setting. Transfus Med Rev 2023; 37:150758. [PMID: 37743191 DOI: 10.1016/j.tmrv.2023.150758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Red blood cell (RBC) transfusion is a common clinical intervention used to treat patients with acute and chronic anemia. The decision to transfuse RBCs in the acute setting is based on several factors but current clinical studies informing optimal RBC transfusion decision making (TDM) are largely based upon hemoglobin (Hb) level. In contrast to transfusion in acute settings, chronic RBC transfusion therapy has several different purposes and is associated with distinct transfusion risks such as iron overload and RBC alloimmunization. Consequently, RBC TDM in the chronic setting requires optimizing the survival of transfused RBCs in order to reduce transfusion exposure over the lifespan of an individual and the associated transfusion complications mentioned. This review summarizes the current medical literature addressing optimal RBC-TDM in the acute and chronic transfusion settings and discusses the current gaps in knowledge which need to be prioritized in future national and international research initiatives.
Collapse
Affiliation(s)
- Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA.
| | - Allan Doctor
- Division of Pediatric Critical Care Medicine and Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip C Spinella
- Departments of Surgery and Critical Care Medicine, Pittsburgh University, Pittsburgh, PA, USA
| | - Jeffrey L Carson
- Division of General Internal Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Cheryl L Maier
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Cassandra D Josephson
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Darrell J Triulzi
- Vitalant and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Jajosky RP, Patel KR, Allen JWL, Zerra PE, Chonat S, Ayona D, Maier CL, Morais D, Wu SC, Luckey CJ, Eisenbarth SC, Roback JD, Fasano RM, Josephson CD, Manis JP, Chai L, Hendrickson JE, Hudson KE, Arthur CM, Stowell SR. Antibody-mediated antigen loss switches augmented immunity to antibody-mediated immunosuppression. Blood 2023; 142:1082-1098. [PMID: 37363865 PMCID: PMC10541552 DOI: 10.1182/blood.2022018591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Antibodies against fetal red blood cell (RBC) antigens can cause hemolytic disease of the fetus and newborn (HDFN). Reductions in HDFN due to anti-RhD antibodies have been achieved through use of Rh immune globulin (RhIg), a polyclonal antibody preparation that causes antibody-mediated immunosuppression (AMIS), thereby preventing maternal immune responses against fetal RBCs. Despite the success of RhIg, it is only effective against 1 alloantigen. The lack of similar interventions that mitigate immune responses toward other RBC alloantigens reflects an incomplete understanding of AMIS mechanisms. AMIS has been previously attributed to rapid antibody-mediated RBC removal, resulting in B-cell ignorance of the RBC alloantigen. However, our data demonstrate that antibody-mediated RBC removal can enhance de novo alloimmunization. In contrast, inclusion of antibodies that possess the ability to rapidly remove the target antigen in the absence of detectable RBC clearance can convert an augmented antibody response to AMIS. These results suggest that the ability of antibodies to remove target antigens from the RBC surface can trigger AMIS in situations in which enhanced immunity may otherwise occur. In doing so, these results hold promise in identifying key antibody characteristics that can drive AMIS, thereby facilitating the design of AMIS approaches toward other RBC antigens to eliminate all forms of HDFN.
Collapse
Affiliation(s)
- Ryan P. Jajosky
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA
| | - Kashyap R. Patel
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jerry William L. Allen
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Patricia E. Zerra
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Diyoly Ayona
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Cheryl L. Maier
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shang-Chuen Wu
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - C. John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John D. Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ross M. Fasano
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Cassandra D. Josephson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Hematology and Oncology, Johns Hopkins University All Children's Hospital, St. Petersburg, FL
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - John P. Manis
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Li Chai
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jeanne E. Hendrickson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY
| | - Connie M. Arthur
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA
| | - Sean R. Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Arthur CM, Stowell SR. The Development and Consequences of Red Blood Cell Alloimmunization. ANNUAL REVIEW OF PATHOLOGY 2023; 18:537-564. [PMID: 36351365 PMCID: PMC10414795 DOI: 10.1146/annurev-pathol-042320-110411] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While red blood cell (RBC) transfusion is the most common medical intervention in hospitalized patients, as with any therapeutic, it is not without risk. Allogeneic RBC exposure can result in recipient alloimmunization, which can limit the availability of compatible RBCs for future transfusions and increase the risk of transfusion complications. Despite these challenges and the discovery of RBC alloantigens more than a century ago, relatively little has historically been known regarding the immune factors that regulate RBC alloantibody formation. Through recent epidemiological approaches, in vitro-based translational studies, and newly developed preclinical models, the processes that govern RBC alloimmunization have emerged as more complex and intriguing than previously appreciated. Although common alloimmunization mechanisms exist, distinct immune pathways can be engaged, depending on the target alloantigen involved. Despite this complexity, key themes are beginning to emerge that may provide promising approaches to not only actively prevent but also possibly alleviate the most severe complications of RBC alloimmunization.
Collapse
Affiliation(s)
- Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, ,
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, ,
| |
Collapse
|
6
|
Jajosky RP, Wu SC, Zheng L, Jajosky AN, Jajosky PG, Josephson CD, Hollenhorst MA, Sackstein R, Cummings RD, Arthur CM, Stowell SR. ABO blood group antigens and differential glycan expression: Perspective on the evolution of common human enzyme deficiencies. iScience 2023; 26:105798. [PMID: 36691627 PMCID: PMC9860303 DOI: 10.1016/j.isci.2022.105798] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyze biochemical reactions and play critical roles in human health and disease. Enzyme variants and deficiencies can lead to variable expression of glycans, which can affect physiology, influence predilection for disease, and/or directly contribute to disease pathogenesis. Although certain well-characterized enzyme deficiencies result in overt disease, some of the most common enzyme deficiencies in humans form the basis of blood groups. These carbohydrate blood groups impact fundamental areas of clinical medicine, including the risk of infection and severity of infectious disease, bleeding risk, transfusion medicine, and tissue/organ transplantation. In this review, we examine the enzymes responsible for carbohydrate-based blood group antigen biosynthesis and their expression within the human population. We also consider the evolutionary selective pressures, e.g. malaria, that may account for the variation in carbohydrate structures and the implications of this biology for human disease.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Biconcavity Inc, Lilburn, GA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Leon Zheng
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Audrey N. Jajosky
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, West Henrietta, NY, USA
| | | | - Cassandra D. Josephson
- Cancer and Blood Disorders Institute and Blood Bank/Transfusion Medicine Division, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie A. Hollenhorst
- Department of Pathology and Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert Sackstein
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
7
|
Zerra PE, Parker ET, Baldwin WH, Healey JF, Patel SR, McCoy JW, Cox C, Stowell SR, Meeks SL. Engineering a Therapeutic Protein to Enhance the Study of Anti-Drug Immunity. Biomedicines 2022; 10:1724. [PMID: 35885029 PMCID: PMC9313379 DOI: 10.3390/biomedicines10071724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The development of anti-drug antibodies represents a significant barrier to the utilization of protein-based therapies for a wide variety of diseases. While the rate of antibody formation can vary depending on the therapeutic employed and the target patient population receiving the drug, the antigen-specific immune response underlying the development of anti-drug antibodies often remains difficult to define. This is especially true for patients with hemophilia A who, following exposure, develop antibodies against the coagulation factor, factor VIII (FVIII). Models capable of studying this response in an antigen-specific manner have been lacking. To overcome this challenge, we engineered FVIII to contain a peptide (323-339) from the model antigen ovalbumin (OVA), a very common tool used to study antigen-specific immunity. FVIII with an OVA peptide (FVIII-OVA) retained clotting activity and possessed the ability to activate CD4 T cells specific to OVA323-339 in vitro. When compared to FVIII alone, FVIII-OVA also exhibited a similar level of immunogenicity, suggesting that the presence of OVA323-339 does not substantially alter the anti-FVIII immune response. Intriguingly, while little CD4 T cell response could be observed following exposure to FVIII-OVA alone, inclusion of anti-FVIII antibodies, recently shown to favorably modulate anti-FVIII immune responses, significantly enhanced CD4 T cell activation following FVIII-OVA exposure. These results demonstrate that model antigens can be incorporated into a therapeutic protein to study antigen-specific responses and more specifically that the CD4 T cell response to FVIII-OVA can be augmented by pre-existing anti-FVIII antibodies.
