1
|
Musavi H, Iraie R, Mohammadi M, Barartabar Z, Yazdi M, Bagheri A, Khonakdar-Tarsi A. Investigating the Effect of Galbanic Acid on Lipin-1 and Lipin-2 Genes in Fatty Liver Cells with Palmitate. Adv Biomed Res 2024; 13:106. [PMID: 39717250 PMCID: PMC11665169 DOI: 10.4103/abr.abr_456_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 12/25/2024] Open
Abstract
Background Non-alcoholic fatty liver disease is related to lipid accumulation and inflammation. Considering the role of lipin-1 and lipin-2 in fat homeostasis and inflammation, this study aimed to explore the effect of galbanic acid (Gal) and resveratrol (RSV) on alterations in the gene expression levels and protein abundance of lipin-1 and lipin-2 in HepG2 liver cells lipid-enriched with palmitate (Pal). Materials and Methods HepG2 cells were subjected to different amounts of Gal and RSV for 24 hours in the presence of Pal to induce lipid accumulation. The RT-PCR method was employed to assess the expression of lipin-1 and lipin-2 genes, while protein levels were evaluated by western blot analysis. Lipid accumulation was determined qualitatively and semi-quantitatively using the oil-red staining technique. Results Gal treatment increased lipin-1 and lipin-2 gene expression (P < 0.05). In contrast, the groups treated with RSV did not show a substantial variance in the expression levels of the two genes (P > 0.05). In the groups treated with Gal/RSV, the intensity of lipin-2 protein bands was higher compared to the Pal group (P > 0.01); however, the intensity of lipin-1 protein bands was not significantly different (P > 0.05). Conclusion Gal, a coumarin compound, significantly increased the expression of lipin-1 and lipin-2 in HepG2 cells treated with Pal. Consequently, this research suggests gal as a novel strategy for regulating fat homeostasis in HepG2 cells.
Collapse
Affiliation(s)
- Hadis Musavi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Iraie
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mohammadi
- Health System Research, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zeinab Barartabar
- Department of Clinical Biochemistry, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohammad Yazdi
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar-Tarsi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Peraza DA, Benito-Salamanca L, Moreno-Estar S, Alonso E, López-López JR, Pérez-Garcia MT, Cidad P. A sex-dependent role of Kv1.3 channels from macrophages in metabolic syndrome. Front Physiol 2024; 15:1487775. [PMID: 39605858 PMCID: PMC11599228 DOI: 10.3389/fphys.2024.1487775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Coronary artery disease (CAD) is the foremost single cause of mortality and disability globally. Patients with type 2 diabetes (T2DM) have a higher incidence of CAD, and poorer prognosis. The low-grade inflammation associated to T2DM contributes to increased morbidity and worst outcomes after revascularization. Inflammatory signaling in the vasculature supports endothelial dysfunction, leukocyte infiltration, and macrophage activation to a metabolic disease (MMe) specific phenotype, which could contribute to the metabolic disorders and ascular damage in T2DM. We have previously found that Kv1.3 blockers inhibit the development of intimal hyperplasia, thereby preventing restenosis. This inhibition was enhanced in a mouse model of T2DM, where systemic Kv1.3 blockers administration also improve metabolic dysfunction by acting on unidentified cellular targets other than vascular smooth muscle. Here we characterize the MMe phenotype in our T2DM model with a focus on macrophage Kv1.3 channels, to explore their contribution to vascular disease and their potential role as targets to ameliorate T2DM vascular risk. Methods and Results Male and female BPH mice fed on high-fat diet (HFD) develop metabolic syndrome (MetS) and T2DM. mRNA levels of several K+ channels (KV1.3, KCa3.1, Kir2.1) and macrophage markers (TNFα, NOS2, CD36) were analyzed. The MMe phenotype associated with increased CD36 expression. Channel-specific fingerprinting highlights a gender-specific increase of KV1.3 mRNA fold change in LPS stimulated macrophages from HFD compared to standard diet (SD). KV1.3 functional expression was also significantly increased after LPS stimulation in female HFD macrophages compared to SD. Functional studies showed that macrophage's KV1.3 channels of BPH female mice did not contribute to phagocytosis or metabolic profile but were relevant in cell migration rate. Conclusion Altogether, our data suggest that by inhibiting macrophage infiltration, Kv1.3 blockers could contribute to disrupt the vicious cycle of inflammation and insulin resistance, offering a novel approach to prevent MetS, T2DM and its associated cardiovascular complications in females.
Collapse
Affiliation(s)
- Diego A. Peraza
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Lucía Benito-Salamanca
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Sara Moreno-Estar
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Esperanza Alonso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - José R. López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - M. Teresa Pérez-Garcia
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
3
|
Boda VK, Yasmen N, Jiang J, Li W. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev 2024; 44:2510-2544. [PMID: 38715347 PMCID: PMC11452291 DOI: 10.1002/med.22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.
Collapse
Affiliation(s)
- Vijay K. Boda
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
4
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Hu J, Melchor GS, Ladakis D, Reger J, Kim HW, Chamberlain KA, Shults NV, Oft HC, Smith VN, Rosko LM, Li E, Baydyuk M, Fu MM, Bhargava P, Huang JK. Myeloid cell-associated aromatic amino acid metabolism facilitates CNS myelin regeneration. NPJ Regen Med 2024; 9:1. [PMID: 38167866 PMCID: PMC10762216 DOI: 10.1038/s41536-023-00345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Regulation of myeloid cell activity is critical for successful myelin regeneration (remyelination) in demyelinating diseases, such as multiple sclerosis (MS). Here, we show aromatic alpha-keto acids (AKAs) generated from the amino acid oxidase, interleukin-4 induced 1 (IL4I1), promote efficient remyelination in mouse models of MS. During remyelination, myeloid cells upregulated the expression of IL4I1. Conditionally knocking out IL4I1 in myeloid cells impaired remyelination efficiency. Mice lacking IL4I1 expression exhibited a reduction in the AKAs, phenylpyruvate, indole-3-pyruvate, and 4-hydroxyphenylpyruvate, in remyelinating lesions. Decreased AKA levels were also observed in people with MS, particularly in the progressive phase when remyelination is impaired. Oral administration of AKAs modulated myeloid cell-associated inflammation, promoted oligodendrocyte maturation, and enhanced remyelination in mice with focal demyelinated lesions. Transcriptomic analysis revealed AKA treatment induced a shift in metabolic pathways in myeloid cells and upregulated aryl hydrocarbon receptor activity in lesions. Our results suggest myeloid cell-associated aromatic amino acid metabolism via IL4I1 produces AKAs in demyelinated lesions to enable efficient remyelination. Increasing AKA levels or targeting related pathways may serve as a strategy to facilitate the regeneration of myelin in inflammatory demyelinating conditions.
Collapse
Affiliation(s)
- Jingwen Hu
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - George S Melchor
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Dimitrios Ladakis
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Joan Reger
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hee Won Kim
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Kelly A Chamberlain
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Nataliia V Shults
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Helena C Oft
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Victoria N Smith
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Lauren M Rosko
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Erqiu Li
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Meng-Meng Fu
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Pavan Bhargava
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, 20007, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
6
|
de Pablo N, Meana C, Martínez‐García J, Martínez‐Vicente P, Albert M, Guerra S, Angulo A, Balsinde J, Balboa MA. Lipin-2 regulates the antiviral and anti-inflammatory responses to interferon. EMBO Rep 2023; 24:e57238. [PMID: 37929625 PMCID: PMC10702840 DOI: 10.15252/embr.202357238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Interferons (IFN) are crucial antiviral and immunomodulatory cytokines that exert their function through the regulation of a myriad of genes, many of which are not yet characterized. Here, we reveal that lipin-2, a phosphatidic acid phosphatase whose mutations produce an autoinflammatory syndrome known as Majeed syndrome in humans, is regulated by IFN in a STAT-1-dependent manner. Lipin-2 inhibits viral replication both in vitro and in vivo. Moreover, lipin-2 also acts as a regulator of inflammation in a viral context by reducing the signaling through TLR3 and the generation of ROS and release of mtDNA that ultimately activate the NLRP3 inflammasome. Inhibitors of mtDNA release from mitochondria restrict IL-1β production in lipin-2-deficient animals in a model of viral infection. Finally, analyses of databases from COVID-19 patients show that LPIN2 expression levels negatively correlate with the severity of the disease. Overall, these results uncover novel regulatory mechanisms of the IFN response driven by lipin-2 and open new perspectives for the future management of patients with LPIN2 mutations.
Collapse
Affiliation(s)
- Nagore de Pablo
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
| | - Clara Meana
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Javier Martínez‐García
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Pablo Martínez‐Vicente
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Manuel Albert
- Departamento de Medicina Preventiva y Salud Pública, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
| | - Susana Guerra
- Departamento de Medicina Preventiva y Salud Pública, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Jesús Balsinde
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - María A Balboa
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
7
|
Ding Z, Song H, Wang F. Role of lipins in cardiovascular diseases. Lipids Health Dis 2023; 22:196. [PMID: 37964368 PMCID: PMC10644651 DOI: 10.1186/s12944-023-01961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Lipin family members in mammals include lipins 1, 2, and 3. Lipin family proteins play a crucial role in lipid metabolism due to their bifunctionality as both transcriptional coregulators and phosphatidate phosphatase (PAP) enzymes. In this review, we discuss the structural features, expression patterns, and pathophysiologic functions of lipins, emphasizing their direct as well as indirect roles in cardiovascular diseases (CVDs). Elucidating the regulation of lipins facilitates a deeper understanding of the roles of lipins in the processes underlying CVDs. The activity of lipins is modulated at various levels, e.g., in the form of the transcription of genes, post-translational modifications, and subcellular protein localization. Because lipin characteristics are undergoing progressive clarification, further research is necessitated to then actuate the investigation of lipins as viable therapeutic targets in CVDs.
Collapse
Affiliation(s)
- Zerui Ding
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Hongyu Song
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Wang
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
8
|
Bamgbose TT, Schilke RM, Igiehon OO, Nkadi EH, Custis D, Bharrhan S, Schwarz B, Bohrnsen E, Bosio CM, Scott RS, Yurdagul A, Finck BN, Woolard MD. Lipin-1 restrains macrophage lipid synthesis to promote inflammation resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563587. [PMID: 37961352 PMCID: PMC10634750 DOI: 10.1101/2023.10.23.563587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function, but a deeper understanding of how lipid metabolism is regulated in pro-resolving macrophage responses is needed. Lipin-1 is a phosphatidic acid phosphatase with a transcriptional coregulatory activity (TC) that regulates lipid metabolism. We previously demonstrated that lipin-1 supports pro-resolving macrophage responses, and here, myeloid-associated lipin-1 is required for inflammation resolution, yet how lipin-1-regulated cellular mechanisms promote macrophage pro-resolution responses is unknown. We demonstrated that the loss of lipin-1 in macrophages led to increased free fatty acid, neutral lipid, and ceramide content and increased phosphorylation of acetyl-CoA carboxylase. The inhibition of the first step of lipid synthesis and transport of citrate from the mitochondria in macrophages reduced lipid content and restored efferocytosis and inflammation resolution in lipin-1mKO macrophages and mice. Our findings suggest macrophage-associated lipin-1 restrains lipid synthesis, promoting pro-resolving macrophage function in response to pro-resolving stimuli.
