1
|
Sivaraman K, Wrenger S, Liu B, Schaudien D, Hesse C, Gomez-Mariano G, Perez-Luz S, Sewald K, DeLuca D, Wurm MJ, Pino P, Welte T, Martinez-Delgado B, Janciauskiene S. Mice inflammatory responses to inhaled aerosolized LPS: effects of various forms of human alpha1-antitrypsin. J Leukoc Biol 2023; 113:58-70. [PMID: 36822165 DOI: 10.1093/jleuko/qiac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
Rodent models of lipopolysaccharide (LPS)-induced pulmonary inflammation are used for anti-inflammatory drug testing. We aimed to characterize mice responses to aerosolized LPS alone or with intraperitoneal (i.p.) delivery of alpha1-antitrypsin (AAT). Balb/c mice were exposed to clean air or aerosolized LPS (0.21 mg/mL) for 10 min per day, for 3 d. One hour after each challenge, animals were treated i.p. with saline or with (4 mg/kg body weight) one of the AAT preparations: native (AAT), oxidized (oxAAT), recombinant (recAAT), or peptide of AAT (C-36). Experiments were terminated 6 h after the last dose of AATs. Transcriptome data of mice lungs exposed to clean air versus LPS revealed 656 differentially expressed genes and 155 significant gene ontology terms, including neutrophil migration and toll-like receptor signaling pathways. Concordantly, mice inhaling LPS showed higher bronchoalveolar lavage fluid neutrophil counts and levels of myeloperoxidase, inducible nitric oxide synthase, IL-1β, TNFα, KC, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Plasma inflammatory markers did not increase. After i.p. application of AATs, about 1% to 2% of proteins reached the lungs but, except for GM-CSF, none of the proteins significantly influenced inflammatory markers. All AATs and C-36 significantly inhibited LPS-induced GM-CSF release. Surprisingly, only oxAAT decreased the expression of several LPS-induced inflammatory genes, such as Cxcl3, Cd14, Il1b, Nfkb1, and Nfkb2, in lung tissues. According to lung transcriptome data, oxAAT mostly affected genes related to transcriptional regulation while native AAT or recAAT affected genes of inflammatory pathways. Hence, we present a feasible mice model of local lung inflammation induced via aerosolized LPS that can be useful for systemic drug testing.
Collapse
Affiliation(s)
- Kokilavani Sivaraman
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabine Wrenger
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Bin Liu
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Gema Gomez-Mariano
- Molecular Genetics, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Centro de Investigacion Biomedica en red de Enfermedades Raras, U758 (CIBERER), Majadahonda, Spain
| | - Sara Perez-Luz
- Molecular Genetics, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Centro de Investigacion Biomedica en red de Enfermedades Raras, U758 (CIBERER), Majadahonda, Spain
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David DeLuca
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | | | | | - Tobias Welte
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Molecular Genetics, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Centro de Investigacion Biomedica en red de Enfermedades Raras, U758 (CIBERER), Majadahonda, Spain
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.,Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
2
|
Loss of Serpina1 in Mice Leads to Altered Gene Expression in Inflammatory and Metabolic Pathways. Int J Mol Sci 2022; 23:ijms231810425. [PMID: 36142337 PMCID: PMC9499171 DOI: 10.3390/ijms231810425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
The SERPINA1 gene encodes alpha1-antitrypsin (AAT), an acute phase glycoprotein and serine protease inhibitor that is mainly (80–90%) produced in the liver. Point mutations in the SERPINA1 gene can lead to the misfolding, intracellular accumulation, and deficiency of circulating AAT protein, increasing the risk of developing chronic liver diseases or chronic obstructive pulmonary disease. Currently, siRNA technology can knock down the SERPINA1 gene and limit defective AAT production. How this latter affects other liver genes is unknown. Livers were taken from age- and sex-matched C57BL/6 wild-type (WT) and Serpina1 knockout mice (KO) aged from 8 to 14 weeks, all lacking the five serpin A1a-e paralogues. Total RNA was isolated and RNA sequencing, and transcriptome analysis was performed. The knockout of the Serpina1 gene in mice changed inflammatory, lipid metabolism, and cholesterol metabolism-related gene expression in the liver. Independent single-cell sequencing data of WT mice verified the involvement of Serpina1 in cholesterol metabolism. Our results from mice livers suggested that designing therapeutic strategies for the knockout of the SERPINA1 gene in humans must account for potential perturbations of key metabolic pathways and consequent mitigation of side effects.
Collapse
|
3
|
Sun R, Xu Z, Zhu C, Chen T, Muñoz LE, Dai L, Zhao Y. Alpha-1 antitrypsin in autoimmune diseases: Roles and therapeutic prospects. Int Immunopharmacol 2022; 110:109001. [PMID: 35803133 DOI: 10.1016/j.intimp.2022.109001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Alpha-1 antitrypsin (A1AT) is a protease inhibitor in the serum. Its primary function is to inhibit the activity of a series of proteases, including proteinase 3, neutrophil elastase, metalloproteases, and cysteine-aspartate proteases. In addition, A1AT also has anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-viral, and anti-bacterial activities and plays essential roles in the regulation of tissue repair and lymphocyte differentiation and activation. The overactivation of the immune system characterizes the pathogenesis of autoimmune diseases. A1AT treatment shows beneficial effects on patients and animal models with autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. This review summarizes the functions and therapeutic prospects of A1AT in autoimmune diseases.
