1
|
Li L, Huang H, Wang H, Pan Y, Tao H, Zhang S, Karmaus PWF, Fessler MB, Sleasman JW, Zhong XP. DGKα and ζ Deficiency Causes Regulatory T-Cell Dysregulation, Destabilization, and Conversion to Pathogenic T-Follicular Helper Cells to Trigger IgG1-Predominant Autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625360. [PMID: 39651265 PMCID: PMC11623591 DOI: 10.1101/2024.11.26.625360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Regulatory T cells (Tregs) actively engage in immune suppression to prevent autoimmune diseases but also inhibit anti-tumor immunity. Although Tregs express a TCR repertoire with relatively high affinities to self, they are normally quite stable and their inflammatory programs are intrinsically suppressed. We report here that diacylglycerol (DAG) kinases (DGK) ( and ( are crucial for homeostasis, suppression of proinflammatory programs, and stability of Tregs and for enforcing their dependence on CD28 costimulatory signal. Treg-specific deficiency of both DGK( and ( derails signaling, metabolic, and transcriptional programs in Tregs to cause dysregulated phenotypic and functional properties and to unleash conversion to pathogenic exTregs, especially exTreg-T follicular helper (Tfh) 2 cells, leading to uncontrolled effector T cell differentiation, deregulated germinal center (GC) B-cell responses and IgG1/IgE predominant antibodies/autoantibodies, and multiorgan autoimmune diseases. Our data not only illustrate the crucial roles of DGKs in Tregs to maintain self-tolerance but also unveil a Treg-to-self-reactive-pathogenic-exTreg-Tfh-cell program that is suppressed by DGKs and that could exert broad pathogenic roles in autoimmune diseases if unchecked.
Collapse
|
2
|
Porte S, Audemard-Verger A, Wu C, Durand A, Level T, Giraud L, Lombès A, Germain M, Pierre R, Saintpierre B, Lambert M, Auffray C, Peyssonnaux C, Goldwasser F, Vaulont S, Alves-Guerra MC, Dentin R, Lucas B, Martin B. Iron Boosts Antitumor Type 1 T-cell Responses and Anti-PD1 Immunotherapy. Cancer Immunol Res 2024; 12:1252-1267. [PMID: 38912762 DOI: 10.1158/2326-6066.cir-23-0739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/02/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Cancers only develop if they escape immunosurveillance, and the success of cancer immunotherapies relies in most cases on their ability to restore effector T-cell functions, particularly IFNγ production. Revolutionizing the treatment of many cancers, immunotherapies targeting immune checkpoints such as PD1 can increase survival and cure patients. Unfortunately, although immunotherapy has greatly improved the prognosis of patients, not all respond to anti-PD1 immunotherapy, making it crucial to identify alternative treatments that could be combined with current immunotherapies to improve their effectiveness. Here, we show that iron supplementation significantly boosts T-cell responses in vivo and in vitro. The boost was associated with a metabolic reprogramming of T cells in favor of lipid oxidation. We also found that the "adjuvant" effect of iron led to a marked slowdown of tumor cell growth after tumor cell line transplantation in mice. Specifically, our results suggest that iron supplementation promotes antitumor responses by increasing IFNγ production by T cells. In addition, iron supplementation improved the efficacy of anti-PD1 cancer immunotherapy in mice. Finally, our study suggests that, in patients with cancer, the quality and efficacy of the antitumor response following anti-PD1 immunotherapy may be modulated by plasma ferritin levels. In summary, our results suggest the benefits of iron supplementation on the reactivation of antitumor responses and support the relevance of a fruitful association between immunotherapy and iron supplementation.
Collapse
Affiliation(s)
- Sarah Porte
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | - Christian Wu
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Aurélie Durand
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Théo Level
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Léa Giraud
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Amélie Lombès
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Mathieu Germain
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Rémi Pierre
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Benjamin Saintpierre
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Mireille Lambert
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Cédric Auffray
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Carole Peyssonnaux
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France
| | - Sophie Vaulont
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Marie-Clotilde Alves-Guerra
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Renaud Dentin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Bruno Lucas
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Bruno Martin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| |
Collapse
|
3
|
Durand A, Bonilla N, Level T, Ginestet Z, Lombès A, Guichard V, Germain M, Jacques S, Letourneur F, Do Cruzeiro M, Marchiol C, Renault G, Le Gall M, Charvet C, Le Bon A, Martin B, Auffray C, Lucas B. Type 1 interferons and Foxo1 down-regulation play a key role in age-related T-cell exhaustion in mice. Nat Commun 2024; 15:1718. [PMID: 38409097 PMCID: PMC10897180 DOI: 10.1038/s41467-024-45984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Foxo family transcription factors are critically involved in multiple processes, such as metabolism, quiescence, cell survival and cell differentiation. Although continuous, high activity of Foxo transcription factors extends the life span of some species, the involvement of Foxo proteins in mammalian aging remains to be determined. Here, we show that Foxo1 is down-regulated with age in mouse T cells. This down-regulation of Foxo1 in T cells may contribute to the disruption of naive T-cell homeostasis with age, leading to an increase in the number of memory T cells. Foxo1 down-regulation is also associated with the up-regulation of co-inhibitory receptors by memory T cells and exhaustion in aged mice. Using adoptive transfer experiments, we show that the age-dependent down-regulation of Foxo1 in T cells is mediated by T-cell-extrinsic cues, including type 1 interferons. Taken together, our data suggest that type 1 interferon-induced Foxo1 down-regulation is likely to contribute significantly to T-cell dysfunction in aged mice.
Collapse
Affiliation(s)
- Aurélie Durand
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Nelly Bonilla
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Théo Level
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Zoé Ginestet
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Amélie Lombès
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Vincent Guichard
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Mathieu Germain
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Sébastien Jacques
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Franck Letourneur
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Marcio Do Cruzeiro
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Carmen Marchiol
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Gilles Renault
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Morgane Le Gall
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Céline Charvet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Agnès Le Bon
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Bruno Martin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Cédric Auffray
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Bruno Lucas
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.
| |
Collapse
|
4
|
Kaminski A, Hager FT, Kopplin L, Ticconi F, Leufgen A, Vendelova E, Rüttger L, Gasteiger G, Cerovic V, Kastenmüller W, Pabst O, Ugur M. Resident regulatory T cells reflect the immune history of individual lymph nodes. Sci Immunol 2023; 8:eadj5789. [PMID: 37874251 DOI: 10.1126/sciimmunol.adj5789] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Regulatory T cells (Tregs) are present in lymphoid and nonlymphoid tissues where they restrict immune activation, prevent autoimmunity, and regulate inflammation. Tregs in nonlymphoid tissues are typically resident, whereas those in lymph nodes (LNs) are considered to recirculate. However, Tregs in LNs are not a homogenous population, and circulation kinetics of different Treg subsets are poorly characterized. Furthermore, whether Tregs can acquire memory T cell properties and persist for extended periods after their activation in LNs is unclear. Here, we used in situ labeling with a stabilized photoconvertible protein to uncover turnover rates of Tregs in LNs in vivo. We found that, whereas most Tregs in LNs recirculate, 10 to 20% are memory-like resident cells that remain in their respective LNs for weeks to months. Single-cell RNA sequencing revealed that LN-resident cells are a functionally and ontogenetically heterogeneous population and share the same core residency gene signature with conventional CD4+ and CD8+ T cells. Resident cells in LNs did not actively proliferate and did not require continuous T cell receptor (TCR) signaling for their residency. However, resident and circulating Tregs had distinct TCR repertoires, and each LN contained exclusive clonal subpopulations of resident Tregs. Our results demonstrate that, similar to conventional T cells, Tregs can form resident memory-like populations in LNs after adaptive immune responses. Specific and local suppression of immune responses by resident Tregs in draining LNs might provide previously unidentified therapeutic opportunities for the treatment of local chronic inflammatory conditions.