Collapse
Affiliation(s)
- Temitayo T. Bamgbose
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Robert M. Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Oluwakemi O. Igiehon
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - David Custis
- Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Sushma Bharrhan
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Benjamin Schwarz
- Proteins & Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Eric Bohrnsen
- Proteins & Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Brian N. Finck
- Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew D. Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
9
|
Michelotti TC, Kisby BR, Flores LS, Tegeler AP, Fokar M, Crasto C, Menarim BC, Loux SC, Strieder-Barboza C. Single-nuclei analysis reveals depot-specific transcriptional heterogeneity and depot-specific cell types in adipose tissue of dairy cows. Front Cell Dev Biol 2022; 10:1025240. [PMID: 36313560 PMCID: PMC9616121 DOI: 10.3389/fcell.2022.1025240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue (AT) is an endocrine organ with a central role on whole-body energy metabolism and development of metabolic diseases. Single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, respectively) analyses in mice and human AT have revealed vast cell heterogeneity and functionally distinct subtypes that are potential therapeutic targets to metabolic disease. In periparturient dairy cows, AT goes through intensive remodeling and its dysfunction is associated with metabolic disease pathogenesis and decreased productive performance. The contributions of depot-specific cells and subtypes to the development of diseases in dairy cows remain to be studied. Our objective was to elucidate differences in cellular diversity of visceral (VAT) and subcutaneous (SAT) AT in dairy cows at the single-nuclei level. We collected matched SAT and VAT samples from three dairy cows and performed snRNA-seq analysis. We identified distinct cell types including four major mature adipocytes (AD) and three stem and progenitor cells (ASPC) subtypes, along with endothelial cells (EC), mesothelial cells (ME), immune cells, and pericytes and smooth muscle cells. All major cell types were present in both SAT and VAT, although a strong VAT-specificity was observed for ME, which were basically absent in SAT. One ASPC subtype was defined as adipogenic (PPARG+) while the other two had a fibro-adipogenic profile (PDGFRA+). We identified vascular and lymphatic EC subtypes, and different immune cell types and subtypes in both SAT and VAT, i.e., macrophages, monocytes, T cells, and natural killer cells. Not only did VAT show a greater proportion of immune cells, but these visceral immune cells had greater activation of pathways related to immune and inflammatory response, and complement cascade in comparison with SAT. There was a substantial contrast between depots for gene expression of complement cascade, which were greatly expressed by VAT cell subtypes compared to SAT, indicating a pro-inflammatory profile in VAT. Unprecedently, our study demonstrated cell-type and depot-specific heterogeneity in VAT and SAT of dairy cows. A better understanding of depot-specific molecular and cellular features of SAT and VAT will aid in the development of AT-targeted strategies to prevent and treat metabolic disease in dairy cows, especially during the periparturient period.
Collapse
Affiliation(s)
- Tainara C. Michelotti
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, Lubbock, TX, United States
| | - Lauryn S. Flores
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Alexandra P. Tegeler
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Mohamed Fokar
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
- Department of Computer Science, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, United States
- Department of University Studies, Texas Tech University, Lubbock, TX, United States
| | - Bruno C. Menarim
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Shavahn C. Loux
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- *Correspondence: Clarissa Strieder-Barboza,
| |
Collapse
|
10
|
Falero-Diaz G, Barboza CDA, Pires F, Fanchin M, Ling J, Zigmond ZM, Griswold AJ, Martinez L, Vazquez-Padron RI, Velazquez OC, Lassance-Soares RM. Ischemic-Trained Monocytes Improve Arteriogenesis in a Mouse Model of Hindlimb Ischemia. Arterioscler Thromb Vasc Biol 2022; 42:175-188. [PMID: 34879707 PMCID: PMC8792358 DOI: 10.1161/atvbaha.121.317197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Monocytes, which play an important role in arteriogenesis, can build immunologic memory by a functional reprogramming that modifies their response to a second challenge. This process, called trained immunity, is evoked by insults that shift monocyte metabolism, increasing HIF (hypoxia-inducible factor)-1α levels. Since ischemia enhances HIF-1α, we evaluate whether ischemia can lead to a functional reprogramming of monocytes, which would contribute to arteriogenesis after hindlimb ischemia. METHODS AND RESULTS Mice exposed to ischemia by 24 hours (24h) of femoral artery occlusion (24h trained) or sham were subjected to hindlimb ischemia one week later; the 24h trained mice showed significant improvement in blood flow recovery and arteriogenesis after hindlimb ischemia. Adoptive transfer using bone marrow-derived monocytes (BM-Mono) from 24h trained or sham donor mice, demonstrated that recipients subjected to hindlimb ischemia who received 24h ischemic-trained monocytes had remarkable blood flow recovery and arteriogenesis. Further, ischemic-trained BM-Mono had increased HIF-1α and GLUT-1 (glucose transporter-1) gene expression during femoral artery occlusion. Circulating cytokines and GLUT-1 were also upregulated during femoral artery occlusion.Transcriptomic analysis and confirmatory qPCR performed in 24h trained and sham BM-Mono revealed that among the 15 top differentially expressed genes, 4 were involved in lipid metabolism in the ischemic-trained monocytes. Lipidomic analysis confirmed that ischemia training altered the cholesterol metabolism of these monocytes. Further, several histone-modifying epigenetic enzymes measured by qPCR were altered in mouse BM-Mono exposed to 24h hypoxia. CONCLUSIONS Ischemia training in BM-Mono leads to a unique gene profile and improves blood flow and arteriogenesis after hindlimb ischemia.
Collapse
Affiliation(s)
- Gustavo Falero-Diaz
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Catarina de A. Barboza
- Department of Adapted Physical Activity, School of Physical Education (FEF), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Felipe Pires
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Maeva Fanchin
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Jingjing Ling
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Zachary M. Zigmond
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Roberta M. Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
11
|
Yoshida S, Hatasa M, Ohsugi Y, Tsuchiya Y, Liu A, Niimi H, Morita K, Shimohira T, Sasaki N, Maekawa S, Shiba T, Hirota T, Okano T, Hirose A, Ibi R, Noritake K, Tomiga Y, Nitta H, Suzuki T, Takahashi H, Miyasaka N, Iwata T, Katagiri S. Porphyromonas gingivalis Administration Induces Gestational Obesity, Alters Gene Expression in the Liver and Brown Adipose Tissue in Pregnant Mice, and Causes Underweight in Fetuses. Front Cell Infect Microbiol 2022; 11:745117. [PMID: 35096633 PMCID: PMC8792863 DOI: 10.3389/fcimb.2021.745117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Preventing adverse pregnancy outcomes is crucial for maternal and child health. Periodontal disease is a risk factor for many systemic diseases including adverse pregnancy outcomes, such as preterm birth and low birth weight. In addition, the administration of the periodontopathic bacterium Porphyromonas gingivalis exacerbates obesity, glucose tolerance, and hepatic steatosis and alters endocrine function in the brown adipose tissue (BAT). However, the effects of having periodontal disease during pregnancy remain unclear. Thus, this study investigates the effect of P. gingivalis administration on obesity, liver, and BAT during pregnancy. Sonicated P. gingivalis (Pg) or saline (Co) was injected intravenously and administered orally to pregnant C57BL/6J mice three times per week. Maternal body weight and fetal body weight on embryonic day (ED) 18 were evaluated. Microarray analysis and qPCR in the liver and BAT and hepatic and plasma triglyceride quantification were performed on dams at ED 18. The body weight of Pg dams was heavier than that of Co dams; however, the fetal body weight was decreased in the offspring of Pg dams. Microarray analysis revealed 254 and 53 differentially expressed genes in the liver and BAT, respectively. Gene set enrichment analysis exhibited the downregulation of fatty acid metabolism gene set in the liver and estrogen response early/late gene sets in the BAT, whereas inflammatory response and IL6/JAK/STAT3 signaling gene sets were upregulated both in the liver and BAT. The downregulation of expression levels of Lpin1, Lpin2, and Lxra in the liver, which are associated with triglyceride synthesis, and a decreasing trend in hepatic triglyceride of Pg dams were observed. P. gingivalis administration may alter lipid metabolism in the liver. Overall, the intravenous and oral administration of sonicated P. gingivalis-induced obesity and modified gene expression in the liver and BAT in pregnant mice and caused fetuses to be underweight.
Collapse
Affiliation(s)
- Sumiko Yoshida
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masahiro Hatasa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuki Morita
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Naoki Sasaki
- Oral Diagnosis and General Dentistry, Division of Clinical Dentistry, Tokyo Medical and Dental University Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Tokuju Okano
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Asuka Hirose
- Comprehensive Reproductive Medicine, Regulation of Internal Environment and Reproduction, Systemic Organ Regulation, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Rinko Ibi
- Comprehensive Reproductive Medicine, Regulation of Internal Environment and Reproduction, Systemic Organ Regulation, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kanako Noritake
- Oral Diagnosis and General Dentistry, Division of Clinical Dentistry, Tokyo Medical and Dental University Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Tomiga
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Nitta
- Oral Diagnosis and General Dentistry, Division of Clinical Dentistry, Tokyo Medical and Dental University Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoyuki Miyasaka
- Comprehensive Reproductive Medicine, Regulation of Internal Environment and Reproduction, Systemic Organ Regulation, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
12
|
Casas J, Meana C, López-López JR, Balsinde J, Balboa MA. Lipin-1-derived diacylglycerol activates intracellular TRPC3 which is critical for inflammatory signaling. Cell Mol Life Sci 2021; 78:8243-8260. [PMID: 34757442 PMCID: PMC8629864 DOI: 10.1007/s00018-021-03999-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022]
Abstract
Exposure to Gram-negative bacterial LPS exacerbates host immune responses and may lead to sepsis, a life-threatening condition. Despite its high mortality and morbidity, no drugs specifically directed to treating sepsis are currently available. Using human cell genetic depletion, pharmacological inhibition, live-cell microscopy and organelle-targeted molecular sensors we present evidence that the channel TRPC3 is activated intracellularly during macrophage exposure to LPS and is essential for Ca2+ release from internal stores. In this manner, TRPC3 participates in cytosolic Ca2+ elevations, activation of the transcription factor NF-κB and cytokine upregulation. We also report that TRPC3 is activated by diacylglycerol generated by the phosphatidic acid phosphatase lipin-1. In accord with this, lipin-1-deficient cells exhibit reduced Ca2+ responses to LPS challenge. Finally, pharmacological inhibition of TRPC3 reduces systemic inflammation induced by LPS in mice. Collectively, our study unveils a central component of LPS-triggered Ca2+ signaling that involves intracellular sensing of lipin-1-derived DAG by TRPC3, and opens new opportunities for the development of strategies to treat LPS-driven inflammation.
