1
|
Toward Establishing an Ideal Adjuvant for Non-Inflammatory Immune Enhancement. Cells 2022; 11:cells11244006. [PMID: 36552770 PMCID: PMC9777512 DOI: 10.3390/cells11244006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The vertebrate immune system functions to eliminate invading foreign nucleic acids and foreign proteins from infectious diseases and malignant tumors. Because pathogens and cancer cells have unique amino acid sequences and motifs (e.g., microbe-associated molecular patterns, MAMPs) that are recognized as "non-self" to the host, immune enhancement is one strategy to eliminate invading cells. MAMPs contain nucleic acids specific or characteristic of the microbe and are potential candidates for immunostimulants or adjuvants. Adjuvants are included in many vaccines and are a way to boost immunity by deliberately administering them along with antigens. Although adjuvants are an important component of vaccines, it is difficult to evaluate their efficacy ex vivo and in vivo on their own (without antigens). In addition, inflammation induced by currently candidate adjuvants may cause adverse events, which is a hurdle to their approval as drugs. In addition, the lack of guidelines for evaluating the safety and efficacy of adjuvants in drug discovery research also makes regulatory approval difficult. Viral double-stranded (ds) RNA mimics have been reported as potent adjuvants, but the safety barrier remains unresolved. Here we present ARNAX, a noninflammatory nucleic acid adjuvant that selectively targets Toll-like receptor 3 (TLR3) in antigen-presenting dendritic cells (APCs) to safely induce antigen cross-presentation and subsequently induce an acquired immune response independent of inflammation. This review discusses the challenges faced in the clinical development of novel adjuvants.
Collapse
|
2
|
Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021; 13:170. [PMID: 33498715 PMCID: PMC7912342 DOI: 10.3390/v13020170] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -β) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.
Collapse
Affiliation(s)
- Hina Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Yingzhi X, Lu Y. Oil painting algorithm based on aesthetic criteria of genetic algorithm during COVID-19. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-189265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Under the influence of novel coronavirus pneumonia, the traditional manual oil painting creation has put forward higher requirements. The disadvantages of traditional hand drawing are very obvious: tedious, inconvenient to modify and save, slow speed of painting, which can no longer meet the requirements of social development. In this paper, the fitness of oil painting function is discussed. Through the analysis of the experimental results, it is found that this method has important reference value for optimizing algorithm and improving traditional hand drawing during COVID-19.
Collapse
Affiliation(s)
- Xu Yingzhi
- School of Arts and Media, Anhui University, Hefei, Anhui, China
| | - Yun Lu
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Marine Technology Society, Columbia, MD, USA
| |
Collapse
|
4
|
Toll-like receptor 3 in nasal CD103 + dendritic cells is involved in immunoglobulin A production. Mucosal Immunol 2018; 11:82-96. [PMID: 28612840 DOI: 10.1038/mi.2017.48] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/23/2017] [Indexed: 02/04/2023]
Abstract
Intranasal inoculation with influenza hemagglutinin subunit with polyinosine-polycytidylic (polyI:C), a synthetic analog for double-stranded RNA, enhances production of vaccine-specific immunoglobulin (Ig) A, which is superior to IgG in prophylactic immunity. The mechanism whereby polyI:C skews to IgA production in the nasal-associated lymph tissue (NALT) was investigated in mouse models. Nasally instilled polyI:C was endocytosed into CD103+ dendritic cells (DCs) and induced T-cell activation, including interferon (IFN)-γ production. According to knockout mouse studies, polyI:C activated the Toll-like receptor 3 signal via the adapter TICAM-1 (also called TRIF), that mainly caused T-cell-dependent IgA production. Nasal CD103+ DCs activated transforming growth factor-β signaling and activation-induced cytidine deaminase upon polyI:C stimulation. IgA rather than IgG production was impaired in Batf3-/- mice, where CD103+ DCs are defective. Genomic recombination occurred in IgA-producing cells in association with polyI:C-stimulated DCs and nasal microenvironment. PolyI:C induced B-cell-activating factor expression and weakly triggered T-cell-independent IgA production. PolyI:C simultaneously activated mitochondrial antiviral signaling and then type I IFN receptor pathways, which only minimally participated in IgA production. Taken together, CD103+ DCs in NALT are indispensable for the adjuvant activity of polyI:C in enhancing vaccine-specific IgA induction and protective immunity against influenza viruses.