Collapse
Affiliation(s)
- Anne Kaminski
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabian Tobias Hager
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Lydia Kopplin
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabio Ticconi
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Institute for Computational Genomics, RWTH Aachen University, Aachen 52074, Germany
| | - Andrea Leufgen
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Emilia Vendelova
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Lennart Rüttger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Milas Ugur
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| |
Collapse
|
5
|
Panda AK, Kim YH, Shevach EM. Control of Memory Phenotype T Lymphocyte Homeostasis: Role of Costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:851-860. [PMID: 35039334 DOI: 10.4049/jimmunol.2100653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Foxp3+ T regulatory cells (Tregs), CD4+Foxp3- T cells, and CD8+ T cells are composed of naive phenotype (NP) and memory phenotype (MP) subsets. Ten to 20% of each MP T cell population are cycling (Ki-67+) in vivo. We investigated the contribution of costimulatory (CD28) and coinhibitory (CTLA-4, PD-1) receptors on MP T cell homeostatic proliferation in vivo in the mouse. Blockade of CD28-CD80/CD86 signaling completely abolished MP Tregs and profoundly inhibited MP CD4+Foxp3- T cell proliferation, but it did not affect MP CD8+ T cell proliferation. Marked enhancement of homeostatic proliferation of MP Tregs and MP CD4+Foxp3- T cells was seen after blocking CTLA4-CD80/CD86 interactions and PD-1-PD-L1/2 interactions, and greater enhancement was seen with blockade of both pathways. The CD28 pathway also played an important role in the expansion of Tregs and MP T cells after treatment of mice with agonistic Abs to members of the TNF receptor superfamily, which can act directly (anti-GITR, anti-OX40, anti-4-1BB) or indirectly (anti-CD40) on T cells. Induction of a cytokine storm by blocking the interaction of NK inhibitory receptors with MHC class I had no effect on Treg homeostasis, enhanced MP CD4+ proliferation, and expansion in a CD28-dependent manner, but it enhanced MP CD8+ T cell proliferation in a CD28-independent manner. Because MP T cells exert potent biologic effects primarily before the induction of adaptive immune responses, these findings have important implications for the use of biologic agents designed to suppress autoimmune disease or enhance T effector function in cancer that may have negative effects on MP T cells.
Collapse
Affiliation(s)
- Abir K Panda
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yong-Hee Kim
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ethan M Shevach
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Eggert J, Au-Yeung BB. Functional heterogeneity and adaptation of naive T cells in response to tonic TCR signals. Curr Opin Immunol 2021; 73:43-49. [PMID: 34653787 DOI: 10.1016/j.coi.2021.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
Mature CD4+ and CD8+ T cells constitutively experience weak T cell receptor (TCR) stimulation in response to self-antigens, termed tonic (or basal) signaling. How tonic TCR signal strength impacts T cell responses to foreign antigens is an active area of investigation. Such studies rely on surrogate markers of tonic signal strength, including CD5, Ly6C, and transgenic reporters of Nr4a genes. Recent research indicates that strong tonic TCR signal strength influences basal T cell metabolism, effector differentiation, and TCR signal transduction. T cells that experience the strongest tonic TCR signaling exhibit features of T cell activation and negative regulation. These data suggest a model whereby adaptation to tonic signaling has lasting effects that alter T cell activation and differentiation.
Collapse
Affiliation(s)
- Joel Eggert
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, United States
| | - Byron B Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, United States.
| |
Collapse
|
7
|
This S, Valbon SF, Lebel MÈ, Melichar HJ. Strength and Numbers: The Role of Affinity and Avidity in the 'Quality' of T Cell Tolerance. Cells 2021; 10:1530. [PMID: 34204485 PMCID: PMC8234061 DOI: 10.3390/cells10061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of T cells to identify foreign antigens and mount an efficient immune response while limiting activation upon recognition of self and self-associated peptides is critical. Multiple tolerance mechanisms work in concert to prevent the generation and activation of self-reactive T cells. T cell tolerance is tightly regulated, as defects in these processes can lead to devastating disease; a wide variety of autoimmune diseases and, more recently, adverse immune-related events associated with checkpoint blockade immunotherapy have been linked to a breakdown in T cell tolerance. The quantity and quality of antigen receptor signaling depend on a variety of parameters that include T cell receptor affinity and avidity for peptide. Autoreactive T cell fate choices (e.g., deletion, anergy, regulatory T cell development) are highly dependent on the strength of T cell receptor interactions with self-peptide. However, less is known about how differences in the strength of T cell receptor signaling during differentiation influences the 'function' and persistence of anergic and regulatory T cell populations. Here, we review the literature on this subject and discuss the clinical implications of how T cell receptor signal strength influences the 'quality' of anergic and regulatory T cell populations.
Collapse
Affiliation(s)
- Sébastien This
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Stefanie F. Valbon
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marie-Ève Lebel
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
| | - Heather J. Melichar
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
8
|
Son J, Cho JW, Park HJ, Moon J, Park S, Lee H, Lee J, Kim G, Park SM, Lira SA, Mckenzie AN, Kim HY, Choi CY, Lim YT, Park SY, Kim HR, Park SH, Shin EC, Lee I, Ha SJ. Tumor-Infiltrating Regulatory T-cell Accumulation in the Tumor Microenvironment Is Mediated by IL33/ST2 Signaling. Cancer Immunol Res 2020; 8:1393-1406. [PMID: 32878747 DOI: 10.1158/2326-6066.cir-19-0828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 07/08/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022]
Abstract
Regulatory T cells (Treg) are enriched in the tumor microenvironment (TME) and suppress antitumor immunity; however, the molecular mechanism underlying the accumulation of Tregs in the TME is poorly understood. In various tumor models, tumor-infiltrating Tregs were highly enriched in the TME and had significantly higher expression of immune checkpoint molecules. To characterize tumor-infiltrating Tregs, we performed bulk RNA sequencing (RNA-seq) and found that proliferation-related genes, immune suppression-related genes, and cytokine/chemokine receptor genes were upregulated in tumor-infiltrating Tregs compared with tumor-infiltrating CD4+Foxp3- conventional T cells or splenic Tregs from the same tumor-bearing mice. Single-cell RNA-seq and T-cell receptor sequencing also revealed active proliferation of tumor infiltrating Tregs by clonal expansion. One of these genes, ST2, an IL33 receptor, was identified as a potential factor driving Treg accumulation in the TME. Indeed, IL33-directed ST2 signaling induced the preferential proliferation of tumor-infiltrating Tregs and enhanced tumor progression, whereas genetic deletion of ST2 in Tregs limited their TME accumulation and delayed tumor growth. These data demonstrated the IL33/ST2 axis in Tregs as one of the critical pathways for the preferential accumulation of Tregs in the TME and suggests that the IL33/ST2 axis may be a potential therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jimin Son
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Jae-Won Cho
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyo Jin Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Jihyun Moon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Seyeon Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Hoyoung Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Jeewon Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Gamin Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Myeong Park
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew N Mckenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Insuk Lee
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea.
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea.
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Buszko M, Shevach EM. Control of regulatory T cell homeostasis. Curr Opin Immunol 2020; 67:18-26. [PMID: 32810642 DOI: 10.1016/j.coi.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
CD4+ Foxp3+ T Regulatory (Treg) cells play a critical role in the homeostasis and maintenance of the immune system. The understanding of different aspects of Treg cells biology remains an intensively investigated subject as altering their generation, stability, or function by drugs or biologics may have therapeutic value in the treatment of autoimmune and inflammatory diseases as well as cancers. This review will focus on recent studies on the role of cytokines, T Cell Receptor (TCR) and co-stimulatory/co-inhibitory molecules signaling, location and metabolism on the homeostasis and stability of Treg cells. The potential for therapeutic manipulation of each of these factors will be discussed.
