1
|
Lučiūnaitė A, Mašalaitė K, Plikusiene I, Maciulis V, Juciute S, Norkienė M, Žvirblienė A. Structural properties of immune complexes formed by viral antigens and specific antibodies shape the inflammatory response of macrophages. Cell Biosci 2024; 14:53. [PMID: 38664730 PMCID: PMC11046781 DOI: 10.1186/s13578-024-01237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Data on the course of viral infections revealed severe inflammation as a consequence of antiviral immune response. Despite extensive research, there are insufficient data on the role of innate immune cells in promoting inflammation mediated by immune complexes (IC) of viral antigens and their specific antibodies. Recently, we demonstrated that antigens of human polyomaviruses (PyVs) induce an inflammatory response in macrophages. Here, we investigated macrophage activation by IC. We used primary murine macrophages as a cell model, virus-like particles (VLPs) of PyV capsid protein as antigens, and a collection of murine monoclonal antibodies (mAbs) of IgG1, IgG2a, IgG2b subclasses. The inflammatory response was investigated by analysing inflammatory chemokines and activation of NLRP3 inflammasome. We observed a diverse pattern of chemokine secretion in macrophages treated with different IC compared to VLPs alone. To link IC properties with cell activation status, we characterised the IC by advanced optical and acoustic techniques. Ellipsometry provided precise real-time kinetics of mAb-antigen interactions, while quartz crystal microbalance measurements showed changes in conformation and viscoelastic properties during IC formation. These results revealed differences in mAb-antigen interaction and mAb binding parameters of the investigated IC. We found that IC-mediated cell activation depends more on IC characteristics, including mAb affinity, than on mAb affinity for the activating Fc receptor. IC formed by the highest affinity mAb showed a significant enhancement of inflammasome activation. This may explain the hyperinflammation related to viral infection and vaccination. Our findings demonstrate that IC promote the viral antigen-induced inflammatory response depending on antibody properties.
Collapse
Affiliation(s)
- Asta Lučiūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania.
| | - Kristina Mašalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| | - Ieva Plikusiene
- State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
- Pharmacy and Pharmacology Center, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vincentas Maciulis
- State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Silvija Juciute
- NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Milda Norkienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| |
Collapse
|
2
|
Zhang H, Gao J, Tang Y, Jin T, Tao J. Inflammasomes cross-talk with lymphocytes to connect the innate and adaptive immune response. J Adv Res 2023; 54:181-193. [PMID: 36681114 DOI: 10.1016/j.jare.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Innate and adaptive immunity are two different parts of the immune system that have different characteristics and work together to provide immune protection. Inflammasomes are a major part of the innate immune system that are expressed widely in myeloid cells and are responsible for inflammatory responses. Recent studies have shown that inflammasomes are also expressed and activated in lymphocytes, especially in T and B cells, to regulate the adaptive immune response. Activation of inflammasomes is also under the control of lymphocytes. Therefore, we propose that inflammasomes act as a bridge and they provide crosstalk between the innate and adaptive immune systems to obtain a fine balance in immune responses. AIM OF REVIEW This review systematially summarizes the interaction between inflammasomes and lymphocytes and describes the crosstalk between the innate and adaptive immune systems induced by inflammasomes, with the aim of providing new directions and important areas for further research. KEY SCIENTIFIC CONCEPTS OF REVIEW When considering the novel function of inflammasomes in various lymphocytes, attention should be given to the activity of specific inflammasomes in studies of lymphocyte function. Moreover, research on the function of various inflammasomes in lymphocytes will help advance knowledge on the mechanisms and treatment of various diseases, including autoimmune diseases and tumors. In addition, when studying inflammatory responses, inflammasomes in both lymphocytes and myeloid cells need to be considered.