1
|
Kalyvianaki K, Salampasi EM, Katsoulieris EN, Boukla E, Vogiatzoglou AP, Notas G, Castanas E, Kampa M. 5-Oxo-ETE/OXER1: A Link between Tumor Cells and Macrophages Leading to Regulation of Migration. Molecules 2023; 29:224. [PMID: 38202807 PMCID: PMC10780139 DOI: 10.3390/molecules29010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammation is an important factor in the development of cancer. Macrophages found in tumors, known as tumor associated macrophages (TAMs), are key players in this process, promoting tumor growth through humoral and cellular mechanisms. 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), an arachidonic acid metabolite, has been described to possess a potent chemoattractant activity for human white blood cells (WBCs). The biological actions of 5-oxo-ETE are mediated through the GPCR 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor (OXER1). In addition, we have previously reported OXER1 as one of the membrane androgen receptors with testosterone antagonizing 5-oxo-ETE's actions. OXER1 is highly expressed in inflammatory cells and many normal and cancer tissues and cells, including prostate and breast cancer, promoting cancer cell survival. In the present study we investigate the expression and role of OXER1 in WBCs, THP-1 monocytes, and THP-1 derived macrophages, as well as its possible role in the interaction between macrophages and cancer cells (DU-145 and T47D). We report that OXER1 is differentially expressed between WBCs and macrophages and that receptor expression is modified by LPS treatment. Our results show that testosterone and 5-oxo-ETE can act in an antagonistic way affecting Ca2+ movements, migration, and cytokines' expression in immune-related cells, in a differentiation-dependent manner. Finally, we report that 5-oxo-ETE, through OXER1, can attract macrophages to the tumor site while tumor cells' OXER1 activation in DU-145 prostate and T47D breast cancer cells, by macrophages, induces actin cytoskeletal changes and increases their migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (K.K.); (E.M.S.); (E.N.K.); (E.B.); (A.P.V.); (G.N.)
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (K.K.); (E.M.S.); (E.N.K.); (E.B.); (A.P.V.); (G.N.)
| |
Collapse
|
2
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Cooke M, Zhang S, Cornejo Maciel F, Kazanietz MG. Gi/o GPCRs drive the formation of actin-rich tunneling nanotubes in cancer cells via a Gβγ/PKCα/FARP1/Cdc42 axis. J Biol Chem 2023; 299:104983. [PMID: 37390986 PMCID: PMC10374973 DOI: 10.1016/j.jbc.2023.104983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gβγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C β3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Suli Zhang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fabiana Cornejo Maciel
- Departament of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; INBIOMED, CONICET, Buenos Aires, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Maus KD, Stephenson DJ, Macknight HP, Vu NT, Hoeferlin LA, Kim M, Diegelmann RF, Xie X, Chalfant CE. Skewing cPLA 2α activity toward oxoeicosanoid production promotes neutrophil N2 polarization, wound healing, and the response to sepsis. Sci Signal 2023; 16:eadd6527. [PMID: 37433004 PMCID: PMC10565596 DOI: 10.1126/scisignal.add6527] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J Stephenson
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - H Patrick Macknight
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ngoc T Vu
- Department of Applied Biochemistry, School of Biotechnology, International University-VNU HCM, Ho Chi Minh City, Vietnam
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Xiujie Xie
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles E Chalfant
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| |
Collapse
|
5
|