Collapse
Affiliation(s)
- Maja Buszko
- Laboratory of Immune System Biology, Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Peligero-Cruz C, Givony T, Sebé-Pedrós A, Dobeš J, Kadouri N, Nevo S, Roncato F, Alon R, Goldfarb Y, Abramson J. IL18 signaling promotes homing of mature Tregs into the thymus. eLife 2020; 9:e58213. [PMID: 32687059 PMCID: PMC7371425 DOI: 10.7554/elife.58213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
Foxp3+ regulatory T cells (Tregs) are potent suppressor cells, essential for the maintenance of immune homeostasis. Most Tregs develop in the thymus and are then released into the immune periphery. However, some Tregs populate the thymus and constitute a major subset of yet poorly understood cells. Here we describe a subset of thymus recirculating IL18R+ Tregs with molecular characteristics highly reminiscent of tissue-resident effector Tregs. Moreover, we show that IL18R+ Tregs are endowed with higher capacity to populate the thymus than their IL18R- or IL18R-/- counterparts, highlighting the key role of IL18R in this process. Finally, we demonstrate that IL18 signaling is critical for the induction of the key thymus-homing chemokine receptor - CCR6 on Tregs. Collectively, this study provides a detailed characterization of the mature Treg subsets in the mouse thymus and identifies a key role of IL18 signaling in controlling the CCR6-CCL20-dependent migration of Tregs into the thymus.
Collapse
Affiliation(s)
| | - Tal Givony
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Jan Dobeš
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Shir Nevo
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Francesco Roncato
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Yael Goldfarb
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
11
|
CD5 dynamically calibrates basal NF-κB signaling in T cells during thymic development and peripheral activation. Proc Natl Acad Sci U S A 2020; 117:14342-14353. [PMID: 32513716 PMCID: PMC7322041 DOI: 10.1073/pnas.1922525117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immature T cells undergo a process of positive selection in the thymus when their new T cell receptor (TCR) engages and signals in response to self-peptides. As the T cell matures, a slew of negative regulatory molecules, including the inhibitory surface glycoprotein CD5, are up-regulated in proportion to the strength of the self-peptide signal. Together these regulators dampen TCR-proximal signaling and help avoid any subsequent peripheral activation of T cells by self-peptides. Paradoxically, antigen-specific T cells initially expressing more CD5 (CD5hi) have been found to better persist as effector/memory cells after a peripheral challenge. The molecular mechanisms underlying such a duality in CD5 function is not clear. We found that CD5 alters the basal activity of the NF-κB signaling in resting peripheral T cells. When CD5 was conditionally ablated, T cells were unable to maintain higher expression of the cytoplasmic NF-κB inhibitor IκBα. Consistent with this, resting CD5hi T cells expressed more of the NF-κB p65 protein than CD5lo cells, without significant increases in transcript levels, in the absence of TCR signals. This posttranslationally stabilized cellular NF-κB depot potentially confers a survival advantage to CD5hi T cells over CD5lo ones. Taken together, these data suggest a two-step model whereby the strength of self-peptide-induced TCR signal lead to the up-regulation of CD5, which subsequently maintains a proportional reserve of NF-κB in peripheral T cells poised for responding to agonistic antigen-driven T cell activation.
Collapse
|
12
|
Daher C, Vimeux L, Stoeva R, Peranzoni E, Bismuth G, Wieduwild E, Lucas B, Donnadieu E, Bercovici N, Trautmann A, Feuillet V. Blockade of β-Adrenergic Receptors Improves CD8 + T-cell Priming and Cancer Vaccine Efficacy. Cancer Immunol Res 2019; 7:1849-1863. [PMID: 31527069 DOI: 10.1158/2326-6066.cir-18-0833] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
β-Adrenergic receptor (β-AR) signaling exerts protumoral effects by acting directly on tumor cells and angiogenesis. In addition, β-AR expression on immune cells affects their ability to mount antitumor immune responses. However, how β-AR signaling impinges antitumor immune responses is still unclear. Using a mouse model of vaccine-based immunotherapy, we showed that propranolol, a nonselective β-blocker, strongly improved the efficacy of an antitumor STxBE7 vaccine by enhancing the frequency of CD8+ T lymphocytes infiltrating the tumor (TIL). However, propranolol had no effect on the reactivity of CD8+ TILs, a result further strengthened by ex vivo experiments showing that these cells were insensitive to adrenaline- or noradrenaline-induced AR signaling. In contrast, naïve CD8+ T-cell activation was strongly inhibited by β-AR signaling, and the beneficial effect of propranolol mainly occurred during CD8+ T-cell priming in the tumor-draining lymph node. We also demonstrated that the differential sensitivity of naïve CD8+ T cells and CD8+ TILs to β-AR signaling was linked to a strong downregulation of β2-AR expression related to their activation status, since in vitro-activated CD8+ T cells behaved similarly to CD8+ TILs. These results revealed that β-AR signaling suppresses the initial priming phase of antitumor CD8+ T-cell responses, providing a rationale to use clinically available β-blockers in patients to improve cancer immunotherapies.
Collapse
Affiliation(s)
- Clara Daher
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France
| | - Lene Vimeux
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France
| | - Ralitsa Stoeva
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France
| | - Elisa Peranzoni
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France
| | - Georges Bismuth
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France
| | - Elisabeth Wieduwild
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Bruno Lucas
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France
| | - Emmanuel Donnadieu
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France
| | - Nadège Bercovici
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France
| | - Alain Trautmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France
| | - Vincent Feuillet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
13
|
Abstract
Regulatory T (Treg) cells expressing the transcription factor forkhead box P3 (Foxp3) play a requisite role in the maintenance of immunological homeostasis and prevention of peripheral self-tolerance breakdown. Although Foxp3 by itself is neither necessary nor sufficient to specify many aspects of the Treg cell phenotype, its sustained expression in Treg cells is indispensable for their phenotypic stability, metabolic fitness, and regulatory function. In this review, we summarize recent advances in Treg cell biology, with a particular emphasis on the role of Foxp3 as a transcriptional modulator and metabolic gatekeeper essential to an effective immune regulatory response. We discuss these findings in the context of human inborn errors of immune dysregulation, with a focus on FOXP3 mutations, leading to Treg cell deficiency. We also highlight emerging concepts of therapeutic Treg cell reprogramming to restore tolerance in the settings of immune dysregulatory disorders.
Collapse
|
14
|
Adaptation by naïve CD4 + T cells to self-antigen-dependent TCR signaling induces functional heterogeneity and tolerance. Proc Natl Acad Sci U S A 2019; 116:15160-15169. [PMID: 31285342 DOI: 10.1073/pnas.1904096116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Naïve CD4+ T cells experience weak T cell receptor (TCR) signals induced by self-peptides presented by MHC II. To investigate how these "basal" TCR signals influence responses to agonist TCR ligand stimulation, we analyzed naïve CD4+ cells expressing varying amounts of CD5, Ly6C, and Nur77-GFP, markers that reflect the strength of basal TCR signaling. Phenotypic analyses indicate that the broadest range of basal TCR signal strength can be visualized by a combination of Nur77-GFP and Ly6C. A range of basal TCR signaling is detectable even in populations that express identical TCRs. Whereas moderate basal TCR signal strength correlates with higher IL-2 secretion at early time points following TCR stimulation, weak basal TCR signaling correlated with higher IL-2 secretion at later time points. We identify a population of Nur77-GFPHI Ly6C- cells that could not be reliably marked by either of CD5, Ly6C, or Nur77-GFP alone. These cells experience the strongest basal TCR signaling, consistently produce less IL-2, and express PD-1 and markers associated with anergy, such as Grail and Cbl-b. We propose that adaptation to the strength of basal TCR signaling drives the phenotypic and functional heterogeneity of naïve CD4+ cells.
