1
|
Radi ZA, Khan N. Pathophysiology and human cancer risk assessment of pharmaceutical-induced thymoma in carcinogenicity studies. Toxicol Appl Pharmacol 2023; 466:116471. [PMID: 36934859 DOI: 10.1016/j.taap.2023.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Thymoma, a tumor of thymic lymphocytes or thymic epithelial cells (TECs), is a common spontaneous tumor in Wistar Han rats, especially in females with up to 18% incidence in controls. In addition to sex, there are rat strain differences in background incidence of thymomas such as Sprague Dawley versus Wistar Han rats. Human thymomas are very rare and without clear differences in incidence between males and females. Immunomodulatory and anti-inflammatory pharmaceutical drug classes, including Janus kinase inhibitors, increase the incidence of benign thymoma in two-year rat carcinogenicity studies. Potential non-genotoxic mechanisms that might contribute to the pathogenesis of thymoma development in one sex (female) Wistar Han rats include: (1) hormonal differences, (2) high proliferation rate of TECs, (3) delayed physiologic thymic involution, and/or (4) significant level of immunosuppression at high doses of a pharmaceutical drug. Factors to consider in the human cancer risk assessment of pharmaceutical-induced thymoma are: the genotoxicity of the test article, sex and strain of rats, exposure safety margins, and pathophysiologic differences and similarities of thymoma between rats and humans. Totality of weight of evidence approach and available data suggest thymomas observed in carcinogenicity studies of pharmaceutical drugs are not relevant for human risk at clinically relevant therapeutic doses.
Collapse
Affiliation(s)
- Zaher A Radi
- Pfizer Worldwide Research, Development and Medical, Drug Safety R&D, 1 Portland Street, Cambridge, MA 02140, USA.
| | - Nasir Khan
- Pfizer Worldwide Research, Development and Medical, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| |
Collapse
|
2
|
Serrano Martinez P, Maimets M, Bron R, van Os R, de Haan G, Pringle S, Coppes RP. Role of quiescent cells in the homeostatic maintenance of the adult submandibular salivary gland. iScience 2022; 25:105047. [PMID: 36147959 PMCID: PMC9485076 DOI: 10.1016/j.isci.2022.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/08/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Stem/progenitor cells are required for maintenance of salivary gland (SG) function and serve as untapped reservoirs to create functional cells. Despite recent advancements in the identification of stem/progenitor pools, in the submandibular gland (SMG), a knowledge gap remains. Furthermore, the contribution to adult SMG homeostasis of stem/progenitor cells originating from embryonic development is unclear. Here, we employ an H2B-GFP embryonic and adult pulse-and-chase system to characterize potential SMG stem/progenitor cells (SGSCs) based on quiescence at different stages. Phenotypical profiling of quiescent cells in the SMG revealed that label-retaining cells (LRCs) of embryonic or adult origin co-localized with CK8+ ductal or vimentin + mesenchymal, but not with CK5+ or CK14 + stem/progenitor cells. These SMG LRCs failed to self-renew in vitro while non-label retaining cells displayed differentiation and long-term expansion potential as organoids. Collectively, our data suggest that an active cycling population of cells is responsible for SMG homeostasis with organoid forming potential. Embryonic quiescent cells do not retain stemness in the adult submandibular gland (SMG) Postnatal quiescent cells do not exhibit stem/progenitor cell potency in the adult SMG Quiescent cells do not contribute to the homeostatic maintenance of the murine SMG Adult murine SMG stem/progenitor cells are likely to be an actively cycling population
Collapse
Affiliation(s)
- Paola Serrano Martinez
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Martti Maimets
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Reinier Bron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands.,Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Ronald van Os
- Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Gerald de Haan
- Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sarah Pringle
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
3
|
Zhang X, Schalke B, Kvell K, Kriegsmann K, Kriegsmann M, Graeter T, Preissler G, Ott G, Kurz K, Bulut E, Ströbel P, Marx A, Belharazem D. WNT4 overexpression and secretion in thymic epithelial tumors drive an autocrine loop in tumor cells in vitro. Front Oncol 2022; 12:920871. [PMID: 35965500 PMCID: PMC9372913 DOI: 10.3389/fonc.2022.920871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundWNT4-driven non-canonical signaling is crucial for homeostasis and age-related involution of the thymus. Abnormal WNT signaling is important in many cancers, but the role of WNT signaling in thymic tumors is largely unknown.Materials & MethodsExpression and function of WNT4 and FZD6 were analyzed using qRT–PCR, Western blot, ELISA, in biopsies of non-neoplastic thymi (NT), thymoma and thymic carcinomas. ShRNA techniques and functional assays were used in primary thymic epithelial cells (pTECs) and TC cell line 1889c. Cells were conventionally (2D) grown and in three-dimensional (3D) spheroids.ResultsIn biopsy, WHO classified B3 thymomas and TCs showed increased WNT4 expression compared with NTs. During short-term 2D culture, WNT4 expression and secretion declined in neoplastic pTECs but not in 3D spheroids or medium supplemented with recombinant WNT4 cultures. Under the latter condition, the growth of pTECs was accompanied by increased expression of non-canonical targets RAC1 and JNK. Down-regulation of WNT4 by shRNA induced cell death in pTECs derived from B3 thymomas and led to decreased RAC1, but not JNK protein phosphorylation. Pharmacological inhibition of NF-κB decreased both RAC1 and JNK phosphorylation in neoplastic pTECs.ConclusionsLack of the age-related decline of non-canonical WNT4 expression in TETs and restoration of declining WNT4 expression through exogeneous WNT4 or 3D culture of pTECs hints at an oncogenic role of WNT4 in TETs and is compatible with the WNT4 autocrine loop model. Crosstalk between WNT4 and NF-κB signaling may present a promising target for combined interventions in TETs.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Translational Lung Research Centre Heidelberg, German Centre for Lung Research, Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Graeter
- Department of Thoracic Surgery, University Medical Centre Erlangen, Erlangen, Germany
| | - Gerhard Preissler
- Department of Thoraxic Surgery, Clinic Schillerhöhe, Robert-Bosch-Hospital, Gerlingen, Löwenstein, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Katrin Kurz
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Elena Bulut
- Department of Thoraxic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Djeda Belharazem
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Djeda Belharazem,
| |
Collapse
|
4
|
Guo L, Cao J, Cheng D, Dong H, You L, Sun Y, Ding Y, Chai Y. Gallic acid ameliorates thymic involution via activating Sox2 and Nanog. Scand J Immunol 2022. [DOI: 10.1111/sji.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Guo
- Department of Histology and Embryology, School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment School of Military Preventive Medicine Fourth Military Medical University, Xi’an,710000 China
| | - Jia‐hui Cao
- Department of Histology and Embryology, School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
| | - Deng‐wei Cheng
- Department of Histology and Embryology, School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
| | - Han Dong
- Department of Histology and Embryology, School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
| | - Li You
- Department of Histology and Embryology, School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
| | - Yu‐rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
| |
Collapse
|
5
|