Collapse
Affiliation(s)
- Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqiang Xu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lunzhi Dai
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Berthou F, Sobolewski C, Abegg D, Fournier M, Maeder C, Dolicka D, Correia de Sousa M, Adibekian A, Foti M. Hepatic PTEN Signaling Regulates Systemic Metabolic Homeostasis through Hepatokines-Mediated Liver-to-Peripheral Organs Crosstalk. Int J Mol Sci 2022; 23:ijms23073959. [PMID: 35409319 PMCID: PMC8999584 DOI: 10.3390/ijms23073959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Liver-derived circulating factors deeply affect the metabolism of distal organs. Herein, we took advantage of the hepatocyte-specific PTEN knockout mice (LPTENKO), a model of hepatic steatosis associated with increased muscle insulin sensitivity and decreased adiposity, to identify potential secreted hepatic factors improving metabolic homeostasis. Our results indicated that protein factors, rather than specific metabolites, released by PTEN-deficient hepatocytes trigger an improved muscle insulin sensitivity and a decreased adiposity in LPTENKO. In this regard, a proteomic analysis of conditioned media from PTEN-deficient primary hepatocytes identified seven hepatokines whose expression/secretion was deregulated. Distinct expression patterns of these hepatokines were observed in hepatic tissues from human/mouse with NAFLD. The expression of specific factors was regulated by the PTEN/PI3K, PPAR or AMPK signaling pathways and/or modulated by classical antidiabetic drugs. Finally, loss-of-function studies identified FGF21 and the triad AHSG, ANGPTL4 and LECT2 as key regulators of insulin sensitivity in muscle cells and in adipocytes biogenesis, respectively. These data indicate that hepatic PTEN deficiency and steatosis alter the expression/secretion of hepatokines regulating insulin sensitivity in muscles and the lipid metabolism in adipose tissue. These hepatokines could represent potential therapeutic targets to treat obesity and insulin resistance.
Collapse
Affiliation(s)
- Flavien Berthou
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Cyril Sobolewski
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Margot Fournier
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Christine Maeder
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Dobrochna Dolicka
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Marta Correia de Sousa
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Michelangelo Foti
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
- Diabetes Center, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(22)-379-52-04
| |
Collapse
|
5
|
Boosted Pro-Inflammatory Activity in Human PBMCs by Lipopolysaccharide and SARS-CoV-2 Spike Protein Is Regulated by α-1 Antitrypsin. Int J Mol Sci 2021; 22:ijms22157941. [PMID: 34360706 PMCID: PMC8347018 DOI: 10.3390/ijms22157941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins (“spike”). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1β mRNA expression and protein release were significantly inhibited (by about 46–50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.
Collapse
|
6
|
Tumpara S, Ballmaier M, Wrenger S, König M, Lehmann M, Lichtinghagen R, Martinez-Delgado B, Korenbaum E, DeLuca D, Jedicke N, Welte T, Fromme M, Strnad P, Stolk J, Janciauskiene S. Polymerization of misfolded Z alpha-1 antitrypsin protein lowers CX3CR1 expression in human PBMCs. eLife 2021; 10:64881. [PMID: 34002692 PMCID: PMC8205483 DOI: 10.7554/elife.64881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Expression levels of CX3CR1 (C-X3-C motif chemokine receptor 1) on immune cells have significant importance in maintaining tissue homeostasis under physiological and pathological conditions. The factors implicated in the regulation of CX3CR1 and its specific ligand CX3CL1 (fractalkine) expression remain largely unknown. Recent studies provide evidence that host’s misfolded proteins occurring in the forms of polymers or amyloid fibrils can regulate CX3CR1 expression. Herein, a novel example demonstrates that polymers of human ZZ alpha-1 antitrypsin (Z-AAT) protein, resulting from its conformational misfolding due to the Z (Glu342Lys) mutation in SERPINA1 gene, strongly lower CX3CR1 mRNA expression in human peripheral blood mononuclear cells (PBMCs). This parallels with increase of intracellular levels of CX3CR1 and Z-AAT proteins. Presented data indicate the involvement of the CX3CR1 pathway in the Z-AAT-related disorders and further support the role of misfolded proteins in CX3CR1 regulation. Proteins can lose their structure and form polymers because of mutations or changes in their immediate environment which can lead to cell damage and disease. Interestingly, polymers formed by a variety of proteins can reduce the levels of CX3C chemokine receptor 1 (CX3CR1 for short) that controls the behaviour of immune cells and is implicated in a range of illnesses. Inherited ZZ alpha-1 antitrypsin deficiency is a rare genetic condition that highly increases the risk of liver and lung diseases. This disorder is characterised by mutant alpha-1 antitrypsin proteins (AAT for short) reacting together to form polymers; yet it remains unclear how the polymers affect different cells or organs, and lead to diseases. To investigate this question, Tumpara et al. examined whether polymers of mutant AAT influence the level of the CX3CR1 protein in specific classes of immune cells. Experiments revealed that in people with AAT deficiency, certain blood immune cells express lower levels of CX3CR1. Regardless of age, clinical diagnosis, or treatment regimen, all individuals with ZZ alpha-1 antitrypsin deficiency had AAT polymers circulating in their blood: the higher the levels of polymers measured, the lower the expression of CX3CR1 recorded in the specific immune cells. When Tumpara et al. added polymers of mutant AAT to the immune cells of healthy donors, the expression of CX3CR1 dropped in a manner dependent on the polymer concentration. According to microscopy data, AAT polymers occurred inside cells alongside the CX3CR1 protein, suggesting that the two molecular actors interact. In the future, new drugs that remove these polymers, either from inside cells or as they circulate in the body, could help patients suffering from conditions associated with this abnormal protein aggregation.