Maus KD, Stephenson DJ, Ali AN, MacKnight HP, Huang HJ, Serrats J, Kim M, Diegelmann RF, Chalfant CE. Ceramide kinase regulates acute wound healing by suppressing 5-oxo-ETE biosynthesis and signaling via its receptor OXER1. J Lipid Res 2022; 63:100187. [PMID: 35219746 PMCID: PMC8980959 DOI: 10.1016/j.jlr.2022.100187] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The sphingolipid, ceramide-1-phosphate (C1P), has been shown to promote the inflammatory phase and inhibit the proliferation and remodeling stages of wound repair via direct interaction with group IVA cytosolic phospholipase A2, a regulator of eicosanoid biosynthesis that fine-tunes the behaviors of various cell types during wound healing. However, the anabolic enzyme responsible for the production of C1P that suppresses wound healing as well as bioactive eicosanoids and target receptors that drive enhanced wound remodeling have not been characterized. Herein, we determined that decreasing C1P activity via inhibitors or genetic ablation of the anabolic enzyme ceramide kinase (CERK) significantly enhanced wound healing phenotypes. Importantly, postwounding inhibition of CERK enhanced the closure rate of acute wounds, improved the quality of healing, and increased fibroblast migration via a "class switch" in the eicosanoid profile. This switch reduced pro-inflammatory prostaglandins (e.g., prostaglandin E2) and increased levels of 5-hydroxyeicosatetraenoic acid and the downstream metabolite 5-oxo-eicosatetraenoic acid (5-oxo-ETE). Moreover, dermal fibroblasts from mice with genetically ablated CERK showed enhanced wound healing markers, while blockage of the murine 5-oxo-ETE receptor (oxoeicosanoid receptor 1) inhibited the enhanced migration phenotype of these cell models. Together, these studies reinforce the vital roles eicosanoids play in the wound healing process and demonstrate a novel role for CERK-derived C1P as a negative regulator of 5-oxo-ETE biosynthesis and the activation of oxoeicosanoid receptor 1 in wound healing. These findings provide foundational preclinical results for the use of CERK inhibitors to shift the balance from inflammation to resolution and increase the wound healing rate.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Anika N Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Henry Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Huey-Jing Huang
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Jordi Serrats
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, VA, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA; Cancer Biology and Evolution Program, The Moffitt Cancer Center, Tampa, FL, USA; Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA; Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA; Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA.
| |
Collapse
|
6
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
7
|
Lai Q, Yuan G, Shen L, Zhang L, Fu F, Liu Z, Zhang Y, Kou J, Liu S, Yu B, Li F. Oxoeicosanoid receptor inhibition alleviates acute myocardial infarction through activation of BCAT1. Basic Res Cardiol 2021; 116:3. [PMID: 33484341 DOI: 10.1007/s00395-021-00844-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is an arachidonic acid metabolite produced along with leukotrienes via the 5-lipoxygenase pathway. Metabolomics studies have shown that 5-oxo-ETE level is elevated in the serum in acute myocardial infarction (AMI). The actions of 5-oxo-ETE are mediated by the highly selective oxoeicosanoid receptor (OXE-R). Moreover, increased OXE-R content was verified in AMI patients and mice. However, the precise role of OXE-R in AMI is unclear. In the present study, we demonstrate that 5-oxo-ETE triggered myocardial injury in mice. Pathway enrichment analysis identified branched chain amino acid transaminase 1/2 (BCAT1/2) as potential mediators of this effect. Western blot and immunohistochemical analyses showed that BCAT1/BCAT2 expression was significantly reduced by AMI in vitro and in vivo, while pharmacologic inhibition of BCAT1/BCAT2 accelerated myocardial injury. Conversely, heart-specific overexpression of BCAT1/BCAT2 in mice protected against ischemic myocardial injury. Treatment with the selective OXE-R inhibitor Gue1654 alleviated coronary artery ligation-induced ischemic myocardial injury in mice and oxygen/glucose deprivation-induced injury in cardiomyocytes through activation of BCAT1, while inhibiting OXE-R suppressed protein kinase C-ε (PKC-ε)/nuclear factor κB (NF-κB) signaling and cardiomyocyte apoptosis. Overall, our study confirmed a novel target OXE-R for the treatment of AMI based on metabolomics, and targeting OXE-R may represent unrecognized therapeutic intervention for cardiovascular diseases through activation of BCAT1.