Gao H, Cao M, Deng K, Yang Y, Song J, Ni M, Xie C, Fan W, Ou C, Huang D, Lin L, Liu L, Li Y, Sun H, Cheng X, Wu J, Xia C, Deng X, Mou L, Chen P. The Lineage Differentiation and Dynamic Heterogeneity of Thymic Epithelial Cells During Thymus Organogenesis. Front Immunol 2022; 13:805451. [PMID: 35273595 PMCID: PMC8901506 DOI: 10.3389/fimmu.2022.805451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Although much progress has been made recently in revealing the heterogeneity of the thymic stromal components, the molecular programs of cell lineage divergency and temporal dynamics of thymic epithelial cell (TEC) development are largely elusive. Here, we constructed a single-cell transcriptional landscape of non-hematopoietic cells from mouse thymus spanning embryonic to adult stages, producing transcriptomes of 30,959 TECs. We resolved the transcriptional heterogeneity of developing TECs and highlighted the molecular nature of early TEC lineage determination and cortico-medullary thymic epithelial cell lineage divergency. We further characterized the differentiation dynamics of TECs by clarification of molecularly distinct cell states in the thymus developing trajectory. We also identified a population of Bpifa1+ Plet1+ mTECs that was preserved during thymus organogenesis and highly expressed tissue-resident adult stem cell markers. Finally, we highlighted the expression of Aire-dependent tissue-restricted antigens mainly in Aire+ Csn2+ mTECs and Spink5+ Dmkn+ mTECs in postnatal thymus. Overall, our data provided a comprehensive characterization of cell lineage differentiation, maturation, and temporal dynamics of thymic epithelial cells during thymus organogenesis.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Mengtao Cao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Kai Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yang Yang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinqi Song
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Ming Ni
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chuntao Xie
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Wenna Fan
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chunpei Ou
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dinggen Huang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lizhong Lin
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lixia Liu
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yangyang Li
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xinyu Cheng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Cuilan Xia
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xuefeng Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Pengfei Chen
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China.,Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
6
|
Liang Z, Zhang Q, Zhang Z, Sun L, Dong X, Li T, Tan L, Xie X, Sun L, Zhao Y. The Development and Survival of Thymic Epithelial Cells Require TSC1-Dependent Negative Regulation of mTORC1 Activity. THE JOURNAL OF IMMUNOLOGY 2021; 207:2039-2050. [PMID: 34535574 DOI: 10.4049/jimmunol.2100463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Thymic epithelial cells (TECs) are critical for the development and generation of functionally competent T cells. Until now, the mechanism that regulates the survival of TECs is poorly understood. In the current study, we found that Tsc1 controls the homeostasis of medullary TECs (mTECs) by inhibiting lysosomal-mediated apoptosis pathway in mice. TEC-specific deletion of Tsc1 predominately decreased the cell number of mTECs and, to a lesser content, affected the development cortical TECs. The defect of mTECs caused by Tsc1 deficiency in mice impaired thymocyte development and peripheral T cell homeostasis. Mechanistically, Tsc1 deficiency did not affect the cell proliferation of mTECs but increased the apoptosis of mTECs significantly. RNA-sequencing analysis showed that pathways involved in lysosomal biogenesis, cell metabolism, and apoptosis were remarkably elevated in Tsc1-deficient mTECs compared with their wild-type counterparts. Tsc1-deficient mTECs exhibited overproduction of reactive oxygen species and malfunction of lysosome, with lysosome membrane permeabilization and the release of cathepsin B and cathepsin L to the cytosol, which then lead to Bid cleaved into active truncated Bid and subsequently intrinsic apoptosis. Finally, we showed that the impaired development of mTECs could be partially reversed by decreasing mTORC1 activity via haploinsufficiency of Raptor Thus, Tsc1 is essential for the homeostasis of mTECs by inhibiting lysosomal-mediated apoptosis through mTORC1-dependent pathways.
Collapse
Affiliation(s)
- Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianxiu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xubiao Xie
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China; and .,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; .,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Montero-Herradón S, Zapata AG. Delayed maturation of thymic epithelium in mice with specific deletion of β-catenin gene in FoxN1 positive cells. Histochem Cell Biol 2021; 156:315-332. [PMID: 34254201 PMCID: PMC8550644 DOI: 10.1007/s00418-021-02012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 10/24/2022]
Abstract
Wnt signalling pathways have been reported to be involved in thymus development but their precise role in the development of both thymic epithelium (TE) and thymocytes is controversial. Herein, we examined embryonic, postnatal and adult thymi of mice with a specific deletion of β-catenin gene in FoxN1+ thymic epithelial cells (TECs). Together with a high postnatal mouse mortality, the analysis showed severe thymic hypocellularity, largely due an important reduction in numbers of developing thymocytes, and delayed, partially blocked maturation of mutant TECs. Affected TECs included largely cortical (c) TEC subsets, such as immature MTS20+ TECs, Ly51+ cTECs and a remarkable, rare Ly51+MTS20+MHCIIhi cell subpopulation previously reported to contain thymic epithelial progenitor cells (TEPCs) (Ulyanchenko et al., Cell Rep 14:2819-2832, 2016). In addition, altered postnatal organization of mutant thymic medulla failed to organize a unique, central epithelial area. This delayed maturation of TE cell components correlated with low transcript production of some molecules reported to be masters for TEC maturation, such as EphB2, EphB3 and RANK. Changes in the thymic lymphoid component became particularly evident after birth, when molecules expressed by TECs and involved in early T-cell maturation, such as CCL25, CXCL12 and Dll4, exhibited minimal values. This represented a partial blockade of the progression of DN to DP cells and reduced proportions of this last thymocyte subset. At 1 month, in correlation with a significant increase in transcript production, the DP cell percentage increased in correlation with a significant fall in the number of mature TCRαβhi thymocytes and peripheral T lymphocytes.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040, Madrid, Spain. .,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
8
|
Pinheiro RGR, Alves NL. The Early Postnatal Life: A Dynamic Period in Thymic Epithelial Cell Differentiation. Front Immunol 2021; 12:668528. [PMID: 34220815 PMCID: PMC8250140 DOI: 10.3389/fimmu.2021.668528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
The microenvironments formed by cortical (c) and medullary (m) thymic epithelial cells (TECs) play a non-redundant role in the generation of functionally diverse and self-tolerant T cells. The role of TECs during the first weeks of the murine postnatal life is particularly challenging due to the significant augment in T cell production. Here, we critically review recent studies centered on the timely coordination between the expansion and maturation of TECs during this period and their specialized role in T cell development and selection. We further discuss how aging impacts on the pool of TEC progenitors and maintenance of functionally thymic epithelial microenvironments, and the implications of these chances in the capacity of the thymus to sustain regular thymopoiesis throughout life.
Collapse
Affiliation(s)
- Ruben G R Pinheiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Doctoral Program in Cell and Molecular Biology, Instituto de Ciências Biomédicas, Universidade do Porto, Porto, Portugal
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, Sit RV, Neff NF, Darmanis S, Tan W, May AP, Marioni JC, Ponting CP, Holländer GA. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. eLife 2020; 9:e56221. [PMID: 32840480 PMCID: PMC7490013 DOI: 10.7554/elife.56221] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell death and compromised organ function. This is first observed in the thymus, the primary lymphoid organ that generates and selects T cells. However, the molecular and cellular mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse ageing leads to less efficient T cell selection, decreased self-antigen representation and increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the function of individual mature thymic epithelial cells is compromised only modestly. Specifically, an early-life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs the core immunological functions of the thymus.