Collapse
Affiliation(s)
- Patricia E. Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University, Atlanta, GA 30322, USA; (P.E.Z.); (J.W.M.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Ernest T. Parker
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Wallace Hunter Baldwin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - John F. Healey
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Seema R. Patel
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - James W. McCoy
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University, Atlanta, GA 30322, USA; (P.E.Z.); (J.W.M.)
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon L. Meeks
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| |
Collapse
|
8
|
Arthur CM, Patel SR, Sharma A, Zerra PE, Chonat S, Jajosky RP, Fasano RM, Patel R, Bennett A, Zhou X, Luckey CJ, Hudson KE, Eisenbarth SC, Josephson CD, Roback JD, Hendrickson JE, Stowell SR. Clodronate inhibits alloimmunization against distinct red blood cell alloantigens in mice. Transfusion 2022; 62:948-953. [PMID: 35470900 PMCID: PMC9491148 DOI: 10.1111/trf.16872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alloimmunization can be a significant barrier to red blood cell (RBC) transfusion. While alloantigen matching protocols hold promise in reducing alloantibody formation, transfusion-dependent patients can still experience RBC alloimmunization and associated complications even when matching protocols are employed. As a result, complementary strategies capable of actively preventing alloantibody formation following alloantigen exposure are warranted. STUDY DESIGN AND METHODS We examined whether pharmacological removal of macrophages using clodronate may provide an additional strategy to actively inhibit RBC alloimmunization using two preclinical models of RBC alloimmunization. To accomplish this, mice were treated with clodronate, followed by transfusion of RBCs expressing the HOD (HEL, OVA, and Duffy) or KEL antigens. On days 5 and 14 post transfusion, anti-HOD or anti-KEL IgM and IgG antibodies were evaluated. RESULTS Low dose clodronate effectively eliminated key marginal zone macrophage populations from the marginal sinus. Prior treatment with clodronate, but not empty liposomes, also significantly inhibited IgM and IgG anti-HOD alloantibody formation following transfusion of HOD RBCs. Similar exposure to clodronate inhibited IgM and IgG antibody formation following KEL RBC transfusion. CONCLUSIONS Clodronate can inhibit anti-HOD and anti-KEL antibody formation following RBC transfusion in preclinical models. These results suggest that clodronate may provide an alternative approach to actively inhibit or prevent the development of alloantibodies following RBC transfusion, although future studies will certainly be needed to fully explore this possibility.
Collapse
Affiliation(s)
- Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Seema R Patel
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Asish Sharma
- Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ryan P Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ravi Patel
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ashley Bennett
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xiaoxi Zhou
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | | | - Cassandra D Josephson
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Zywot EM, Orlova N, Ding S, Rampersad RR, Rabjohns EM, Wickenheisser VA, Wang Q, Welfare JG, Haar L, Eudy AM, Tarrant TK, Lawrence DS. Light-Triggered Drug Release from Red Blood Cells Suppresses Arthritic Inflammation. ADVANCED THERAPEUTICS 2022; 5:2100159. [PMID: 35528736 PMCID: PMC9075171 DOI: 10.1002/adtp.202100159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 01/03/2023]
Abstract
Arthritis is a leading cause of disability in adults, which can be intensely incapacitating. The location and intensity of the pain is both subjective and challenging to manage. Consequently, patient-directed delivery of anti-inflammatories is an essential component of future therapeutic strategies for the management of this disorder. We describe the design and application of a light responsive red blood cell (RBC) conveyed dexamethasone (Dex) construct that enables targeted drug delivery upon illumination of the inflamed site. The red wavelength (650 nm) responsive nature of the phototherapeutic was validated using tissue phantoms mimicking the light absorbing properties of various skin types. Furthermore, photoreleased Dex has the same impact on cellular responses as conventional Dex. Murine RBCs containing the photoactivatable therapeutic display comparable circulation properties as fluorescently labelled RBCs. In addition, a single dose of light-targeted Dex delivery is 5-fold more effective in suppressing inflammation than the parent drug, delivered serially over multiple days. These results are consistent with the notion that the circulatory system be used as an on-command drug depot, providing the means to therapeutically target diseased sites both efficiently and effectively.
Collapse
Affiliation(s)
- Emilia M Zywot
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natalia Orlova
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Song Ding
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rishi R Rampersad
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Emily M Rabjohns
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Victoria A Wickenheisser
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Qunzhao Wang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua G Welfare
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren Haar
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amanda M Eudy
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Kamili NA, Paul A, Wu SC, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Evaluation of the Bactericidal Activity of Galectins. Methods Mol Biol 2022; 2442:517-531. [PMID: 35320543 DOI: 10.1007/978-1-0716-2055-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over a century ago, Karl Landsteiner discovered that blood group antigens could predict the immunological outcome of red blood cell transfusion. While the discovery of ABO(H) blood group antigens revolutionized transfusion medicine, many questions remain regarding the development and regulation of naturally occurring anti-blood group antibody formation. Early studies suggested that blood group antibodies develop following stimulation by bacteria that express blood group antigens. While this may explain the development of anti-blood group antibodies in blood group-negative individuals, how blood group-positive individuals protect themselves against blood group-positive microbes remained unknown. Recent studies suggest that several members of the galectin family specifically target blood group-positive microbes, thereby providing innate immune protection against blood group antigen-positive microbes regardless of the blood group status of an individual. Importantly, subsequent studies suggest that this unique form of immunity may not be limited to blood group expressing microbes, but may reflect a more generalized form of innate immunity against molecular mimicry. As this form of antimicrobial activity represents a unique and unprecedented form of immunity, we will examine important considerations and methodological approaches that can be used when seeking to ascertain the potential antimicrobial activity of various members of the galectin family.
Collapse
Affiliation(s)
- Nourine A Kamili
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Cerri DG, Rodrigues LC, Fermino ML, Papoti M, Cummings RD, Stowell SR, Dias-Baruffi M. Investigation of Galectins in Frozen Tissue and Mammalian Cell Culture Using Confocal Miccroscopy. Methods Mol Biol 2022; 2442:289-306. [PMID: 35320532 DOI: 10.1007/978-1-0716-2055-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Galectins are multifunctional glycan-binding proteins present in various tissues that participate in multiple physiological and pathological processes and are considered as not only biomarkers of human diseases but also molecular targets for treating cancer and inflammatory illnesses in many organs. In the glycobiology field, it is crucial to determine the pattern of galectin expression and location in cells and tissues. Confocal microscopy is a powerful imaging technology that represents a unique approach to investigate the expression and location of biomolecules in various tissues and cells. The confocal microscope acquires images of the specimen through the reflected or fluorescent light from the objective's focal plane, using laser light focused on a small spot inside the tissue or cell. This technique provides high-resolution and high-contrast images without artifacts generated by conventional microscopy and enables reconstruction of virtual tridimensional images by acquiring multiple sections from several focal planes, which makes it possible to obtain the precise spatial location of any cellular structure or molecule. Furthermore, confocal microscopy is a non-invasive tissue imaging strategy used in clinical practices. We describe herein the immunofluorescence confocal method for examining galectins in frozen tissue sections and mammalian cell culture.
Collapse
Affiliation(s)
- Daniel Giuliano Cerri
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacênuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Lilian Cataldi Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacênuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Marise Lopes Fermino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacênuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Marcelo Papoti
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Richard D Cummings
- Department of Surgery, National Center for Functional Glycomics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacênuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.
| |
Collapse
|
12
|
Stowell SR, Dias-Baruffi M, Cummings RD, Arthur CM. Detection of Phosphatidylserine Exposure on Leukocytes Following Treatment with Human Galectins. Methods Mol Biol 2022; 2442:533-548. [PMID: 35320544 DOI: 10.1007/978-1-0716-2055-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular turnover represents a fundamental aspect of immunological homeostasis. While many factors appear to regulate leukocyte removal during inflammatory resolution, recent studies suggest that members of the galectin family play a unique role in orchestrating this process. Unlike cellular removal through apoptotic cell death, several members of the galectin family induce surface expression of phosphatidylserine (PS), a phagocytic marker on cells undergoing apoptosis, in the absence of cell death. However, similar to PS on cells undergoing apoptosis, galectin-induced PS exposure sensitizes cells to phagocytic removal. As galectins appear to prepare cells for phagocytic removal without actually inducing apoptotic cell death, this process has recently been coined preaparesis. Given the unique characteristics of galectin-induced PS exposure in the context of preaparesis, we will examine unique considerations when evaluating the potential impact of different galectin family members on PS exposure and cell viability.