Collapse
Affiliation(s)
- Srinu Tumpara
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | | | | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Department of Molecular Genetics, Institute of Health Carlos III, Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Majadahonda, Spain
| | - Elena Korenbaum
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - David DeLuca
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Nils Jedicke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Member of European Reference Network LUNG, section Alpha-1-antitrypsin Deficiency, Leiden, Netherlands
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Pulmonology, Leiden University Medical Center, Member of European Reference Network LUNG, section Alpha-1-antitrypsin Deficiency, Leiden, Netherlands
| |
Collapse
|
7
|
Lan S, He Y, Tiheiran M, Liu W, Guo H. The Angiopoietin-like protein 4: a promising biomarker to distinguish brucella spondylitis from tuberculous spondylitis. Clin Rheumatol 2021; 40:4289-4294. [PMID: 33959835 PMCID: PMC8463333 DOI: 10.1007/s10067-021-05752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
Objective The Angiopoietin-like protein 4 (ANGPTL-4) has been proved to be a protein associated with multiple inflammatory responses. Nevertheless, whether it contributes to distinguishing brucella spondylitis (BS) from tuberculous spondylitis (TS) remains an open question. Our study aim is to explore the capability of the ANGPTL-4 to differentiating BS from TS. Materials and method In our study, 53 patients were screened out according to the criteria precisely in Xinjiang Medical University Affiliated of the First Hospital from 1 January, 2016, to 31 December, 2018. Their clinical data were retrospectively reviewed. All of them underwent pathological biopsy and magnetic resonance imaging examination. All the frozen tissue sections were stained for testing ANGPTL-4. Result Among the 53 patients, BS had 26 patients, and TS had 27 patients. There was no significant difference between the baseline (P = 0.682) between the two groups. The positive rate of ANGPTL-4 in TS patients (24/27, 88.89%) was higher than that in BS patients (17/26, 65.83%) (P < 0.05). The incidence of microangiopathy and fibrous connective tissue hyperplasia in patients with BS was distinctly higher than those in the TS (P = 0.001, P = 0.008, respectively). Patients of TS frequently presented more granuloma, caseous necrosis, epithelial-like reaction, interleukin 6 (IL-6), and C-reactive protein (CRP) than those of BS. Conclusion Our study provided novel insights into distinguishing BS from TS using the ANGPTL-4 combining with histopathology, which may become new supporting evidence.
Key Points • Brucella spondylitis and tuberculous spondylitis are a significant public health concern and even have prolonged damage, contributing to severe health and economic outcomes in Xinjiang of China. • The granuloma, caseous necrosis, epithelioid reaction, microangiosis, and fibrous connective tissue of pathological tissue might play a critical significance for distinguishing brucella spondylitis from tuberculous spondylitis patients. • ANGPLT-4 may become new supporting evidence identify brucella spondylitis and tuberculous spondylitis which is implicated in inflammation angiogenesis-related disorders. |
Collapse
Affiliation(s)
- Siqin Lan
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Yuanlin He
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Maijudan Tiheiran
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Wenya Liu
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Hui Guo
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China.
| |
Collapse
|
8
|
A Novel Mouse Monoclonal Antibody C42 against C-Terminal Peptide of Alpha-1-Antitrypsin. Int J Mol Sci 2021; 22:ijms22042141. [PMID: 33670003 PMCID: PMC7926790 DOI: 10.3390/ijms22042141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359–394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse monoclonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot- and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1–0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.
Collapse
|
9
|
Janciauskiene S. The Beneficial Effects of Antioxidants in Health And Diseases. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:182-202. [PMID: 32558487 DOI: 10.15326/jcopdf.7.3.2019.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species can be generated endogenously (by mitochondria, peroxisomes, and phagocytic cells) and exogenously (by pollutions, UV exposure, xenobiotic compounds, and cigarette smoke). The negative effects of free radicals are neutralized by antioxidant molecules synthesized in our body, like glutathione, uric acid, or ubiquinone, and those obtained from the diet, such as vitamins C, E, and A, and flavonoids. Different microelements like selenium and zinc have no antioxidant action themselves but are required for the activity of many antioxidant enzymes. Furthermore, circulating blood proteins are suggested to account for more than 50% of the combined antioxidant effects of urate, ascorbate, and vitamin E. Antioxidants together constitute a mutually supportive defense against reactive oxygen and nitrogen species to maintain the oxidant/antioxidant balance. This article outlines the oxidative and anti-oxidative molecules involved in the pathogenesis of chronic obstructive lung disease. The role of albumin and alpha-1 antitrypsin in antioxidant defense is also discussed.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Member of German Centre for Lung Research (DZL), Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
10
|
Ercetin E, Richtmann S, Delgado BM, Gomez-Mariano G, Wrenger S, Korenbaum E, Liu B, DeLuca D, Kühnel MP, Jonigk D, Yuskaeva K, Warth A, Muley T, Winter H, Meister M, Welte T, Janciauskiene S, Schneider MA. Clinical Significance of SERPINA1 Gene and Its Encoded Alpha1-antitrypsin Protein in NSCLC. Cancers (Basel) 2019; 11:cancers11091306. [PMID: 31487965 PMCID: PMC6770941 DOI: 10.3390/cancers11091306] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
High expression of SERPINA1 gene encoding acute phase protein, alpha1-antitrypsin (AAT), is associated with various tumors. We sought to examine the significance of SERPINA1 and AAT protein in non-small-cell lung cancer (NSCLC) patients and NSCLC cell lines. Tumor and adjacent non-tumor lung tissues and serum samples from 351 NSCLC patients were analyzed for SERPINA1 expression and AAT protein levels. We also studied the impact of SERPINA1 expression and AAT protein on H1975 and H661 cell behavior, in vitro. Lower SERPINA1 expression in tumor but higher in adjacent non-tumor lung tissues (n = 351, p = 0.016) as well as higher serum levels of AAT protein (n = 170, p = 0.033) were associated with worse survival rates. Specifically, in NSCLC stage III patients, higher blood AAT levels (>2.66 mg/mL) correlated with a poor survival (p = 0.002). Intriguingly, levels of serum AAT do not correlate with levels of C-reactive protein, neutrophils-to-leukocyte ratio, and do not correlate with SERPINA1 expression or AAT staining in the tumor tissue. Additional experiments in vitro revealed that external AAT and/or overexpressed SERPINA1 gene significantly improve cancer cell migration, colony formation and resistance to apoptosis. SERPINA1 gene and AAT protein play an active role in the pathogenesis of lung cancer and not just reflect inflammatory reaction related to cancer development.