Collapse
|
5
|
Okamoto M, Tsukamoto H, Kouwaki T, Seya T, Oshiumi H. Recognition of Viral RNA by Pattern Recognition Receptors in the Induction of Innate Immunity and Excessive Inflammation During Respiratory Viral Infections. Viral Immunol 2017; 30:408-420. [PMID: 28609250 DOI: 10.1089/vim.2016.0178] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The innate immune system is the first line of defense against virus infection that triggers the expression of type I interferon (IFN) and proinflammatory cytokines. Pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns, resulting in the induction of innate immune responses. Viral RNA in endosomes is recognized by Toll-like receptors, and cytoplasmic viral RNA is recognized by RIG-I-like receptors. The host innate immune response is critical for protection against virus infection. However, it has been postulated that an excessive inflammatory response in the lung caused by the innate immune response is harmful to the host and is a cause of lethality during influenza A virus infection. Although the deletion of genes encoding PRRs or proinflammatory cytokines does not improve the mortality of mice infected with influenza A virus, a partial block of the innate immune response is successful in decreasing the mortality rate of mice without a loss of protection against virus infection. In addition, morbidity and mortality rates are influenced by other factors. For example, secondary bacterial infection increases the mortality rate in patients with influenza A virus and in animal models of the disease, and environmental factors, such as cigarette smoke and fine particles, also affect the innate immune response. In this review, we summarize recent findings related to the role of PRRs in innate immune response during respiratory viral infection.
Collapse
Affiliation(s)
- Masaaki Okamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Hirotake Tsukamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Takahisa Kouwaki
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Tsukasa Seya
- 2 Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Hiroyuki Oshiumi
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan .,3 PRESTO JST, Kumamoto, Japan
| |
Collapse
|
6
|
Takaki H, Oshiumi H, Shingai M, Matsumoto M, Seya T. Development of mouse models for analysis of human virus infections. Microbiol Immunol 2017; 61:107-113. [PMID: 28370181 DOI: 10.1111/1348-0421.12477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/09/2023]
Abstract
Viruses usually exhibit strict species-specificity as a result of co-evolution with the host. Thus, in mouse models, a great barrier exists for analysis of infections with human-tropic viruses. Mouse models are unlikely to faithfully reproduce the human immune response to viruses or viral compounds and it is difficult to evaluate human therapeutic efficacy with antiviral reagents in mouse models. Humans and mice essentially have different immune systems, which makes it difficult to extrapolate mouse results to humans. In addition, apart from immunological reasons, viruses causing human diseases do not always infect mice because of species tropism. One way to determine tropism would be a virus receptor that is expressed on affected cells. The development of gene-disrupted mice and Tg mice, which express human receptor genes, enables us to analyze several viral infections in mice. Mice are, indeed, susceptible to human viruses when artificially infected in receptor-supplemented mice. Although the mouse cells less efficiently permit viral replication than do human cells, the models for analysis of human viruses have been established in vivo as well as in vitro, and explain viral pathogenesis in the mouse systems. In most systems, however, nucleic acid sensors and type I interferon suppress viral propagation to block the appearance of infectious manifestation. We herein review recent insight into in vivo antiviral responses induced in mouse infection models for typical human viruses.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto
| | - Masashi Shingai
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo
| |
Collapse
|
7
|
MYD88 and functionally related genes are associated with multiple infections in a model population of Kenyan village dogs. Mol Biol Rep 2016; 43:1451-1463. [PMID: 27655108 DOI: 10.1007/s11033-016-4078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to seek associations between immunity-related molecular markers and endemic infections in a model population of African village dogs from Northern Kenya with no veterinary care and no selective breeding. A population of village dogs from Northern Kenya composed of three sub-populations from three different areas (84, 50 and 55 dogs) was studied. Canine distemper virus (CDV), Hepatozoon canis, Microfilariae (Acantocheilonema dracunculoides, Acantocheilonema reconditum) and Neospora caninum were the pathogens studied. The presence of antibodies (CDV, Neospora), light microscopy (Hepatozoon) and diagnostic PCR (Microfilariae) were the methods used for diagnosing infection. Genes involved in innate immune mechanisms, NOS3, IL6, TLR1, TLR2, TLR4, TLR7, TLR9, LY96, MYD88, and three major histocompatibility genes class II genes were selected as candidates. Single nucleotide polymorphism (SNP) markers were detected by Sanger sequencing, next generation sequencing and PCR-RFLP. The Fisher´s exact test for additive and non-additive models was used for association analyses. Three SNPs within the MYD88 gene and one TLR4 SNP marker were associated with more than one infection. Combined genotypes and further markers identified by next generation sequencing confirmed associations observed for individual genes. The genes associated with infection and their combinations in specific genotypes match well our knowledge on their biological role and on the role of the relevant biological pathways, respectively. Associations with multiple infections observed between the MYD88 and TLR4 genes suggest their involvement in the mechanisms of anti-infectious defenses in dogs.