Collapse
Affiliation(s)
- Qiong Lai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Guangying Yuan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Le Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Lu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Fei Fu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Zeliang Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China.
| |
Collapse
|
8
|
Powell WS, Rokach J. Targeting the OXE receptor as a potential novel therapy for asthma. Biochem Pharmacol 2020; 179:113930. [PMID: 32240653 PMCID: PMC10656995 DOI: 10.1016/j.bcp.2020.113930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is an arachidonic acid metabolite formed by oxidation of the 5-lipoxygenase (5-LO) product 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5S-HETE) by the NADP+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase. It is the only 5-LO product with appreciable chemoattractant activity for human eosinophils. Its actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, basophils, neutrophils and monocytes. Orthologs of the OXER1 gene, which encodes this receptor, are found in many species except for rodents. Intradermal injection of 5-oxo-ETE into humans and monkeys elicits eosinophil infiltration into the skin, raising the possibility that it may play a pathophysiological role in eosinophilic diseases. To investigate this and possibly identify a novel therapy we sought to prepare synthetic antagonists that could selectively block the OXE receptor. We synthesized a series of indole-based compounds bearing substituents that mimic the regions of 5-oxo-ETE that are required for biological activity, which we modified to reduce metabolism. The most potent of these OXE receptor antagonists is S-Y048, which is a potent inhibitor of 5-oxo-ETE-induced calcium mobilization (IC50, 20 pM) and has a long half-life following oral administration. S-Y048 inhibited allergen-induced eosinophil infiltration into the skin of rhesus monkeys that had been experimentally sensitized to house dust mite and inhibited pulmonary inflammation resulting from challenge with aerosolized allergen. These data provide the first evidence for a pathophysiological role for 5-oxo-ETE in mammals and suggest that potent and selective OXE receptor antagonists such as S-Y048 may be useful therapeutic agents in asthma and other eosinophilic diseases.
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6982, USA
| |
Collapse
|
9
|
Miller LA, Cossette C, Chourey S, Ye Q, Reddy CN, Rokach J, Powell WS. Inhibition of allergen-induced dermal eosinophilia by an oxoeicosanoid receptor antagonist in non-human primates. Br J Pharmacol 2020; 177:360-371. [PMID: 31655023 PMCID: PMC6989951 DOI: 10.1111/bph.14872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), acting via the OXE receptor, is unique among 5-lipoxygenase products in its ability to directly induce human eosinophil migration, suggesting its involvement in eosinophilic diseases. To address this hypothesis, we synthesized selective indole-based OXE receptor antagonists. Because rodents lack an OXE receptor orthologue, we sought to determine whether these antagonists could attenuate allergen-induced skin eosinophilia in sensitized monkeys. EXPERIMENTAL APPROACH In a pilot study, cynomolgus monkeys with environmentally acquired sensitivity to Ascaris suum were treated orally with the "first-generation" OXE antagonist 230 prior to intradermal injection of 5-oxo-ETE or Ascaris extract. Eosinophils were evaluated in punch biopsy samples taken 6 or 24 hr later. We subsequently treated captive-bred rhesus monkeys sensitized to house dust mite (HDM) allergen with a more recently developed OXE antagonist, S-Y048, and evaluated its effects on dermal eosinophilia induced by either 5-oxo-ETE or HDM. KEY RESULTS In a pilot experiment, both 5-oxo-ETE and Ascaris extract induced dermal eosinophilia in cynomolgus monkeys, which appeared to be reduced by 230. Subsequently, we found that the related OXE antagonist S-Y048 is a highly potent inhibitor of 5-oxo-ETE-induced activation of rhesus monkey eosinophils in vitro and has a half-life in plasma of about 6 hr after oral administration. S-Y048 significantly inhibited eosinophil infiltration into the skin in response to both intradermally administered 5-oxo-ETE and HDM. CONCLUSIONS AND IMPLICATIONS 5-Oxo-ETE may play an important role in allergen-induced eosinophilia. Blocking its effects with S-Y048 may provide a novel therapeutic approach for eosinophilic diseases.