Collapse
Affiliation(s)
- Evrim Ercetin
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Sarah Richtmann
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| | - Beatriz Martinez Delgado
- Department of Molecular Genetics. Institute of Health Carlos III. Center for Biomedical Research in the Network of Rare Diseases (CIBERER), 28220 Majadahonda (Madrid), Spain.
| | - Gema Gomez-Mariano
- Department of Molecular Genetics. Institute of Health Carlos III. Center for Biomedical Research in the Network of Rare Diseases (CIBERER), 28220 Majadahonda (Madrid), Spain.
| | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Elena Korenbaum
- Institute of Biophysical Chemistry and Anatomy, Hannover Medical School, 30625 Hannover, Germany.
| | - Bin Liu
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - David DeLuca
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Mark P Kühnel
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.
| | - Kadriya Yuskaeva
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
| | - Arne Warth
- Institute of Pathology, Heidelberg University Hospital, D-69120 Heidelberg, Germany.
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| | - Hauke Winter
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Department of Surgery, Thoraxklinik at Heidelberg University Hospital, D-69126 Heidelberg, Germany.
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Brener A, Lebenthal Y, Interator H, Horesh O, Leshem A, Weintrob N, Loewenthal N, Shalitin S, Rachmiel M. Long-term safety of α-1 antitrypsin therapy in children and adolescents with Type 1 diabetes. Immunotherapy 2019; 10:1137-1148. [PMID: 30236025 DOI: 10.2217/imt-2018-0047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Promising findings of α-1 antitrypsin (AAT) intervention in mice models of Type 1 diabetes (T1D) led researchers to investigate AAT as a therapeutic modality for β-cell preservation in recent-onset T1D patients. Our prospective, open-label Phase I/II extension study demonstrated that the administration of multiple repeated AAT infusions (up to 36) to AAT-sufficient pediatric T1D patients is safe and well-tolerated. Long-term surveillance of participants (up to 5 years) from diabetes onset revealed normal growth and pubertal progression through adolescence to attainment of full puberty and near adult height. No serious adverse events, clinical or laboratory abnormalities were reported. Given its safety profile, AAT may be an individualized-tailored innovative immunotherapy in AAT-sufficient pediatric patients with diverse immune-related medical conditions. ClinicalTrials.gov Identifier: NCT01661192.
Collapse
Affiliation(s)
- Avivit Brener
- The Jesse Z. & Sara Lea Shafer Institute for Endocrinology & Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petah-Tikva, 49202, Israel.,Pediatric Endocrinology & Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yael Lebenthal
- The Jesse Z. & Sara Lea Shafer Institute for Endocrinology & Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petah-Tikva, 49202, Israel.,Pediatric Endocrinology & Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hagar Interator
- Pediatric Endocrinology & Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,The Nutrition & Dietetics Unit of the Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Orit Horesh
- The Jesse Z. & Sara Lea Shafer Institute for Endocrinology & Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petah-Tikva, 49202, Israel
| | - Avital Leshem
- Pediatric Diabetes Service, Assaf Harofeh Medical Center, Zerifin, 70300, Israel
| | - Naomi Weintrob
- Pediatric Endocrinology & Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Neta Loewenthal
- Pediatric Diabetes Unit, Soroka Medical Center, Beer-Sheva, 84101, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Shlomit Shalitin
- The Jesse Z. & Sara Lea Shafer Institute for Endocrinology & Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petah-Tikva, 49202, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Marianna Rachmiel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,Pediatric Diabetes Service, Assaf Harofeh Medical Center, Zerifin, 70300, Israel
| |
Collapse
|
12
|
Nasonov EL. The role of interleukin 1 in the development of human diseases. RHEUMATOLOGY SCIENCE AND PRACTICE 2019. [DOI: 10.14412/1995-4484-2018-19-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Human immuno-inflammatory diseases (IID), depending on the predominant mechanisms of immune activation, are divided into two main categories: autoimmune and autoinflammatory. It is assumed that hyperproduction of "proinflammatory" and immunoregulatory cytokine-interleukin 1 (IL 1) largely determines the "intersection" between the mechanisms underlying autoimmunity and autoinflammation in many IID. This review discusses the role of IL1 in the pathogenesis of IID, primarily those associated with the activation of NLRP3-inflammasome, and therapeutic perspectives of IL1β inhibition with monoclonal antibodies to IL1β – canakinumab. The study of the IL1 role in the regulation of interactions between innate (TLR activation, inflammasome) and adaptive (Th1 – and Th17-types of immune response) immunity and the efficacy of IL1 inhibitors may be important in terms of decoding the pathogenetic mechanisms of IID and the development of new approaches to personalized therapy.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|