Collapse
|
15
|
Macroautophagy in Dendritic Cells Controls the Homeostasis and Stability of Regulatory T Cells. Cell Rep 2019; 28:21-29.e6. [DOI: 10.1016/j.celrep.2019.05.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 12/23/2022] Open
|
16
|
Tong AA, Forestell B, Murphy DV, Nair A, Allen F, Myers J, Klauschen F, Shen C, Gopal AA, Huang AY, Mandl JN. Regulatory T cells differ from conventional
CD
4
+
T cells in their recirculatory behavior and lymph node transit times. Immunol Cell Biol 2019; 97:787-798. [DOI: 10.1111/imcb.12276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander A Tong
- Department of Pathology Case Western Reserve University School of Medicine Cleveland OH USA
| | - Benjamin Forestell
- Department of Physiology Department of Microbiology and Immunology McGill Research Centre for Complex Traits McGill University Montreal QC Canada
| | - Daniel V Murphy
- Department of Pediatrics Case Western Reserve University School of Medicine Cleveland OH USA
- The Angie Fowler AYA Cancer Institute UH Rainbow Babies & Children's Hospital Cleveland OH USA
| | - Aditya Nair
- Department of Pediatrics Case Western Reserve University School of Medicine Cleveland OH USA
- The Angie Fowler AYA Cancer Institute UH Rainbow Babies & Children's Hospital Cleveland OH USA
| | - Frederick Allen
- Department of Pathology Case Western Reserve University School of Medicine Cleveland OH USA
| | - Jay Myers
- Department of Pediatrics Case Western Reserve University School of Medicine Cleveland OH USA
- The Angie Fowler AYA Cancer Institute UH Rainbow Babies & Children's Hospital Cleveland OH USA
| | | | - Connie Shen
- Department of Physiology Department of Microbiology and Immunology McGill Research Centre for Complex Traits McGill University Montreal QC Canada
| | - Angelica A Gopal
- Department of Physiology Department of Microbiology and Immunology McGill Research Centre for Complex Traits McGill University Montreal QC Canada
| | - Alex Y Huang
- Department of Pathology Case Western Reserve University School of Medicine Cleveland OH USA
- Department of Pediatrics Case Western Reserve University School of Medicine Cleveland OH USA
- The Angie Fowler AYA Cancer Institute UH Rainbow Babies & Children's Hospital Cleveland OH USA
| | - Judith N Mandl
- Department of Physiology Department of Microbiology and Immunology McGill Research Centre for Complex Traits McGill University Montreal QC Canada
| |
Collapse
|
17
|
Toomer KH, Lui JB, Altman NH, Ban Y, Chen X, Malek TR. Essential and non-overlapping IL-2Rα-dependent processes for thymic development and peripheral homeostasis of regulatory T cells. Nat Commun 2019; 10:1037. [PMID: 30833563 PMCID: PMC6399264 DOI: 10.1038/s41467-019-08960-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/11/2019] [Indexed: 01/06/2023] Open
Abstract
IL-2R signaling is essential for regulatory T cell (Treg) function. However, the precise contribution of IL-2 during Treg thymic development, peripheral homeostasis and lineage stability remains unclear. Here we show that IL-2R signaling is required by thymic Tregs at an early step for expansion and survival, and a later step for functional maturation. Using inducible, conditional deletion of CD25 in peripheral Tregs, we also find that IL-2R signaling is indispensable for Treg homeostasis, whereas Treg lineage stability is largely IL-2-independent. CD25 knockout peripheral Tregs have increased apoptosis, oxidative stress, signs of mitochondrial dysfunction, and reduced transcription of key enzymes of lipid and cholesterol biosynthetic pathways. A divergent IL-2R transcriptional signature is noted for thymic Tregs versus peripheral Tregs. These data indicate that IL-2R signaling in the thymus and the periphery leads to distinctive effects on Treg function, while peripheral Treg survival depends on a non-conventional mechanism of metabolic regulation. Interleukin-2 (IL-2) signaling is required for regulatory T (Treg) cell differentiation in the thymus, but its function in peripheral Tregs is still unclear. Here the authors show, using inducible deletion of IL-2 receptor subunit CD25, that IL-2 signaling is essential for maintaining peripheral Treg homeostasis, but dispensable for lineage stability.
Collapse
Affiliation(s)
- Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jen Bon Lui
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Norman H Altman
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
18
|
Myers SA, Rhoads A, Cocco AR, Peckner R, Haber AL, Schweitzer LD, Krug K, Mani DR, Clauser KR, Rozenblatt-Rosen O, Hacohen N, Regev A, Carr SA. Streamlined Protocol for Deep Proteomic Profiling of FAC-sorted Cells and Its Application to Freshly Isolated Murine Immune Cells. Mol Cell Proteomics 2019; 18:995-1009. [PMID: 30792265 DOI: 10.1074/mcp.ra118.001259] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Proteomic profiling describes the molecular landscape of proteins in cells immediately available to sense, transduce, and enact the appropriate responses to extracellular queues. Transcriptional profiling has proven invaluable to our understanding of cellular responses; however, insights may be lost as mounting evidence suggests transcript levels only moderately correlate with protein levels in steady state cells. Mass spectrometry-based quantitative proteomics is a well-suited and widely used analytical tool for studying global protein abundances. Typical proteomic workflows are often limited by the amount of sample input that is required for deep and quantitative proteome profiling. This is especially true if the cells of interest need to be purified by fluorescence-activated cell sorting (FACS) and one wants to avoid ex vivo culturing. To address this need, we developed an easy to implement, streamlined workflow that enables quantitative proteome profiling from roughly 2 μg of protein input per experimental condition. Utilizing a combination of facile cell collection from cell sorting, solid-state isobaric labeling and multiplexing of peptides, and small-scale fractionation, we profiled the proteomes of 12 freshly isolated, primary murine immune cell types. Analyzing half of the 3e5 cells collected per cell type, we quantified over 7000 proteins across 12 key immune cell populations directly from their resident tissues. We show that low input proteomics is precise, and the data generated accurately reflects many aspects of known immunology, while expanding the list of cell-type specific proteins across the cell types profiled. The low input proteomics methods we developed are readily adaptable and broadly applicable to any cell or sample types and should enable proteome profiling in systems previously unattainable.
Collapse
Affiliation(s)
- Samuel A Myers
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142;; §Klarman Cell Observatory, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;.
| | - Andrew Rhoads
- ¶Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Alexandra R Cocco
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142
| | - Ryan Peckner
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142
| | - Adam L Haber
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142;; §Klarman Cell Observatory, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | | | - Karsten Krug
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142
| | - D R Mani
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142
| | - Karl R Clauser
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142
| | - Orit Rozenblatt-Rosen
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142;; §Klarman Cell Observatory, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Nir Hacohen
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142;; ‖Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215;; **Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Aviv Regev
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142;; §Klarman Cell Observatory, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;; ‡‡Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02140
| | - Steven A Carr
- From the ‡The Broad Institute or MIT and Harvard, Cambridge, Massachusetts 02142;.
| |
Collapse
|
19
|
Copsel SN, Lightbourn CO, Barreras H, Lohse I, Wolf D, Bader CS, Manov J, Kale BJ, Shah D, Brothers SP, Perez VL, Komanduri KV, Wahlestedt C, Levy RB. BET Bromodomain Inhibitors Which Permit Treg Function Enable a Combinatorial Strategy to Suppress GVHD in Pre-clinical Allogeneic HSCT. Front Immunol 2019; 9:3104. [PMID: 30733722 PMCID: PMC6353853 DOI: 10.3389/fimmu.2018.03104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023] Open
Abstract
A recent approach for limiting production of pro-inflammatory cytokines has been to target bromodomain and extra-terminal (BET) proteins. These epigenetic readers of histone acetylation regulate transcription of genes involved in inflammation, cardiovascular disease, and cancer. Development of BET inhibitors (BETi) has generated enormous interest for their therapeutic potential. Because inflammatory signals and donor T cells promote graft-versus-host disease (GVHD), regulating both pathways could be effective to abrogate this disorder. The objective of the present study was to identify a BETi which did not interfere in vivo with CD4+FoxP3+ regulatory T cell (Treg) expansion and function to utilize together with Tregs following allogeneic hematopoietic stem cell transplantation (aHSCT) to ameliorate GVHD. We have reported that Tregs can be markedly expanded and selectively activated with increased functional capacity by targeting TNFRSF25 and CD25 with TL1A-Ig and low dose IL-2, respectively. Here, mice were treated over 7 days (TL1A-Ig + IL-2) together with BETi. We found that the BETi EP11313 did not decrease frequency/numbers or phenotype of expanded Tregs as well as effector molecules, such as IL-10 and TGF-β. However, BETi JQ1 interfered with Treg expansion and altered subset distribution and phenotype. Notably, in Treg expanded mice, EP11313 diminished tnfa and ifng but not il-2 RNA levels. Remarkably, Treg pSTAT5 expression was not affected by EP11313 supporting the notion that Treg IL-2 signaling remained intact. MHC-mismatched aHSCT (B6 → BALB/c) was performed using in vivo expanded donor Tregs with or without EP11313 short-term treatment in the recipient. Early post-transplant, improvement in the splenic and LN CD4/CD8 ratio along with fewer effector cells and high Treg levels in aHSCT recipients treated with expanded Tregs + EP11313 was detected. Interestingly, this group exhibited a significant diminution of GVHD clinical score with less skin and ocular involvement. Finally, using low numbers of highly purified expanded Tregs, improved clinical GVHD scores were observed in EP11313 treated recipients. In total, we conclude that use of this novel combinatorial strategy can suppress pre-clinical GVHD and posit, in vivo EP11313 treatment might be useful combined with Treg expansion therapy for treatment of diseases involving inflammatory responses.