Collapse
Affiliation(s)
| | - Michael D Morgan
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research United Kingdom - Cambridge Institute, Li Ka Shing Centre, University of CambridgeCambridgeUnited Kingdom
| | - Stefano Maio
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Fatima Dhalla
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Irene Calvo-Asensio
- Department of Biomedicine, University of Basel, and University Children’s HospitalBaselSwitzerland
| | - Mary E Deadman
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Adam E Handel
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Steven Chen
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Foad Green
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Rene V Sit
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Norma F Neff
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Weilun Tan
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Andy P May
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research United Kingdom - Cambridge Institute, Li Ka Shing Centre, University of CambridgeCambridgeUnited Kingdom
- EMBL-EBI, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Chris P Ponting
- MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - Georg A Holländer
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
- Department of Biomedicine, University of Basel, and University Children’s HospitalBaselSwitzerland
- Department of Biosystems Science and Engineering, ETH ZurichBaselSwitzerland
| |
Collapse
|
10
|
Dumont-Lagacé M, Daouda T, Depoërs L, Zumer J, Benslimane Y, Brochu S, Harrington L, Lemieux S, Perreault C. Qualitative Changes in Cortical Thymic Epithelial Cells Drive Postpartum Thymic Regeneration. Front Immunol 2020; 10:3118. [PMID: 32010151 PMCID: PMC6974522 DOI: 10.3389/fimmu.2019.03118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 12/05/2022] Open
Abstract
During gestation, sex hormones cause a significant thymic involution which enhances fertility. This thymic involution is rapidly corrected following parturition. As thymic epithelial cells (TECs) are responsible for the regulation of thymopoiesis, we analyzed the sequential phenotypic and transcriptomic changes in TECs during the postpartum period in order to identify mechanisms triggering postpartum thymic regeneration. In particular, we performed flow cytometry analyses and deep RNA-sequencing on purified TEC subsets at several time points before and after parturition. We report that pregnancy-induced involution is not caused by loss of TECs since their number does not change during or after pregnancy. However, during pregnancy, we observed a significant depletion of all thymocyte subsets downstream of the double-negative 1 (DN1) differentiation stage. Variations in thymocyte numbers correlated with conspicuous changes in the transcriptome of cortical TECs (cTECs). The transcriptomic changes affected predominantly cTEC expression of Foxn1, its targets and several genes that are essential for thymopoiesis. By contrast, medullary TECs (mTECs) showed very little transcriptomic changes in the early postpartum regenerative phase, but seemed to respond to the expansion of single-positive (SP) thymocytes in the late phase of regeneration. Together, these results show that postpartum thymic regeneration is orchestrated by variations in expression of a well-defined subset of cTEC genes, that occur very early after parturition.
Collapse
Affiliation(s)
- Maude Dumont-Lagacé
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Tariq Daouda
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.,Functional and Structural Bioinformatics Research Unit, Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Lucyle Depoërs
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jérémie Zumer
- Functional and Structural Bioinformatics Research Unit, Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Yahya Benslimane
- Telomere Length Homeostasis and Genomic Instability Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Brochu
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Lea Harrington
- Telomere Length Homeostasis and Genomic Instability Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Lemieux
- Functional and Structural Bioinformatics Research Unit, Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le Panse R, Dragin N. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev 2020; 19:102468. [PMID: 31927086 DOI: 10.1016/j.autrev.2020.102468] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
In western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility. However, predisposition factors have to act in concert with unknown triggering environmental factors (virus, microbiota, pollution) to initiate AD. Individuals are exposed to various environmental compounds that display endocrine disruption abilities. The cellular effects of some of these molecules may be mediated through the aryl hydrocarbon receptor (AhR). Here, we review the effects of these molecules on the homeostasis of the thymic cells, the immune tolerance intrinsic factors (transcription factors, epigenetic marks) and on the immune tolerance extrinsic factors (microbiota, virus sensibility). This review highlights the contribution of estrogen and endocrine disruptors on the dysregulation of mechanisms sustaining AD development.
Collapse
Affiliation(s)
- Judith Merrheim
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - José Villegas
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Jérôme Van Wassenhove
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rémi Khansa
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rozen le Panse
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Nadine Dragin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; Inovarion, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France.
| |
Collapse
|
12
|
St-Pierre C, Morgand E, Benhammadi M, Rouette A, Hardy MP, Gaboury L, Perreault C. Immunoproteasomes Control the Homeostasis of Medullary Thymic Epithelial Cells by Alleviating Proteotoxic Stress. Cell Rep 2018; 21:2558-2570. [PMID: 29186691 DOI: 10.1016/j.celrep.2017.10.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 01/07/2023] Open
Abstract
The sole nonredundant role of the thymic medulla is to induce central tolerance, a vital process that depends on promiscuous gene expression (pGE), a unique feature of medullary thymic epithelial cells (mTECs). Although pGE enhances transcription of >3,000 genes in mTECs, its impact on the regulation of protein homeostasis remains unexplored. Here, we report that, because of pGE, mature mTECs synthesize substantially more proteins than other cell types and are exquisitely sensitive to loss of immunoproteasomes (IPs). Indeed, IP deficiency causes proteotoxic stress in mTECs and leads to exhaustion of postnatal mTEC progenitors. Moreover, IP-deficient mice show accelerated thymic involution, which is characterized by a selective loss of mTECs and multiorgan autoimmune manifestations. We conclude that pGE, the quintessential feature of mTECs, is a major burden for the maintenance of proteostasis, which is alleviated by the constitutive expression of IPs in mTECs.