Collapse
Affiliation(s)
- Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Zerra PE, Patel SR, Jajosky RP, Arthur CM, McCoy JW, Allen JWL, Chonat S, Fasano RM, Roback JD, Josephson CD, Hendrickson JE, Stowell SR. Marginal zone B cells mediate a CD4 T-cell-dependent extrafollicular antibody response following RBC transfusion in mice. Blood 2021; 138:706-721. [PMID: 33876205 PMCID: PMC8394907 DOI: 10.1182/blood.2020009376] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/30/2021] [Indexed: 01/07/2023] Open
Abstract
Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme [HEL] and ovalbumin [OVA] fused with the human RBC antigen Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they colocalize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited immunoglobulin M (IgM) and IgG anti-HOD antibody formation, whereas CD4 T-cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild-type or MZ B-cell-deficient recipients, suggesting that IgG formation is not dependent on MZ B-cell-mediated CD4 T-cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response, and no increase in antigen-specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest that MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.
Collapse
Affiliation(s)
- Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Seema R Patel
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ryan Philip Jajosky
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - James W McCoy
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Jerry William Lynn Allen
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Cassandra D Josephson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | | | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
14
|
Yuan Z, Wei Y, Chen X, He S, Cai K, Zhong M, Huang H, Tong X, Liu Z, Yang X. Anti-JMH alloantibody in inherited JMH-negative patients leads to immunogenic destruction of JMH-positive RBCs. Clin Exp Immunol 2021; 205:182-197. [PMID: 34021913 DOI: 10.1111/cei.13622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/25/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The clinical significance of the specific anti-John Milton Hagen (JMH) alloantibody in inherited JMH-negative patients remains unclear. During clinical blood transfusion, it is often classified as an anti-JMH autoantibody in acquired JMH-negative patients, which might further lead to the occurrence of haemolysis events. In this study, we found that the proportion of inherited JMH-negative people in the Guangzhou population was 0.41%, based on the study of 243 blood samples by flow cytometry. Gene sequencing analysis revealed two novel variants located in exon 11 (c.1348G>A, p.Ala449Thr) and exon 14 (c.1989G>T, p.Leu663Phe). Specific antigen presentation showed that JMH-positive RBCs (red blood cells) could be internalized by SEMA7A-/- dendritic cells (DCs) and that SEMA7A-/- DCs activated by the semaphorin 7a (Sema7a) protein or JMH-positive erythrocytes further induced activation of CD4+ T cells to secrete interferon (IFN)-γ. Transfusion of JMH-positive RBCs could lead to the production of the specific anti-JMH alloantibody in Sema7a knock-out (KO) C57 mice. After erythrocyte sensitization, complement C3 was specifically fixed, causing the destruction of JMH-positive erythrocytes. The anti-JMH alloantibody caused immunological destruction of JMH-positive erythrocytes and promoted the clearance of JMH-positive RBCs. We should be cautious when making conclusions about the clinical significance of the anti-JMH alloantibody.
Collapse
Affiliation(s)
- Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Xiaojie Chen
- Department of Blood Transfusion, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Shufei He
- Department of Blood Transfusion, Third People's Hospital of Huizhou, Huizhou, Guangdong, China
| | - Kui Cai
- Department of Blood Transfusion, Foshan First People's Hospital, Foshan, Guangdong, China
| | - Minglu Zhong
- Department of Blood Transfusion, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Huiying Huang
- Department of Blood Transfusion, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Xinxin Tong
- Department of Blood Transfusion, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Zhen Liu
- Department of Blood Transfusion, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Xuexin Yang
- Department of Blood Transfusion, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Antigen density dictates RBC clearance, but not antigen modulation, following incompatible RBC transfusion in mice. Blood Adv 2021; 5:527-538. [PMID: 33496748 DOI: 10.1182/bloodadvances.2020002695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Incompatible red blood cell (RBC) transfusion can result in life-threatening transfusion complications that can be challenging to manage in patients with transfusion-dependent anemia. However, not all incompatible RBC transfusions result in significant RBC removal. One factor that may regulate the outcome of incompatible RBC transfusion is the density of the incompatible antigen. Despite the potential influence of target antigen levels during incompatible RBC transfusion, a model system capable of defining the role of antigen density in this process has not been developed. In this study, we describe a novel model system of incompatible transfusion using donor mice that express different levels of the KEL antigen and recipients with varying anti-KEL antibody concentrations. Transfusion of KEL+ RBCs that express high or moderate KEL antigen levels results in rapid antibody-mediated RBC clearance. In contrast, relatively little RBC clearance was observed following the transfusion of KEL RBCs that express low KEL antigen levels. Intriguingly, unlike RBC clearance, loss of the KEL antigen from the transfused RBCs occurred at a similar rate regardless of the KEL antigen density following an incompatible transfusion. In addition to antigen density, anti-KEL antibody levels also regulated RBC removal and KEL antigen loss, suggesting that antigen density and antibody levels dictate incompatible RBC transfusion outcomes. These results demonstrate that antibody-induced antigen loss and RBC clearance can occur at distinct antigen density thresholds, providing important insight into factors that may dictate the outcome of an incompatible RBC transfusion.
Collapse
|
16
|
Cruz-Leal Y, Lazarus AH. Could antigen loss be a potential mechanism to explain antibody-mediated immune suppression? Transfusion 2021; 61:1004-1006. [PMID: 33624837 DOI: 10.1111/trf.16309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Yoelys Cruz-Leal
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Laboratory Medicine, The Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Alan H Lazarus
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Laboratory Medicine, The Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the role of complement in regulating the removal of a target alloantigen following an incompatible red blood cell (RBC) transfusion, the formation of alloantibodies following RBC alloantigen exposure, and the development of hyperhemolysis in patients with sickle cell disease (SCD). RECENT FINDINGS Recent studies demonstrate that complement can accelerate alloantibody-mediated removal of target alloantigens from the RBC surface following incompatible transfusion. Complement also influences alloantigen availability during developing alloimmune responses and serves as a unique mediator of CD4 T-cell-independent alloantibody formation following RBC alloantigen exposure. Finally, alternative complement pathway activation appears to play a key role in the development of acute hemolytic episodes in patients with SCD, providing a potential druggable target to prevent acute complications in patients with this disease. SUMMARY Recent studies suggest that complement can regulate a wide variety of processes germane to hematology, from transfusion complications to baseline hemolysis in patients with SCD. As the role of complement in various disease processes becomes more fully understood, the ability to leverage recently developed complement modulating drugs will only continue to enhance providers' ability to favorably intervene in many hematological diseases.
Collapse
Affiliation(s)
- Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, and Aflac Canter and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Amanda Mener
- Center for Transfusion Medicine and Cellular Therapies
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Hans Verkerke
- Center for Transfusion Medicine and Cellular Therapies
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
18
|
Xu H, Heyman B. IgG-mediated suppression of antibody responses: Hiding or snatching epitopes? Scand J Immunol 2020; 92:e12921. [PMID: 32594540 DOI: 10.1111/sji.12921] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 01/03/2023]
Abstract
Antibodies forming a complex with antigen in vivo can dramatically change the antibody response to this antigen. In some situations, the response will be a 100-fold stronger than in animals immunized with antigen alone, and in other situations, the response will be completely suppressed. IgG is known to suppress the antibody response, for example to erythrocytes, and this is used clinically in Rhesus prophylaxis. The mechanism behind IgG-mediated immune suppression is still not understood. Here, we will review studies performed in experimental animal models and discuss the various hypotheses put forward to explain the profound suppressive effect of IgG. We conclude that an exclusive role for negative regulation of B cells through FcγRIIB, increased clearance of erythrocytes from the circulation or complement-mediated lysis is unlikely. Epitope masking, where IgG hides the epitope from B cells, or trogocytosis, where IgG removes the epitope from the erythrocyte, is compatible with many observations. These two mechanisms are not mutually exclusive. Moreover, it cannot be ruled out that clearance, in combination with other mechanisms, plays a role.