Collapse
Affiliation(s)
- Sabrina N Copsel
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Casey O Lightbourn
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Henry Barreras
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ines Lohse
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Center for Therapeutic Innovation and Department of Psychiatry and Behavior Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dietlinde Wolf
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Cameron S Bader
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - John Manov
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon J Kale
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Devangi Shah
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shaun P Brothers
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Center for Therapeutic Innovation and Department of Psychiatry and Behavior Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Victor L Perez
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Krishna V Komanduri
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Claes Wahlestedt
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Center for Therapeutic Innovation and Department of Psychiatry and Behavior Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Robert B Levy
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
20
|
Shevach EM. Foxp3 + T Regulatory Cells: Still Many Unanswered Questions-A Perspective After 20 Years of Study. Front Immunol 2018; 9:1048. [PMID: 29868011 PMCID: PMC5962663 DOI: 10.3389/fimmu.2018.01048] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023] Open
Abstract
T regulatory (Treg) cells were discovered more than 20 years ago and have remained a topic of intense investigation by immunologists. The initial doubts about their existence were dissipated by the discovery in 2003 of the lineage specific transcription factor Foxp3. In this article, I will discuss some of the questions that I believe still need to be answered before we will be able to fully apply Treg therapy to the clinic. The major issue that remains to be resolved is how they mediate their suppressive functions. In order to correct defective suppression in autoimmune disease (assuming it is a causative factor) or to augment suppression in graft versus host disease or during organ transplantation, we still need to fully understand the biochemical nature of suppressor mechanisms. Similarly, in cancer, it is now widely accepted that reversal of Treg suppression would be highly desirable, yet which of the many purported pathways of suppression are operative in different tumors in different anatomic sites. Many of the concepts we have developed are based on in vitro studies, and it remains unclear if these concepts can readily be applied to Treg function in vivo. Our lack of a specific cell surface marker that readily allows us to identify and target Treg in vivo, particularly in man, remains a major stumbling block. Finally, I will review in some detail controversies regarding the origin of Treg, thymus versus periphery, and attempts to reverse Treg suppression by targeting antigens on their cell surface, particularly members of the TNF receptor superfamily. Hopefully, these areas of controversy will be resolved by in depth studies over the next few years and manipulation of Treg function will be placed on a more solid experimental footing.
Collapse
Affiliation(s)
- Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
21
|
Copsel S, Wolf D, Kale B, Barreras H, Lightbourn CO, Bader CS, Alperstein W, Altman NH, Komanduri KV, Levy RB. Very Low Numbers of CD4 + FoxP3 + Tregs Expanded in Donors via TL1A-Ig and Low-Dose IL-2 Exhibit a Distinct Activation/Functional Profile and Suppress GVHD in a Preclinical Model. Biol Blood Marrow Transplant 2018; 24:1788-1794. [PMID: 29751114 DOI: 10.1016/j.bbmt.2018.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/23/2018] [Indexed: 11/25/2022]
Abstract
Regulatory T cells (Tregs) are essential for the maintenance of tolerance and immune homeostasis. In allogeneic hematopoietic stem cell transplantation (aHSCT), transfer of appropriate Treg numbers is a promising therapy for the prevention of graft-versus-host disease (GVHD). We have recently reported a novel approach that induces the marked expansion and selective activation of Tregs in vivo by targeting tumor necrosis factor receptor superfamily 25 (TNFRSF25) and CD25. A potential advance to promote clinical application of Tregs to ameliorate GVHD and other disorders would be the generation of more potent Treg populations. Here we wanted to determine if very low doses of Tregs generated using the "2-pathway" stimulation protocol via TL1A-Ig fusion protein and low-dose IL-2 (targeting TNFRSF25 and CD25, respectively) could be used to regulate preclinical GVHD. Analysis of such 2-pathway expanded Tregs identified higher levels of activation and functional molecules (CD103, ICOS-1, Nrp-1, CD39, CD73, il-10, and tgfb1) versus unexpanded Tregs. Additionally, in vitro assessment of 2-pathway stimulated Tregs indicated enhanced suppressor activity. Notably, transplant of extremely low numbers of these Tregs (1:6 expanded Tregs/conventional T cells) suppressed GVHD after an MHC-mismatched aHSCT. Overall, these results demonstrate that 2-pathway stimulated CD4+ FoxP3+ Tregs were quantitatively and qualitatively more functionally effective than unexpanded Tregs. In total, the findings in this study support the notion that such 2-pathway stimulated Tregs may be useful for prevention of GVHD and ultimately promote more widespread application of aHSCT in the clinic.
Collapse
Affiliation(s)
- Sabrina Copsel
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Dietlinde Wolf
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Brandon Kale
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Henry Barreras
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Casey O Lightbourn
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Cameron S Bader
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Warren Alperstein
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Norman H Altman
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Krishna V Komanduri
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida; Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Robert B Levy
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida; Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida; Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
22
|
Lee JY, Kim J, Yi J, Kim D, Kim HO, Han D, Sprent J, Lee YJ, Surh CD, Cho JH. Phenotypic and Functional Changes of Peripheral Ly6C + T Regulatory Cells Driven by Conventional Effector T Cells. Front Immunol 2018; 9:437. [PMID: 29616017 PMCID: PMC5864862 DOI: 10.3389/fimmu.2018.00437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/19/2018] [Indexed: 01/26/2023] Open
Abstract
A relatively high affinity/avidity of T cell receptor (TCR) recognition for self-peptide bound to major histocompatibility complex II (self-pMHC) ligands is a distinctive feature of CD4 T regulatory (Treg) cells, including their development in the thymus and maintenance of their suppressive functions in the periphery. Despite such high self-reactivity, however, all thymic-derived peripheral Treg populations are neither homogenous in their phenotype nor uniformly immune-suppressive in their function under steady state condition. We show here that based on the previously defined heterogeneity in the phenotype of peripheral Treg populations, Ly6C expression on Treg marks a lower degree of activation, proliferation, and differentiation status as well as functional incompetence. We also demonstrate that Ly6C expression on Treg in a steady state is either up- or downregulated depending on relative amounts of tonic TCR signals derived from its contacts with self-ligands. Interestingly, peripheral appearance and maintenance of these Ly6C-expressing Treg cells largely differed in an age-dependent manner, with their proportion being continuously increased from perinatal to young adult period but then being gradually declined with age. The reduction of Ly6C+ Treg in the aged mice was not due to their augmented cell death but rather resulted from downregulation of Ly6C expression. The Ly6C downregulation was accompanied by proliferation of Ly6C+ Treg cells and subsequent change into Ly6C− effector Treg with concomitant restoration of immune-suppressive activity. Importantly, we found that this phenotypic and functional change of Ly6C+ Treg is largely driven by conventional effector T cell population. Collectively, these findings suggest a potential cross-talk between peripheral Treg subsets and effector T cells and provides better understanding for Treg homeostasis and function on maintaining self-tolerance.