Collapse
Affiliation(s)
- Charles St-Pierre
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Erwan Morgand
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; ENS Paris-Saclay, Université Paris-Saclay, Cachan 94230, France
| | - Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Alexandre Rouette
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Louis Gaboury
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
13
|
Montero-Herradón S, García-Ceca J, Zapata AG. Altered Maturation of Medullary TEC in EphB-Deficient Thymi Is Recovered by RANK Signaling Stimulation. Front Immunol 2018; 9:1020. [PMID: 29867988 PMCID: PMC5954084 DOI: 10.3389/fimmu.2018.01020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
In the present study, the relevance of EphB2 and EphB3 tyrosine kinase receptors for the maturation of medullary thymic epithelial cells (TECs) is analyzed. The absence of both molecules, but particularly that of EphB2, courses with altered maturation of medullary Cld3,4hiSSEA1+ epithelial progenitor cells, mature medulla epithelial cells, defined by the expression of specific cell markers, including UEA1, MHCII, CD40, CD80, and AIRE, and reduced expansion of medullary islets. In vivo assays demonstrate that these changes are a consequence of the absence of EphBs in both TECs and thymocytes. On the other hand, the changes, that remains in the adult thymus, correlated well with reduced proportions of E15.5 Vγ5+RANKL+ cells in EphB-deficient thymi that could result in decreased stimulation of RANK+ medullary TECs to mature, a fact that was confirmed by recovering of proportions of both CD40hiCD80+ and MHCIIhiUEA1+ mature medullary TECs of mutant E14.5 alymphoid thymic lobes by agonist anti-RANK antibody treatment. Accordingly, the effects of EphB deficiency on medullary TECs maturation are recovered by RANK stimulation.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
14
|
Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol 2018. [PMID: 29536541 DOI: 10.1002/cne.24430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Adriana Schatton
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ezequiel Mendoza
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Kathrin Grube
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Constance Scharff
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
15
|
An efficient protocol for in vivo labeling of proliferating epithelial cells. J Immunol Methods 2018; 457:82-86. [PMID: 29605230 DOI: 10.1016/j.jim.2018.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 11/20/2022]
Abstract
The study of organogenesis, tissue-homeostasis and regeneration requires the precise assessment of in vivo cell proliferation. To this end a host of methods have been developed to detect and quantify DNA synthesis in proliferating cells. These include cell labeling with various nucleotide analogues and fluorescence reporter-based animal models with each method presenting its idiosyncratic shortcomings. Quantitative assessment of epithelial cell turnover has been partly hampered due to their variable and limited in vivo accessibility and the requirement for harsher isolation procedures to procure single cells for FACS analysis. Here, we report a reliable protocol to study in vivo cell proliferation of epithelial cells in mice by repeatedly injecting EdU intravenously for an extended 12-day period. EdU incorporation was quantitated ex vivo by FACS after tissue dissociation in order to obtain single epithelial cell suspensions. As a lead population, we analyzed thymic epithelial cells (TECs), where we were able to label compartmentalized TEC subsets to saturation without apparent toxic effects on the thymus architecture or stress-sensitive TEC lineage differentiation. The data is in concordance with the prevailing model of medullary TEC terminal differentiation that includes the post-Aire stage. The same protocol was successfully applied to epithelial cells of various other organs - skin, lymph node, kidney and small intestine - tissues with widely varying frequencies and rates of proliferating epithelial cells.
Collapse
|
16
|
Sakata M, Ohigashi I, Takahama Y. Cellularity of Thymic Epithelial Cells in the Postnatal Mouse. THE JOURNAL OF IMMUNOLOGY 2018; 200:1382-1388. [PMID: 29298829 DOI: 10.4049/jimmunol.1701235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
The molecular and cellular biology of thymic epithelial cells (TECs) often relies on the analysis of TECs isolated in enzymatically digested single-cell suspensions derived from mouse thymus. Many independent studies have reported that the estimated cellularity of total TECs isolated from one adult mouse is on the order of up to 105 However, these numbers appear extremely small given that the cellularity of total thymocytes exceeds 108 and that TECs play multiple roles in thymocyte development and repertoire formation. In the present study, we aimed to measure the numbers of β5t-expressing cortical TECs and Aire-expressing medullary TECs in postnatal mouse thymus in situ without enzymatic digestion. The numbers of these TECs were manually counted in individual thymic sections and were three-dimensionally summed throughout the entire thymic lobes. The results show that the cellularity of total TECs in one 5-wk-old female mouse exceeds 106, containing ∼9 × 105 β5t+ cortical TECs and ∼1.1 × 106 Aire+ medullary TECs. These results suggest that the use of conventional enzymatic digestion methods for the isolation of TECs may have resulted in the underestimation of the cellularity, and possibly the biology, of TECs.
Collapse
Affiliation(s)
- Mie Sakata
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
17
|
Dumont-Lagacé M, Gerbe H, Daouda T, Laverdure JP, Brochu S, Lemieux S, Gagnon É, Perreault C. Detection of Quiescent Radioresistant Epithelial Progenitors in the Adult Thymus. Front Immunol 2017; 8:1717. [PMID: 29259606 PMCID: PMC5723310 DOI: 10.3389/fimmu.2017.01717] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/21/2017] [Indexed: 11/13/2022] Open
Abstract
Thymic aging precedes that of other organs and is initiated by the gradual loss of thymic epithelial cells (TECs). Based on in vitro culture and transplantation assays, recent studies have reported on the presence of thymic epithelial progenitor cells (TEPCs) in young adult mice. However, the physiological role and properties of TEPC populations reported to date remain unclear. Using an in vivo label-retention assay, we previously identified a population of quiescent but non-senescent TECs. The goals of this study were therefore (i) to evaluate the contribution of these quiescent TECs to thymic regeneration following irradiation-induced acute thymic injury and (ii) to characterize their phenotypic and molecular profiles using flow cytometry, immunohistology, and transcriptome sequencing. We report that while UEA1+ cells cycle the most in steady state, they are greatly affected by irradiation, leading to cell loss and proliferative arrest following acute thymic involution. On the opposite, the UEA1– subset of quiescent TECs is radioresistant and proliferate in situ following acute thymic involution, thereby contributing to thymic regeneration in 28- to 30-week-old mice. UEA1– quiescent TECs display an undifferentiated phenotype (co-expression of K8 and K5 cytokeratins) and express high levels of genes that regulate stem cell activity in different tissues (e.g., Podxl and Ptprz1). In addition, two features suggest that UEA1– quiescent TECs occupy discrete stromal niches: (i) their preferential location in clusters adjacent to the cortico-medullary junction and (ii) their high expression of genes involved in cross talk with mesenchymal cells. The ability of UEA1– quiescent TECs to participate to TEC regeneration qualifies them as in vivo progenitor cells particularly relevant in the context of regeneration following acute thymic injury.
Collapse
Affiliation(s)
- Maude Dumont-Lagacé
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hervé Gerbe
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Tariq Daouda
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | | | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Informatics and Operational Research, Université de Montréal, Montréal, QC, Canada
| | - Étienne Gagnon
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
A critical epithelial survival axis regulated by MCL-1 maintains thymic function in mice. Blood 2017; 130:2504-2515. [PMID: 28972012 DOI: 10.1182/blood-2017-03-771576] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
T-cell differentiation is governed by interactions with thymic epithelial cells (TECs) and defects in this process undermine immune function and tolerance. To uncover new strategies to restore thymic function and adaptive immunity in immunodeficiency, we sought to determine the molecular mechanisms that control life and death decisions in TECs. Guided by gene expression profiling, we created mouse models that specifically deleted prosurvival genes in TECs. We found that although BCL-2 and BCL-XL were dispensable for TEC homeostasis, MCL-1 deficiency impacted on TECs as early as embryonic day 15.5, resulting in early thymic atrophy and T-cell lymphopenia, with near complete loss of thymic tissue by 2 months of age. MCL-1 was not necessary for TEC differentiation but was continually required for the survival of mature cortical and medullary TECs and the maintenance of thymic architecture. A screen of TEC trophic factors in organ cultures showed that epidermal growth factor upregulated MCL-1 via MAPK/ERK kinase activity, providing a molecular mechanism for the support of TEC survival. This signaling axis governing TEC survival and thymic function represents a new target for strategies for thymic protection and regeneration.
Collapse
|
19
|
Belharazem D, Grass A, Paul C, Vitacolonna M, Schalke B, Rieker RJ, Körner D, Jungebluth P, Simon-Keller K, Hohenberger P, Roessner EM, Wiebe K, Gräter T, Kyriss T, Ott G, Geserick P, Leverkus M, Ströbel P, Marx A. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling. Oncotarget 2017; 8:89580-89594. [PMID: 29163772 PMCID: PMC5685693 DOI: 10.18632/oncotarget.15929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022] Open
Abstract
The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1high thymomas and TCs.