Collapse
Affiliation(s)
- Hui Xu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Anania JC, Westin A, Heyman B. IgG Suppresses Antibody Responses to Sheep Red Blood Cells in Double Knock-Out Mice Lacking Complement Factor C3 and Activating Fcγ-Receptors. Front Immunol 2020; 11:1404. [PMID: 32733467 PMCID: PMC7360818 DOI: 10.3389/fimmu.2020.01404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Antigen-specific IgG antibodies, passively administered together with erythrocytes, prevent antibody responses against the erythrocytes. The mechanism behind the suppressive ability of IgG has been the subject of intensive studies, yet there is no consensus as to how it works. An important question is whether the Fc-region of IgG is required. Several laboratories have shown that IgG suppresses equally well in wildtype mice and mice lacking the inhibitory FcγIIB, activating FcγRs (FcγRI, III, and IV), or complement factor C3. These observations consistently suggest that IgG-mediated suppression does not rely on Fc-mediated antibody functions. However, it was recently shown that anti-KEL sera failed to suppress antibody responses to KEL-expressing transgenic mouse erythrocytes in double knock-out mice lacking both activating FcγRs and C3. Yet, in the same study, antibody-mediated suppression worked well in each single knock-out strain. This unexpected observation suggested Fc-dependence of IgG-mediated suppression and prompted us to investigate the issue in the classical experimental model using sheep red blood cells (SRBC) as antigen. SRBC alone or IgG anti-SRBC together with SRBC was administered to wildtype and double knock-out mice lacking C3 and activating FcγRs. IgG efficiently suppressed the IgM and IgG anti-SRBC responses in both mouse strains, thus supporting previous observations that suppression in this model is Fc-independent.
Collapse
Affiliation(s)
- Jessica C Anania
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Annika Westin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Zerra PE, Arthur CM, Chonat S, Maier CL, Mener A, Shin S, Allen JWL, Baldwin WH, Cox C, Verkerke H, Jajosky RP, Tormey CA, Meeks SL, Stowell SR. Fc Gamma Receptors and Complement Component 3 Facilitate Anti-fVIII Antibody Formation. Front Immunol 2020; 11:905. [PMID: 32582142 PMCID: PMC7295897 DOI: 10.3389/fimmu.2020.00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Anti-factor VIII (fVIII) alloantibodies, which can develop in patients with hemophilia A, limit the therapeutic options and increase morbidity and mortality of these patients. However, the factors that influence anti-fVIII antibody development remain incompletely understood. Recent studies suggest that Fc gamma receptors (FcγRs) may facilitate recognition and uptake of fVIII by recently developed or pre-existing naturally occurring anti-fVIII antibodies, providing a mechanism whereby the immune system may recognize fVIII following infusion. However, the role of FcγRs in anti-fVIII antibody formation remains unknown. In order to define the influence of FcγRs on the development of anti-fVIII antibodies, fVIII was injected into WT or FcγR knockout recipients, followed by evaluation of anti-fVIII antibodies. Anti-fVIII antibodies were readily observed following fVIII injection into FcγR knockouts, with similar anti-fVIII antibody levels occurring in FcγR knockouts as detected in WT mice injected in parallel. As antibodies can also fix complement, providing a potential mechanism whereby anti-fVIII antibodies may influence anti-fVIII antibody formation independent of FcγRs, fVIII was also injected into complement component 3 (C3) knockout recipients in parallel. Similar to FcγR knockouts, C3 knockout recipients developed a robust response to fVIII, which was likewise similar to that observed in WT recipients. As FcγRs or C3 may compensate for each other in recipients only deficient in FcγRs or C3 alone, we generated mice deficient in both FcγRs and C3 to test for potential antibody effector redundancy in anti-fVIII antibody formation. Infusion of fVIII into FcγRs and C3 (FcγR × C3) double knockouts likewise induced anti-fVIII antibodies. However, unlike individual knockouts, anti-fVIII antibodies in FcγRs × C3 knockouts were initially lower than WT recipients, although anti-fVIII antibodies increased to WT levels following additional fVIII exposure. In contrast, infusion of RBCs expressing distinct alloantigens into FcγRs, C3 or FcγR × C3 knockout recipients either failed to change anti-RBC levels when compared to WT recipients or actually increased antibody responses, depending on the target antigen. Taken together, these results suggest FcγRs and C3 can differentially impact antibody formation following exposure to distinct alloantigens and that FcγRs and C3 work in concert to facilitate early anti-fVIII antibody formation.
Collapse
Affiliation(s)
- Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States.,Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Amanda Mener
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Sooncheon Shin
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Jerry William L Allen
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - W Hunter Baldwin
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hans Verkerke
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Pathology and Laboratory Medicine Service, VA Conneciticut Healthcare System, West Haven, CT, United States
| | - Shannon L Meeks
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
21
|
Arthur CM, Chonat S, Fasano R, Yee MEM, Josephson CD, Roback JD, Stowell SR. Examining the Role of Complement in Predicting, Preventing, and Treating Hemolytic Transfusion Reactions. Transfus Med Rev 2019; 33:217-224. [PMID: 31679762 PMCID: PMC7147990 DOI: 10.1016/j.tmrv.2019.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
Abstract
Red blood cell (RBC) transfusion is a critical component of optimal management for a broad range of conditions. Regardless of the indication, pretransfusion testing is required to appropriately match RBC donors and recipients to provide immunologically compatible blood. Although this approach is effective in the vast majority of situations, occasionally, patients will inadvertently receive an incompatible RBC transfusion, which can result in a hemolytic transfusion reaction (HTR). In addition, patients with life-threatening anemia and a complex alloantibody profile, which precludes rapid procurement of compatible RBCs, may also receive incompatible RBCs, placing them at risk for an HTR. Despite the rarity of these clinical situations, when incompatible blood transfusion results in an HTR, the consequences can be devastating. In this review, we will explore the challenges associated with actively preventing and treating acute HTRs following incompatible RBC transfusion. In doing so, we will focus primarily on the role of complement, not only as a key player in HTRs, but also as a potential target for the prevention and treatment of HTRs.
Collapse
Affiliation(s)
- Connie M Arthur
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Satheesh Chonat
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Ross Fasano
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Cassandra D Josephson
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
22
|
Stowell CP, Stowell SR. Biologic roles of the ABH and Lewis histo-blood group antigens Part I: infection and immunity. Vox Sang 2019; 114:426-442. [PMID: 31070258 DOI: 10.1111/vox.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022]
Abstract
The ABH and Lewis antigens were among the first of the human red blood cell polymorphisms to be identified and, in the case of the former, play a dominant role in transfusion and transplantation. But these two therapies are largely twentieth century innovations, and the ABH and related carbohydrate antigens are not only expressed on a very wide range of human tissues, but were present in primates long before modern humans evolved. Although we have learned a great deal about the biochemistry and genetics of these structures, the biological roles that they play in human health and disease are incompletely understood. This review and its companion, to appear in a later issue of Vox Sanguinis, will focus on a few of the biologic and pathologic processes which appear to be affected by histo-blood group phenotype. The first of the two reviews will explore the interactions of two bacteria with the ABH and Lewis glycoconjugates of their human host cells, and describe the possible connections between the immune response of the human host to infection and the development of the AB-isoagglutinins. The second review will describe the relationship between ABO phenotype and thromboembolic disease, cardio-vascular disease states, and general metabolism.
Collapse
Affiliation(s)
- Christopher P Stowell
- Blood Transfusion Service, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Center for Apheresis, Center for Transfusion and Cellular Therapies, Emory Hospital, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Tormey CA, Hendrickson JE. Transfusion-related red blood cell alloantibodies: induction and consequences. Blood 2019; 133:1821-1830. [PMID: 30808636 PMCID: PMC6484385 DOI: 10.1182/blood-2018-08-833962] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/01/2018] [Indexed: 01/19/2023] Open
Abstract
Blood transfusion is the most common procedure completed during a given hospitalization in the United States. Although often life-saving, transfusions are not risk-free. One sequela that occurs in a subset of red blood cell (RBC) transfusion recipients is the development of alloantibodies. It is estimated that only 30% of induced RBC alloantibodies are detected, given alloantibody induction and evanescence patterns, missed opportunities for alloantibody detection, and record fragmentation. Alloantibodies may be clinically significant in future transfusion scenarios, potentially resulting in acute or delayed hemolytic transfusion reactions or in difficulty locating compatible RBC units for future transfusion. Alloantibodies can also be clinically significant in future pregnancies, potentially resulting in hemolytic disease of the fetus and newborn. A better understanding of factors that impact RBC alloantibody formation may allow general or targeted preventative strategies to be developed. Animal and human studies suggest that blood donor, blood product, and transfusion recipient variables potentially influence which transfusion recipients will become alloimmunized, with genetic as well as innate/adaptive immune factors also playing a role. At present, judicious transfusion of RBCs is the primary strategy invoked in alloimmunization prevention. Other mitigation strategies include matching RBC antigens of blood donors to those of transfusion recipients or providing immunomodulatory therapies prior to blood product exposure in select recipients with a history of life-threatening alloimmunization. Multidisciplinary collaborations between providers with expertise in transfusion medicine, hematology, oncology, transplantation, obstetrics, and immunology, among other areas, are needed to better understand RBC alloimmunization and refine preventative strategies.