Collapse
Affiliation(s)
- Jun Young Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Juhee Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Jaeu Yi
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Daeun Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Hee-Ok Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Daehee Han
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - You Jeong Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea.,Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
23
|
Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, Hamers AAJ, Cochain C, Vafadarnejad E, Saliba AE, Zernecke A, Pramod AB, Ghosh AK, Anto Michel N, Hoppe N, Hilgendorf I, Zirlik A, Hedrick CC, Ley K, Wolf D. Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circ Res 2018; 122:1675-1688. [PMID: 29545366 DOI: 10.1161/circresaha.117.312513] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/04/2018] [Accepted: 03/14/2018] [Indexed: 12/24/2022]
Abstract
RATIONALE Atherosclerosis is a chronic inflammatory disease that is driven by the interplay of pro- and anti-inflammatory leukocytes in the aorta. Yet, the phenotypic and transcriptional diversity of aortic leukocytes is poorly understood. OBJECTIVE We characterized leukocytes from healthy and atherosclerotic mouse aortas in-depth by single-cell RNA-sequencing and mass cytometry (cytometry by time of flight) to define an atlas of the immune cell landscape in atherosclerosis. METHODS AND RESULTS Using single-cell RNA-sequencing of aortic leukocytes from chow diet- and Western diet-fed Apoe-/- and Ldlr-/- mice, we detected 11 principal leukocyte clusters with distinct phenotypic and spatial characteristics while the cellular repertoire in healthy aortas was less diverse. Gene set enrichment analysis on the single-cell level established that multiple pathways, such as for lipid metabolism, proliferation, and cytokine secretion, were confined to particular leukocyte clusters. Leukocyte populations were differentially regulated in atherosclerotic Apoe-/- and Ldlr-/- mice. We confirmed the phenotypic diversity of these clusters with a novel mass cytometry 35-marker panel with metal-labeled antibodies and conventional flow cytometry. Cell populations retrieved by these protein-based approaches were highly correlated to transcriptionally defined clusters. In an integrated screening strategy of single-cell RNA-sequencing, mass cytometry, and fluorescence-activated cell sorting, we detected 3 principal B-cell subsets with alterations in surface markers, functional pathways, and in vitro cytokine secretion. Leukocyte cluster gene signatures revealed leukocyte frequencies in 126 human plaques by a genetic deconvolution strategy. This approach revealed that human carotid plaques and microdissected mouse plaques were mostly populated by macrophages, T-cells, and monocytes. In addition, the frequency of genetically defined leukocyte populations in carotid plaques predicted cardiovascular events in patients. CONCLUSIONS The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunologic mechanisms and cell-type-specific pathways, and establishes a functional relevance for lesional leukocytes in human atherosclerosis.
Collapse
Affiliation(s)
- Holger Winkels
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Erik Ehinger
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Melanie Vassallo
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Konrad Buscher
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Huy Q Dinh
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Kouji Kobiyama
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Anouk A J Hamers
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (C.C., A.Z.)
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany (E.V., A.-E.S.)
| | | | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (C.C., A.Z.)
| | - Akula Bala Pramod
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Amlan K Ghosh
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Nathaly Anto Michel
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| | - Natalie Hoppe
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.).,Department of Bioengineering, University of California, San Diego (K.L.)
| | - Dennis Wolf
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (C.C., A.Z.) .,From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.).,Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| |
Collapse
|
24
|
Sprouse ML, Scavuzzo MA, Blum S, Shevchenko I, Lee T, Makedonas G, Borowiak M, Bettini ML, Bettini M. High self-reactivity drives T-bet and potentiates Treg function in tissue-specific autoimmunity. JCI Insight 2018; 3:97322. [PMID: 29367462 DOI: 10.1172/jci.insight.97322] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
T cell receptor (TCR) affinity is a critical factor of Treg lineage commitment, but whether self-reactivity is a determining factor in peripheral Treg function remains unknown. Here, we report that a high degree of self-reactivity is crucial for tissue-specific Treg function in autoimmunity. Based on high expression of CD5, we identified a subset of self-reactive Tregs expressing elevated levels of T-bet, GITR, CTLA-4, and ICOS, which imparted significant protection from autoimmune diabetes. We observed that T-bet expression in Tregs, necessary for control of Th1 autoimmunity, could be induced in an IFNγ-independent fashion and, unlike in conventional T cells (Tconv), was strongly correlated with the strength of TCR signaling. The level of CD5 similarly identified human Tregs with an increased functional profile, suggesting that CD5hi Tregs may constitute an efficacious subpopulation appropriate for use in adoptive Treg therapies for treatment of inflammatory conditions. Overall, this work establishes an instrumental role of high TCR self-reactivity in driving Treg function.
Collapse
Affiliation(s)
- Maran L Sprouse
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | | | - Samuel Blum
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | - Ivan Shevchenko
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | - Thomas Lee
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | | | - Malgorzata Borowiak
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, and.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew L Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Maria Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Durand A, Audemard-Verger A, Guichard V, Mattiuz R, Delpoux A, Hamon P, Bonilla N, Rivière M, Delon J, Martin B, Auffray C, Boissonnas A, Lucas B. Profiling the lymphoid-resident T cell pool reveals modulation by age and microbiota. Nat Commun 2018; 9:68. [PMID: 29302034 PMCID: PMC5754350 DOI: 10.1038/s41467-017-02458-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/01/2017] [Indexed: 01/12/2023] Open
Abstract
Despite being implicated in non-lymphoid tissues, non-recirculating T cells may also exist in secondary lymphoid organs (SLO). However, a detailed characterization of this lymphoid-resident T cell pool has not yet been done. Here we show that a substantial proportion of CD4 regulatory (Treg) and memory (Tmem) cells establish long-term residence in the SLOs of specific pathogen-free mice. Of these SLOs, only T cell residence within Peyer's patches is affected by microbiota. Resident CD4 Treg and CD4 Tmem cells from lymph nodes and non-lymphoid tissues share many phenotypic and functional characteristics. The percentage of resident T cells in SLOs increases considerably with age, with S1PR1 downregulation possibly contributing to this altered homeostasis. Our results thus show that T cell residence is not only a hallmark of non-lymphoid tissues, but can be extended to secondary lymphoid organs.
Collapse
Affiliation(s)
- Aurélie Durand
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Alexandra Audemard-Verger
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Vincent Guichard
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.,Paris Diderot Université, Sorbonne Paris Cité, 75013, Paris, France
| | - Raphaël Mattiuz
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Arnaud Delpoux
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Pauline Hamon
- Pierre et Marie Curie Université (UPMC), Sorbonne Universités, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - Nelly Bonilla
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Matthieu Rivière
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Jérôme Delon
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Bruno Martin
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Cédric Auffray
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Alexandre Boissonnas
- Pierre et Marie Curie Université (UPMC), Sorbonne Universités, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - Bruno Lucas
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
26
|
Kraj P, Ignatowicz L. The mechanisms shaping the repertoire of CD4 + Foxp3 + regulatory T cells. Immunology 2017; 153:290-296. [PMID: 29106696 DOI: 10.1111/imm.12859] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 12/29/2022] Open
Abstract
Regulatory T (Treg) cells expressing Foxp3 transcription factor control homeostasis of the immune system, antigenic responses to commensal and pathogenic microbiota, and immune responses to self and tumour antigens. The Treg cells differentiate in the thymus, along with conventional CD4+ T cells, in processes of positive and negative selection. Another class of Treg cells is generated in peripheral tissues by inducing Foxp3 expression in conventional CD4+ T cells in response to antigenic stimulation. Both thymic and peripheral generation of Treg cells depends on recognition of peptide/MHC ligands by the T-cell receptors (TCR) expressed on thymic Treg precursors or peripheral conventional CD4+ T cells. This review surveys reports describing how thymus Treg cell generation depends on the selecting peptide/MHC ligands and how this process impacts the TCR repertoire expressed by Treg cells. We also describe how Treg cells depend on sustained signalling through the TCR and how they are further regulated by Foxp3 enhancer sequences. Finally, we review the impact of microbiota-derived antigens on the maintenance and functionality of the peripheral pool of Treg cells.