Collapse
Affiliation(s)
- Lisa A. Miller
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Chantal Cossette
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontreal, QuebecCanada
| | - Shishir Chourey
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Department of Chemical DevelopmentAlbany Molecular Research Inc.Albany, New York
| | - Qiuji Ye
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Department of ChemistryRice UniversityHoustonTexas
| | - Chintam Nagendra Reddy
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Synthetic ChemistryOlon Ricerca Bioscience LLCConcordOhio
| | - Joshua Rokach
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
| | - William S. Powell
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontreal, QuebecCanada
| |
Collapse
|
10
|
Hughes CHK, Bosviel R, Newman JW, Pate JL. Luteal Lipids Regulate Progesterone Production and May Modulate Immune Cell Function During the Estrous Cycle and Pregnancy. Front Endocrinol (Lausanne) 2019; 10:662. [PMID: 31636603 PMCID: PMC6788218 DOI: 10.3389/fendo.2019.00662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Although the corpus luteum (CL) contains high concentrations of lipid in the form of steroid hormone precursors and prostaglandins, little is known about the abundance or function of other luteal lipid mediators. To address this, 79 lipid mediators were measured in bovine CL, using ultra performance liquid chromatography-tandem mass spectrometry. CL from estrous cycle days 4, 11, and 18 were compared and, separately, CL from days 18 of the estrous cycle and pregnancy were compared. Twenty-three lipids increased as the estrous cycle progressed (P < 0.05), with nine increasing between days 4 and 11 and fourteen increasing between days 4 and 18. Overall, this indicated a general upregulation of lipid mediator synthesis as the estrous cycle progressed, including increases in oxylipins and endocannabinoids. Only 15-KETE was less abundant in the CL of early pregnancy (P < 0.05), with a tendency (P < 0.10) for four others to be less abundant. Notably, 15-KETE also increased between estrous cycle days 4 and 18. Ingenuity Pathway Analysis (IPA, Qiagen) indicated that functions associated with differentially abundant lipids during the estrous cycle included leukocyte activation, cell migration, and cell proliferation. To investigate changes in CL during maternal recognition of pregnancy, this lipid dataset was integrated with a published dataset from mRNA profiling during maternal recognition of pregnancy. This analysis indicated that lipids and mRNA that changed during maternal recognition of pregnancy may regulate some of the same functions, including immune cell chemotaxis and cell-cell communication. To assess effects of these lipid mediators, luteal cells were cultured with 5-KETE or 15-KETE. One ng/mL 5-KETE reduced luteal progesterone on day 1 of culture, only in the absence of luteinizing hormone (LH), while 1 ng/mL 15-KETE induced progesterone only in the presence of LH (10 ng/mL). On day 7 of culture, 0.1 ng/mL 15-KETE reduced prostaglandin (PG)F2A-induced inhibition of LH-stimulated progesterone production, while 1 ng/mL 15-KETE did not have this effect. Overall, these data suggest a role for lipid mediators during luteal development and early pregnancy, as regulators of steroidogenesis, immune cell activation and function, intracellular signaling, and cell survival and death.