Collapse
Affiliation(s)
- Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
- Pathology & Laboratory Medicine Service, VA Connecticut Healthcare System, West Haven, CT; and
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
24
|
Chonat S, Arthur CM, Zerra PE, Maier CL, Jajosky RP, Yee MEM, Miller MJ, Josephson CD, Roback JD, Fasano R, Stowell SR. Challenges in preventing and treating hemolytic complications associated with red blood cell transfusion. Transfus Clin Biol 2019; 26:130-134. [PMID: 30979566 DOI: 10.1016/j.tracli.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red blood cell (RBC) transfusion support represents a critical component of sickle cell disease (SCD) management. However, as with any therapeutic intervention, RBC transfusion is not without risk. Repeat exposure to allogeneic RBCs can result in the development of RBC alloantibodies that can make it difficult to find compatible RBCs for future transfusions and can directly increase the risk of developing acute or delayed hemolytic transfusion reactions, which can be further complicated by hyperhemolysis. Several prophylactic and treatment strategies have been employed in an effort to reduce or prevent hemolytic transfusion reactions. However, conflicting data exist regarding the efficacy of many of these approaches. We will explore the challenges associated with predicting, preventing and treating different types of hemolytic transfusion reactions in patients with SCD in addition to describing future strategies that may aid in the management of the complex transfusion requirements of SCD patients.
Collapse
Affiliation(s)
- Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Cheryl L Maier
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Ryan P Jajosky
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maureen J Miller
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Cassandra D Josephson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA
| | - Ross Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA.
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, 101, Woodruff Circle, 30322 Atlanta, GA, USA.
| |
Collapse
|
25
|
Dean CL, Maier CL, Chonat S, Chang A, Carden MA, El Rassi F, McLemore ML, Stowell SR, Fasano RM. Challenges in the treatment and prevention of delayed hemolytic transfusion reactions with hyperhemolysis in sickle cell disease patients. Transfusion 2019; 59:1698-1705. [PMID: 30848512 DOI: 10.1111/trf.15227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/13/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Delayed hemolytic transfusion reactions (DHTRs) are serious complications of RBC transfusion that can occur in previously alloimmunized patients. Patients who require episodic transfusions during heightened inflammatory states, such as patients with sickle cell disease (SCD), are particularly prone to alloimmunization and developing DHTRs with hyperhemolysis. While efforts to mitigate these hemolytic episodes via immunosuppressive drugs can be employed, the relative efficacy of various treatment options remains incompletely understood. CASE REPORTS In this study, we explored five patients with SCD and multiple RBC alloantibodies who received various forms of immunosuppressive therapy in an attempt to prevent or treat severe DHTRs. RESULTS The clinical course for these five patients provides insight into the difficulty of effectively treating and preventing DHTRs in patients with SCD with currently available immunosuppressive therapies. CONCLUSION Based on our experience, and the current literature, it is difficult to predict the potential impact of various immunosuppressive therapies when seeking to prevent or treat DHTRs. Future mechanistic studies are needed to identify the optimal treatment options for DHTRs in the presence or absence of distinct alloantibodies in patients with SCD.
Collapse
Affiliation(s)
- Christina L Dean
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Cheryl L Maier
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Andres Chang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Marcus A Carden
- Department of Pediatrics and Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Fuad El Rassi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Morgan L McLemore
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ross M Fasano
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
26
|
Mener A, Patel SR, Arthur CM, Stowell SR. Antibody-mediated immunosuppression can result from RBC antigen loss independent of Fcγ receptors in mice. Transfusion 2018; 59:371-384. [PMID: 30474857 DOI: 10.1111/trf.14939] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/17/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anti-RhD administration can prevent de novo anti-RhD formation following RhD+ red blood cell (RBC) exposure, termed antibody-mediated immunosuppression (AMIS). Recent studies suggest that AMIS may occur through target antigen alterations, known as antigen modulation. However, studies suggest that AMIS may occur independent of antigen modulation. In particular, AMIS to RBCs that transgenically express the fusion hen egg lysozyme-ovalbumin-Duffy (HOD) antigen have been shown to occur independent of activating Fcγ receptors (FcγRs) thought to be required for antigen modulation. Therefore, we sought to determine the mechanism behind AMIS following HOD RBC exposure. STUDY DESIGN AND METHODS Following transfer of HOD RBCs into wild-type or FcγR-chain knockout recipients in the presence or absence of monoclonal anti-hen egg lysozyme (HEL) antibody, individually or in combination, HOD antigen levels and anti-HOD antibody formation were examined. RESULTS Our results demonstrate that anti-HEL antibodies individually or in combination suppressed anti-HOD IgM, which correlated with the rate of detectable decrease in HEL on HOD RBCs. Furthermore, exposure to anti-HEL antibodies alone or in combination equally suppressed anti-HOD IgG formation. Unexpectedly, combination or individual anti-HEL antibodies induced AMIS and antigen modulation in an FcγR-independent manner. Pre-exposure of HOD RBCs to anti-HEL antibodies reduced antigen levels and suppressed anti-HOD antibody formation following HOD RBC exposure. CONCLUSION These results suggest that antibody-mediated antigen modulation may reflect a mechanism of AMIS that can occur independent of activating FcγRs and may provide a surrogate to identify antibodies capable of inducing AMIS against different RBC antigens.
Collapse
Affiliation(s)
- Amanda Mener
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Seema R Patel
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
27
|
Patel SR, Gibb DR, Girard-Pierce K, Zhou X, Rodrigues LC, Arthur CM, Bennett AL, Jajosky RP, Fuller M, Maier CL, Zerra PE, Chonat S, Smith NH, Tormey CA, Hendrickson JE, Stowell SR. Marginal Zone B Cells Induce Alloantibody Formation Following RBC Transfusion. Front Immunol 2018; 9:2516. [PMID: 30505302 PMCID: PMC6250814 DOI: 10.3389/fimmu.2018.02516] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
Red blood cell (RBC) alloimmunization represents a significant immunological challenge for some patients. While a variety of immune constituents likely contribute to the initiation and orchestration of alloantibodies to RBC antigens, identification of key immune factors that initiate alloantibody formation may aid in the development of a therapeutic modality to minimize or prevent this process. To define the immune factors that may be important in driving alloimmunization to an RBC antigen, we determined the specific immune compartment and distinct cells that may initially engage transfused RBCs and facilitate subsequent alloimmunization. Our findings demonstrate that the splenic compartment is essential for formation of anti-KEL antibodies following KEL RBC transfusion. Within the spleen, transfused KEL RBCs are found within the marginal sinus, where they appear to specifically co-localize with marginal zone (MZ) B cells. Consistent with this, removal of MZ B cells completely prevented alloantibody formation following KEL RBC transfusion. While MZ B cells can mediate a variety of key downstream immune pathways, depletion of follicular B cells or CD4 T cells failed to similarly impact the anti-KEL antibody response, suggesting that MZ B cells may play a key role in the development of anti-KEL IgM and IgG following KEL RBC transfusion. These findings highlight a key contributor to KEL RBC-induced antibody formation, wherein MZ B cells facilitate antibody formation following RBC transfusion.
Collapse
Affiliation(s)
- Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - David R Gibb
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Kathryn Girard-Pierce
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaoxi Zhou
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Lilian Cataldi Rodrigues
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ashley L Bennett
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Megan Fuller
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Maier
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Patricia E Zerra
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Nicole H Smith
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
28
|
Mener A, Patel SR, Arthur CM, Chonat S, Wieland A, Santhanakrishnan M, Liu J, Maier CL, Jajosky RP, Girard-Pierce K, Bennett A, Zerra PE, Smith NH, Hendrickson JE, Stowell SR. Complement serves as a switch between CD4+ T cell-independent and -dependent RBC antibody responses. JCI Insight 2018; 3:121631. [PMID: 30429364 DOI: 10.1172/jci.insight.121631] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/10/2018] [Indexed: 01/11/2023] Open
Abstract
RBC alloimmunization represents a significant immunological challenge for patients requiring lifelong transfusion support. The majority of clinically relevant non-ABO(H) blood group antigens have been thought to drive antibody formation through T cell-dependent immune pathways. Thus, we initially sought to define the role of CD4+ T cells in formation of alloantibodies to KEL, one of the leading causes of hemolytic transfusion reactions. Unexpectedly, our findings demonstrated that KEL RBCs actually possess the ability to induce antibody formation independent of CD4+ T cells or complement component 3 (C3), two common regulators of antibody formation. However, despite the ability of KEL RBCs to induce anti-KEL antibodies in the absence of complement, removal of C3 or complement receptors 1 and 2 (CR1/2) rendered recipients completely reliant on CD4+ T cells for IgG anti-KEL antibody formation. Together, these findings suggest that C3 may serve as a novel molecular switch that regulates the type of immunological pathway engaged following RBC transfusion.