Collapse
Affiliation(s)
- Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Program in Translational Immunology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
27
|
Audemard-Verger A, Rivière M, Durand A, Peranzoni E, Guichard V, Hamon P, Bonilla N, Guilbert T, Boissonnas A, Auffray C, Eberl G, Lucas B, Martin B. Macrophages Induce Long-Term Trapping of γδ T Cells with Innate-like Properties within Secondary Lymphoid Organs in the Steady State. THE JOURNAL OF IMMUNOLOGY 2017; 199:1998-2007. [PMID: 28779024 DOI: 10.4049/jimmunol.1700430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 01/06/2023]
Abstract
So far, peripheral T cells have mostly been described to circulate between blood, secondary lymphoid organs (SLOs), and lymph in the steady state. This nomadic existence would allow them to accomplish their surveying task for both foreign Ags and survival signals. Although it is now well established that γδ T cells can be rapidly recruited to inflammatory sites or in certain tumor microenvironments, the trafficking properties of peripheral γδ T cells have been poorly studied in the steady state. In the present study, we highlight the existence of resident γδ T cells in the SLOs of specific pathogen-free mice. Indeed, using several experimental approaches such as the injection of integrin-neutralizing Abs that inhibit the entry of circulating lymphocytes into lymph nodes and long-term parabiosis experiments, we have found that, contrary to Ly-6C-/+CD44lo and Ly-6C+CD44hi γδ T cells, a significant proportion of Ly-6C-CD44hi γδ T cells are trapped for long periods of time within lymph nodes and the spleen in the steady state. Specific in vivo cell depletion strategies have allowed us to demonstrate that macrophages are the main actors involved in this long-term retention of Ly-6C-CD44hi γδ T cells in SLOs.
Collapse
Affiliation(s)
| | - Matthieu Rivière
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Aurélie Durand
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Elisa Peranzoni
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Vincent Guichard
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France.,Paris Diderot Université, 75013 Paris, France
| | - Pauline Hamon
- Université Paris 6, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, Université Pierre et Marie Curie, 75013 Paris, France
| | - Nelly Bonilla
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Thomas Guilbert
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Alexandre Boissonnas
- Université Paris 6, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, Université Pierre et Marie Curie, 75013 Paris, France
| | - Cédric Auffray
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Gérard Eberl
- Unité Microenvironment and Immunity, Institut Pasteur, 75724 Paris, France; and.,INSERM U1224, 75724 Paris, France
| | - Bruno Lucas
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Bruno Martin
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France;
| |
Collapse
|
28
|
Wolf D, Barreras H, Bader CS, Copsel S, Lightbourn CO, Pfeiffer BJ, Altman NH, Podack ER, Komanduri KV, Levy RB. Marked in Vivo Donor Regulatory T Cell Expansion via Interleukin-2 and TL1A-Ig Stimulation Ameliorates Graft-versus-Host Disease but Preserves Graft-versus-Leukemia in Recipients after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2017; 23:757-766. [PMID: 28219835 DOI: 10.1016/j.bbmt.2017.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/16/2017] [Indexed: 01/23/2023]
Abstract
Regulatory T cells (Tregs) are critical for self-tolerance. Although adoptive transfer of expanded Tregs limits graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation (HSCT), ex vivo generation of large numbers of functional Tregs remains difficult. Here, we demonstrate that in vivo targeting of the TNF superfamily receptor TNFRSF25 using the TL1A-Ig fusion protein, along with IL-2, resulted in transient but massive Treg expansion in donor mice, which peaked within days and was nontoxic. Tregs increased in multiple compartments, including blood, lymph nodes, spleen, and colon (GVHD target tissue). Tregs did not expand in bone marrow, a critical site for graft-versus-malignancy responses. Adoptive transfer of in vivo-expanded Tregs in the setting of MHC-mismatched or MHC-matched allogeneic HSCT significantly ameliorated GVHD. Critically, transplantation of Treg-expanded donor cells facilitated transplant tolerance without GVHD, with complete sparing of graft-versus-malignancy. This approach may prove valuable as a therapeutic strategy promoting transplantation tolerance.
Collapse
Affiliation(s)
- Dietlinde Wolf
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Henry Barreras
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Cameron S Bader
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Sabrina Copsel
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Casey O Lightbourn
- Department of Ophthalmology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Brent J Pfeiffer
- Department of Pediatrics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Norman H Altman
- Department of Pathology and Laboratory Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Eckhard R Podack
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Krishna V Komanduri
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Robert B Levy
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida; Department of Ophthalmology, University of Miami, Miller School of Medicine, Miami, Florida.
| |
Collapse
|
29
|
Holt MP, Punkosdy GA, Glass DD, Shevach EM. TCR Signaling and CD28/CTLA-4 Signaling Cooperatively Modulate T Regulatory Cell Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 198:1503-1511. [PMID: 28053234 DOI: 10.4049/jimmunol.1601670] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/04/2016] [Indexed: 12/16/2022]
Abstract
Foxp3+ T regulatory cells (Tregs), conventional CD4+Foxp3- T cells, and CD8+ T cells represent heterogeneous populations composed of naive phenotype (NP, CD44low) and memory phenotype (MP, CD44high) subpopulations. NP and MP subsets differ in their activation state, contribution to immune function, and capacity to proliferate in vivo. To further understand the factors that contribute to the differential homeostasis of NP/MP subsets, we examined the differential effects of CD28 and CTLA-4 interaction with CD80/CD86, as well as MHC class II-TCR interaction within mouse Treg pools and CD4+ and CD8+ T cell pools. Blockade of CD80/CD86 with CTLA-4-Ig markedly reduced the cycling and absolute numbers of MP Tregs and MP CD4+ T cells, with minimal effect on the NP T cell subpopulations. Blockade of MHC class II-TCR interaction led to selective expansion of MP Tregs and MP CD4+ and CD8+ T cells that was reversed upon cotreatment with CTLA-4-Ig. Treatment with anti-CTLA-4 mAb altered MP Treg and MP CD4+ and CD8+ T cell homeostasis in a manner similar to that observed with anti-MHC class II. We postulate a complex pathway in which CD28 is the primary driver of Treg proliferation and CTLA-4 functions as the main brake but is likely dependent on TCR signals and CD80/CD86. These findings have important implications for the use of biologic agents targeting such pathways to modulate autoimmune and neoplastic disease.
Collapse
Affiliation(s)
- Michael P Holt
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - George A Punkosdy
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322; and.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Deborah D Glass
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
30
|
Chen SS, Hu Z, Zhong XP. Diacylglycerol Kinases in T Cell Tolerance and Effector Function. Front Cell Dev Biol 2016; 4:130. [PMID: 27891502 PMCID: PMC5103287 DOI: 10.3389/fcell.2016.00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that regulate the relative levels of diacylglycerol (DAG) and phosphatidic acid (PA) in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR) signal by recruiting multiple effector molecules, such as RasGRP1, PKCθ, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms, α and ζ, in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.