13
|
Liu L, Zhuang X, Jiang M, Guan F, Fu Q, Lin J. ANGPTL4 mediates the protective role of PPARγ activators in the pathogenesis of preeclampsia. Cell Death Dis 2017; 8:e3054. [PMID: 28933788 PMCID: PMC5636970 DOI: 10.1038/cddis.2017.419] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/06/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be a therapeutic target for preeclampsia (PE). Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional secretory protein involved in regulating lipid metabolism and angiogenesis in various tissues. However, the expression of PPARγ and ANGPTL4 and their interaction in PE remain elusive. Here we showed that PPARγ agonist rosiglitazone upregulated the expression and secretion of ANGPTL4 in a dose-dependent manner in HTR8/SVneo cells, human umbilical vein endothelial cells (HUVECs) and placental explants. More importantly, we confirmed that the PPARγ/retinoid X receptor α heterodimer specifically binds to the ANGPTL4 promoter region and enhances its transcriptional activity. In addition, the levels of ANGPTL4 and PPARγ activators in the serum and their expression in placental tissues were significantly reduced in preeclamptic patients compared with normal pregnant subjects. Furthermore, functional studies demonstrated that ANGPTL4 mediates the facilitative effects of the PPARγ agonist on the survival, proliferation, migration and invasion of HTR8/SVneo cells, placental explants outgrowth and angiogenesis in HUVECs. Taken together, our results suggest that ANGPTL4 is a potential target gene for PPARγ and mediates the protective role of PPARγ activators in the pathogenesis of PE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Zhuang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Jiang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Guan
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Fu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Fähndrich S, Biertz F, Karch A, Kleibrink B, Koch A, Teschler H, Welte T, Kauczor HU, Janciauskiene S, Jörres RA, Greulich T, Vogelmeier CF, Bals R. Cardiovascular risk in patients with alpha-1-antitrypsin deficiency. Respir Res 2017; 18:171. [PMID: 28915894 PMCID: PMC5602961 DOI: 10.1186/s12931-017-0655-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/06/2017] [Indexed: 01/20/2023] Open
Abstract
Background Alpha-1-antitrypsin deficiency (AATD) is a rare inherited condition caused by mutations of the SERPINA1 gene that is associated with the development of a COPD like lung disease. The comorbidities in patients with AATD-related lung diseases are not well defined. The aim of this study was to analyze the clinical phenotype of AATD patients within the German COPD cohort study COSYCONET (“COPD and SYstemic consequences-COmorbidities NETwork”) cohort focusing on the distribution of comorbidities. Method and results The data from 2645 COSYCONET patients, including 139 AATD patients (110 with and 29 without augmentation therapy), were analyzed by descriptive statistics and regression analyses. We found significantly lower prevalence of cardiovascular comorbidities in AATD patients as compared to non-AATD COPD patients. After correction for age, pack years, body mass index, and sex, the differences were still significant for coronary artery disease (p = 0.002) and the prevalence of peripheral artery disease as determined by an ankle-brachial-index <= 0.9 (p = 0.035). Also the distribution of other comorbidities such as bronchiectasis differed between AATD and non-deficient COPD. Conclusion AATD is associated with a lower prevalence of cardiovascular disease, the underlying mechanisms need further investigation. Electronic supplementary material The online version of this article (10.1186/s12931-017-0655-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Fähndrich
- Department of Internal Medicine V, Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, 66424, Homburg, Germany
| | - Frank Biertz
- Institute for Biostatistics, Hannover Medical School, 30625, Hannover, Germany
| | - Annika Karch
- Institute for Biostatistics, Hannover Medical School, 30625, Hannover, Germany
| | - Björn Kleibrink
- Department of Pneumology, Ruhrlandklinik, West German Lung Center, and University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Armin Koch
- Institute for Biostatistics, Hannover Medical School, 30625, Hannover, Germany
| | - Helmut Teschler
- Department of Pneumology, Ruhrlandklinik, West German Lung Center, and University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Member of the German Center for Lung Research, 30625, Hannover, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, 69120, Heidelberg, Germany.,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Sabina Janciauskiene
- Clinic for Pneumology, Hannover Medical School, Member of the German Center for Lung Research, 30625, Hannover, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-Universität Marburg, Marburg, Germany.,Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-Universität Marburg, Marburg, Germany.,Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Robert Bals
- Department of Internal Medicine V, Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, 66424, Homburg, Germany. .,Department of Internal Medicine V - Pulmonology, Allergology, Intensive Care Medicine, 66421, Homburg, Saar, Germany.