Collapse
Affiliation(s)
- Djeda Belharazem
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Albert Grass
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Cornelia Paul
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mario Vitacolonna
- Department of Thoracic Surgery, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Ralf J Rieker
- Institute of Pathology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Körner
- Department of Thoracic Surgery, Thorax Clinic, University of Heidelberg, Heidelberg, Germany
| | - Philipp Jungebluth
- Department of Thoracic Surgery, Thorax Clinic, University of Heidelberg, Heidelberg, Germany
| | - Katja Simon-Keller
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Hohenberger
- Department of Thoracic Surgery, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Eric M Roessner
- Department of Thoracic Surgery, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karsten Wiebe
- Department of Thoracic Surgery, University of Münster, Münster, Germany
| | - Thomas Gräter
- Department of Thoracic Surgery, Clinic Löwenstein, Löwenstein, Germany
| | - Thomas Kyriss
- Department of Thoracic Surgery, Clinic Schillerhöhe, Robert-Bosch-Hospital, Gerlingen, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Peter Geserick
- Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Leverkus
- Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
20
|
A label-retaining but unipotent cell population resides in biliary compartment of mammalian liver. Sci Rep 2017; 7:40322. [PMID: 28084309 PMCID: PMC5234023 DOI: 10.1038/srep40322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
Abstract
Cells with slow proliferation kinetics that retain the nuclear label over long time periods-the label-retaining cells (LRCs)-represent multipotent stem cells in a number of adult tissues. Since the identity of liver LRCs (LLRCs) had remained elusive we utilized a genetic approach to reveal LLRCs in normal non-injured livers and characterized their regenerative properties in vivo and in culture. We found that LLRCs were located in biliary vessels and participated in the regeneration of biliary but not hepatocyte injury. In culture experiments the sorted LLRCs displayed an enhanced self-renewal capacity but a unipotent biliary differentiation potential. Transcriptome analysis revealed a unique set of tumorigenesis- and nervous system-related genes upregulated in LLRCs when compared to non-LRC cholangiocytes. We conclude that the LLRCs established during the normal morphogenesis of the liver do not represent a multipotent primitive somatic stem cell population but act as unipotent biliary progenitor cells.
Collapse
|
21
|
Hamazaki Y, Sekai M, Minato N. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunol Rev 2016; 271:38-55. [PMID: 27088906 DOI: 10.1111/imr.12412] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus consists of two distinct anatomical regions, the cortex and the medulla; medullary thymic epithelial cells (mTECs) play a crucial role in establishing central T-cell tolerance for self-antigens. Although the understanding of mTEC development in thymic organogenesis as well as the regulation of their differentiation and maturation has improved, the mechanisms of postnatal maintenance remain poorly understood. This issue has a central importance in immune homeostasis and physiological thymic involution as well as autoimmune disorders in various clinicopathological settings. Recently, several reports have demonstrated the existence of TEC stem or progenitor cells in the postnatal thymus, which are either bipotent or unipotent. We identified stem cells specified for mTEC-lineage that are generated in the thymic ontogeny and may sustain mTEC regeneration and lifelong central T-cell self-tolerance. This finding suggested that the thymic medulla is maintained autonomously by its own stem cells. Although several issues, including the relationship with other putative TEC stem/progenitors, remain unclear, further examination of mTEC stem cells (mTECSCs) and their regulatory mechanisms may contribute to the understanding of postnatal immune homeostasis. Possible relationships between decline of mTECSC activity and early thymic involution as well as various autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Griffith LM, Cowan MJ, Notarangelo LD, Kohn DB, Puck JM, Shearer WT, Burroughs LM, Torgerson TR, Decaluwe H, Haddad E. Primary Immune Deficiency Treatment Consortium (PIDTC) update. J Allergy Clin Immunol 2016; 138:375-85. [PMID: 27262745 PMCID: PMC4986691 DOI: 10.1016/j.jaci.2016.01.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/26/2015] [Accepted: 01/14/2016] [Indexed: 12/26/2022]
Abstract
The Primary Immune Deficiency Treatment Consortium (PIDTC) is a collaboration of 41 North American centers studying therapy for rare primary immune deficiency diseases (PIDs), including severe combined immune deficiency (SCID), Wiskott-Aldrich syndrome (WAS), and chronic granulomatous disease (CGD). An additional 3 European centers have partnered with the PIDTC to study CGD. Natural history protocols of the PIDTC analyze outcomes of treatment for rare PIDs in multicenter longitudinal retrospective, prospective, and cross-sectional studies. Since 2009, participating centers have enrolled more than 800 subjects on PIDTC protocols for SCID, and enrollment in the studies on WAS and CGD is underway. Four pilot projects have been funded, and 12 junior investigators have received fellowship awards. Important publications of the consortium describe the outcomes of hematopoietic cell transplantation for SCID during 2000-2009, diagnostic criteria for SCID, and the pilot project of newborn screening for SCID in the Navajo Nation. The PIDTC Annual Scientific Workshops provide an opportunity to strengthen collaborations with junior investigators, patient advocacy groups, and international colleagues. Funded by the National Institute of Allergy and Infectious Diseases and the Office of Rare Diseases Research, National Center for Advancing Translational Sciences, the PIDTC has recently received renewal for another 5 years. Here we review accomplishments of the group, projects underway, highlights of recent workshops, and challenges for the future.
Collapse
Affiliation(s)
- Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Morton J Cowan
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Luigi D Notarangelo
- Division of Immunology, Children's Hospital, and Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Donald B Kohn
- Departments of Microbiology, Immunology & Molecular Genetics and Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Jennifer M Puck
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - William T Shearer
- Pediatric Allergy & Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Lauri M Burroughs
- Pediatric Hematology/Oncology, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Wash
| | - Troy R Torgerson
- Pediatric Rheumatology, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - Hélène Decaluwe
- Pediatric Immunology and Pediatrics, Mother and Child Ste-Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Elie Haddad
- Pediatric Immunology and Pediatrics, Mother and Child Ste-Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Tajima A, Pradhan I, Trucco M, Fan Y. Restoration of Thymus Function with Bioengineered Thymus Organoids. CURRENT STEM CELL REPORTS 2016; 2:128-139. [PMID: 27529056 PMCID: PMC4982700 DOI: 10.1007/s40778-016-0040-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The thymus is the primary site for the generation of a diverse repertoire of T-cells that are essential to the efficient function of adaptive immunity. Numerous factors varying from aging, chemotherapy, radiation exposure, virus infection and inflammation contribute to thymus involution, a phenomenon manifested as loss of thymus cellularity, increased stromal fibrosis and diminished naïve T-cell output. Rejuvenating thymus function is a challenging task since it has limited regenerative capability and we still do not know how to successfully propagate thymic epithelial cells (TECs), the predominant population of the thymic stromal cells making up the thymic microenvironment. Here, we will discuss recent advances in thymus regeneration and the prospects of applying bioengineered artificial thymus organoids in regenerative medicine and solid organ transplantation.