Collapse
Affiliation(s)
- Amanda Mener
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| | - Seema R Patel
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, and
| | - Andreas Wieland
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jingchun Liu
- Yale School of Medicine, Department of Laboratory Medicine, New Haven, Connecticut, USA
| | - Cheryl L Maier
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| | - Ryan P Jajosky
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| | - Kathryn Girard-Pierce
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| | - Ashley Bennett
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| | - Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| | - Nicole H Smith
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| | - Jeanne E Hendrickson
- Yale School of Medicine, Department of Laboratory Medicine, New Haven, Connecticut, USA
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology
| |
Collapse
|
29
|
Maier CL, Mener A, Patel SR, Jajosky RP, Bennett AL, Arthur CM, Hendrickson JE, Stowell SR. Antibody-mediated immune suppression by antigen modulation is antigen-specific. Blood Adv 2018; 2:2986-3000. [PMID: 30413434 PMCID: PMC6234375 DOI: 10.1182/bloodadvances.2018018408] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/16/2018] [Indexed: 01/22/2023] Open
Abstract
Alloantibodies developing after exposure to red blood cell (RBC) alloantigens can complicate pregnancy and transfusion therapy. The only method currently available to actively inhibit RBC alloantibody formation is administration of antigen-specific antibodies, a phenomenon termed antibody-mediated immune suppression (AMIS). A well-known example of AMIS is RhD immune globulin prophylaxis to prevent anti-D formation in RhD- individuals. However, whether AMIS is specific or impacts alloimmunization to other antigens on the same RBC remains unclear. To evaluate the specificity of AMIS, we passively immunized antigen-negative recipients with anti-KEL or anti-hen egg lysozyme (HEL) antibodies, followed by transfusion of murine RBC expressing both the HEL-ovalbumin-Duffy (HOD) and human KEL antigens (HOD × KEL RBC). Significant immunoglobulin G deposition on transfused HOD × KEL RBC occurred in all passively immunized recipients. Complement deposition and antigen modulation of the KEL antigen occurred on transfused RBC only in anti-KEL-treated recipients, whereas HEL antigen levels decreased only in the presence of anti-HEL antibodies. Western blot analysis confirmed the specificity of antigen loss, which was not attributable to RBC endocytosis and appears distinct for the 2 antigens. Specifically, removal of KEL was attenuated by clodronate treatment, whereas loss of HEL was unaffected by clodronate in vivo but sensitive to protease treatment in vitro. Antigen-specific modulation correlated with antigen-specific AMIS, with anti-KEL treated recipients forming antibodies to the HOD antigen and anti-HEL-treated recipients developing antibodies to the KEL antigen. Together, these results demonstrate that passively administered antibodies can selectively inhibit the immune response to a specific antigen.
Collapse
Affiliation(s)
- Cheryl L Maier
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA; and
| | - Amanda Mener
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA; and
| | - Seema R Patel
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA; and
| | - Ryan P Jajosky
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA; and
| | - Ashley L Bennett
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA; and
| | - Connie M Arthur
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA; and
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA; and
| |
Collapse
|
30
|
Dean CL, Maier CL, Roback JD, Stowell SR. Multiple hemolytic transfusion reactions misinterpreted as severe vaso‐occlusive crisis in a patient with sickle cell disease. Transfusion 2018; 59:448-453. [DOI: 10.1111/trf.15010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Christina L. Dean
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory MedicineEmory University School of Medicine Atlanta Georgia
| | - Cheryl L. Maier
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory MedicineEmory University School of Medicine Atlanta Georgia
| | - John D. Roback
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory MedicineEmory University School of Medicine Atlanta Georgia
| | - Sean R. Stowell
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory MedicineEmory University School of Medicine Atlanta Georgia
| |
Collapse
|
31
|
Sullivan HC, Arthur CM, Thompson L, Patel SR, Stowell SR, Hendrickson JE, Lazarus AH. Anti-RhD reduces levels of detectable RhD antigen following anti-RhD infusion. Transfusion 2018; 58:542-544. [PMID: 29411397 DOI: 10.1111/trf.14452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/26/2017] [Accepted: 11/05/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Harold C Sullivan
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Louisa Thompson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Seema R Patel
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Jeanne E Hendrickson
- Yale Cooperative Center of Excellence in Hematology, Yale University, New Haven, CT
| | - Alan H Lazarus
- Department of Laboratory Medicine and Pathobiology, St. Michael's Hospital/Research Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Mener A, Arthur CM, Patel SR, Liu J, Hendrickson JE, Stowell SR. Complement Component 3 Negatively Regulates Antibody Response by Modulation of Red Blood Cell Antigen. Front Immunol 2018; 9:676. [PMID: 29942300 PMCID: PMC6004516 DOI: 10.3389/fimmu.2018.00676] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
Red blood cell (RBC) alloimmunization can make it difficult to procure compatible RBCs for future transfusion, directly leading to increased morbidity and mortality in transfusion-dependent patients. However, the factors that regulate RBC alloimmunization remain incompletely understood. As complement has been shown to serve as a key adjuvant in the development of antibody (Ab) responses against microbes, we examined the impact of complement on RBC alloimmunization. In contrast to the impact of complement component 3 (C3) in the development of an immune response following microbial exposure, transfusion of C3 knockout (C3 KO) recipients with RBCs expressing KEL (KEL RBCs) actually resulted in an enhanced anti-KEL Ab response. The impact of C3 appeared to be specific to KEL, as transfusion of RBCs bearing another model antigen, the chimeric HOD antigen (hen egg lysozyme, ovalbumin and Duffy), into C3 KO recipients failed to result in a similar increase in Ab formation. KEL RBCs experienced enhanced C3 deposition and loss of detectable target antigen over time when compared to HOD RBCs, suggesting that C3 may inhibit Ab formation by impacting the accessibility of the target KEL antigen. Loss of detectable KEL on the RBC surface did not reflect antigen masking by C3, but instead appeared to result from actual removal of the KEL antigen, as western blot analysis demonstrated complete loss of detectable KEL protein. Consistent with this, exposure of wild-type B6 or C3 KO recipients to KEL RBCs with reduced levels of detectable KEL antigen resulted in a significantly reduced anti-KEL Ab response. These results suggest that C3 possesses a unique ability to actually suppress Ab formation following transfusion by reducing the availability of the target antigen on the RBC surface.
Collapse
Affiliation(s)
- Amanda Mener
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Seema R Patel
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Jingchun Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
33
|
Yee MEM, Josephson CD, Winkler AM, Webb J, Luban NLC, Leong T, Stowell SR, Roback JD, Fasano RM. Hemoglobin A clearance in children with sickle cell anemia on chronic transfusion therapy. Transfusion 2018; 58:1363-1371. [PMID: 29664198 DOI: 10.1111/trf.14610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic transfusion therapy for sickle cell anemia reduces disease complications by diluting sickle-erythrocytes with hemoglobin A (HbA)-containing erythrocytes and suppressing erythropoiesis. Minor antigen mismatches may result in alloimmunization, but it is unknown if antigen mismatches or recipient characteristics influence HbA clearance posttransfusion. STUDY DESIGN AND METHODS Children with sickle cell anemia on chronic transfusion therapy were followed prospectively for 12 months. All patients received units serologically matched for C/c, E/e, and K; patients with prior red blood cell (RBC) antibodies had additional matching for Fya , Jkb , and any previous alloantibodies. Patients' RBC antigen genotypes, determined by multiplexed molecular assays (PreciseType Human Erythrocyte Antigen, and RHCE and RHD BeadChip, Immucor) were compared to genotypes of transfused RBC units to assess for antigen mismatches. Decline in hbA (ΔHbA) from posttransfusion to the next transfusion was calculated for each transfusion episode. RESULTS Sixty patients received 789 transfusions, 740 with ΔHbA estimations, and 630 with donor Human Erythrocyte Antigen genotyping. In univariate mixed-model analysis, ΔHbA was higher in patients with past RBC antibodies or splenomegaly and lower in patients with splenectomy. RBC antigen mismatches were not associated with ΔHbA. In multivariate linear mixed-effects modeling, ΔHbA was associated with RBC antibodies (2.70 vs. 2.45 g/dL/28 d, p = 0.0028), splenomegaly (2.87 vs. 2.28 g/dL/28 d, p = 0.019), and negatively associated with splenectomy (2.46 vs. 2.70 g/dL/28 d, p = 0.011). CONCLUSIONS HbA decline was increased among patients with sickle cell anemia with prior immunologic response to RBC antigens and decreased among those with prior splenectomy, demonstrating that recipient immunologic characteristics influenced the clearance of transfused RBCs.