| | | |
Collapse
|
15
|
Beiko T, Janech MG, Alekseyenko AV, Atkinson C, Coxson HO, Barth JL, Stephenson SE, Wilson CL, Schnapp LM, Barker A, Brantly M, Sandhaus RA, Silverman EK, Stoller JK, Trapnell B, Charlie S. Serum Proteins Associated with Emphysema Progression in Severe Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2017; 4:204-216. [PMID: 28848932 DOI: 10.15326/jcopdf.4.3.2016.0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Computed tomography (CT) lung density is an accepted biomarker for emphysema in alpha-1 antitrypsin deficiency (AATD), although concerns for radiation exposure limit its longitudinal use. Serum proteins associated with emphysema, particularly in early disease, may provide additional pathogenic insights. We investigated whether distinct proteomic signatures characterize the presence and progression of emphysema in individuals with severe AATD and normal forced expiratory volume in 1 second (FEV1). QUANTitative lung CT UnMasking emphysema progression in AATD (QUANTUM-1) is a multicenter, prospective 3-year study of 49 adults with severe AATD and FEV1 post-bronchodilator values (Post-BD) ≥ 80% predicted. All participants received chest CT, serial spirometry, and contributed to the serum biobank. Volumetric imaging display and analysis (VIDA) software defined the baseline 15th percentile density (PD15) which was indexed to CT-derived total lung capacity (TLC). We measured 317 proteins using a multiplexed immunoassay (Myriad Discovery MAP® panel) in 31 individuals with a complete dataset. We analyzed associations between initial PD15/TLC, PD15/TLC annual decline, body mass index (BMI), and protein levels using Pearson's product moment correlation. C-reactive protein (CRP), adipocyte fatty acid-binding protein (AFBP), leptin, and tissue plasminogen activator (tPA) were found to be associated with baseline emphysema and all but leptin were associated with emphysema progression after adjustments were made for age and sex. All 4 proteins were associated with BMI after further adjustment for multiple comparisons was made. The relationship between these proteins and BMI, and further validation of these findings in replicative cohorts require additional studies.
Collapse
Affiliation(s)
- Tatsiana Beiko
- Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston
| | - Michael G Janech
- Division of Nephrology, Medical University of South Carolina, Charleston
| | - Alexander V Alekseyenko
- Biomedical Informatics Center, Departments of Public Health Sciences and Oral Health Sciences, Medical University of South Carolina, Charleston
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston
| | - Harvey O Coxson
- Centre for Heart Lung Innovation and Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston
| | - Sarah E Stephenson
- Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston
| | - Carole L Wilson
- Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston
| | - Lynn M Schnapp
- Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston
| | - Alan Barker
- Oregon Health and Science University, Portland
| | - Mark Brantly
- University of Florida Health Science Center, Gainesville
| | | | - Edwin K Silverman
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Bruce Trapnell
- University of Cincinnati/Cincinnati Children's Hospital Medical Center, Ohio
| | - Strange Charlie
- Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston
| |
Collapse
|
16
|
Karadagi A, Johansson H, Zemack H, Salipalli S, Mörk LM, Kannisto K, Jorns C, Gramignoli R, Strom S, Stokkeland K, Ericzon BG, Jonigk D, Janciauskiene S, Nowak G, Ellis ECS. Exogenous alpha 1-antitrypsin down-regulates SERPINA1 expression. PLoS One 2017; 12:e0177279. [PMID: 28486562 PMCID: PMC5423693 DOI: 10.1371/journal.pone.0177279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/01/2017] [Indexed: 11/19/2022] Open
Abstract
The main goal of the therapy with purified human plasma alpha1-antitrypsin (A1AT) is to increase A1AT levels and to prevent lungs from elastolytic activity in patients with PiZZ (Glu342Lys) A1AT deficiency-related emphysema. Potential hepatic gains of this therapy are unknown. Herein, we investigated the effect of A1AT therapy on SERPINA1 (gene encoding A1AT) expression. The expression of SERPINA1 was determined in A1AT or A1AT plus Oncostatin M (OSM) treated primary human hepatocytes isolated from liver tissues from A1AT deficient patients and control liver tissues. In addition, SERPINA1 mRNA was assessed in lung tissues from PiZZ emphysema patients with and without A1AT therapy, and in adherent human peripheral blood mononuclear cells (PBMC) isolated from healthy PiMM donors. In a dose-dependent manner purified A1AT lowered SERPINA1 expression in hepatocytes. This latter effect was more prominent in hepatocytes stimulated with OSM. Although it did not reach statistical significance (P = 0.0539)-analysis of lung tissues showed lower SERPINA1 expression in PiZZ emphysema patients receiving augmentation therapy relative to those without therapy. Finally, exogenously added purified A1AT (1mg/ml) reduced SERPINA1 expression in naïve as well as in lipopolysaccharide (LPS)-stimulated human adherent PBMCs. Exogenous A1AT protein reduces its own endogenous expression. Hence, augmentation with native M-A1AT protein and a parallel reduction in expression of dysfunctional mutant Z-A1AT may be beneficial for PiZZ liver, and this motivates further studies.