Collapse
Affiliation(s)
- Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
| | - Isha Pradhan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104
| |
Collapse
|
24
|
Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. THE JOURNAL OF IMMUNOLOGY 2016; 196:4760-70. [DOI: 10.4049/jimmunol.1502499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
|
25
|
Ohigashi I, Kozai M, Takahama Y. Development and developmental potential of cortical thymic epithelial cells. Immunol Rev 2016; 271:10-22. [DOI: 10.1111/imr.12404] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| | - Mina Kozai
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| | - Yousuke Takahama
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| |
Collapse
|
26
|
Al‐Chami E, Tormo A, Pasquin S, Kanjarawi R, Ziouani S, Rafei M. Interleukin-21 administration to aged mice rejuvenates their peripheral T-cell pool by triggering de novo thymopoiesis. Aging Cell 2016; 15:349-60. [PMID: 26762709 PMCID: PMC4783337 DOI: 10.1111/acel.12440] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2015] [Indexed: 12/16/2022] Open
Abstract
The vaccination efficacy in the elderly is significantly reduced compared to younger populations due to thymic involution and age‐related intrinsic changes affecting their naïve T‐cell compartment. Interleukin (IL)‐21 was recently shown to display thymostimulatory properties. Therefore, we hypothesized that its administration to ageing hosts may improve T‐cell output and thus restore a competent peripheral T‐cell compartment. Indeed, an increase in the production of recent thymic emigrants (RTEs) attributable to intrathymic expansion of early thymic progenitors (ETPs), double‐negative (DN), and double‐positive (DP) thymocytes as well as thymic epithelial cell (TEC) was observed in recombinant (r)IL‐21‐treated aged mice. In sharp contrast, no alterations in the frequency of bone marrow (BM)‐derived progenitors were detected following rIL‐21 administration. Enhanced production of naïve T cells improved the T‐cell receptor (TCR) repertoire diversity and re‐established a pool of T cells exhibiting higher levels of miR‐181a and diminished amounts of the TCR‐inhibiting phosphatases SHP‐2 and DUSP5/6. As a result, stimulation of T cells derived from rIL‐21‐treated aged mice displayed enhanced activation of Lck, ZAP‐70, and ERK, which ultimately boosted their IL‐2 production, CD25 expression, and proliferation capabilities in comparison with T cells derived from control aged mice. Consequently, aged rIL‐21‐treated mice vaccinated using a tyrosinase‐related protein 2 (Trp2)‐derived peptide exhibited a substantial delay in B16 tumor growth and improved survival. The results of this study highlight the immunorestorative function of rIL‐21 paving its use as a strategy for the re‐establishment of effective immunity in the elderly.
Collapse
Affiliation(s)
- E. Al‐Chami
- Department of Pharmacology Université de Montréal Montréal QC H3C 1J7 Canada
| | - A. Tormo
- Department of Pharmacology Université de Montréal Montréal QC H3C 1J7 Canada
| | - S. Pasquin
- Department of Pharmacology Université de Montréal Montréal QC H3C 1J7 Canada
| | - R. Kanjarawi
- Department of Pharmacology Université de Montréal Montréal QC H3C 1J7 Canada
| | - S. Ziouani
- Université Paris‐Sud, Faculté de Pharmacie 5 rue J.B. Clément 92296 Châtenay‐Malabry Cedex France
| | - M. Rafei
- Department of Pharmacology Université de Montréal Montréal QC H3C 1J7 Canada
| |
Collapse
|
27
|
Satoh R, Kakugawa K, Yasuda T, Yoshida H, Sibilia M, Katsura Y, Levi B, Abramson J, Koseki Y, Koseki H, van Ewijk W, Hollander GA, Kawamoto H. Requirement of Stat3 Signaling in the Postnatal Development of Thymic Medullary Epithelial Cells. PLoS Genet 2016; 12:e1005776. [PMID: 26789017 PMCID: PMC4720355 DOI: 10.1371/journal.pgen.1005776] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/08/2015] [Indexed: 01/20/2023] Open
Abstract
Thymic medullary regions are formed in neonatal mice as islet-like structures, which increase in size over time and eventually fuse a few weeks after birth into a continuous structure. The development of medullary thymic epithelial cells (TEC) is dependent on NF-κB associated signaling though other signaling pathways may contribute. Here, we demonstrate that Stat3-mediated signals determine medullary TEC cellularity, architectural organization and hence the size of the medulla. Deleting Stat3 expression selectively in thymic epithelia precludes the postnatal enlargement of the medulla retaining a neonatal architecture of small separate medullary islets. In contrast, loss of Stat3 expression in cortical TEC neither affects the cellularity or organization of the epithelia. Activation of Stat3 is mainly positioned downstream of EGF-R as its ablation in TEC phenocopies the loss of Stat3 expression in these cells. These results indicate that Stat3 meditated signal via EGF-R is required for the postnatal development of thymic medullary regions. Thymic medulla is known to be an essential site for the deletion of auto-reactive T cells. Whereas it has been well documented that the development of medullary thymic epithelial cells (mTECs) depends on NF-κB associated signaling, it remained unclear whether other signaling pathways are also involved. In this context, it had been reported that conditional deletion of Stat3 alleles in TECs using cytokeratin-5 (CK5) promoter controlled Cre expression results in a profound impairment in TEC development. However, a detailed analysis of phenotypes in mTECs remained unstudied. In the present study, we show that thymic medullary regions remain as small islets when Stat3 is conditionally deleted in thymic epithelial cells, while they normal fuse to form continuous structures during postnatal development. Furthermore, we identified EGF-R mediated signal to be placed upstream of Stat3 activation, as its ablation phenocopied the loss of Stat3 expression in TECs. Thus, the present study revealed that Stat3 is required for the postnatal development of medullary regions.
Collapse
Affiliation(s)
- Rumi Satoh
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kiyokazu Kakugawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takuwa Yasuda
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokoham, Japan
| | - Hisahiro Yoshida
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokoham, Japan
| | - Maria Sibilia
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Yoshimoto Katsura
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Ben Levi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Willem van Ewijk
- Department of Molecular Cell Biology and Department of Immunology, Leiden University Medical Center, RA Leiden, the Netherlands
| | - Georg A. Hollander
- Laboratory of Pediatric Immunology, Center for Biomedicine, University of Basel, and the University Children’s Hospital, Basel, Switzerland
- Laboratory of Developmental Immunology Weatherall Institute of Molecular Medicine and Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
28
|
Mayer CE, Žuklys S, Zhanybekova S, Ohigashi I, Teh HY, Sansom SN, Shikama-Dorn N, Hafen K, Macaulay IC, Deadman ME, Ponting CP, Takahama Y, Holländer GA. Dynamic spatio-temporal contribution of single β5t+ cortical epithelial precursors to the thymus medulla. Eur J Immunol 2016; 46:846-56. [PMID: 26694097 PMCID: PMC4832341 DOI: 10.1002/eji.201545995] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/24/2015] [Accepted: 12/17/2015] [Indexed: 01/20/2023]
Abstract
Intrathymic T‐cell development is critically dependent on cortical and medullary thymic epithelial cells (TECs). Both epithelial subsets originate during early thymus organogenesis from progenitor cells that express the thymoproteasome subunit β5t, a typical feature of cortical TECs. Using in vivo lineage fate mapping, we demonstrate in mice that β5t+ TEC progenitors give rise to the medullary TEC compartment early in life but significantly limit their contribution once the medulla has completely formed. Lineage‐tracing studies at single cell resolution demonstrate for young mice that the postnatal medulla is expanded from individual β5t+ cortical progenitors located at the cortico‐medullary junction. These results therefore not only define a developmental window during which the expansion of medulla is efficiently enabled by progenitors resident in the thymic cortex, but also reveal the spatio‐temporal dynamics that control the growth of the thymic medulla.