Collapse
Affiliation(s)
- Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain. .,Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003, Valladolid, Spain.
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - José Ramón López-López
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.,Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain.
| |
Collapse
|
13
|
Hamel Y, Mauvais FX, Madrange M, Renard P, Lebreton C, Nemazanyy I, Pellé O, Goudin N, Tang X, Rodero MP, Tuchmann-Durand C, Nusbaum P, Brindley DN, van Endert P, de Lonlay P. Compromised mitochondrial quality control triggers lipin1-related rhabdomyolysis. CELL REPORTS MEDICINE 2021; 2:100370. [PMID: 34467247 PMCID: PMC8385327 DOI: 10.1016/j.xcrm.2021.100370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
LPIN1 mutations are responsible for inherited recurrent rhabdomyolysis, a life-threatening condition with no efficient therapeutic intervention. Here, we conduct a bedside-to-bench-and-back investigation to study the pathophysiology of lipin1 deficiency. We find that lipin1-deficient myoblasts exhibit a reduction in phosphatidylinositol-3-phosphate close to autophagosomes and late endosomes that prevents the recruitment of the GTPase Armus, locks Rab7 in the active state, inhibits vesicle clearance by fusion with lysosomes, and alters their positioning and function. Oxidized mitochondrial DNA accumulates in late endosomes, where it activates Toll-like receptor 9 (TLR9) and triggers inflammatory signaling and caspase-dependent myolysis. Hydroxychloroquine blocks TLR9 activation by mitochondrial DNA in vitro and may attenuate flares of rhabdomyolysis in 6 patients treated. We suggest a critical role for defective clearance of oxidized mitochondrial DNA that activates TLR9-restricted inflammation in lipin1-related rhabdomyolysis. Interventions blocking TLR9 activation or inflammation can improve patient care in vivo.
Collapse
Affiliation(s)
- Yamina Hamel
- INSERM, UMR 1163, IMAGINE Institute, Faculté de Médecine, Université de Paris, Paris 75015, France.,Reference Center of Inherited Metabolic Diseases, Université de Paris, Hôpital Universitaire Necker-Enfants Malades, APHP, G2M Steam, metab ERN, Paris 75015, France
| | - François-Xavier Mauvais
- INSERM, Unit 1151, CNRS, UMR 8253, Faculté de Médecine, Université de Paris, Paris 75015, France
| | - Marine Madrange
- INSERM, UMR 1163, IMAGINE Institute, Faculté de Médecine, Université de Paris, Paris 75015, France.,Reference Center of Inherited Metabolic Diseases, Université de Paris, Hôpital Universitaire Necker-Enfants Malades, APHP, G2M Steam, metab ERN, Paris 75015, France
| | - Perrine Renard
- Reference Center of Inherited Metabolic Diseases, Université de Paris, Hôpital Universitaire Necker-Enfants Malades, APHP, G2M Steam, metab ERN, Paris 75015, France.,INSERM, Unit 1151, CNRS, UMR 8253, Faculté de Médecine, Université de Paris, Paris 75015, France
| | - Corinne Lebreton
- INSERM, UMR 1163, IMAGINE Institute, Faculté de Médecine, Université de Paris, Paris 75015, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, INSERM US24/CNRS UMS 3633, Paris 75015, France
| | - Olivier Pellé
- INSERM, UMR 1163, IMAGINE Institute, Faculté de Médecine, Université de Paris, Paris 75015, France.,Cytometry Core Facility, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Nicolas Goudin
- Imaging Core Facility, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Mathieu P Rodero
- INSERM, UMR 1163, IMAGINE Institute, Faculté de Médecine, Université de Paris, Paris 75015, France
| | - Caroline Tuchmann-Durand
- INSERM, UMR 1163, IMAGINE Institute, Faculté de Médecine, Université de Paris, Paris 75015, France.,Reference Center of Inherited Metabolic Diseases, Université de Paris, Hôpital Universitaire Necker-Enfants Malades, APHP, G2M Steam, metab ERN, Paris 75015, France
| | - Patrick Nusbaum
- Department of Biology and Molecular Genetics, Cochin Hospital, AP-HP, Paris 75014, France
| | - David N Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Peter van Endert
- INSERM, Unit 1151, CNRS, UMR 8253, Faculté de Médecine, Université de Paris, Paris 75015, France
| | - Pascale de Lonlay
- INSERM, UMR 1163, IMAGINE Institute, Faculté de Médecine, Université de Paris, Paris 75015, France.,Reference Center of Inherited Metabolic Diseases, Université de Paris, Hôpital Universitaire Necker-Enfants Malades, APHP, G2M Steam, metab ERN, Paris 75015, France
| |
Collapse
|
14
|
Lu RJ, Taylor S, Contrepois K, Kim M, Bravo JI, Ellenberger M, Sampathkumar NK, Benayoun BA. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. NATURE AGING 2021; 1:715-733. [PMID: 34514433 PMCID: PMC8425468 DOI: 10.1038/s43587-021-00086-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Neutrophils are the most abundant human white blood cell and constitute a first line of defense in the innate immune response. Neutrophils are short-lived cells, and thus the impact of organismal aging on neutrophil biology, especially as a function of biological sex, remains poorly understood. Here, we describe a multi-omic resource of mouse primary bone marrow neutrophils from young and old female and male mice, at the transcriptomic, metabolomic and lipidomic levels. We identify widespread regulation of neutrophil 'omics' landscapes with organismal aging and biological sex. In addition, we leverage our resource to predict functional differences, including changes in neutrophil responses to activation signals. To date, this dataset represents the largest multi-omics resource for neutrophils across sex and ages. This resource identifies neutrophil characteristics which could be targeted to improve immune responses as a function of sex and/or age.
Collapse
Affiliation(s)
- Ryan J. Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Shalina Taylor
- Departments of Pediatrics and of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Nirmal K. Sampathkumar
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Present Address: UK-Dementia Research Institute, Institute of Psychiatry, Psychology and Neuroscience, Basic and Clinical Neuroscience Institute, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Blackburn CMR, Schilke RM, Vozenilek AE, Chandran S, Bamgbose TT, Finck BN, Woolard MD. Myeloid-associated lipin-1 transcriptional co-regulatory activity is atheroprotective. Atherosclerosis 2021; 330:76-84. [PMID: 34256308 DOI: 10.1016/j.atherosclerosis.2021.06.927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is the most prominent underlying cause of cardiovascular disease (CVD). It is initiated by cholesterol deposition in the arterial intima, which causes macrophage recruitment and proinflammatory responses that promote plaque growth, necrotic core formation, and plaque rupture. Lipin-1 is a phosphatidic acid phosphohydrolase for glycerolipid synthesis. We have shown that lipin-1 phosphatase activity promotes macrophage pro-inflammatory responses when stimulated with modified low-density lipoprotein (modLDL) and accelerates atherosclerosis. Lipin-1 also independently acts as a transcriptional co-regulator where it enhances the expression of genes involved in β-oxidation. In hepatocytes and adipocytes, lipin-1 augments the activity of transcription factors such as peroxisome proliferator-activated receptor (PPARs). PPARs control the expression of anti-inflammatory genes in macrophages and slow or reduce atherosclerotic progression. Therefore, we hypothesize myeloid-derived lipin-1 transcriptional co-regulatory activity reduces atherosclerosis. METHODS We used myeloid-derived lipin-1 knockout (lipin-1mKO) and littermate control mice and AAV8-PCSK9 along with high-fat diet to elicit atherosclerosis. RESULTS Lipin-1mKO mice had larger aortic root plaques than littermate control mice after 8 and 12 weeks of a high-fat diet. Lipin-1mKO mice also had increased serum proinflammatory cytokine concentrations, reduced apoptosis in plaques, and larger necrotic cores in the plaques compared to control mice. CONCLUSIONS Combined, the data suggest lipin-1 transcriptional co-regulatory activity in myeloid cells is atheroprotective.
Collapse
Affiliation(s)
- Cassidy M R Blackburn
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Robert M Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Aimee E Vozenilek
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Sunitha Chandran
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Temitayo T Bamgbose
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Brian N Finck
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
16
|
Brohée L, Crémer J, Colige A, Deroanne C. Lipin-1, a Versatile Regulator of Lipid Homeostasis, Is a Potential Target for Fighting Cancer. Int J Mol Sci 2021; 22:ijms22094419. [PMID: 33922580 PMCID: PMC8122924 DOI: 10.3390/ijms22094419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
The rewiring of lipid metabolism is a major adaptation observed in cancer, and it is generally associated with the increased aggressiveness of cancer cells. Targeting lipid metabolism is therefore an appealing therapeutic strategy, but it requires a better understanding of the specific roles played by the main enzymes involved in lipid biosynthesis. Lipin-1 is a central regulator of lipid homeostasis, acting either as an enzyme or as a co-regulator of transcription. In spite of its important functions it is only recently that several groups have highlighted its role in cancer. Here, we will review the most recent research describing the role of lipin-1 in tumor progression when expressed by cancer cells or cells of the tumor microenvironment. The interest of its inhibition as an adjuvant therapy to amplify the effects of anti-cancer therapies will be also illustrated.