Collapse
Affiliation(s)
- Camilla H. K. Hughes
- Center for Reproductive Biology and Health, Department of Animal Sciences, Pennsylvania State University, State College, PA, United States
| | - Remy Bosviel
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - John W. Newman
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, USDA-ARS-Western Human Nutrition Research Center, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joy L. Pate
- Center for Reproductive Biology and Health, Department of Animal Sciences, Pennsylvania State University, State College, PA, United States
| |
Collapse
|
11
|
Trakaki A, Sturm GJ, Pregartner G, Scharnagl H, Eichmann TO, Trieb M, Knuplez E, Holzer M, Stadler JT, Heinemann A, Sturm EM, Marsche G. Allergic rhinitis is associated with complex alterations in high-density lipoprotein composition and function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1280-1292. [PMID: 31185305 DOI: 10.1016/j.bbalip.2019.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Despite strong evidence that high-density lipoproteins (HDLs) modulate the immune response, the role of HDL in allergies is still poorly understood. Many patients with allergic rhinitis (AR) develop a late-phase response, characterized by infiltration of monocytes and eosinophils into the nasal submucosa. Functional impairment of HDL in AR-patients may insufficiently suppress inflammation and cell infiltration, but the effect of AR on the composition and function of HDL is not understood. We used apolipoprotein (apo) B-depleted serum as well as isolated HDL from AR-patients (n = 43) and non-allergic healthy controls (n = 20) for detailed compositional and functional characterization of HDL. Both AR-HDL and apoB-depleted serum of AR-patients showed decreased anti-oxidative capacity and impaired ability to suppress monocyte nuclear factor-κB expression and pro-inflammatory cytokine secretion, such as interleukin (IL)-4, IL-6, IL-8, tumor necrosis factor alpha and IL-1 beta. Sera of AR-patients showed decreased paraoxonase and cholesteryl-ester transfer protein activities, increased lipoprotein-associated phospholipase A2 activity, while lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity were not altered. Surprisingly, apoB-depleted serum and HDL from AR-patients showed an increased ability to suppress eosinophil effector responses upon eotaxin-2/CCL24 stimulation. Mass spectrometry and biochemical analyses showed reduced levels of apoA-I and phosphatidylcholine, but increased levels of apoA-II, triglycerides and lyso-phosphatidylcholine in AR-HDL. The changes in AR-HDL composition were associated with altered functional properties. In conclusion, AR alters HDL composition linked to decreased anti-oxidative and anti-inflammatory properties but improves the ability of HDL to suppress eosinophil effector responses.
Collapse
Affiliation(s)
- Athina Trakaki
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Auenbruggerplatz 8, 8036 Graz, Austria; Allergy Outpatient Clinic Reumannplatz, Vienna, Austria
| | - Gudrun Pregartner
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2/9/V, 8036 Graz, Austria
| | - Hubert Scharnagl
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Markus Trieb
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Eva M Sturm
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria..
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
12
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
13
|
Thomas P. Membrane Androgen Receptors Unrelated to Nuclear Steroid Receptors. Endocrinology 2019; 160:772-781. [PMID: 30753403 DOI: 10.1210/en.2018-00987] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/05/2019] [Indexed: 01/08/2023]
Abstract
Rapid (nongenomic) membrane-initiated androgen actions have been described in nuclear androgen receptor-null cells. Four distinct proteins have been proposed as membrane androgen receptors (mARs) or sensors. Transient receptor potential melastatin 8 (TRPM8) is a calcium channel that acts as a pain receptor and mediates androgen- and menthol-induced increases in calcium levels and survival of prostate cancer cells. Testosterone (T) directly interacts with TRPM8, but extensive androgen receptor binding studies to confirm its role as an mAR are lacking. Oxoeicosanoid receptor 1 (OXER1) is highly expressed in prostate cancer tissues, and its major ligand, 5-oxoeicosatretraenoic acid (5-oxo-ETE), is a potent inducer of prostate cancer cell proliferation and survival. T competes for 5-oxo-ETE binding to OXER1 and antagonizes 5-oxo-ETE-mediated inhibition of cAMP production. However, OXER1 does not meet a traditional criterion for its designation as an mAR because T treatment alone does not alter cAMP signaling. GPRC6A is a class C G protein-coupled receptor activated by l-α-amino acids and is modulated by calcium. Although there has been controversy over the proposed role of T as a GPRC6A ligand, androgen induction of GPRC6A signaling has recently been confirmed by several researchers. ZIP9 belongs to the zinc transporter ZIP (SLC39A) family and displays specific T binding characteristic of an mAR. ZIP9 mediates androgen-dependent intracellular signaling and apoptosis of breast and prostate cancer cells through activation of G proteins. Androgen-signaling functions of ZIP9 have been confirmed in other cells, but the overall importance of ZIP9 in androgen physiology remains unclear. Here, the current status of these four proteins as mARs or sensors is critically reviewed.