Collapse
Affiliation(s)
- Ahmad Karadagi
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helene Johansson
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helen Zemack
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sandeep Salipalli
- Department of Respiratory Medicine, Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Lisa-Mari Mörk
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kristina Kannisto
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Carl Jorns
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Stephen Strom
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Knut Stokkeland
- Department of Medicine, Visby Hospital, Visby, Sweden
- Department of Medicine, Gastroenterology and Hepatology Unit, Karolinska Institute, Stockholm, Sweden
| | - Bo-Göran Ericzon
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Greg Nowak
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ewa C S Ellis
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
17
|
Ferrarotti I, Corsico AG, Stolk J, Ottaviani S, Fumagalli M, Janciauskiene S, Iadarola P. Advances in Identifying Urine/Serum Biomarkers in Alpha-1 Antitrypsin Deficiency for More Personalized Future Treatment Strategies. COPD 2016; 14:56-65. [PMID: 27827549 DOI: 10.1080/15412555.2016.1241760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alpha1-antitrypsin deficiency (AATD) is a genetic disorder characterized by reduced serum levels of alpha1-antitrypsin (AAT) and increased risk for developing both early-onset lung emphysema and chronic liver disease. Laboratory diagnosis of AATD is not just a matter of degree, although the AAT serum level is the most important determinant for risk of lung damage. While being a single-gene disease, the clinical phenotype of AATD is heterogeneous. The current standard of care for patients affected by AATD-associated pulmonary emphysema is replacement therapy with weekly i.v. infusions of pooled human purified plasma AAT. Although no treatment for liver disease caused by deposition of abnormal AAT in hepatocytes is available, innovative treatments for this condition are on the horizon. This article aims to provide a critical review of the methodological steps that have marked progress in the detection of indicators described in the literature as being "clinically significant" biomarkers of the disease. The development and routine use of specific biomarkers would help both in identifying which patients and when they are eligible for treatment as well as providing additional parameters for monitoring the disease.
Collapse
Affiliation(s)
- Ilaria Ferrarotti
- a IRCCS Policlinico S. Matteo Foundation, Section of Pneumology , Pavia , Italy
| | - Angelo Guido Corsico
- b Department of Internal Medicine and Therapeutics , Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| | - Jan Stolk
- c Leiden University Medical Center, Pulmonology , Albinusdreef 2, Leiden , Netherlands
| | - Stefania Ottaviani
- a IRCCS Policlinico S. Matteo Foundation, Section of Pneumology , Pavia , Italy
| | - Marco Fumagalli
- d Department of Biology and Biotechnologies "L.Spallanzani" , University of Pavia , Pavia , Italy
| | - Sabina Janciauskiene
- e Department of Respiratory Medicine , Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) , Hannover , Germany
| | - Paolo Iadarola
- d Department of Biology and Biotechnologies "L.Spallanzani" , University of Pavia , Pavia , Italy
| |
Collapse
|
18
|
Well-Known and Less Well-Known Functions of Alpha-1 Antitrypsin. Its Role in Chronic Obstructive Pulmonary Disease and Other Disease Developments. Ann Am Thorac Soc 2016; 13 Suppl 4:S280-8. [DOI: 10.1513/annalsats.201507-468kv] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Response of Steroid-Refractory Acute GVHD to α1-Antitrypsin. Biol Blood Marrow Transplant 2016; 22:1596-1601. [PMID: 27223109 DOI: 10.1016/j.bbmt.2016.05.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/10/2016] [Indexed: 11/20/2022]
Abstract
α1-Antitrypsin (AAT) is a serine protease inhibitor with anti-inflammatory, antiapoptotic, and immunomodulatory properties. It has therapeutic efficacy in animal models of autoimmune diseases, inflammatory disorders, and transplantation. In a phase I/II open-label single-center study, we administered AAT (Glassia; Baxalta/Kamada, New Ziona, Israel) as salvage therapy to 12 patients with steroid-refractory acute graft-versus-host disease (GVHD). AAT was given i.v. at 2 dose levels over a 15-day course. All patients had grades III or IV GVHD with stage 4 gut involvement. After treatment, plasma AAT levels increased in both cohorts and remained within 2 to 4 mg/mL for the duration of treatment. No clinically relevant toxicities attributable to AAT were observed. GVHD manifestations improved in 8 of 12 patients, and 4 responses were complete. Six patients (50%) were alive at last follow-up (>104 to >820 days). These findings show that AAT is well tolerated and has efficacy in the treatment of steroid-refractory severe acute GVHD. Further studies are warranted.