Collapse
|
17
|
Mateus T, Martins F, Nunes A, Herdeiro MT, Rebelo S. Metabolic Alterations in Myotonic Dystrophy Type 1 and Their Correlation with Lipin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041794. [PMID: 33673200 PMCID: PMC7918590 DOI: 10.3390/ijerph18041794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary and multisystemic disease, characterized by progressive distal muscle weakness and myotonia. Despite huge efforts, the pathophysiological mechanisms underlying DM1 remain elusive. In this review, the metabolic alterations observed in patients with DM1 and their connection with lipin proteins are discussed. We start by briefly describing the epidemiology, the physiopathological and systemic features of DM1. The molecular mechanisms proposed for DM1 are explored and summarized. An overview of metabolic syndrome, dyslipidemia, and the summary of metabolic alterations observed in patients with DM1 are presented. Patients with DM1 present clinical evidence of metabolic alterations, namely increased levels of triacylglycerol and low-density lipoprotein, increased insulin and glucose levels, increased abdominal obesity, and low levels of high-density lipoprotein. These metabolic alterations may be associated with lipins, which are phosphatidate phosphatase enzymes that regulates the triacylglycerol levels, phospholipids, lipid signaling pathways, and are transcriptional co-activators. Furthermore, lipins are also important for autophagy, inflammasome activation and lipoproteins synthesis. We demonstrate the association of lipin with the metabolic alterations in patients with DM1, which supports further clinical studies and a proper exploration of lipin proteins as therapeutic targets for metabolic syndrome, which is important for controlling many diseases including DM1.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Rebelo
- Correspondence: ; Tel.: +351-924-406-306; Fax: +351-234-372-587
| |
Collapse
|
18
|
Quiroga IY, Pellon-Maison M, Gonzalez MC, Coleman RA, Gonzalez-Baro MR. Triacylglycerol synthesis directed by glycerol-3-phosphate acyltransferases -3 and -4 is required for lipid droplet formation and the modulation of the inflammatory response during macrophage to foam cell transition. Atherosclerosis 2021; 316:1-7. [PMID: 33260006 PMCID: PMC7803380 DOI: 10.1016/j.atherosclerosis.2020.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The transition of macrophage to foam cells is a major hallmark of early stage atherosclerotic lesions. This process is characterized by the accumulation of large cytoplasmic lipid droplets containing large quantities of cholesterol esters (CE), triacylglycerol (TAG) and phospholipid (PL). Although cholesterol and CE metabolism during foam cell formation has been broadly studied, little is known about the role of the glycerolipids (TAG and PL) in this context. Here we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). METHODS We used RAW 264.7 cells and bone marrow derived macrophages (BMDM) treated with oxidized LDL (oxLDL). RESULTS We showed that TAG synthesis is induced during the macrophage to foam cell transition. The expression and activity of GPAT3 and GPAT4 also increased during this process, and these two isoforms were required for the accumulation of cell TAG and PL. Compared to cells from wildtype mice after macrophage to foam cell transition, Gpat4-/- BMDM released more pro-inflammatory cytokines and chemokines, suggesting that the activity of GPAT4 could be associated with a decrease in the inflammatory response, probably by sequestering signaling precursors into lipid droplets. CONCLUSIONS Our results provide evidence that TAG synthesis directed by GPAT3 and GPAT4 is required for lipid droplet formation and the modulation of the inflammatory response during the macrophage-foam cell transition.
Collapse
Affiliation(s)
- Ivana Y Quiroga
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Magali Pellon-Maison
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Marina C Gonzalez
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Maria R Gonzalez-Baro
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina.
| |
Collapse
|
19
|
Schilke RM, Blackburn CMR, Rao S, Krzywanski DM, Finck BN, Woolard MD. Macrophage-Associated Lipin-1 Promotes β-Oxidation in Response to Proresolving Stimuli. Immunohorizons 2020; 4:659-669. [PMID: 33077427 PMCID: PMC7739271 DOI: 10.4049/immunohorizons.2000047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophages reprogram their metabolism to promote appropriate responses. Proresolving macrophages primarily use fatty acid oxidation as an energy source. Metabolites generated during the catabolism of fatty acids aid in the resolution of inflammation and tissue repair, but the regulatory mechanisms that control lipid metabolism in macrophages are not fully elucidated. Lipin-1, a phosphatidic acid phosphatase that has transcriptional coregulator activity, regulates lipid metabolism in a variety of cells. In this current study, we show that lipin-1 is required for increased oxidative phosphorylation in IL-4 stimulated mouse (Mus musculus) macrophages. We also show that the transcriptional coregulatory function of lipin-1 is required for β-oxidation in response to palmitate (free fatty acid) and apoptotic cell (human) stimulation. Mouse bone marrow-derived macrophages lacking lipin-1 have a reduction in critical TCA cycle metabolites following IL-4 stimulation, suggesting a break in the TCA cycle that is supportive of lipid synthesis rather than lipid catabolism. Together, our data demonstrate that lipin-1 regulates cellular metabolism in macrophages in response to proresolving stimuli and highlights the importance of aligning macrophage metabolism with macrophage phenotype.
Collapse
Affiliation(s)
- Robert M Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Cassidy M R Blackburn
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Shashanka Rao
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130; and
| | - David M Krzywanski
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130; and
| | - Brian N Finck
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130;
| |
Collapse
|
20
|
Interface of Phospholipase Activity, Immune Cell Function, and Atherosclerosis. Biomolecules 2020; 10:biom10101449. [PMID: 33076403 PMCID: PMC7602611 DOI: 10.3390/biom10101449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Phospholipases are a family of lipid-altering enzymes that can either reduce or increase bioactive lipid levels. Bioactive lipids elicit signaling responses, activate transcription factors, promote G-coupled-protein activity, and modulate membrane fluidity, which mediates cellular function. Phospholipases and the bioactive lipids they produce are important regulators of immune cell activity, dictating both pro-inflammatory and pro-resolving activity. During atherosclerosis, pro-inflammatory and pro-resolving activities govern atherosclerosis progression and regression, respectively. This review will look at the interface of phospholipase activity, immune cell function, and atherosclerosis.
Collapse
|
21
|
Chandran S, Schilke RM, Blackburn CMR, Yurochko A, Mirza R, Scott RS, Finck BN, Woolard MD. Lipin-1 Contributes to IL-4 Mediated Macrophage Polarization. Front Immunol 2020; 11:787. [PMID: 32431707 PMCID: PMC7214697 DOI: 10.3389/fimmu.2020.00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophage responses contribute to a diverse array of pathologies ranging from infectious disease to sterile inflammation. Polarization of macrophages determines their cellular function within biological processes. Lipin-1 is a phosphatidic acid phosphatase in which its enzymatic activity contributes to macrophage pro-inflammatory responses. Lipin-1 also possesses transcriptional co-regulator activity and whether this activity is required for macrophage polarization is unknown. Using mice that lack only lipin-1 enzymatic activity or both enzymatic and transcriptional coregulator activities from myeloid cells, we investigated the contribution of lipin-1 transcriptional co-regulator function toward macrophage wound healing polarization. Macrophages lacking both lipin-1 activities did not elicit IL-4 mediated gene expression to levels seen in either wild-type or lipin-1 enzymatically deficient macrophages. Furthermore, mice lacking myeloid-associated lipin-1 have impaired full thickness excisional wound healing compared to wild-type mice or mice only lacking lipin-1 enzymatic activity from myeloid cell. Our study provides evidence that lipin-1 transcriptional co-regulatory activity contributes to macrophage polarization and influences wound healing in vivo.
Collapse
Affiliation(s)
- Sunitha Chandran
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Robert M. Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Cassidy M. R. Blackburn
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Aila Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Rusella Mirza
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Brian N. Finck
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew D. Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
22
|
Effects of Fat Supplementation in Dairy Goats on Lipid Metabolism and Health Status. Animals (Basel) 2019; 9:ani9110917. [PMID: 31689973 PMCID: PMC6912558 DOI: 10.3390/ani9110917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary There is an increasing demand for information on the nutraceutical properties of food. Due to its bioactive components and high digestibility, goat milk is an excellent functional food. Dietary fat supplementation can further enrich the value of goat milk by modifying its acidic profile. Nevertheless, animal health can also benefit from lipids supplied with rations. In this review, the relationships between dietary fats and goat health status are summarized. Particular attention is paid to describing the effects of specific fatty acids on lipid metabolism and immune functionality. Abstract Fat supplementation has long been used in dairy ruminant nutrition to increase the fat content of milk and supply energy during particularly challenging production phases. Throughout the years, advances have been made in the knowledge of metabolic pathways and technological treatments of dietary fatty acids (FAs), resulting in safer and more widely available lipid supplements. There is an awareness of the positive nutraceutical effects of the addition of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to fat supplementation, which provides consumers with healthier animal products through manipulation of their characteristics. If it is true that benefits to human health can be derived from the consumption of animal products rich in bioactive fatty acids (FAs), then it is reasonable to think that the same effect can occur in the animals to which the supplements are administered. Therefore, recent advances in fat supplementation of dairy goats with reference to the effect on health status have been summarized. In vivo trials and in vitro analysis on cultured cells, as well as histological and transcriptomic analyses of hepatic and adipose tissue, have been reviewed in order to assess documented relationships between specific FAs, lipid metabolism, and immunity.
Collapse
|
23
|
Balboa MA, de Pablo N, Meana C, Balsinde J. The role of lipins in innate immunity and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1328-1337. [PMID: 31220616 DOI: 10.1016/j.bbalip.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 06/01/2019] [Indexed: 02/08/2023]
|
24
|
Wang J, Wang S, Sun P, Cao F, Li H, Sun J, Peng M, Liu W, Shi P. Iron depletion participates in the suppression of cell proliferation induced by lipin1 overexpression. Metallomics 2019; 10:1307-1314. [PMID: 30141807 DOI: 10.1039/c8mt00077h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipin1 participates in numerous cellular processes, including in the dephosphorylation of phosphatidic acid to diacylglycerol and as a co-transcriptional regulator. Iron is also essential in various critical biological processes. Previous studies have shown that compared to normal tissue cells, lipin1 expression and iron metabolism are abnormal in cancer cells. However, the involvement of lipin1 in the regulation of iron metabolism is unknown. In this study, we compared the contents of eight metal ions (potassium, calcium, sodium, magnesium, manganese, zinc, iron and copper) in human hepatoma carcinoma BEL7402 control cells as well as stable cells overexpressing lipin1 by using ICP-AES. Our results showed that only intracellular iron content was significantly decreased by lipin1 overexpression. Meanwhile, we observed that lipin1 overexpression could inhibit cell proliferation, similar to iron chelator deferoxamine. Western blotting showed that the up-regulation of p53-p21-p27 elicited cell cycle G0/G1 arrest in the stable cells overexpressing lipin1. Conversely, after lipin1 was down regulated with siRNA, we found that cell proliferation was promoted, accompanied by an increase in iron content, and the downregulation of p53 and p21. Our data indicate that lipin1 overexpression may cause reduction of intracellular iron content, which could activate the p53-p21-p27 signaling pathways, leading to cell cycle arrest at the G0/G1 phase in the hepatic carcinoma cells. Subsequently, we identified the putative cause for the decrease of the intracellular iron content induced by lipin1 overexpression. Our results suggested that the intracellular iron reduction was due to the increase in the expression of ferroportin, an iron export protein in the stable cells overexpressing lipin1. In contrast, after transfection with lipin1 siRNA, the decreased expression of ferroportin contributed to an increase in the iron content in BEL7402 cells. It was further confirmed that the intracellular iron content was increased after ferroportin was knocked down by siRNA in BEL7402 cells. Taken together, our findings demonstrate for the first time that lipin1 participates in the regulation of iron metabolism in human hepatic carcinoma cells. This suggests that lipin1 may play an important protective role in inhibiting the development of cancer through the reduction of iron content in tumors, which further demonstrates that iron reduction could be a potential strategy of cancer prevention and treatment.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang M, Ma Y, Liu F, Chen S, Lu J, Chen H. Chaetocin attenuates gout in mice through inhibiting HIF-1α and NLRP3 inflammasome-dependent IL-1β secretion in macrophages. Arch Biochem Biophys 2019; 670:94-103. [PMID: 31255694 DOI: 10.1016/j.abb.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
Chaetocin is a fungal metabolite that possesses a potential anti-inflammatory activity. Acute gout is a self-limiting inflammatory response to monosodium urate (MSU) crystals. However, the effect of cheatocin on gout has not been elucidated. In the study, we found that chaetocin could decrease MSU induced IL-1β secretion in bone marrow derived macrophages by several mechanisms, including inhibiting the activation of NLRP3 inflammasome. Chaetocin negatively regulated apoptosis-associated speck-like protein with a CARD domain oligomerization, and caspase-1 processing, key events during inflammasome activation. Furthermore, chaetocin restrain expressions of Hypoxia-inducible factor-1α and Hexokinase 2, mediators of glycolysis, which necessary for synthesis of pro-IL-1β during inflammasome priming. In vivo, chaetocin ameliorate MSU-induced arthritis, which showed as reduced local swelling and inflammatory cell infiltration. In MSU-induced peritonitis model, the peritoneal macrophages of chaetocin-pretreated mice showed significantly decreased mRNA levels of HIF-1α and NLRP3 related genes. These findings suggested that chaetocin has a potent anti-inflammatory effect against gout. More importantly, it is proposed that the inhibiting of glycolysis pathway would be a new avenue for the treatment of gout flare and other IL-1β related diseases.