Collapse
|
8
|
Morris MC, Surendran N. Neonatal Vaccination: Challenges and Intervention Strategies. Neonatology 2016; 109:161-9. [PMID: 26757146 PMCID: PMC4749499 DOI: 10.1159/000442460] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND While vaccines have been tremendously successful in reducing the incidence of serious infectious diseases, newborns remain particularly vulnerable in the first few months of their life to life-threatening infections. A number of challenges exist to neonatal vaccination. However, recent advances in the understanding of neonatal immunology offer insights to overcome many of those challenges. OBJECTIVE This review will present an overview of the features of neonatal immunity which make vaccination difficult, survey the mechanisms of action of available vaccine adjuvants with respect to the unique features of neonatal immunity, and propose a possible mechanism contributing to the inability of neonates to generate protective immune responses to vaccines. METHODS We surveyed recent published findings on the challenges to neonatal vaccination and possible intervention strategies including the use of novel vaccine adjuvants to develop efficacious neonatal vaccines. RESULTS Challenges in the vaccination of neonates include interference from maternal antibody and excessive skewing towards Th2 immunity, which can be counteracted by the use of proper adjuvants. CONCLUSION Synergistic stimulation of multiple Toll-like receptors by incorporating well-defined agonist-adjuvant combinations to vaccines is a promising strategy to ensure a protective vaccine response in neonates.
Collapse
Affiliation(s)
- Matthew C Morris
- Research Institute, Rochester Regional Health Systems, Rochester, N.Y., USA
| | | |
Collapse
|
9
|
Nakai M, Oshiumi H, Funami K, Okamoto M, Matsumoto M, Seya T, Sakamoto N. Interferon (IFN) and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV). SENSORS 2015; 15:27160-73. [PMID: 26512676 PMCID: PMC4634469 DOI: 10.3390/s151027160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) infects hepatocytes but not dendritic cells (DCs), but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of type III interferons (IFNs) in response to HCV in mouse. Human hepatocytes barely express TLR3 under non-infectious states, but frequently express it in HCV infection. Type I and III IFNs are induced upon stimulation with polyI:C, an analog of double-stranded (ds)RNA. Activation of TLR3 and the TICAM-1 pathway, followed by DC-mediated activation of cellular immunity, is augmented during exposure to viral RNA. Although type III IFNs are released from replication-competent human hepatocytes, DC-mediated CTL proliferation and NK cell activation hardly occur in response to the released type III IFNs. Yet, type I IFNs and HCV-infected hepatocytes can induce maturation of DCs in either human or mouse origin. In addition, mouse CD8+ DCs mature in response to HCV-infected hepatocytes unless the TLR3/TICAM-1 pathway is blocked. We found the exosomes containing HCV RNA in the supernatant of the HCV-infected hepatocytes act as a source of TLR3-mediated DC maturation. Here we summarize our view on the mechanism by which DCs mature to induce NK and CTL in a status of HCV infection.
Collapse
Affiliation(s)
- Masato Nakai
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Kenji Funami
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Masaaki Okamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Naoya Sakamoto
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
10
|
Ma X, Yang X, Nian X, Zhang Z, Dou Y, Zhang X, Luo X, Su J, Zhu Q, Cai X. Identification of amino-acid residues in the V protein of peste des petits ruminants essential for interference and suppression of STAT-mediated interferon signaling. Virology 2015; 483:54-63. [DOI: 10.1016/j.virol.2015.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022]
|
11
|
Protection from Severe Influenza Virus Infections in Mice Carrying the Mx1 Influenza Virus Resistance Gene Strongly Depends on Genetic Background. J Virol 2015. [PMID: 26202236 PMCID: PMC4577889 DOI: 10.1128/jvi.01305-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Influenza virus infections represent a serious threat to human health. Both extrinsic and intrinsic factors determine the severity of influenza. The MX dynamin-like GTPase 1 (Mx1) gene has been shown to confer strong resistance to influenza A virus infections in mice. Most laboratory mouse strains, including C57BL/6J, carry nonsense or deletion mutations in Mx1 and thus a nonfunctional allele, whereas wild-derived mouse strains carry a wild-type Mx1 allele. Congenic C57BL/6J (B6-Mx1r/r) mice expressing a wild-type allele from the A2G mouse strain are highly resistant to influenza A virus infections, to both mono- and polybasic subtypes. Furthermore, in genetic mapping studies, Mx1 was identified as the major locus of resistance to influenza virus infections. Here, we investigated whether the Mx1 protective function is influenced by the genetic background. For this, we generated a congenic mouse strain carrying the A2G wild-type Mx1 resistance allele on a DBA/2J background (D2-Mx1r/r). Most remarkably, congenic D2-Mx1r/r mice expressing a functional Mx1 wild-type allele are still highly susceptible to H1N1 virus. However, pretreatment of D2-Mx1r/r mice with alpha interferon protected them from lethal infections. Our results showed, for the first time, that the presence of an Mx1 wild-type allele from A2G as such does not fully protect mice from lethal influenza A virus infections. These observations are also highly relevant for susceptibility to influenza virus infections in humans.