Collapse
Affiliation(s)
- Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics and Hematology/Oncology, Emory University School of Medicine and the
| | - Cassandra D Josephson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics and Hematology/Oncology, Emory University School of Medicine and the.,Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| | - Anne M Winkler
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| | - Jennifer Webb
- Center for Cancer and Blood Disorders, Children's National Medical Center, Departments of Hematology and Laboratory Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Naomi L C Luban
- Center for Cancer and Blood Disorders, Children's National Medical Center, Departments of Hematology and Laboratory Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Traci Leong
- Department of Biostatistics and Bioinformatics, Emory University, Rollins School of Public Health, Atlanta, Georgia
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| | - Ross M Fasano
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| |
Collapse
|
34
|
Stowell SR. Toward functional assays for assessing the significance of anti-ABO(H) alloantibodies. Transfusion 2018; 57:491-494. [PMID: 28297078 DOI: 10.1111/trf.14030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
35
|
Cruz-Leal Y, Marjoram D, Lazarus AH. Erythrocyte Saturation with IgG Is Required for Inducing Antibody-Mediated Immune Suppression and Impacts Both Erythrocyte Clearance and Antigen-Modulation Mechanisms. THE JOURNAL OF IMMUNOLOGY 2018; 200:1295-1305. [PMID: 29358275 DOI: 10.4049/jimmunol.1700874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
Anti-D prevents hemolytic disease of the fetus and newborn, and this mechanism has been referred to as Ab-mediated immune suppression (AMIS). Anti-D, as well as other polyclonal AMIS-inducing Abs, most often induce both epitope masking and erythrocyte clearance mechanisms. We have previously observed that some Abs that successfully induce AMIS effects could be split into those that mediate epitope masking versus those that induce erythrocyte clearance, allowing the ability to analyze these mechanisms separately. In addition, AMIS-inducing activity has recently been shown to induce Ag modulation (Ag loss from the erythrocyte surface). To assess these mechanisms, we immunized mice with transgenic murine RBCs expressing a single Ag protein comprising a recombinant Ag composed of hen egg lysozyme, OVA sequences comprising aa 251-349, and the human Duffy transmembrane protein (HOD-Ag) with serial doses of polyclonal anti-OVA IgG as the AMIS-inducing Ab. The anti-OVA Ab induced AMIS in the absence of apparent epitope masking. AMIS occurred only when the erythrocytes appeared saturated with IgG. This Ab was capable of inducing HOD-RBC clearance, as well as loss of the OVA epitope at doses of Ab that caused AMIS effects. HOD-RBCs also lost reactivity with Abs specific for the hen egg lysozyme and Duffy portions of the Ag consistent with the initiation of Ag modulation and/or trogocytosis mechanisms. These data support the concept that an AMIS-inducing Ab that does not cause epitope masking can induce AMIS effects in a manner consistent with RBC clearance and/or Ag modulation.
Collapse
Affiliation(s)
- Yoelys Cruz-Leal
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada.,Centre for Innovation, Canadian Blood Services, Ottawa, Ontario K1G 4J5, Canada
| | - Danielle Marjoram
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Alan H Lazarus
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; .,Centre for Innovation, Canadian Blood Services, Ottawa, Ontario K1G 4J5, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada; and.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
36
|
Immunoglobulin G Fc glycans are not essential for antibody-mediated immune suppression to murine erythrocytes. Blood 2017; 130:2902-2905. [PMID: 29109102 DOI: 10.1182/blood-2017-06-793729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
37
|
|
38
|
Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR. Key regulators of galectin-glycan interactions. Proteomics 2017; 16:3111-3125. [PMID: 27582340 DOI: 10.1002/pmic.201600116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
Protein-ligand interactions serve as fundamental regulators of numerous biological processes. Among protein-ligand pairs, glycan binding proteins (GBPs) and the glycans they recognize represent unique and highly complex interactions implicated in a broad range of regulatory activities. With few exceptions, cell surface receptors and secreted proteins are heavily glycosylated. As these glycans often represent highly regulatable post-translational modifications, alterations in glycosylation can fundamentally impact GBP recognition. Among GBPs, galectins in particular appear to engage a diverse set of glycan determinants to impact a broad range of biological processes. In this review, we will explore factors that impact galectin activity, including the effect of glycan modification on galectin-glycan interactions.
Collapse
Affiliation(s)
- Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Gerner-Smidt
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eden Tafesse
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Blenda
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biology, Erskine College, Due West, SC, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
39
|
|
40
|
Arthur CM, Patel SR, Smith NH, Bennett A, Kamili NA, Mener A, Gerner-Smidt C, Sullivan HC, Hale JS, Wieland A, Youngblood B, Zimring JC, Hendrickson JE, Stowell SR. Antigen Density Dictates Immune Responsiveness following Red Blood Cell Transfusion. THE JOURNAL OF IMMUNOLOGY 2017; 198:2671-2680. [PMID: 28250159 DOI: 10.4049/jimmunol.1601736] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/15/2017] [Indexed: 01/01/2023]
Abstract
Although RBC transfusion can result in the development of anti-RBC alloantibodies that increase the probability of life-threatening hemolytic transfusion reactions, not all patients generate anti-RBC alloantibodies. However, the factors that regulate immune responsiveness to RBC transfusion remain incompletely understood. One variable that may influence alloantibody formation is RBC alloantigen density. RBC alloantigens exist at different densities on the RBC surface and likewise exhibit distinct propensities to induce RBC alloantibody formation. However, although distinct alloantigens reside on the RBC surface at different levels, most alloantigens also represent completely different structures, making it difficult to separate the potential impact of differences in Ag density from other alloantigen features that may also influence RBC alloimmunization. To address this, we generated RBCs that stably express the same Ag at different levels. Although exposure to RBCs with higher Ag levels induces a robust Ab response, RBCs bearing low Ag levels fail to induce RBC alloantibodies. However, exposure to low Ag-density RBCs is not without consequence, because recipients subsequently develop Ag-specific tolerance. Low Ag-density RBC-induced tolerance protects higher Ag-density RBCs from immune-mediated clearance, is Ag specific, and occurs through the induction of B cell unresponsiveness. These results demonstrate that Ag density can potently impact immune outcomes following RBC transfusion and suggest that RBCs with altered Ag levels may provide a unique tool to induce Ag-specific tolerance.
Collapse
Affiliation(s)
- Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Seema R Patel
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Nicole H Smith
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Ashley Bennett
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Amanda Mener
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Christian Gerner-Smidt
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Harold C Sullivan
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - J Scott Hale
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Andreas Wieland
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Benjamin Youngblood
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - James C Zimring
- Bloodworks Northwest Research Institute, Seattle, WA 98102.,Division of Hematology, Department of Laboratory and Internal Medicine, University of Washington, Seattle, WA 98195; and
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine and Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322;
| |
Collapse
|
41
|
RhIg-prophylaxis is not influenced by FCGR2/3 polymorphisms involved in red blood cell clearance. Blood 2017; 129:1045-1048. [PMID: 28082442 DOI: 10.1182/blood-2016-05-716365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
42
|
Liu J, Santhanakrishnan M, Natarajan P, Gibb DR, Eisenbarth SC, Tormey CA, Siddon AJ, Stowell SR, Branch DR, Hendrickson JE. Antigen modulation as a potential mechanism of anti-KEL immunoprophylaxis in mice. Blood 2016; 128:3159-3168. [PMID: 27688803 PMCID: PMC5201095 DOI: 10.1182/blood-2016-06-724732] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
Red blood cell (RBC) alloimmunization is a serious complication of transfusion or pregnancy. Despite the widespread use of Rh immune globulin to prevent pregnancy associated anti-D alloimmunization, its mechanism of action remains elusive. We have previously described a murine model in which immunoprophylaxis with polyclonal anti-KEL sera prevents alloimmunization in wild-type recipients transfused with transgenic murine RBCs expressing the human KEL glycoprotein. To investigate the mechanism of action, we have now evaluated the outcome of immunoprophylaxis treatment in mice lacking Fcγ receptors (FcγRs), complement (C3), both, or none. Whereas polyclonal anti-KEL sera completely prevented alloimmunization in wild-type and single-knockout (KO) mice lacking FcγRs or C3, double-KO mice lacking both FcγRs and C3 became alloimmunized despite immunoprophylaxis. Rapid clearance of essentially all transfused RBCs with detectable KEL glycoprotein antigen occurred within 24 hours in wild-type and single-KO recipients treated with immunoprophylaxis, with the transfused RBCs remaining in circulation having minimal KEL glycoprotein antigen detectable by flow cytometry or western blot. In contrast, transfused RBCs with the KEL glycoprotein antigen fully intact continued to circulate for days in double-KO mice despite treatment with immunoprophylaxis. Further, in vitro phagocytosis assays showed no consumption of opsonized murine RBCs by double-KO splenocytes. Taken in combination, our data suggest that modulation of the KEL antigen (and potentially RBC clearance) by redundant recipient pathways involving both FcγRs and C3 may be critical to the mechanism of action of polyclonal anti-KEL immunoprophylaxis. These findings could have implications for the development of immunoprophylaxis programs in humans.