Collapse
Affiliation(s)
- Mingliang Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiwen Ma
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fengjing Liu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Si Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junxi Lu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haibing Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
26
|
Reue K, Wang H. Mammalian lipin phosphatidic acid phosphatases in lipid synthesis and beyond: metabolic and inflammatory disorders. J Lipid Res 2019; 60:728-733. [PMID: 30804008 PMCID: PMC6446709 DOI: 10.1194/jlr.s091769] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
The regulation of cellular lipid storage and membrane lipid composition plays a critical role in metabolic homeostasis, and dysregulation may contribute to disorders such as obesity, fatty liver, type 2 diabetes, and cardiovascular disease. The mammalian lipin proteins (lipin 1, lipin 2, and lipin 3) are phosphatidic acid phosphatase (PAP) enzymes that modulate levels of cellular triacylglycerols and phospholipids, and also regulate lipid intermediates in cellular signaling pathways. Lipin proteins also have the ability to coactivate/corepress transcription. In humans and mice, lipin gene mutations cause severe metabolic phenotypes including rhabdomyolysis (lipin 1), autoinflammatory disease (lipin 2), and impaired intestinal lipoprotein assembly (lipin 2/lipin 3). Characterization of these diseases has revealed roles for lipin PAP activity in fundamental cellular processes such as autophagy, inflammasome activation, and lipoprotein assembly. Lipin protein activity is regulated at pre- and posttranscriptional levels, which suggests a need for their ordered response to specific physiological stimuli. Challenges for the future include better elucidation of the unique biochemical and physiological properties of individual lipin family members and determination of lipin protein structure-function relationships. Further research may propel exploration of lipin proteins as viable therapeutic targets in metabolic or inflammatory disorders.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Huan Wang
- Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095.
| |
Collapse
|
27
|
You M, Jogasuria A, Lee K, Wu J, Zhang Y, Lee YK, Sadana P. Signal Transduction Mechanisms of Alcoholic Fatty Liver Disease: Emer ging Role of Lipin-1. Curr Mol Pharmacol 2019; 10:226-236. [PMID: 26278388 DOI: 10.2174/1874467208666150817112109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
Lipin-1, a mammalian phosphatidic acid phosphatase (PAP), is a bi-functional molecule involved in various signaling pathways via its function as a PAP enzyme in the triglyceride synthesis pathway and in the nucleus as a transcriptional co-regulator. In the liver, lipin-1 is known to play a vital role in controlling the lipid metabolism and inflammation process at multiple regulatory levels. Alcoholic fatty liver disease (AFLD) is one of the earliest forms of liver injury and approximately 8-20% of patients with simple steatosis can develop into more severe forms of liver injury, including steatohepatitis, fibrosis/ cirrhosis, and eventually hepatocellular carcinoma (HCC). The signal transduction mechanisms for alcohol-induced detrimental effects in liver involves alteration of complex and multiple signaling pathways largely governed by a central and upstream signaling system, namely, sirtuin 1 (SIRT1)-AMP activated kinase (AMPK) axis. Emerging evidence suggests a pivotal role of lipin-1 as a crucial downstream regulator of SIRT1-AMPK signaling system that is likely to be ultimately responsible for development and progression of AFLD. Several lines of evidence demonstrate that ethanol exposure significantly induces lipin-1 gene and protein expression levels in cultured hepatocytes and in the livers of rodents, induces lipin-1-PAP activity, impairs the functional activity of nuclear lipin-1, disrupts lipin-1 mRNA alternative splicing and induces lipin-1 nucleocytoplasmic shuttling. Such impairment in response to ethanol leads to derangement of hepatic lipid metabolism, and excessive production of inflammatory cytokines in the livers of the rodents and human alcoholics. This review summarizes current knowledge about the role of lipin-1 in the pathogenesis of AFLD and its potential signal transduction mechanisms.
Collapse
Affiliation(s)
- Min You
- 4209 State Route 44, Rootstown OH 44272. United States
| | | | | | - Jiashin Wu
- Department of Pharmaceutical Sciences. 0
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | | |
Collapse
|
28
|
Beck DB, Aksentijevich I. Biochemistry of Autoinflammatory Diseases: Catalyzing Monogenic Disease. Front Immunol 2019; 10:101. [PMID: 30766537 PMCID: PMC6365650 DOI: 10.3389/fimmu.2019.00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Monogenic autoinflammatory disorders are a group of conditions defined by systemic or localized inflammation without identifiable causes, such as infection. In contrast to classical primary immunodeficiencies that manifest with impaired immune responses, these disorders are due to defects in genes that regulate innate immunity leading to constitutive activation of pro-inflammatory signaling. Through studying patients with rare autoinflammatory conditions, novel mechanisms of inflammation have been identified that bare on our understanding not only of basic signaling in inflammatory cells, but also of the pathogenesis of more common inflammatory diseases and have guided treatment modalities. Autoinflammation has further been implicated as an important component of cardiovascular, neurodegenerative, and metabolic syndromes. In this review, we will focus on a subset of inherited enzymatic deficiencies that lead to constitutive inflammation, and how these rare diseases have provided insights into diverse areas of cell biology not restricted to immune cells. In this way, Mendelian disorders of the innate immune system, and in particular loss of catalytic activity of enzymes in distinct pathways, have expanded our understanding of the interplay between many seemingly disparate cellular processes. We also explore the overlap between autoinflammation, autoimmunity, and immunodeficiency, which has been increasingly recognized in patients with dysregulated immune responses.
Collapse
Affiliation(s)
- David B Beck
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Glycerol-3-phosphate acyltransferases 3 and 4 direct glycerolipid synthesis and affect functionality in activated macrophages. Biochem J 2019; 476:85-99. [DOI: 10.1042/bcj20180381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
AbstractMacrophage classical M1 activation via TLR4 triggers a variety of responses to achieve the elimination of foreign pathogens. During this process, there is also an increase in lipid droplets which contain large quantities of triacylglycerol (TAG) and phospholipid (PL). The functional consequences of this increment in lipid mass are poorly understood. Here, we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). Using bone marrow-derived macrophages (BMDMs) treated with Kdo2-lipid A, we showed that glycerolipid synthesis is induced during macrophage activation. GPAT4 protein level and GPAT3/GPAT4 enzymatic activity increase during this process, and these two isoforms were required for the accumulation of cell TAG and PL. The phagocytic capacity of Gpat3−/− and Gpat4−/− BMDM was impaired. Additionally, inhibiting fatty acid β-oxidation reduced phagocytosis only partially, suggesting that lipid accumulation is not necessary for the energy requirements for phagocytosis. Finally, Gpat4−/− BMDM expressed and released more pro-inflammatory cytokines and chemokines after macrophage activation, suggesting a role for GPAT4 in suppressing inflammatory responses. Together, these results provide evidence that glycerolipid synthesis directed by GPAT4 is important for the attenuation of the inflammatory response in activated macrophages.
Collapse
|
30
|
Meana C, García-Rostán G, Peña L, Lordén G, Cubero Á, Orduña A, Győrffy B, Balsinde J, Balboa MA. The phosphatidic acid phosphatase lipin-1 facilitates inflammation-driven colon carcinogenesis. JCI Insight 2018; 3:97506. [PMID: 30232275 DOI: 10.1172/jci.insight.97506] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is a devastating illness that is associated with gut inflammation. Here, we explored the possible role of lipin-1, a phosphatidic acid phosphatase, in the development of colitis-associated tumorigenesis. Azoxymethane and dextran sodium sulfate-treated (DSS-treated) animals deficient in lipin-1 harbored fewer tumors and carcinomas than WT animals due to decreased cellular proliferation, lower expression of antiapoptotic and protumorigenic factors, and a reduced infiltration of macrophages in colon tumors. They also displayed increased resistance to DSS-induced colitis by producing less proinflammatory cytokines and experiencing less immune infiltration. Lipin-1-deficient macrophages from the colon were less activated and displayed lower phosphatidic acid phosphatase activity than WT macrophages isolated from DSS-treated animals. Transference of WT macrophages into lipin-1-deficient animals was sufficient to increase colitis burden. Furthermore, treatment of lipin-1-deficient mice with IL-23 exacerbated colon inflammation. Analysis of human databases from colon cancer and ulcerative colitis patients showed that lipin-1 expression is increased in those disorders and correlates with the expression of the proinflammatory markers CXCL1 and CXCL2. And finally, clinically, LPIN1 expression had prognostic value in inflammatory and stem-cell subtypes of colon cancers. Collectively, these data demonstrate that lipin-1 is a critical regulator of intestinal inflammation and inflammation-driven colon cancer development.