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui 323000, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Oylumlu E, Uzel G, Durmus L, Ciraci C. IgE Immune Complexes Mitigate Eosinophilic Immune Responses through NLRC4 Inflammasome. Mediators Inflamm 2023; 2023:3224708. [PMID: 37885469 PMCID: PMC10599938 DOI: 10.1155/2023/3224708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Immune complexes (ICs) skew immune responses toward either a pro- or anti-inflammatory direction based on the type of stimulation. Immunoglobulin E (IgE) is associated with Th2 immune responses and known to activate innate immune cells. However, roles of antigen (Ag)-specific-IgE ICs in regulating human eosinophil responses remain elusive; therefore, this study builts upon the mechanism of which ovalbumin (Ova)-IgE ICs affects eosinophilic responses utilizing human EoL-1 cell line as a model. Eosinophils are granulocytes functioning through pattern recognition receptors (PRRs) and destructive granule contents in allergic inflammation and parasitic infections. One of the PRRs that eosinophils express is NLRC4, a member of the CARD domain containing nucleotide-binding oligomerization (NOD)-like receptor (NLR) family. Upon recognition of its specific ligand flagellin, NLRC4 inflammasome is formed and leads to the release of interleukin-1β (IL-1β). We exhibited that Ova-IgE ICs induced the NLRC4-inflammasome components, including NLRC4, caspase-1, intracellular IL-1β, and secretion of IL-1β, as well as the granule contents MMP9, TIMP1, and TIMP2 proteins via TLR2 signaling; these responses were suppressed, when NLRC4 inflammasome got actived in the presence of ICs. Furthermore, Ova-IgE ICs induced mRNA expressions of MMP9, TIMP2, and ECP and protein expressions of MMP9 and TIMP2 in EoL-1 through FcɛRII. Interestingly, TLR2 ligand and Ova-IgE ICs costimulation elevated the number of CD63+ cells, a degranulation marker, as compared to the native IgE. Collectively, our findings provide a mechanism for the impacts of Ova-IgE ICs on eosinophilic responses via NLRC4-inflammasome and may help understand eosinophil-associated diseases, including chronic eosinophilic pneumonia, eosinophilic esophagitis, eosinophilic granulomatosis, parasitic infections, allergy, and asthma.
Collapse
Affiliation(s)
- Ece Oylumlu
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Goksu Uzel
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Lubeyne Durmus
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ceren Ciraci
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
4
|
Dalby E, Christensen SM, Wang J, Hamidzadeh K, Chandrasekaran P, Hughitt VK, Tafuri WL, Arantes RME, Rodrigues IA, Herbst R, El-Sayed NM, Sims GP, Mosser DM. Immune Complex-Driven Generation of Human Macrophages with Anti-Inflammatory and Growth-Promoting Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:102-112. [PMID: 32434940 DOI: 10.4049/jimmunol.1901382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
Abstract
To maintain homeostasis, macrophages must be capable of assuming either an inflammatory or an anti-inflammatory phenotype. To better understand the latter, we stimulated human macrophages in vitro with TLR ligands in the presence of high-density immune complexes (IC). This combination of stimuli resulted in a broad suppression of inflammatory mediators and an upregulation of molecules involved in tissue remodeling and angiogenesis. Transcriptomic analysis of TLR stimulation in the presence of IC predicted the downstream activation of AKT and the inhibition of GSK3. Consequently, we pretreated LPS-stimulated human macrophages with small molecule inhibitors of GSK3 to partially phenocopy the regulatory effects of stimulation in the presence of IC. The upregulation of DC-STAMP and matrix metalloproteases was observed on these cells and may represent potential biomarkers for this regulatory activation state. To demonstrate the presence of these anti-inflammatory, growth-promoting macrophages in a human infectious disease, biopsies from patients with leprosy (Hanseniasis) were analyzed. The lepromatous form of this disease is characterized by hypergammaglobulinemia and defective cell-mediated immunity. Lesions in lepromatous leprosy contained macrophages with a regulatory phenotype expressing higher levels of DC-STAMP and lower levels of IL-12, relative to macrophages in tuberculoid leprosy lesions. Therefore, we propose that increased signaling by FcγR cross-linking on TLR-stimulated macrophages can paradoxically promote the resolution of inflammation and initiate processes critical to tissue growth and repair. It can also contribute to infectious disease progression.