Collapse
Affiliation(s)
- Carlos E Mayer
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Saulius Žuklys
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Izumi Ohigashi
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Japan
| | - Hong-Ying Teh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stephen N Sansom
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Katrin Hafen
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Iain C Macaulay
- Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Mary E Deadman
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Chris P Ponting
- Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Japan
| | - Georg A Holländer
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Nishijima H, Kitano S, Miyachi H, Morimoto J, Kawano H, Hirota F, Morita R, Mouri Y, Masuda K, Imoto I, Ikuta K, Matsumoto M. Ectopic Aire Expression in the Thymic Cortex Reveals Inherent Properties of Aire as a Tolerogenic Factor within the Medulla. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4641-9. [PMID: 26453754 DOI: 10.4049/jimmunol.1501026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022]
Abstract
Cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells (mTECs) play essential roles in the positive and negative selection of developing thymocytes, respectively. Aire in mTECs plays an essential role in the latter process through expression of broad arrays of tissue-restricted Ags. To determine whether the location of Aire within the medulla is absolutely essential or whether Aire could also function within the cortex for establishment of self-tolerance, we used bacterial artificial chromosome technology to establish a semiknockin strain of NOD-background (β5t/Aire-transgenic) mice expressing Aire under control of the promoter of β5t, a thymoproteasome expressed exclusively in the cortex. Although Aire was expressed in cTECs as typical nuclear dot protein in β5t/Aire-Tg mice, cTECs expressing Aire ectopically did not confer transcriptional expression of either Aire-dependent or Aire-independent tissue-restricted Ag genes. We then crossed β5t/Aire-Tg mice with Aire-deficient NOD mice, generating a strain in which Aire expression was confined to cTECs. Despite the presence of Aire(+) cTECs, these mice succumbed to autoimmunity, as did Aire-deficient NOD mice. The thymic microenvironment harboring Aire(+) cTECs, within which many Aire-activated genes were present, also showed no obvious alteration of positive selection, suggesting that Aire's unique property of generating a self-tolerant T cell repertoire is functional only in mTECs.
Collapse
Affiliation(s)
- Hitoshi Nishijima
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Junko Morimoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Kawano
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Fumiko Hirota
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Ryoko Morita
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yasuhiro Mouri
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Kiyoshi Masuda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; and
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; and
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan;
| |
Collapse
|
30
|
Adult Thymic Medullary Epithelium Is Maintained and Regenerated by Lineage-Restricted Cells Rather Than Bipotent Progenitors. Cell Rep 2015; 13:1432-1443. [PMID: 26549457 DOI: 10.1016/j.celrep.2015.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/24/2015] [Accepted: 10/02/2015] [Indexed: 01/09/2023] Open
Abstract
Medullary thymic epithelial cells (mTECs) play an essential role in establishing self-tolerance in T cells. mTECs originate from bipotent TEC progenitors that generate both mTECs and cortical TECs (cTECs), although mTEC-restricted progenitors also have been reported. Here, we report in vivo fate-mapping analysis of cells that transcribe β5t, a cTEC trait expressed in bipotent progenitors, during a given period in mice. We show that, in adult mice, most mTECs are derived from progenitors that transcribe β5t during embryogenesis and the neonatal period up to 1 week of age. The contribution of adult β5t(+) progenitors was minor even during injury-triggered regeneration. Our results further demonstrate that adult mTEC-restricted progenitors are derived from perinatal β5t(+) progenitors. These results indicate that the adult thymic medullary epithelium is maintained and regenerated by mTEC-lineage cells that pass beyond the bipotent stage during early ontogeny.
Collapse
|
31
|
Hamazaki Y. Adult thymic epithelial cell (TEC) progenitors and TEC stem cells: Models and mechanisms for TEC development and maintenance. Eur J Immunol 2015; 45:2985-93. [PMID: 26362014 DOI: 10.1002/eji.201545844] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/06/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023]
Abstract
The thymus is the primary lymphoid organ for generating self-restricted and self-tolerant functional T cells. Its two distinct anatomical regions, the cortex and the medulla, are involved in positive and negative selection, respectively. Thymic epithelial cells (TECs) constitute the framework of this tissue and function as major stromal components. Extensive studies for more than a decade have revealed how TECs are generated during organogenesis; progenitors specific for medullary TECs (mTECs) and cortical TECs (cTECs) as well as bipotent progenitors for both lineages have been identified, and the signaling pathways required for the development and maturation of mTECs have been elucidated. However, little is known about the initial commitment of mTECs and cTECs during ontogeny, and how regeneration of both lineages is sustained in the postnatal/adult thymus. Recently, stem cell activities in TECs have been demonstrated, and TEC progenitors have been identified in the postnatal thymus. In this review, recent advances in studying the development and maintenance of TECs are summarized, and the possible mechanisms of thymic regeneration and involution are discussed.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
32
|
Khan IS, Park CY, Mavropoulos A, Shariat N, Pollack JL, Barczak AJ, Erle DJ, McManus MT, Anderson MS, Jeker LT. Identification of MiR-205 As a MicroRNA That Is Highly Expressed in Medullary Thymic Epithelial Cells. PLoS One 2015; 10:e0135440. [PMID: 26270036 PMCID: PMC4535774 DOI: 10.1371/journal.pone.0135440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022] Open
Abstract
Thymic epithelial cells (TECs) support T cell development in the thymus. Cortical thymic epithelial cells (cTECs) facilitate positive selection of developing thymocytes whereas medullary thymic epithelial cells (mTECs) facilitate the deletion of self-reactive thymocytes in order to prevent autoimmunity. The mTEC compartment is highly dynamic with continuous maturation and turnover, but the genetic regulation of these processes remains poorly understood. MicroRNAs (miRNAs) are important regulators of TEC genetic programs since miRNA-deficient TECs are severely defective. However, the individual miRNAs important for TEC maintenance and function and their mechanisms of action remain unknown. Here, we demonstrate that miR-205 is highly and preferentially expressed in mTECs during both thymic ontogeny and in the postnatal thymus. This distinct expression is suggestive of functional importance for TEC biology. Genetic ablation of miR-205 in TECs, however, neither revealed a role for miR-205 in TEC function during homeostatic conditions nor during recovery from thymic stress conditions. Thus, despite its distinct expression, miR-205 on its own is largely dispensable for mTEC biology.