Collapse
Affiliation(s)
- Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ginesa García-Rostán
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain
| | - Lucía Peña
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - África Cubero
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Antonio Orduña
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Balázs Győrffy
- MTA-TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology and Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
31
|
Schlüter A, Sandoval J, Fourcade S, Díaz-Lagares A, Ruiz M, Casaccia P, Esteller M, Pujol A. Epigenomic signature of adrenoleukodystrophy predicts compromised oligodendrocyte differentiation. Brain Pathol 2018; 28:902-919. [PMID: 29476661 PMCID: PMC6857458 DOI: 10.1111/bpa.12595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
Abstract
Epigenomic changes may either cause disease or modulate its expressivity, adding a layer of complexity to mendelian diseases. X‐linked adrenoleukodystrophy (X‐ALD) is a rare neurometabolic condition exhibiting discordant phenotypes, ranging from a childhood cerebral inflammatory demyelination (cALD) to an adult‐onset mild axonopathy in spinal cords (AMN). The AMN form may occur with superimposed inflammatory brain demyelination (cAMN). All patients harbor loss of function mutations in the ABCD1 peroxisomal transporter of very‐long chain fatty acids. The factors that account for the lack of genotype‐phenotype correlation, even within the same family, remain largely unknown. To gain insight into this matter, here we compared the genome‐wide DNA methylation profiles of morphologically intact frontal white matter areas of children affected by cALD with adult cAMN patients, including male controls in the same age group. We identified a common methylomic signature between the two phenotypes, comprising (i) hypermethylation of genes harboring the H3K27me3 mark at promoter regions, (ii) hypermethylation of genes with major roles in oligodendrocyte differentiation such as MBP, CNP, MOG and PLP1 and (iii) hypomethylation of immune‐associated genes such as IFITM1 and CD59. Moreover, we found increased hypermethylation in CpGs of genes involved in oligodendrocyte differentiation, and also in genes with H3K27me3 marks in their promoter regions in cALD compared with cAMN, correlating with transcriptional and translational changes. Further, using a penalized logistic regression model, we identified the combined methylation levels of SPG20, UNC45A and COL9A3 and also, the combined expression levels of ID4 and MYRF to be good markers capable of discriminating childhood from adult inflammatory phenotypes. We thus propose the hypothesis that an epigenetically controlled, altered transcriptional program may drive an impaired oligodendrocyte differentiation and aberrant immune activation in X‐ALD patients. These results shed light into disease pathomechanisms and uncover putative biomarkers of interest for prognosis and phenotypic stratification.
Collapse
Affiliation(s)
- Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Angel Díaz-Lagares
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Patrizia Casaccia
- Department of Neuroscience and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Neuroscience Initiative ASRC CUNY, 85 St Nicholas Terrace, New York, NY 10031
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
32
|
Haque N, Ouda R, Chen C, Ozato K, Hogg JR. ZFR coordinates crosstalk between RNA decay and transcription in innate immunity. Nat Commun 2018; 9:1145. [PMID: 29559679 PMCID: PMC5861047 DOI: 10.1038/s41467-018-03326-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/05/2018] [Indexed: 12/29/2022] Open
Abstract
Control of type I interferon production is crucial to combat infection while preventing deleterious inflammatory responses, but the extent of the contribution of post-transcriptional mechanisms to innate immune regulation is unclear. Here, we show that human zinc finger RNA-binding protein (ZFR) represses the interferon response by regulating alternative pre-mRNA splicing. ZFR expression is tightly controlled during macrophage development; monocytes express truncated ZFR isoforms, while macrophages induce full-length ZFR to modulate macrophage-specific alternative splicing. Interferon-stimulated genes are constitutively activated by ZFR depletion, and immunostimulation results in hyper-induction of interferon β (IFNβ/IFNB1). Through whole-genome analyses, we show that ZFR controls interferon signaling by preventing aberrant splicing and nonsense-mediated decay of histone variant macroH2A1/H2AFY mRNAs. Together, our data suggest that regulation of ZFR in macrophage differentiation guards against aberrant interferon responses and reveal a network of mRNA processing and decay that shapes the transcriptional response to infection. Type I interferon signaling is critical for the control of infection. Here the authors show that zinc finger RNA-binding protein (ZFR) can control type I interferon responses, and that this control is itself regulated by distinct ZFR truncation patterns that differ between monocytes and macrophages.
Collapse
Affiliation(s)
- Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 2341, Bethesda, MD, 20892, USA.
| | - Ryota Ouda
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, Room 2A01, Bethesda, MD, 20892, USA
| | - Chao Chen
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, Room 2A01, Bethesda, MD, 20892, USA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, Room 2A01, Bethesda, MD, 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 2341, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Xu CJ, Söderhäll C, Bustamante M, Baïz N, Gruzieva O, Gehring U, Mason D, Chatzi L, Basterrechea M, Llop S, Torrent M, Forastiere F, Fantini MP, Carlsen KCL, Haahtela T, Morin A, Kerkhof M, Merid SK, van Rijkom B, Jankipersadsing SA, Bonder MJ, Ballereau S, Vermeulen CJ, Aguirre-Gamboa R, de Jongste JC, Smit HA, Kumar A, Pershagen G, Guerra S, Garcia-Aymerich J, Greco D, Reinius L, McEachan RRC, Azad R, Hovland V, Mowinckel P, Alenius H, Fyhrquist N, Lemonnier N, Pellet J, Auffray C, van der Vlies P, van Diemen CC, Li Y, Wijmenga C, Netea MG, Moffatt MF, Cookson WOCM, Anto JM, Bousquet J, Laatikainen T, Laprise C, Carlsen KH, Gori D, Porta D, Iñiguez C, Bilbao JR, Kogevinas M, Wright J, Brunekreef B, Kere J, Nawijn MC, Annesi-Maesano I, Sunyer J, Melén E, Koppelman GH. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. THE LANCET RESPIRATORY MEDICINE 2018; 6:379-388. [PMID: 29496485 DOI: 10.1016/s2213-2600(18)30052-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/09/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND DNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma. METHODS We did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4-5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4-16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2-56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1-79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting. FINDINGS 27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p<1·14 × 10-7) after meta-analysis. Consistently lower methylation levels were observed at all associated loci across childhood from age 4 to 16 years in participants with asthma, but not in cord blood at birth. All 14 CpG sites were significantly associated with asthma in the second replication study using whole-blood DNA, and were strongly associated with asthma in purified eosinophils. Whole-blood transcriptional signatures associated with these CpG sites indicated increased activation of eosinophils, effector and memory CD8 T cells and natural killer cells, and reduced number of naive T cells. Five of the 14 CpG sites were associated with asthma in respiratory epithelial cells, indicating cross-tissue epigenetic effects. INTERPRETATION Reduced whole-blood DNA methylation at 14 CpG sites acquired after birth was strongly associated with childhood asthma. These CpG sites and their associated transcriptional profiles indicate activation of eosinophils and cytotoxic T cells in childhood asthma. Our findings merit further investigations of the role of epigenetics in a clinical context. FUNDING EU and the Seventh Framework Programme (the MeDALL project).
Collapse
Affiliation(s)
- Cheng-Jian Xu
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; GRIAC research institute Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology, the Barcelona Institute of Science and Technology, Barcelona, Spain; Centre for Genomic Regulation, the Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nour Baïz
- Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Saint-Antoine Medical School, Paris, France
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, LA, USA; Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece; Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Mikel Basterrechea
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Health Research Institute Biodonostia, San Sebastián, Spain; Public Health Department of Gipuzkoa, San Sebastián, Spain
| | - Sabrina Llop
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | | | | | - Maria Pia Fantini
- Department of Biomedical and Neuromotor sciences, University of Bologna, Bologna, Italy
| | - Karin C Lødrup Carlsen
- Department of Paediatrics, Oslo University Hospital, Oslo, Norway; Department of Paediatric and Adolescent Medicine, University of Oslo, Oslo, Norway
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Andréanne Morin
- Department of Human Genetics, McGill University and Genome Quebec, Innovation Centre, Montréal, QC, Canada
| | - Marjan Kerkhof
- GRIAC research institute Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca van Rijkom
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Soesma A Jankipersadsing
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marc Jan Bonder
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stephane Ballereau
- European Institute for Systems Biology and Medicine, Campus Charles Mérieux - Université de Lyon, CIRI CNRS UMR5308, CNRS-ENS-UCBL-ENS, Lyon, France; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Cornelis J Vermeulen
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; GRIAC research institute Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Raul Aguirre-Gamboa
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johan C de Jongste
- Department of Pediatrics, Erasmus MC - Sophia Children's Hospital University Medical Center, Rotterdam, The Netherlands
| | - Henriette A Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Ashish Kumar
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Guerra
- ISGlobal, Centre for Research in Environmental Epidemiology, the Barcelona Institute of Science and Technology, Barcelona, Spain; Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Judith Garcia-Aymerich
- ISGlobal, Centre for Research in Environmental Epidemiology, the Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Dario Greco
- Faculty of Medicine and Life Sciences and Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Lovisa Reinius
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Raf Azad
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Vegard Hovland
- Department of Paediatrics, Oslo University Hospital, Oslo, Norway
| | - Petter Mowinckel
- Department of Paediatrics, Oslo University Hospital, Oslo, Norway
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland
| | - Nathanaël Lemonnier
- European Institute for Systems Biology and Medicine, Campus Charles Mérieux - Université de Lyon, CIRI CNRS UMR5308, CNRS-ENS-UCBL-ENS, Lyon, France; Institute for Advanced Biosciences, UGA-INSERM U1209-CNRS UMR5309, Site Santé, Allée des Alpes, La Tronche, France
| | - Johann Pellet
- European Institute for Systems Biology and Medicine, Campus Charles Mérieux - Université de Lyon, CIRI CNRS UMR5308, CNRS-ENS-UCBL-ENS, Lyon, France
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, Campus Charles Mérieux - Université de Lyon, CIRI CNRS UMR5308, CNRS-ENS-UCBL-ENS, Lyon, France
| | | | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Research BV, Metslawier, the Netherlands
| | - Cleo C van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Josep M Anto
- ISGlobal, Centre for Research in Environmental Epidemiology, the Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jean Bousquet
- University Hospital, Montpellier, France; Department of Dermatology, Charité, Berlin, Germany
| | - Tiina Laatikainen
- National Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Catherine Laprise
- Université du Québec à Chicoutimi, Département des sciences fondamentales, Saguenay, QC, Canada; Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, 305 Saint-Vallier, Saguenay, QC, Canada
| | - Kai-Håkon Carlsen
- Department of Paediatrics, Oslo University Hospital, Oslo, Norway; Department of Paediatric and Adolescent Medicine, University of Oslo, Oslo, Norway
| | - Davide Gori
- Department of Biomedical and Neuromotor sciences, University of Bologna, Bologna, Italy
| | - Daniela Porta
- Department of Epidemiology Lazio Regional Health Service, Rome, Italy
| | - Carmen Iñiguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces Health Research Institute, CIBERDEM, University of the Basque Country UPV-EHU, Leioa-Bizkaia, Spain
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology, the Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Martijn C Nawijn
- GRIAC research institute Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Saint-Antoine Medical School, Paris, France
| | - Jordi Sunyer
- ISGlobal, Centre for Research in Environmental Epidemiology, the Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Sachs Children's Hospital, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Gerard H Koppelman
- GRIAC research institute Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
34
|
Vozenilek AE, Navratil AR, Green JM, Coleman DT, Blackburn CMR, Finney AC, Pearson BH, Chrast R, Finck BN, Klein RL, Orr AW, Woolard MD. Macrophage-Associated Lipin-1 Enzymatic Activity Contributes to Modified Low-Density Lipoprotein-Induced Proinflammatory Signaling and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 38:324-334. [PMID: 29217509 DOI: 10.1161/atvbaha.117.310455] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Macrophage proinflammatory responses induced by modified low-density lipoproteins (modLDL) contribute to atherosclerotic progression. How modLDL causes macrophages to become proinflammatory is still enigmatic. Macrophage foam cell formation induced by modLDL requires glycerolipid synthesis. Lipin-1, a key enzyme in the glycerolipid synthesis pathway, contributes to modLDL-elicited macrophage proinflammatory responses in vitro. The objective of this study was to determine whether macrophage-associated lipin-1 contributes to atherogenesis and to assess its role in modLDL-mediated signaling in macrophages. APPROACH AND RESULTS We developed mice lacking lipin-1 in myeloid-derived cells and used adeno-associated viral vector 8 expressing the gain-of-function mutation of mouse proprotein convertase subtilisin/kexin type 9 (adeno-associated viral vector 8-proprotein convertase subtilisin/kexin type 9) to induce hypercholesterolemia and plaque formation. Mice lacking myeloid-associated lipin-1 had reduced atherosclerotic burden compared with control mice despite similar plasma lipid levels. Stimulation of bone marrow-derived macrophages with modLDL activated a persistent protein kinase Cα/βII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributed to macrophage proinflammatory responses that was dependent on lipin-1 enzymatic activity. CONCLUSIONS Our data demonstrate that macrophage-associated lipin-1 is atherogenic, likely through persistent activation of a protein kinase Cα/βII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributes to foam cell proinflammatory responses. Taken together, these results suggest that modLDL-induced foam cell formation and modLDL-induced macrophage proinflammatory responses are not independent consequences of modLDL stimulation but rather are both directly influenced by enhanced lipid synthesis.