Collapse
Affiliation(s)
- Shelley S Chen
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center Durham, NC, USA
| | - Zhiming Hu
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Institute of Biotherapy, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Department of Immunology, Duke University Medical CenterDurham, NC, USA; Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
31
|
Li L, Yang SH, Yao Y, Xie YQ, Yang YQ, Wang YH, Yin XY, Ma HD, Gershwin ME, Lian ZX. Block of both TGF-β and IL-2 signaling impedes Neurophilin-1 + regulatory T cell and follicular regulatory T cell development. Cell Death Dis 2016; 7:e2439. [PMID: 27787514 PMCID: PMC5134002 DOI: 10.1038/cddis.2016.348] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/11/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms that lead to autoimmunity is critical for defining potential therapeutic pathways. In this regard there have been considerable efforts in investigating the interacting roles of TGF-β and IL-2 on the function regulatory T cells. We have taken advantage of dnTGF-βRII Il2ra-/- (abbreviated as Il2ra-/-Tg) mouse model, which allows a direct mechanistic approach to define the relative roles of TGF-β and IL-2 on Treg development. Il2ra-/-Tg mice spontaneously developed multi-organ autoimmune diseases with expansion of pathogenic T cells and enhanced germinal center response at 3-4 weeks of age. Importantly, peripheral Treg cells from Il2ra-/-Tg mice demonstrated an activated Th1-like stable phenotype and normal in vitro suppressive function, while thymus Treg increased but manifested decreased suppressive function. Interestingly, neither thymus nor peripheral Treg cells of Il2ra-/-Tg mice contained Neuropilin-1+ or PD-1hi phenotype, resulting in defective follicular regulatory T (Tfr) cell development. Such defective Tfr development led to elevated follicular T helper cells, enhanced germinal center responses and increased plasma cell infiltration. These data demonstrate an important synergetic role of TGF-β and IL-2 in the generation, activation and stability of Treg cells, as well as their subsequent development into Tfr cells.
Collapse
Affiliation(s)
- Liang Li
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu-Han Yang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yuan Yao
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yu-Qing Xie
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yan-Qing Yang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xue-Ying Yin
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - MEric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230027, China
| |
Collapse
|
32
|
Toomer KH, Yuan X, Yang J, Dee MJ, Yu A, Malek TR. Developmental Progression and Interrelationship of Central and Effector Regulatory T Cell Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3665-76. [PMID: 27009492 PMCID: PMC4868642 DOI: 10.4049/jimmunol.1500595] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 02/28/2016] [Indexed: 02/06/2023]
Abstract
Resting central Tregs (cTregs) and activated effector Tregs (eTregs) are required for self-tolerance, but the heterogeneity and relationships within and between phenotypically distinct subsets of cTregs and eTregs are poorly understood. By extensive immune profiling and deep sequencing of TCR-β V regions, two subsets of cTregs, based on expression of Ly-6C, and three subsets of eTregs, based on distinctive expression of CD62L, CD69, and CD103, were identified. Ly-6C(+) cTregs exhibited lower basal activation, expressed on average lower affinity TCRs, and less efficiently developed into eTregs when compared with Ly-6C(-) cTregs. The dominant TCR Vβs of Ly-6C(+) cTregs were shared by eTregs at a low frequency. A single TCR clonotype was also identified that was largely restricted to Ly-6C(+) cTregs, even under conditions that promoted the development of eTregs. Collectively, these findings indicate that some Ly-6C(+) cTregs may persist as a lymphoid-specific subset, with minimal potential to develop into highly activated eTregs, whereas other cTregs readily develop into eTregs. In contrast, subsets of CD62L(lo) eTregs showed higher clonal expansion and were more highly interrelated than cTreg subsets based on their TCR-β repertoires, but exhibited varied immune profiles. The CD62L(lo) CD69(-) CD103(-) eTreg subset displayed properties of a transitional intermediate between cTregs and more activated eTreg subsets. Thus, eTreg subsets appear to exhibit substantial flexibility, most likely in response to environmental cues, to adopt defined immune profiles that are expected to optimize suppression of autoreactive T cells.
Collapse
Affiliation(s)
- Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Xiaomei Yuan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Jing Yang
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Michael J Dee
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Aixin Yu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
33
|
Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, Zheng S, Ni B, Fang D, Song J. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep 2016; 6:20588. [PMID: 26846186 PMCID: PMC4742827 DOI: 10.1038/srep20588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/07/2016] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells (PSCs) have the potential to produce almost all of the cells in the body, including regulatory T cells (Tregs). However, the exact conditions required for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) are not well delineated. Ag-specific PSC-Tregs can be tissue/organ-associated and migrate to local inflamed tissues/organs to suppress the autoimmune response after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. In this study, we developed a new approach to generate functional Ag-specific Tregs from induced PSCs (iPSCs), i.e., iPSC-Tregs, which had the ability to generate an Ag-specific immunosuppressive response in a murine model of arthritis. We retrovirally transduced murine iPSCs with a construct containing genes of Ag-specific T cell receptor (TCR) and the transcriptional factor FoxP3. We differentiated the iPSCs into Ag-specific iPSC-Tregs using in vitro or in vivo Notch signaling, and demonstrated that adoptive transfer of such Tregs dramatically suppressed autoimmunity in a well-established Ag-induced arthritis model, including the inflammation, joint destruction, cartilage prostaglandin depletion, osteoclast activity, and Th17 production. Our results indicate that PSCs can be used to develop Ag-specific Tregs, which have a therapeutic potential for Treg-based therapies of autoimmune disorders.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jianyong Song
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Kristin Fino
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Praneet Sandhu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xinmeng Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Fengyang Lei
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Songguo Zheng
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bing Ni
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
34
|
Pedros C, Duguet F, Saoudi A, Chabod M. Disrupted regulatory T cell homeostasis in inflammatory bowel diseases. World J Gastroenterol 2016; 22:974-995. [PMID: 26811641 PMCID: PMC4716049 DOI: 10.3748/wjg.v22.i3.974] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/02/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
In the gut, where billions of non-self-antigens from the food and the microbiota are present, the immune response must be tightly regulated to ensure both host protection against pathogenic microorganisms and the absence of immune-related pathologies. It has been well documented that regulatory T cells (Tregs) play a pivotal role in this context. Indeed, Tregs are able to prevent excessive inflammation, which can lead to the rupture of intestinal homeostasis observed in inflammatory bowel diseases (IBDs). Both the worldwide incidence and prevalence of such diseases have increased throughout the latter part of the 20th century. Therefore, it is crucial to understand how Tregs suppress the colitogenic immune cells to establish new treatments for patients suffering from IBDs. In this review, we will first summarize the results obtained in animal model studies that highlight the importance of Tregs in maintaining intestinal homeostasis and describe the specific suppressive mechanisms involved. Next, our current knowledge about Tregs contribution to human IBDs will be reviewed, as well as the current therapeutic perspective on using Tregs for clinical IBD treatment and the challenges that remain to be resolved to ensure both the safety and effectiveness of these therapies in targeting this critical immune-regulatory cell population.
Collapse
|
35
|
Brezar V, Tu WJ, Seddiki N. PKC-Theta in Regulatory and Effector T-cell Functions. Front Immunol 2015; 6:530. [PMID: 26528291 PMCID: PMC4602307 DOI: 10.3389/fimmu.2015.00530] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ) to the immunological synapse (IS) is instrumental for the formation of signaling complexes, which ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the IS where its formation induces altered signaling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance. This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.
Collapse
Affiliation(s)
- Vedran Brezar
- INSERM U955, Équipe 16 and Faculté de Médecine, Université Paris Est , Créteil , France ; Vaccine Research Institute (VRI) , Créteil , France
| | - Wen Juan Tu
- Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| | - Nabila Seddiki
- INSERM U955, Équipe 16 and Faculté de Médecine, Université Paris Est , Créteil , France ; Vaccine Research Institute (VRI) , Créteil , France
| |
Collapse
|
36
|
Drees C, Vahl JC, Schmidt-Supprian M. TCR signals fuel Treg cells. Oncotarget 2015; 6:21773-4. [PMID: 26318042 PMCID: PMC4673113 DOI: 10.18632/oncotarget.4881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Christoph Drees
- Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Marc Schmidt-Supprian
- Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
37
|
Lombes A, Durand A, Charvet C, Rivière M, Bonilla N, Auffray C, Lucas B, Martin B. Adaptive Immune-like γ/δ T Lymphocytes Share Many Common Features with Their α/β T Cell Counterparts. THE JOURNAL OF IMMUNOLOGY 2015; 195:1449-58. [DOI: 10.4049/jimmunol.1500375] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/08/2015] [Indexed: 01/11/2023]
|