Collapse
Affiliation(s)
- Elizabeth Dalby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Stephen M Christensen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Jingya Wang
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878
| | - Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Prabha Chandrasekaran
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - V Keith Hughitt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Wagner Luiz Tafuri
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; and
| | - Rosa Maria Esteves Arantes
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; and
| | | | - Ronald Herbst
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Gary P Sims
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878;
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742;
| |
Collapse
|
5
|
Castro-Dopico T, Clatworthy MR. IgG and Fcγ Receptors in Intestinal Immunity and Inflammation. Front Immunol 2019; 10:805. [PMID: 31031776 PMCID: PMC6473071 DOI: 10.3389/fimmu.2019.00805] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Fcγ receptors (FcγR) are cell surface glycoproteins that mediate cellular effector functions of immunoglobulin G (IgG) antibodies. Genetic variation in FcγR genes can influence susceptibility to a variety of antibody-mediated autoimmune and inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). More recently, however, genetic studies have implicated altered FcγR signaling in the pathogenesis of inflammatory bowel disease (IBD), a condition classically associated with dysregulated innate and T cell immunity. Specifically, a variant of the activating receptor, FcγRIIA, with low affinity for IgG, confers protection against the development of ulcerative colitis, a subset of IBD, leading to a re-evaluation of the role of IgG and FcγRs in gastrointestinal tract immunity, an organ system traditionally associated with IgA. In this review, we summarize our current understanding of IgG and FcγR function at this unique host-environment interface, from the pathogenesis of colitis and defense against enteropathogens, its contribution to maternal-fetal cross-talk and susceptibility to cancer. Finally, we discuss the therapeutic implications of this information, both in terms of how FcγR signaling pathways may be targeted for the treatment of IBD and how FcγR engagement may influence the efficacy of therapeutic monoclonal antibodies in IBD.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research CentreCambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
6
|
Si-doping increases the adjuvant activity of hydroxyapatite nanorods. Colloids Surf B Biointerfaces 2019; 174:300-307. [DOI: 10.1016/j.colsurfb.2018.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/16/2018] [Accepted: 11/13/2018] [Indexed: 11/23/2022]
|
7
|
Zhang X, Owens J, Olsen HS, So E, Burch E, McCroskey MC, Li X, Weber GL, Bennett D, Rybin D, Zhou H, Hao H, Mérigeon EY, Block DS, LaRosa G, Strome SE. A recombinant human IgG1 Fc multimer designed to mimic the active fraction of IVIG in autoimmunity. JCI Insight 2019; 4:121905. [PMID: 30674715 DOI: 10.1172/jci.insight.121905] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022] Open
Abstract
The antiinflammatory effects of i.v. Ig (IVIG) in the treatment of autoimmune disease are due, in part, to the Fc fragments of Ig aggregates. In order to capitalize on the known antiinflammatory and tolerogenic properties of Ig Fc aggregates, we created a recombinant human IgG1 Fc multimer, GL-2045. In vitro, GL-2045 demonstrated high-avidity binding to Fc receptors, blocked the binding of circulating immune complexes from patients with rheumatoid arthritis to human Fcγ receptors (FcγRs), and inhibited antibody-mediated phagocytosis at log order-lower concentrations than IVIG. In vivo, administration of GL-2045 conferred partial protection against antibody-mediated platelet loss in a murine immune thrombocytopenic purpura (ITP) model. GL-2045 also suppressed disease activity in a therapeutic model of murine collagen-induced arthritis (CIA), which was associated with reduced circulating levels of IL-6. Furthermore, GL-2045 administration to nonhuman primates (NHPs) transiently increased systemic levels of the antiinflammatory cytokines IL-10 and IL-1RA, reduced the proinflammatory cytokine IL-8, and decreased surface expression of CD14 and HLA-DR on monocytes. These findings demonstrate the immunomodulatory properties of GL-2045 and suggest that it has potential as a treatment for autoimmune and inflammatory diseases, as a recombinant alternative to IVIG.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jane Owens
- Pfizer Inc., Cambridge, Massachusetts, USA
| | | | - Edward So
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Erin Burch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | - Hua Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haiping Hao
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - Scott E Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Abstract
In recent years, therapeutic monoclonal antibodies have made impressive progress, providing great benefit by successfully treating malignant and chronic inflammatory diseases. Monoclonal antibodies with broadly neutralizing effects against specific antigens, or that target specific immune regulators, manifest therapeutic effects via their Fab fragment specificities. Subsequently therapeutic efficacy is mediated mostly by interactions of the Fc fragments of the antibodies with their receptors (FcR) displayed on cells of the immune system. These interactions can trigger a series of immunoregulatory responses, involving both innate and adaptive immune systems and including cross-presentation of antigens, activation of CD8+ T cells and CD4+ T cells, phagocytosis, complement-mediated antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). The nature of the triggered effector functions of the antibodies is markedly affected by the glycosylation patterns of the Fc fragments. These can cause differences in the conformation of the heavy chains of antibodies, with resultant changes in antibody binding affinity and activation of the complement system. Studies of the Fc glycosylation profiles together with the associated Fc effector functions and FcR/CR interactions promoted interest and progress in engineering therapeutic antibodies. Furthermore, because antigen–antibody immune complexes (ICs) have shown similar actions, in addition to certain novel immunoregulatory mechanisms that also reshape immune responses, the properties of ICs are being explored in new approaches for prevention and therapy of diseases. In this review, both basic studies and experimental/clinical applications of ICs leading to the development of preventive and therapeutic vaccines are presented.