Collapse
Affiliation(s)
- Aimee E Vozenilek
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Aaron R Navratil
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Jonette M Green
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - David T Coleman
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Cassidy M R Blackburn
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Alexandra C Finney
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Brenna H Pearson
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Roman Chrast
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Brian N Finck
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Ronald L Klein
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - A Wayne Orr
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Matthew D Woolard
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.).
| |
Collapse
|
35
|
Pelosi M, Testet E, Le Lay S, Dugail I, Tang X, Mabilleau G, Hamel Y, Madrange M, Blanc T, Odent T, McMullen TPW, Alfò M, Brindley DN, de Lonlay P. Normal human adipose tissue functions and differentiation in patients with biallelic LPIN1 inactivating mutations. J Lipid Res 2017; 58:2348-2364. [PMID: 28986436 PMCID: PMC5711497 DOI: 10.1194/jlr.p075440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Lipin-1 is a Mg2+-dependent phosphatidic acid phosphatase (PAP) that in mice is necessary for normal glycerolipid biosynthesis, controlling adipocyte metabolism, and adipogenic differentiation. Mice carrying inactivating mutations in the Lpin1 gene display the characteristic features of human familial lipodystrophy. Very little is known about the roles of lipin-1 in human adipocyte physiology. Apparently, fat distribution and weight is normal in humans carrying LPIN1 inactivating mutations, but a detailed analysis of adipose tissue appearance and functions in these patients has not been available so far. In this study, we performed a systematic histopathological, biochemical, and gene expression analysis of adipose tissue biopsies from human patients harboring LPIN1 biallelic inactivating mutations and affected by recurrent episodes of severe rhabdomyolysis. We also explored the adipogenic differentiation potential of human mesenchymal cell populations derived from lipin-1 defective patients. White adipose tissue from human LPIN1 mutant patients displayed a dramatic decrease in lipin-1 protein levels and PAP activity, with a concomitant moderate reduction of adipocyte size. Nevertheless, the adipose tissue develops without obvious histological signs of lipodystrophy and with normal qualitative composition of storage lipids. The increased expression of key adipogenic determinants such as SREBP1, PPARG, and PGC1A shows that specific compensatory phenomena can be activated in vivo in human adipocytes with deficiency of functional lipin-1.
Collapse
Affiliation(s)
- Michele Pelosi
- Centre de Référence des Maladies Héréditaires du Métabolisme, Institut Imagine des Maladies Génétiques, Laboratoire de génétique des maladies autoinflammatoires monogéniques, INSERM UMR1163, Université Paris Descartes et Hôpital Necker-Enfants malades (Assistance publique - Hôpitaux de Paris), Paris, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire-UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Soazig Le Lay
- INSERM, UMR1063, Université d'Angers, UBL, Angers, France
| | - Isabelle Dugail
- INSERM, U1166, Equipe 6, Université Pierre et Marie Curie, Paris, France
| | - Xiaoyun Tang
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | | - Yamina Hamel
- Centre de Référence des Maladies Héréditaires du Métabolisme, Institut Imagine des Maladies Génétiques, Laboratoire de génétique des maladies autoinflammatoires monogéniques, INSERM UMR1163, Université Paris Descartes et Hôpital Necker-Enfants malades (Assistance publique - Hôpitaux de Paris), Paris, France
| | - Marine Madrange
- Centre de Référence des Maladies Héréditaires du Métabolisme, Institut Imagine des Maladies Génétiques, Laboratoire de génétique des maladies autoinflammatoires monogéniques, INSERM UMR1163, Université Paris Descartes et Hôpital Necker-Enfants malades (Assistance publique - Hôpitaux de Paris), Paris, France
| | - Thomas Blanc
- Department of Pediatric Surgery and Urology, Hôpital Necker-Enfants malades-Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thierry Odent
- Department of Pediatric Orthopedics, Hôpital Necker-Enfants malades-Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Todd P W McMullen
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Marco Alfò
- Dipartimento di Scienze Statistiche, Sapienza Università di Roma, Rome, Italy
| | - David N Brindley
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Pascale de Lonlay
- Centre de Référence des Maladies Héréditaires du Métabolisme, Institut Imagine des Maladies Génétiques, Laboratoire de génétique des maladies autoinflammatoires monogéniques, INSERM UMR1163, Université Paris Descartes et Hôpital Necker-Enfants malades (Assistance publique - Hôpitaux de Paris), Paris, France
| |
Collapse
|
36
|
Li Y, Zhou J. Roles of silent information regulator 1-serine/arginine-rich splicing factor 10-lipin 1 axis in the pathogenesis of alcohol fatty liver disease. Exp Biol Med (Maywood) 2017; 242:1117-1125. [PMID: 28467182 DOI: 10.1177/1535370217707729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alcohol exposure is a major reason of morbidity and mortality all over the world, with much of detrimental consequences attributing to alcoholic liver disease (ALD). With the continued ethanol consumption, alcoholic fatty liver disease (AFLD, the earliest and reversible form of ALD) can further develop to more serious forms of alcoholic liver damage, including alcoholic steatohepatitis, fibrosis/cirrhosis, and even eventually progress to hepatocellular carcinoma and liver failure. Furthermore, cell trauma, inflammation, oxidative stress, regeneration, and bacterial translocation are crucial promoters of ethanol-mediated liver lesions. AFLD is characterized by excessive fat deposition in liver induced by excessive drinking, which is related closely to the raised synthesis of fatty acids and triglyceride, reduction of mitochondrial fatty acid β-oxidation, and the aggregation of very-low-density lipoprotein (VLDL). Although little is known about the cellular and molecular mechanisms of AFLD, it seems to be correlated to diverse signal channels. Massive studies have suggested that liver steatosis is closely associated with the inhibition of silent information regulator 1 (SIRT1) and the augment of lipin1 β/α ratio mediated by ethanol. Recently, serine/arginine-rich splicing factor 10 (SFRS10), a specific molecule functioning in alternative splicing of lipin 1 (LPIN1) pre-mRNAs, has emerged as the central connection between SIRT1 and lipin1 signaling. It seems a new signaling axis, SIRT1-SFRS10-LPIN1 axis, acting in the pathogenesis of AFLD exists. This article aims to further explore the interactions among the above three molecules and their influences on the development of AFLD. Impact statement ALD is a major health burden in industrialized countries as well as China. AFLD, the earliest and reversible form of ALD, can progress to hepatitis, fibrosis/cirrhosis, even hepatoma. While the mechanisms, by which ethanol consumption leads to AFLD, are complicated and multiple, and remain incompletely understood. SIRT1, SFRS10, and LIPIN1 had been separately reported to participate in lipid metabolism and the pathogenesis of AFLD. Noteworthy, we found the connection among them via searching articles in PubMed and we had elaborated the connection in detail in this minireview. It seems a new signaling axis, SIRT1-SFRS10-LIPIN1 axis, acting in the pathogenesis of AFLD exists. Further study aimed at SIRT1-SFRS10-LIPIN1 signaling system will possibly offer a more effective therapeutic target for AFLD.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Infectious Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Junying Zhou
- Department of Infectious Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
37
|
Lordén G, Sanjuán-García I, de Pablo N, Meana C, Alvarez-Miguel I, Pérez-García MT, Pelegrín P, Balsinde J, Balboa MA. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J Exp Med 2016; 214:511-528. [PMID: 28031477 PMCID: PMC5294860 DOI: 10.1084/jem.20161452] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/23/2016] [Accepted: 12/12/2016] [Indexed: 01/31/2023] Open
Abstract
Lordén et al. show that the phosphatidic acid phosphatase lipin-2 is a key regulator of the cellular machinery that generates IL-1β in macrophages. This work provides a molecular explanation for the development of the autoinflammatory disease known as Majeed syndrome. Mutations in human LPIN2 produce a disease known as Majeed syndrome, the clinical manifestations of which are ameliorated by strategies that block IL-1β or its receptor. However the role of lipin-2 during IL-1β production remains elusive. We show here that lipin-2 controls excessive IL-1β formation in primary human and mouse macrophages by several mechanisms, including activation of the inflammasome NLRP3. Lipin-2 regulates MAPK activation, which mediates synthesis of pro–IL-1β during inflammasome priming. Lipin-2 also inhibits the activation and sensitization of the purinergic receptor P2X7 and K+ efflux, apoptosis-associated speck-like protein with a CARD domain oligomerization, and caspase-1 processing, key events during inflammasome activation. Reduced levels of lipin-2 in macrophages lead to a decrease in cellular cholesterol levels. In fact, restoration of cholesterol concentrations in cells lacking lipin-2 decreases ion currents through the P2X7 receptor, and downstream events that drive IL-1β production. Furthermore, lipin-2–deficient mice exhibit increased sensitivity to high lipopolysaccharide doses. Collectively, our results unveil lipin-2 as a critical player in the negative regulation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Itziar Sanjuán-García
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Nagore de Pablo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Inés Alvarez-Miguel
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - M Teresa Pérez-García
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, Murcia Biomedical Research Institute, Hospital Virgen de la Arrixaca, Carretera Buenavista, 30120 Murcia, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| |
Collapse
|
38
|
Myeloid Cell-Specific Lipin-1 Deficiency Stimulates Endocrine Adiponectin-FGF15 Axis and Ameliorates Ethanol-Induced Liver Injury in Mice. Sci Rep 2016; 6:34117. [PMID: 27666676 PMCID: PMC5036185 DOI: 10.1038/srep34117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/07/2016] [Indexed: 02/08/2023] Open
Abstract
Lipin-1 is a phosphatidate phosphohydrolase (PAP) required for the generation of diacylglycerol during glycerolipid synthesis, and exhibits dual functions in the regulation of lipid metabolism. Lipin-1 has been implicated in the pathogenesis of alcoholic liver disease (ALD). In the present study, we assessed lipin-1 function in myeloid cells in ALD using a myeloid cell-specific lipin-1 knockout (mLipin-1KO) mouse model. Utilizing the Gao-binge ethanol feeding protocol, matched mLipin-1KO mice and littermate loxP control (WT) mice were pair-fed with either an ethanol-containing diet or an ethanol-free diet (control). Surprisingly, deletion of lipin-1 in myeloid cells dramatically attenuated liver inflammatory responses and ameliorated liver injury that would normally occur following the ethanol feeding protocol, but slightly exacerbated the ethanol-induced steatosis in mice. Mechanistically, myeloid cell-specific lipin-1 deficiency concomitantly increased the fat-derived adiponectin and ileum-derived fibroblast growth factor (FGF) 15. In concordance with concerted elevation of circulating adiponectin and FGF15, myeloid cell-specific lipin-1 deficiency diminished hepatic nuclear factor kappa B (NF-κB) activity, limited liver inflammatory responses, normalized serum levels of bile acids, and protected mice from liver damage after ethanol challenge. Our novel data demonstrate that myeloid cell-specific deletion of lipin-1 ameliorated inflammation and alcoholic hepatitis in mice via activation of endocrine adiponectin-FGF15 signaling.