Collapse
|
20
|
Dinarello CA, Joosten LAB. Inflammation in rheumatology in 2015: New tools to tackle inflammatory arthritis. Nat Rev Rheumatol 2016; 12:78-80. [PMID: 26763730 DOI: 10.1038/nrrheum.2015.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA Department of Medicine, Radboud University Medical Centre, HB 6500 Nijmegen, Netherlands
| | - Leo A B Joosten
- Department of Medicine, Radboud University Medical Centre, HB 6500 Nijmegen, Netherlands
| |
Collapse
|
21
|
Frenzel E, Wrenger S, Brügger B, Salipalli S, Immenschuh S, Aggarwal N, Lichtinghagen R, Mahadeva R, Marcondes AMQ, Dinarello CA, Welte T, Janciauskiene S. α1-Antitrypsin Combines with Plasma Fatty Acids and Induces Angiopoietin-like Protein 4 Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:3605-16. [PMID: 26363050 PMCID: PMC6232844 DOI: 10.4049/jimmunol.1500740] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022]
Abstract
α1-Antitrypsin (A1AT) purified from human plasma upregulates expression and release of angiopoietin-like protein 4 (Angptl4) in adherent human blood monocytes and in human lung microvascular endothelial cells, providing a mechanism for the broad immune-regulatory properties of A1AT independent of its antiprotease activity. In this study, we demonstrate that A1AT (Prolastin), a potent inducer of Angptl4, contains significant quantities of the fatty acids (FA) linoleic acid (C18:2) and oleic acid (C18:1). However, only trace amounts of FAs were present in preparations that failed to increase Angplt4 expression, for example, A1AT (Zemaira) or M-type A1AT purified by affinity chromatography. FA pull-down assays with Western blot analysis revealed a FA-binding ability of A1AT. In human blood-adherent monocytes, A1AT-FA conjugates upregulated expression of Angptl4 (54.9-fold, p < 0.001), FA-binding protein 4 (FABP4) (11.4-fold, p < 0.001), and, to a lesser degree, FA translocase (CD36) (3.1-fold, p < 0.001) relative to A1AT devoid of FA (A1AT-0). These latter effects of A1AT-FA were blocked by inhibitors of peroxisome proliferator-activated receptor (PPAR) β/δ (ST247) and PPARγ (GW9662). When compared with controls, cell pretreatment with ST247 diminished the effect of A1AT-LA on Angptl4 mRNA (11.6- versus 4.1-fold, p < 0.001) and FABP4 mRNA (5.4- versus 2.8-fold, p < 0.001). Similarly, preincubation of cells with GW9662 inhibited inducing effect of A1AT-LA on Angptl4 mRNA (by 2-fold, p < 0.001) and FABP4 mRNA (by 3-fold, p < 0.001). Thus, A1AT binds to FA, and it is this form of A1AT that induces Angptl4 and FABP4 expression via a PPAR-dependent pathway. These findings provide a mechanism for the unexplored area of A1AT biology independent of its antiprotease properties.
Collapse
Affiliation(s)
- Eileen Frenzel
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Britta Brügger
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Sandeep Salipalli
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Nupur Aggarwal
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Ravi Mahadeva
- Department of Respiratory Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - A Mario Q Marcondes
- Department of Medicine, University of Washington, Seattle, WA 98195; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045; and Department of Medicine, Radboud University Medical Centre, Nijmegen 30625, the Netherlands
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany;
| |
Collapse
|
22
|
Joosten LAB, Crişan TO, Azam T, Cleophas MCP, Koenders MI, van de Veerdonk FL, Netea MG, Kim S, Dinarello CA. Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Ann Rheum Dis 2015; 75:1219-27. [PMID: 26174021 DOI: 10.1136/annrheumdis-2014-206966] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/06/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES In the present study, we generated a new protein, recombinant human alpha-1-anti-trypsin (AAT)-IgG1 Fc fusion protein (AAT-Fc), and evaluated its properties to suppress inflammation and interleukin (IL)-1β in a mouse model of gouty arthritis. METHODS A combination of monosodium urate (MSU) crystals and the fatty acid C16.0 (MSU/C16.0) was injected intra-articularly into the knee to induce gouty arthritis. Joint swelling, synovial cytokine production and histopathology were determined after 4 h. AAT-Fc was evaluated for inhibition of MSU/C16.0-induced IL-1β release from human blood monocytes and for inhibition of extracellular IL-1β precursor processing. RESULTS AAT-Fc markedly suppressed MSU/C16.0-induced joint inflammation by 85-91% (p<0.001). Ex vivo production of IL-1β and IL-6 from cultured synovia were similarly reduced (63% and 65%, respectively). The efficacy of 2.0 mg/kg AAT-Fc in reducing inflammation was comparable to 80 mg/kg of plasma-derived AAT. Injection of AAT-Fc into mice increased circulating levels of endogenous IL-1 receptor antagonist by fourfold. We also observed that joint swelling was reduced by 80%, cellular infiltration by 95% and synovial production of IL-1β by 60% in transgenic mice expressing low levels of human AAT. In vitro, AAT-Fc reduced MSU/C16.0-induced release of IL-1β from human blood monocytes and inhibited proteinase-3-mediated extracellular processing of the IL-1β precursor into active IL-1β. CONCLUSIONS A single low dose of AAT-Fc is highly effective in reducing joint inflammation in this model of acute gouty arthritis. Considering the long-term safety of plasma-derived AAT use in humans, subcutaneous AAT-Fc emerges as a promising therapy for gout attacks.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Gouty/drug therapy
- Arthritis, Gouty/immunology
- Arthritis, Gouty/pathology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical/methods
- Gout Suppressants/administration & dosage
- Gout Suppressants/pharmacology
- Gout Suppressants/therapeutic use
- Humans
- Immunoglobulin Fc Fragments/administration & dosage
- Immunoglobulin Fc Fragments/pharmacology
- Immunoglobulin Fc Fragments/therapeutic use
- Injections, Intra-Articular
- Injections, Intraperitoneal
- Interleukin 1 Receptor Antagonist Protein/biosynthesis
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/metabolism
- Lipopolysaccharide Receptors/analysis
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Monocytes/drug effects
- Monocytes/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- alpha 1-Antitrypsin/administration & dosage
- alpha 1-Antitrypsin/pharmacology
- alpha 1-Antitrypsin/therapeutic use
Collapse
Affiliation(s)
- Leo A B Joosten
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania O Crişan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Maartje C P Cleophas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Konkuk University, Seoul, Korea
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Cytoprotective Role of Alpha-1 Antitrypsin in Vascular Endothelial Cell Under Hypoxia/Reoxygenation Condition. J Cardiovasc Pharmacol 2015; 66:96-107. [DOI: 10.1097/fjc.0000000000000250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|