Collapse
Affiliation(s)
| | | | | | | | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Christopher A Tormey
- Department of Laboratory Medicine and
- Pathology and Laboratory Medicine Service, VA Connecticut Healthcare System, West Haven, CT
| | - Alexa J Siddon
- Department of Laboratory Medicine and
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Donald R Branch
- Centre for Innovation, Canadian Blood Services, Toronto, ON, Canada; and
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine and
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
43
|
Arthur CM, Patel SR, Mener A, Kamili NA, Fasano RM, Meyer E, Winkler AM, Sola-Visner M, Josephson CD, Stowell SR. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity. Bioessays 2016; 37:1327-37. [PMID: 26577077 DOI: 10.1002/bies.201500055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptive immunity provides the unique ability to respond to a nearly infinite range of antigenic determinants. Given the inherent plasticity of the adaptive immune system, a series of tolerance mechanisms exist to reduce reactivity toward self. While this reduces the probability of autoimmunity, it also creates an important gap in adaptive immunity: the ability to recognize microbes that look like self. As a variety of microbes decorate themselves in self-like carbohydrate antigens and tolerance reduces the ability of adaptive immunity to react with self-like structures, protection against molecular mimicry likely resides within the innate arm of immunity. In this review, we will explore the potential consequences of microbial molecular mimicry, including factors within innate immunity that appear to specifically target microbes expressing self-like antigens, and therefore provide protection against molecular mimicry.
Collapse
Affiliation(s)
- Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Mener
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Ross M Fasano
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Erin Meyer
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Annie M Winkler
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra D Josephson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
44
|
Hemolytic Disease of the Fetus and Newborn: Modern Practice and Future Investigations. Transfus Med Rev 2016; 30:159-64. [DOI: 10.1016/j.tmrv.2016.05.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
|
45
|
Nickel RS, Hendrickson JE, Fasano RM, Meyer EK, Winkler AM, Yee MM, Lane PA, Jones YA, Pashankar FD, New T, Josephson CD, Stowell SR. Impact of red blood cell alloimmunization on sickle cell disease mortality: a case series. Transfusion 2015; 56:107-14. [DOI: 10.1111/trf.13379] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Robert Sheppard Nickel
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
- Division of Hematology; Children's National Health System; Washington DC
| | - Jeanne E. Hendrickson
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
- Department of Pediatrics; Yale University; New Haven Connecticut
- Department of Laboratory Medicine; Yale University; New Haven Connecticut
| | - Ross M. Fasano
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Erin K. Meyer
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
| | - Anne M. Winkler
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
| | - Marianne M. Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Peter A. Lane
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Yuritzi A. Jones
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | | | - Tamara New
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Cassandra D. Josephson
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Sean R. Stowell
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
| |
Collapse
|
46
|
Stowell SR, Arthur CM, Girard-Pierce KR, Sullivan HC, Santhanakrishnan M, Natarajan P, Patel SR, Tormey CA, Zimring JC, Hendrickson JE. Anti-KEL sera prevents alloimmunization to transfused KEL RBCs in a murine model. Haematologica 2015; 100:e394-7. [PMID: 26185172 DOI: 10.3324/haematol.2015.128603] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sean R Stowell
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA
| | - C Maridith Arthur
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA
| | - Kathryn R Girard-Pierce
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA
| | - Harold C Sullivan
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA
| | | | - Prabitha Natarajan
- Yale University School of Medicine, Department of Laboratory Medicine, New Haven, CT
| | - Seema R Patel
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA
| | - Christopher A Tormey
- Yale University School of Medicine, Department of Laboratory Medicine, New Haven, CT VA Connecticut Healthcare System, West Haven, CT
| | - James C Zimring
- Bloodworks Northwest Research Institute, Seattle, WA University of Washington, Department of Laboratory Medicine, Seattle, WA
| | - Jeanne E Hendrickson
- Yale University School of Medicine, Department of Laboratory Medicine, New Haven, CT Yale University School of Medicine, Department of Pediatrics, New Haven, CT, USA
| |
Collapse
|
47
|
Cerri DG, Arthur CM, Rodrigues LC, Fermino ML, Rocha LB, Stowell SR, Baruffi MD. Examination of galectin localization using confocal microscopy. Methods Mol Biol 2015; 1207:343-54. [PMID: 25253152 DOI: 10.1007/978-1-4939-1396-1_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Confocal microscopy provides a unique modality to examine the expression and localization of biomolecules in a variety of settings. Using this technique, an image is acquired from the focal plane of the objective using focused laser light, making it possible to work within the resolution limit of the optical system. In addition, by acquiring multiple images from a variety of focal planes, stacked series of images can provide clear spatial localization of a probed structure or protein. We describe herein the immunofluorescence methods for galectin staining in frozen sections of tissue for galectin localization using confocal microscopy.
Collapse
Affiliation(s)
- Daniel Giuliano Cerri
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Bromatological Analysis, University of Sao Paulo, Ribeirão Preto-S, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Zimring JC, Spitalnik SL. Pathobiology of Transfusion Reactions. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:83-110. [DOI: 10.1146/annurev-pathol-012414-040318] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James C. Zimring
- Puget Sound Blood Center Research Institute, Seattle, Washington 98102;
- Departments of Laboratory Medicine and Internal Medicine, Division of Hematology, University of Washington, Seattle, Washington 98195
| | - Steven L. Spitalnik
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
49
|
Detection of phosphatidylserine exposure on leukocytes following treatment with human galectins. Methods Mol Biol 2015; 1207:185-200. [PMID: 25253141 DOI: 10.1007/978-1-4939-1396-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular turnover represents a fundamental aspect of immunological homeostasis. While many factors appear to regulate leukocyte removal during inflammatory resolution, recent studies suggest that members of the galectin family play a unique role in orchestrating this process. Unlike cellular removal through apoptotic cell death, several members of the galectin family induce surface expression of phosphatidylserine (PS), a phagocytic marker on cells undergoing apoptosis, in the absence of cell death. However, similar to PS on cells undergoing apoptosis, galectin-induced PS exposure sensitizes cells to phagocytic removal. As galectins appear to prepare cells for phagocytic removal without actually inducing apoptotic cell death, this process has recently been coined preaparesis. Given the unique characteristics of galectin-induced PS exposure in the context of preaparesis, we will examine important considerations when evaluating the potential impact of different galectin family members on PS exposure and cell viability.
Collapse
|
50
|
Examination of whole cell galectin binding by solid phase and flow cytometric analysis. Methods Mol Biol 2014; 1207:91-104. [PMID: 25253135 DOI: 10.1007/978-1-4939-1396-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
We have utilized simple flow cytometric and fluorescence-based solid phase assays to study the interaction of glycan-binding proteins (GBP) to cell surface glycoconjugates. These methods utilize commonly employed flow cytometry techniques and commercially available streptavidin-coated microplates to immobilize various biotinylated ligands, such as glycopeptides, oligosaccharides, and whole cells. Using this approach, fluorescently labeled GBPs, in particular, members of the galectin family, can be interrogated for potential interactions with cell surface carbohydrates, including elucidation of the potential impact of alterations in glycosylation on carbohydrate recognition. Using these approaches, we present examples of flow cytometric and fluorescence-based solid phase assays to study galectin-carbohydrate interactions.
Collapse
|