IMPORTANCE Influenza A virus represents a major health threat to humans. Seasonal influenza epidemics cause high economic loss, morbidity, and deaths each year. Genetic factors of the host strongly influence susceptibility and resistance to virus infections. The Mx1 (MX dynamin-like GTPase 1) gene has been described as a major resistance gene in mice and humans. Most inbred laboratory mouse strains are deficient in Mx1, but congenic B6-Mx1r/r mice that carry the wild-type Mx1 gene from the A2G mouse strain are highly resistant. Here, we show that, very unexpectedly, congenic D2-Mx1r/r mice carrying the wild-type Mx1 gene from the A2G strain are not fully protected against lethal influenza virus infections. These observations demonstrate that the genetic background is very important for the protective function of the Mx1 resistance gene. Our results are also highly relevant for understanding genetic susceptibility to influenza virus infections in humans.
Collapse
|
12
|
Human Plasmacytoid Dendritic Cells Elicited Different Responses after Infection with Pathogenic and Nonpathogenic Junin Virus Strains. J Virol 2015; 89:7409-13. [PMID: 25926646 DOI: 10.1128/jvi.01014-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 12/24/2022] Open
Abstract
The arenavirus Junin virus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. We characterized the JUNV infection of human peripheral blood-derived plasmacytoid dendritic cells (hpDC), demonstrating that hpDC are susceptible to infection with the C#1 strain (attenuated) and even more susceptible to infection with the P (virulent) JUNV strain. However, hpDC elicited different responses in terms of viability, activation, maturation, and cytokine expression after infection with both JUNV strains.
Collapse
|
13
|
Kasamatsu J, Azuma M, Oshiumi H, Morioka Y, Okabe M, Ebihara T, Matsumoto M, Seya T. INAM plays a critical role in IFN-γ production by NK cells interacting with polyinosinic-polycytidylic acid-stimulated accessory cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5199-207. [PMID: 25320282 DOI: 10.4049/jimmunol.1400924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyinosinic-polycytidylic acid strongly promotes the antitumor activity of NK cells via TLR3/Toll/IL-1R domain-containing adaptor molecule 1 and melanoma differentiation-associated protein-5/mitochondrial antiviral signaling protein pathways. Polyinosinic-polycytidylic acid acts on accessory cells such as dendritic cells (DCs) and macrophages (Mφs) to secondarily activate NK cells. In a previous study in this context, we identified a novel NK-activating molecule, named IFN regulatory factor 3-dependent NK-activating molecule (INAM), a tetraspanin-like membrane glycoprotein (also called Fam26F). In the current study, we generated INAM-deficient mice and investigated the in vivo function of INAM. We found that cytotoxicity against NK cell-sensitive tumor cell lines was barely decreased in Inam(-/-) mice, whereas the number of IFN-γ-producing cells was markedly decreased in the early phase. Notably, deficiency of INAM in NK and accessory cells, such as CD8α(+) conventional DCs and Mφs, led to a robust decrease in IFN-γ production. In conformity with this phenotype, INAM effectively suppressed lung metastasis of B16F10 melanoma cells, which is controlled by NK1.1(+) cells and IFN-γ. These results suggest that INAM plays a critical role in NK-CD8α(+) conventional DC (and Mφ) interaction leading to IFN-γ production from NK cells in vivo. INAM could therefore be a novel target molecule for cancer immunotherapy against IFN-γ-suppressible metastasis.