Collapse
Affiliation(s)
- Peter Thomas
- University of Texas at Austin Marine Science Institute, Port Aransas, Texas
| |
Collapse
|
14
|
Lin L, Chen Z, Tang X, Dai F, Wei J, Sun G. 5-Oxo-ETE from Nasal Epithelial Cells Upregulates Eosinophil Cation Protein by Eosinophils in Nasal Polyps in vitro. Int Arch Allergy Immunol 2018; 177:107-115. [PMID: 29898459 DOI: 10.1159/000489819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent eosinophil chemoattractant and activator that is synthesized not only in inflammatory cells but also in bronchial epithelial cells. The purpose of this study is to clarify whether 5-oxo-ETE can promote the production of eosinophil cation protein (ECP) by eosinophils in nasal polyps (NP) in vitro, and whether normal nasal epithelial cells can produce this lipid mediator in response to oxidative stress. MATERIALS AND METHODS Nasal biopsy samples were obtained from normal subjects or subjects with chronic rhinosinusitis with NP. The infiltration of eosinophil in NP was detected and cultured. After that, concentrations of ECP in eosinophil and NP cultures were evaluated after the treatment of 5-oxo-ETE or 5-oxo-ETE + its receptor (OXER) antagonist, pertussis toxin (PT). Then we studied the synthesis of 5-oxo-ETE after H2O2 stimulation by normal nasal epithelial cells and by epithelial cells of NP alone in the cultures, and also determined the OXER expression in NP. RESULTS The number of infiltrative eosinophils in NP was increased. The ECP levels in eosinophil and NP cultures were enhanced after the administration of 5-oxo-ETE, and decreased by the PT treatment. 5-Oxo-ETE was upregulated in the cultures of nasal epithelial cells in the presence of H2O2 and of NP epithelial cells alone. The OXER was expressed in inflammatory cells, and not in epithelial cells. CONCLUSION 5-Oxo-ETE produced by nasal epithelial cells may play a role in the formation and development of NP.
Collapse
|
15
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
16
|
Kalyvianaki K, Gebhart V, Peroulis N, Panagiotopoulou C, Kiagiadaki F, Pediaditakis I, Aivaliotis M, Moustou E, Tzardi M, Notas G, Castanas E, Kampa M. Antagonizing effects of membrane-acting androgens on the eicosanoid receptor OXER1 in prostate cancer. Sci Rep 2017; 7:44418. [PMID: 28290516 PMCID: PMC5349529 DOI: 10.1038/srep44418] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
Accumulating evidence during the last decades revealed that androgen can exert membrane initiated actions that involve signaling via specific kinases and the modulation of significant cellular processes, important for prostate cancer cell growth and metastasis. Results of the present work clearly show that androgens can specifically act at the membrane level via the GPCR oxoeicosanoid receptor 1 (OXER1) in prostate cancer cells. In fact, OXER1 expression parallels that of membrane androgen binding in prostate cancer cell lines and tumor specimens, while in silico docking simulation of OXER1 showed that testosterone could bind to OXER1 within the same grove as 5-OxoETE, the natural ligand of OXER1. Interestingly, testosterone antagonizes the effects of 5-oxoETE on specific signaling pathways and rapid effects such as actin cytoskeleton reorganization that ultimately can modulate cell migration and metastasis. These findings verify that membrane-acting androgens exert specific effects through an antagonistic interaction with OXER1. Additionally, this interaction between androgen and OXER1, which is an arachidonic acid metabolite receptor expressed in prostate cancer, provides a novel link between steroid and lipid actions and renders OXER1 as new player in the disease. These findings should be taken into account in the design of novel therapeutic approaches in prostate cancer.
Collapse
Affiliation(s)
- Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | | | - Nikolaos Peroulis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | - Christina Panagiotopoulou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | - Fotini Kiagiadaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | - Iosif Pediaditakis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece.,Institute of Molecular Biology &Biotechnology, Foundation of Research &Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Michalis Aivaliotis
- Proteomics Facility at Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete
| | - Eleni Moustou
- Department of Pathology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | - Maria Tzardi
- Department of Pathology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, GR-71003, Greece
| |
Collapse
|
17
|
Jandl K, Stacher E, Bálint Z, Sturm EM, Maric J, Peinhaupt M, Luschnig P, Aringer I, Fauland A, Konya V, Dahlen SE, Wheelock CE, Kratky D, Olschewski A, Marsche G, Schuligoi R, Heinemann A. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung. J Allergy Clin Immunol 2016; 137:833-43. [PMID: 26792210 PMCID: PMC4954606 DOI: 10.1016/j.jaci.2015.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 10/26/2015] [Accepted: 11/24/2015] [Indexed: 12/16/2022]
Abstract
Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation.