Collapse
|
39
|
Pagano S, Carbone F, Burger F, Roth A, Bertolotto M, Pane B, Spinella G, Palombo D, Pende A, Dallegri F, Satta N, Virzi J, Fontana P, Mach F, Montecucco F, Vuilleumier N. Anti-apolipoprotein A-1 auto-antibodies as active modulators of atherothrombosis. Thromb Haemost 2016; 116:554-64. [PMID: 27356567 DOI: 10.1160/th16-03-0229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 12/18/2022]
Abstract
Humoral autoimmune-mediated inflammation plays a role in atherogenesis, and potentially in arterial thrombosis. Anti-apolipoprotein A-1 (apoA-1) IgG have been reported to represent emergent mediators of atherogenesis through Toll-like receptors (TLR) 2, 4 and CD14 signalling. We investigated the role of anti-apoA-1 IgG on tissue factor (TF) expression and activation, a key coagulation regulator underlying atherothrombosis. Atherothrombosis features were determined by immunohistochemical TF staining of human carotid biopsies derived from patients with severe carotid stenosis undergoing elective surgery (n=176), and on aortic roots of different genetic backgrounds mice (ApoE-/-; TLR2-/-ApoE-/- and TLR4-/-ApoE-/-) exposed to passive immunisation with anti-apoA-1 IgG. Human serum levels of anti-apoA-1 IgG were measured by ELISA. In vitro, on human-monocyte-derived-macrophages (HMDM) the anti-apoA-1 IgG increased TF expression and activity were analysed by FACS and chromogenic assays in presence of different pharmacological inhibitors. Human serum anti-apoA-1 IgG levels significantly correlated to intraplaque TF expression in carotid biopsies (r=0.31, p<0.001), which was predictive of clinically symptomatic lesions. On HMDM, anti-apoA-1 IgG induced a TLR2, 4 and CD14-dependent increase in TF expression and activity, involving NF-kappaB and a c-Jun N-terminal kinase-dependent AP-1 transcription factors. In ApoE-/- mice, anti-apoA-1 IgG passive immunisation significantly enhanced intraplaque TF expression when compared to control IgG. This effect was lost in both TLR2-/-ApoE-/- and TLR4-/-ApoE-/- mice. These results demonstrate that anti-apoA-1 IgG are associated with TF expression in human atherosclerotic plaques, induce TF expression in vitro and in vivo through TLR2 and 4 signalling, supporting a possible causal relationship between anti-apoA-1 IgG and atherothrombosis.
Collapse
Affiliation(s)
- Sabrina Pagano
- Sabrina Pagano, PhD, Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland, Tel.: +41 22 37 95 321, Fax: +41 22 3795502, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guijas C, Meana C, Astudillo AM, Balboa MA, Balsinde J. Foamy Monocytes Are Enriched in cis-7-Hexadecenoic Fatty Acid (16:1n-9), a Possible Biomarker for Early Detection of Cardiovascular Disease. Cell Chem Biol 2016; 23:689-99. [PMID: 27265749 DOI: 10.1016/j.chembiol.2016.04.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022]
Abstract
Human monocytes respond to arachidonic acid, a secretory product of endothelial cells, by activating the de novo pathway of fatty acid biosynthesis, resulting in the acquisition of a foamy phenotype due to accumulation of cytoplasmic lipid droplets. Recruitment of foamy monocytes to endothelium is a key step in the formation of atherosclerotic plaques. Here we describe that lipid droplets of foamy monocytes are enriched in a rather uncommon fatty acid, cis-7-hexadecenoic acid (16:1n-9), a positional isomer of palmitoleic acid. 16:1n-9 was found to possess an anti-inflammatory activity both in vitro and in vivo that is comparable with that of omega-3 fatty acids and clearly distinguishable from the effects of palmitoleic acid. Selective accumulation in neutral lipids of phagocytic cells of an uncommon fatty acid reveals an early phenotypic change that may provide a biomarker of proatherogenicity, and a potential target for intervention in the early stages of cardiovascular disease.
Collapse
Affiliation(s)
- Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
41
|
Oishi Y, Manabe I. Integrated regulation of the cellular metabolism and function of immune cells in adipose tissue. Clin Exp Pharmacol Physiol 2016; 43:294-303. [DOI: 10.1111/1440-1681.12539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Yumiko Oishi
- Department of Cellular and Molecular Medicine; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Ichiro Manabe
- Department of Aging Research; Graduate School of Medicine; Chiba University; Chiba Japan
| |
Collapse
|
42
|
Navratil AR, Vozenilek AE, Cardelli JA, Green JM, Thomas MJ, Sorci-Thomas MG, Orr AW, Woolard MD. Lipin-1 contributes to modified low-density lipoprotein-elicited macrophage pro-inflammatory responses. Atherosclerosis 2015; 242:424-32. [PMID: 26288136 DOI: 10.1016/j.atherosclerosis.2015.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries and the underlying cause of cardiovascular disease, a major cause of mortality worldwide. The over-accumulation of modified cholesterol-containing low-density lipoproteins (e.g. oxLDL) in the artery wall and the subsequent recruitment and activation of macrophages contributes to the development of atherosclerosis. The excessive uptake of modified-LDL by macrophages leads to a lipid-laden "foamy" phenotype and pro-inflammatory cytokine production. Modified-LDLs promote foam cell formation in part by stimulating de novo lipid biosynthesis. However, it is unknown if lipid biosynthesis directly regulates foam cell pro-inflammatory mediator production. Lipin-1, a phosphatidate phosphohydrolase required for the generation of diacylglycerol during glycerolipid synthesis has recently been demonstrated to contribute to bacterial-induced pro-inflammatory responses by macrophages. In this study we present evidence demonstrating the presence of lipin-1 within macrophages in human atherosclerotic plaques. Additionally, reducing lipin-1 levels in macrophages significantly inhibits both modified-LDL-induced foam cell formation in vitro, as observed by smaller/fewer intracellular lipid inclusions, and ablates modified-LDL-elicited production of the pro-atherogenic mediators tumor necrosis factor-α, interleukin-6, and prostaglandin E2. These findings demonstrate a critical role for lipin-1 in the regulation of macrophage inflammatory responses to modified-LDL. These data begin to link the processes of foam cell formation and pro-inflammatory cytokine production within macrophages.
Collapse
Affiliation(s)
- Aaron R Navratil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | - Aimee E Vozenilek
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | - James A Cardelli
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | - Jonette M Green
- Department of Pathology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Mary G Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - A Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
43
|
Hamel Y, Mamoune A, Mauvais FX, Habarou F, Lallement L, Romero NB, Ottolenghi C, de Lonlay P. Acute rhabdomyolysis and inflammation. J Inherit Metab Dis 2015; 38:621-8. [PMID: 25778939 DOI: 10.1007/s10545-015-9827-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
Rhabdomyolysis results from the rapid breakdown of skeletal muscle fibers, which leads to leakage of potentially toxic cellular content into the systemic circulation. Acquired causes by direct injury to the sarcolemma are most frequent. The inherited causes are: i) metabolic with failure of energy production, including mitochondrial fatty acid ß-oxidation defects, LPIN1 mutations, inborn errors of glycogenolysis and glycolysis, more rarely mitochondrial respiratory chain deficiency, purine defects and peroxysomal α-methyl-acyl-CoA-racemase defect (AMACR), ii) structural causes with muscle dystrophies and myopathies, iii) calcium pump disorder with RYR1 gene mutations, iv) inflammatory causes with myositis. Irrespective of the cause of rhabdomyolysis, the pathology follows a common pathway, either by the direct injury to sarcolemma by increased intracellular calcium concentration (acquired causes) or by the failure of energy production (inherited causes), which leads to fiber necrosis. Rhabdomyolysis are frequently precipitated by febrile illness or exercise. These conditions are associated with two events, elevated temperature and high circulating levels of pro-inflammatory mediators such as cytokines and chemokines. To illustrate these points in the context of energy metabolism, protein thermolability and the potential benefits of arginine therapy, we focus on a rare cause of rhabdomyolysis, aldolase A deficiency. In addition, our studies on lipin-1 (LPIN1) deficiency raise the possibility that several diseases involved in rhabdomyolysis implicate pro-inflammatory cytokines and may even represent primarily pro-inflammatory diseases. Thus, not only thermolability of mutant proteins critical for muscle function, but also pro-inflammatory cytokines per se, may lead to metabolic decompensation and rhabdomyolysis.
Collapse
Affiliation(s)
- Yamina Hamel
- Institut Imagine, Institut National de la Santé et de la Recherche Médicale, Unité 1163, 75015, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|