Collapse
Affiliation(s)
- Jun Kasamatsu
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiro Azuma
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yuka Morioka
- Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masaru Okabe
- Research Institute for Microbial Disease, Osaka University, Osaka 565-0871, Japan
| | - Takashi Ebihara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| |
Collapse
|
14
|
Reynolds LA, Harcus Y, Smith KA, Webb LM, Hewitson JP, Ross EA, Brown S, Uematsu S, Akira S, Gray D, Gray M, MacDonald AS, Cunningham AF, Maizels RM. MyD88 signaling inhibits protective immunity to the gastrointestinal helminth parasite Heligmosomoides polygyrus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2984-93. [PMID: 25114104 PMCID: PMC4157852 DOI: 10.4049/jimmunol.1401056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helminth parasites remain one of the most common causes of infections worldwide, yet little is still known about the immune signaling pathways that control their expulsion. C57BL/6 mice are chronically susceptible to infection with the gastrointestinal helminth parasite Heligmosomoides polygyrus. In this article, we report that C57BL/6 mice lacking the adapter protein MyD88, which mediates signaling by TLRs and IL-1 family members, showed enhanced immunity to H. polygyrus infection. Alongside increased parasite expulsion, MyD88-deficient mice showed heightened IL-4 and IL-17A production from mesenteric lymph node CD4+ cells. In addition, MyD88−/− mice developed substantial numbers of intestinal granulomas around the site of infection, which were not seen in MyD88-sufficient C57BL/6 mice, nor when signaling through the adapter protein TRIF (TIR domain–containing adapter–inducing IFN-β adapter protein) was also ablated. Mice deficient solely in TLR2, TLR4, TLR5, or TLR9 did not show enhanced parasite expulsion, suggesting that these TLRs signal redundantly to maintain H. polygyrus susceptibility in wild-type mice. To further investigate signaling pathways that are MyD88 dependent, we infected IL-1R1−/− mice with H. polygyrus. This genotype displayed heightened granuloma numbers compared with wild-type mice, but without increased parasite expulsion. Thus, the IL-1R–MyD88 pathway is implicated in inhibiting granuloma formation; however, protective immunity in MyD88-deficient mice appears to be granuloma independent. Like IL-1R1−/− and MyD88−/− mice, animals lacking signaling through the type 1 IFN receptor (i.e., IFNAR1−/−) also developed intestinal granulomas. Hence, IL-1R1, MyD88, and type 1 IFN receptor signaling may provide pathways to impede granuloma formation in vivo, but additional MyD88-mediated signals are associated with inhibition of protective immunity in susceptible C57BL/6 mice.
Collapse
Affiliation(s)
- Lisa A Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Katherine A Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Lauren M Webb
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Ewan A Ross
- Medical Research Council Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Sheila Brown
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Satoshi Uematsu
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; and Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - David Gray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Mohini Gray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Andrew S MacDonald
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Adam F Cunningham
- Medical Research Council Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
| |
Collapse
|
15
|
Dendritic cell subsets involved in type I IFN induction in mouse measles virus infection models. Int J Biochem Cell Biol 2014; 53:329-33. [DOI: 10.1016/j.biocel.2014.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 12/24/2022]
|
16
|
Zhang X, Casartelli N, Lemoine S, Mozeleski B, Azria E, Le Ray C, Schwartz O, Launay O, Leclerc C, Lo-Man R. Plasmacytoid dendritic cells engagement by influenza vaccine as a surrogate strategy for driving T-helper type 1 responses in human neonatal settings. J Infect Dis 2014; 210:424-34. [PMID: 24558121 DOI: 10.1093/infdis/jiu103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The elicitation of T-helper type 1 (Th1) cellular immunity to eradicate intracellular pathogens is a challenging task because of the interleukin 12 (IL-12) deficit observed in early infancy. METHODS Screening cord blood responses to various pediatric vaccines and Toll-like receptor (TLR) agonists for innate responses and CD4(+) T-cell differentiation. RESULTS We identified that nonadjuvanted inactivated trivalent influenza vaccine (TIV) was able to cosignal T cells for the production of interferon γ (IFN-γ) in a neonatal setting. This process includes the mobilization of neonatal plasmacytoid dendritic cells (pDCs) as antigen-presenting cells (APCs) that efficiently engage Th1 cells in an IL-12-independent but type I IFN-dependent manner. In addition, cord blood pDCs efficiently cross-presented antigen to CD8(+) T cells. Importantly, activation by TIV mainly requires TLR7; however, R848/TLR7- and CpGB/TLR9-activated pDCs, which poorly produced IFN-α, induce neonatal Th2 responses. CONCLUSIONS TLR pathway engagement in pDCs is necessary but not sufficient for a successful neonatal Th1 outcome. We provide evidence of a mature and functional neonatal immune system at the level of APCs and T cells and propose to implement the IFN-α/IFN-γ axis in pediatric vaccination as a surrogate for the defective IL-12/IFN-γ axis.