Collapse
Affiliation(s)
- Imran S. Khan
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Chong Y. Park
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- WM Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, California, United States of America
| | - Anastasia Mavropoulos
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nikki Shariat
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- WM Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Joshua L. Pollack
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Andrea J. Barczak
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - David J. Erle
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Michael T. McManus
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- WM Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Mark S. Anderson
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MSA); (LTJ)
| | - Lukas T. Jeker
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MSA); (LTJ)
| |
Collapse
|
33
|
Dumont-Lagacé M, St-Pierre C, Perreault C. Sex hormones have pervasive effects on thymic epithelial cells. Sci Rep 2015; 5:12895. [PMID: 26250469 PMCID: PMC4528223 DOI: 10.1038/srep12895] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/15/2015] [Indexed: 12/15/2022] Open
Abstract
The goal of our study was to evaluate at the systems-level, the effect of sex hormones on thymic epithelial cells (TECs). To this end, we sequenced the transcriptome of cortical and medullary TECs (cTECs and mTECs) from three groups of 6 month-old mice: males, females and males castrated at four weeks of age. In parallel, we analyzed variations in the size of TEC subsets in those three groups between 1 and 12 months of age. We report that sex hormones have pervasive effects on the transcriptome of TECs. These effects were exquisitely TEC-subset specific. Sexual dimorphism was particularly conspicuous in cTECs. Male cTECs displayed low proliferation rates that correlated with low expression of Foxn1 and its main targets. Furthermore, male cTECs expressed relatively low levels of genes instrumental in thymocyte expansion (e.g., Dll4) and positive selection (Psmb11 and Ctsl). Nevertheless, cTECs were more abundant in males than females. Accumulation of cTECs in males correlated with differential expression of genes regulating cell survival in cTECs and cell differentiation in mTECs. The sexual dimorphism of TECs highlighted here may be mechanistically linked to the well-recognized sex differences in susceptibility to infections and autoimmune diseases.
Collapse
Affiliation(s)
- Maude Dumont-Lagacé
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada H3C 3J7 [2] Department of Medicine, Université de Montréal, Montreal, QC, Canada H3C 3J7
| | - Charles St-Pierre
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada H3C 3J7 [2] Department of Medicine, Université de Montréal, Montreal, QC, Canada H3C 3J7
| | - Claude Perreault
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada H3C 3J7 [2] Department of Medicine, Université de Montréal, Montreal, QC, Canada H3C 3J7
| |
Collapse
|
34
|
St-Pierre C, Trofimov A, Brochu S, Lemieux S, Perreault C. Differential Features of AIRE-Induced and AIRE-Independent Promiscuous Gene Expression in Thymic Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:498-506. [PMID: 26034170 DOI: 10.4049/jimmunol.1500558] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2023]
Abstract
Establishment of self-tolerance in the thymus depends on promiscuous expression of tissue-restricted Ags (TRA) by thymic epithelial cells (TEC). This promiscuous gene expression (pGE) is regulated in part by the autoimmune regulator (AIRE). To evaluate the commonalities and discrepancies between AIRE-dependent and -independent pGE, we analyzed the transcriptome of the three main TEC subsets in wild-type and Aire knockout mice. We found that the impact of AIRE-dependent pGE is not limited to generation of TRA. AIRE decreases, via non-cell autonomous mechanisms, the expression of genes coding for positive regulators of cell proliferation, and it thereby reduces the number of cortical TEC. In mature medullary TEC, AIRE-driven pGE upregulates non-TRA coding genes that enhance cell-cell interactions (e.g., claudins, integrins, and selectins) and are probably of prime relevance to tolerance induction. We also found that AIRE-dependent and -independent TRA present several distinctive features. In particular, relative to AIRE-induced TRA, AIRE-independent TRA are more numerous and show greater splicing complexity. Furthermore, we report that AIRE-dependent versus -independent TRA project nonredundant representations of peripheral tissues in the thymus.
Collapse
Affiliation(s)
- Charles St-Pierre
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and
| | - Assya Trofimov
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and
| |
Collapse
|
35
|
Lepletier A, Chidgey AP, Savino W. Perspectives for Improvement of the Thymic Microenvironment through Manipulation of Thymic Epithelial Cells: A Mini-Review. Gerontology 2015; 61:504-14. [DOI: 10.1159/000375160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
|
36
|
Sekai M, Hamazaki Y, Minato N. Medullary thymic epithelial stem cells maintain a functional thymus to ensure lifelong central T cell tolerance. Immunity 2014; 41:753-61. [PMID: 25464854 DOI: 10.1016/j.immuni.2014.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/16/2014] [Indexed: 01/31/2023]
Abstract
Medullary thymic epithelial cells (mTECs) are crucial for central T cell self-tolerance. Although progenitors of mTECs have been demonstrated in thymic organogenesis, the mechanism for postnatal mTEC maintenance remains elusive. We demonstrate that implantation of embryonic TECs expressing claudin-3 and claudin-4 (Cld3,4) in a medulla-defective thymic microenvironment restores medulla formation and suppresses multiorgan autoimmunity throughout life. A minor SSEA-1(+) fraction within the embryonic Cld3,4(hi) TECs contained self-renewable clonogenic TECs, capable of preferentially generating mature mTECs in vivo. Adult SSEA-1(+)Cld3,4(hi) TECs retained mTEC reconstitution potential, although the activity decreased. The clonogenicity of TECs also declined rapidly after birth in wild-type mice, whereas it persisted in Rag2(?/?) adult mice with defective thymopoiesis. The results suggest that unipotent mTEC-restricted stem cells that develop in the embryo have the capacity to functionally reconstitute the thymic medulla long-term, thus ensuring lifelong central T cell self-tolerance.
Collapse
Affiliation(s)
- Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
37
|
Ribeiro AR, Meireles C, Rodrigues PM, Alves NL. Intermediate expression of CCRL1 reveals novel subpopulations of medullary thymic epithelial cells that emerge in the postnatal thymus. Eur J Immunol 2014; 44:2918-24. [PMID: 25070355 DOI: 10.1002/eji.201444585] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/06/2014] [Accepted: 07/25/2014] [Indexed: 12/20/2022]
Abstract
Cortical and medullary thymic epithelial cells (cTECs and mTECs, respectively) provide inductive microenvironments for T-cell development and selection. The differentiation pathway of cTEC/mTEC lineages downstream of common bipotent progenitors at discrete stages of development remains unresolved. Using IL-7/CCRL1 dual reporter mice that identify specialized TEC subsets, we show that the stepwise acquisition of chemokine (C-C motif) receptor-like 1 (CCRL1) is a late determinant of cTEC differentiation. Although cTECs expressing high CCRL1 levels (CCRL1(hi) ) develop normally in immunocompetent and Rag2(-/-) thymi, their differentiation is partially blocked in Rag2(-/-) Il2rg(-/-) counterparts. These results unravel a novel checkpoint in cTEC maturation that is regulated by the cross-talk between TECs and immature thymocytes. Additionally, we identify new Ulex europaeus agglutinin 1 (UEA)(+) mTEC subtypes expressing intermediate CCRL1 levels (CCRL1(int) ) that conspicuously emerge in the postnatal thymus and differentially express Tnfrsf11a, Ccl21, and Aire. While rare in fetal and in Rag2(-/-) thymi, CCRL1(int) mTECs are restored in Rag2(-/-) Marilyn TCR-Tg mice, indicating that the appearance of postnatal-restricted mTECs is closely linked with T-cell selection. Our findings suggest that alternative temporally restricted routes of new mTEC differentiation contribute to the establishment of the medullary niche in the postnatal thymus.
Collapse
Affiliation(s)
- Ana R Ribeiro
- Thymus Development and Function Laboratory, Institute for Molecular and Cellular Biology, Porto, Portugal; Institute for Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|