Collapse
Affiliation(s)
- Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Elvira Stacher
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zoltán Bálint
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Eva Maria Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Jovana Maric
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Petra Luschnig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ida Aringer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Center for Infectious Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Institute of Environmental Medicine, Experimental Asthma and Allergy Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
18
|
Dattilo M, Neuman I, Muñoz M, Maloberti P, Cornejo Maciel F. OxeR1 regulates angiotensin II and cAMP-stimulated steroid production in human H295R adrenocortical cells. Mol Cell Endocrinol 2015; 408:38-44. [PMID: 25657046 DOI: 10.1016/j.mce.2015.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/13/2023]
Abstract
Hormone-regulated steroidogenesis and StAR protein induction involve the action of lipoxygenated products. The products of 5-lipoxygenase act on inflammation and immunity by stimulation of a membrane receptor called OxeR1. The presence of OxeR1 in other systems has not been described up to date and little is known about its mechanism of action and other functions. In this context, the aim of this study was the identification and characterization of OxeR1 as a mediator of cAMP-dependent and independent pathways. Overexpression of OxeR1 in MA-10 Leydig cells increased cAMP-dependent progesterone production. Angiotensin II and cAMP stimulation of adrenocortical human H295R cells produced an increase in StAR protein induction and steroidogenesis in cells overexpressing OxeR1 as compared to mock-transfected cells. Additionally, activation of OxeR1 caused a time-dependent increase in ERK1/2 phosphorylation. In summary, membrane receptor OxeR1 is involved in StAR protein induction and activation of steroidogenesis triggered by cAMP or angiotensin II, acting, at least in part, through ERK1/2 activation.
Collapse
Affiliation(s)
- Melina Dattilo
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Isabel Neuman
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Mariana Muñoz
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Paula Maloberti
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Fabiana Cornejo Maciel
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Neutrophil effector responses are suppressed by secretory phospholipase A2 modified HDL. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:184-93. [PMID: 25463476 DOI: 10.1016/j.bbalip.2014.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/20/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
Secretory phospholipase A2 (sPLA2) generates bioactive lysophospholipids implicated in acute and chronic inflammation, but the pathophysiologic role of sPLA2 is poorly understood. Given that high-density lipoprotein (HDL) is the major substrate for sPLA2 in plasma, we investigated the effects of sPLA2-mediated modification of HDL (sPLA2-HDL) on neutrophil function, an essential arm of the innate immune response and atherosclerosis. Treatment of neutrophils with sPLA2-HDL rapidly prevented agonist-induced neutrophil activation, including shape change, neutrophil extracellular trap formation, CD11b activation, adhesion under flow and migration of neutrophils. The cholesterol-mobilizing activity of sPLA2-HDL was markedly increased when compared to native HDL, promoting a significant reduction of cholesterol-rich signaling microdomains integral to cellular signaling pathways. Moreover, sPLA2-HDL effectively suppressed agonist-induced rise in intracellular Ca²⁺ levels. Native HDL showed no significant effects and removing lysophospholipids from sPLA2-HDL abolished all anti-inflammatory activities. Overall, our studies suggest that the increased cholesterol-mobilizing activity of sPLA2-HDL and suppression of rise in intracellular Ca²⁺ levels are likely mechanism that counteracts agonist-induced activation of neutrophils. These counterintuitive findings imply that neutrophil trafficking and effector responses are altered by sPLA2-HDL during inflammatory conditions.
Collapse
|
20
|
Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:340-55. [PMID: 25449650 DOI: 10.1016/j.bbalip.2014.10.008] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
| |
Collapse
|