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Régulation Immunitaire et Vaccinologie INSERM U1041 Unit of Innate Defense and Immune Modulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | - Elie Azria
- Department of Obstetrics and Gynecology, Hopital Bichat Claude Bernard Paris 7 Diderot University
| | - Camille Le Ray
- APHP, Maternité Port Royal Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Odile Launay
- APHP, Hopital Cochin INSERM CIC1417 Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
17
|
MAVS-dependent IRF3/7 bypass of interferon β-induction restricts the response to measles infection in CD150Tg mouse bone marrow-derived dendritic cells. Mol Immunol 2013; 57:100-10. [PMID: 24096085 DOI: 10.1016/j.molimm.2013.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/07/2013] [Accepted: 08/15/2013] [Indexed: 01/14/2023]
Abstract
Measles virus (MV) infects CD150Tg/Ifnar (IFN alpha receptor)(-/-) mice but not CD150 (a human MV receptor)-transgenic (Tg) mice. We have shown that bone marrow-derived dendritic cells (BMDCs) from CD150Tg/Ifnar(-/-) mice are permissive to MV in contrast to those from simple CD150Tg mice, which reveals a crucial role of type I interferon (IFN) in natural tropism against MV. Yet, the mechanism whereby BMDCs produce initial type I IFN has not been elucidated in MV infection. RNA virus infection usually allows cells to generate double-stranded RNA and induce activation of IFN regulatory factor (IRF) 3/7 transcription factors, leading to the production of type I IFN through the retinoic acid-inducible gene I (RIG-I)/melanoma differentiation-associated gene 5 (MDA5)-mitochondrial antiviral signaling protein (MAVS) pathway. In mouse experimental BMDCs models, we found CD150Tg/Mavs(-/-)BMDCs, but not CD150Tg/Irf3(-/-)/Irf7(-/-)BMDCs, permissive to MV. IFN-α/β were not induced in MV-infected CD150Tg/Mavs(-/-)BMDCs, while IFN-β was subtly induced in CD150Tg/Irf3(-/-)/Irf7(-/-)BMDCs. In vivo systemic infection was therefore established by transfer of MV-infected CD150Tg/Mavs(-/-) BMDCs to CD150Tg/Ifnar(-/-) mice. These data indicate that MAVS-dependent, IRF3/7-independent IFN-β induction triggers the activation of the IFNAR pathway so as to restrict the spread of MV by infected BMDCs. Hence, MAVS participates in the initial induction of type I IFN in BMDCs and IFNAR protects against MV spreading. We also showed the importance of IL-10-producing CD4(+) T cells induced by MV-infected BMDCs in vitro, which may account for immune modulation due to the functional aberration of DCs.
Collapse
|
18
|
Seya T, Oshiumi H, Matsumoto M. [Immunobiological response against RNA virus infection]. Uirusu 2013; 63:135-42. [PMID: 25366048 DOI: 10.2222/jsv.63.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Viruses infect host circumventing the host immune system; a variety of strategies for establishment of viral infection have been found in a virus-specific fashion. Infection with RNA viruses allows host dendritic cells to present antigens and a typical pattern (PAMP) of virus products, including the RNA genomes and replication intermediates such as double-stranded RNA (dsRNA), which induce antiviral effectors: type I interferons (IFN), cytokines, NK cell activation, Th1 polarization, CD8 T cell proliferation, etc. These findings revealed that RNA-sensing innate system closely links to a trigger of cellular immunity. This process unequivocally involves the maturation of antigen-presenting dendritic cell (mDC), and virus products frequently block this step. According to these findings, mDC have to sense non-self RNA to establish antiviral immunity without spoiling their functions via infection, except several exceptional cases. The notion infers that the RNA recognition in cytosol of infected cells (intrinsic sensing) functions as virocidal whereas that in mDC (extrinsic sensing) differentially converges on another antiviral strategy, activation of the immune system. In this review, we focus on the potential role of hepatitis C virus (HCV) RNA in modulating the inflammatory milieu around mDCs and evoking antiviral immunity to drive specific cellular effectors against the virus.
Collapse
Affiliation(s)
- Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University
| | | | | |
Collapse
|