Collapse
|
9
|
Immune suppression of food allergy by maternal IgG in murine models. Allergol Int 2018; 67:506-514. [PMID: 29724483 DOI: 10.1016/j.alit.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 03/28/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Most of the patients develop food allergy early in life. The factors related to parental immune condition might be one of the conceivable causes. METHODS We reported murine models of food allergy and oral OVA tolerance. To investigate the influence of parental immune condition on infant food allergy, female and male mice with food allergy or oral tolerance were mated with each other. RESULTS Food allergy was suppressed by decreased IgE production in the offspring of mice with food allergy. On the contrary, anaphylaxis for OVA was induced in the offspring of mice with oral tolerance. The suppression of food allergy being dependent on a maternal factor was revealed in the offspring after cross-mating mice with food allergy and oral tolerance. Because OVA-specific IgG, presumed to be from the allergic mother, was detected in the serum of naïve infants from mothers allergic to food, we assumed that the suppression was dependent on a specific IgG. The serum IgG purified by a G-protein column was administered before OVA sensitization in the food allergy model, and OVA-specific IgE production was found to be diminished in the administered mice. However, OVA-specific monoclonal IgG1 and IgG2a administration could not suppress food allergy. Because we detected OVA-IgG immune complex in the serum of mothers allergic to food, it might be a cause of maternal immune suppression. CONCLUSIONS We demonstrated that maternal specific IgG conjugated food antigen is an important factor related to the development of food allergy and acquiring tolerance.
Collapse
|
10
|
McLinden JH, Bhattarai N, Stapleton JT, Chang Q, Kaufman TM, Cassel SL, Sutterwala FS, Haim H, Houtman JC, Xiang J. Yellow Fever Virus, but Not Zika Virus or Dengue Virus, Inhibits T-Cell Receptor-Mediated T-Cell Function by an RNA-Based Mechanism. J Infect Dis 2017; 216:1164-1175. [PMID: 28968905 PMCID: PMC5853456 DOI: 10.1093/infdis/jix462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/13/2017] [Indexed: 01/03/2023] Open
Abstract
The Flavivirus genus within the Flaviviridae family is comprised of many important human pathogens including yellow fever virus (YFV), dengue virus (DENV), and Zika virus (ZKV), all of which are global public health concerns. Although the related flaviviruses hepatitis C virus and human pegivirus (formerly named GBV-C) interfere with T-cell receptor (TCR) signaling by novel RNA and protein-based mechanisms, the effect of other flaviviruses on TCR signaling is unknown. Here, we studied the effect of YFV, DENV, and ZKV on TCR signaling. Both YFV and ZKV replicated in human T cells in vitro; however, only YFV inhibited TCR signaling. This effect was mediated at least in part by the YFV envelope (env) protein coding RNA. Deletion mutagenesis studies demonstrated that expression of a short, YFV env RNA motif (vsRNA) was required and sufficient to inhibit TCR signaling. Expression of this vsRNA and YFV infection of T cells reduced the expression of a Src-kinase regulatory phosphatase (PTPRE), while ZKV infection did not. YFV infection in mice resulted in impaired TCR signaling and PTPRE expression, with associated reduction in murine response to experimental ovalbumin vaccination. Together, these data suggest that viruses within the flavivirus genus inhibit TCR signaling in a species-dependent manner.
Collapse
Affiliation(s)
- James H McLinden
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Nirjal Bhattarai
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Jack T Stapleton
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
- Department of Microbiology, University of Iowa, Iowa City
| | - Qing Chang
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Thomas M Kaufman
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Suzanne L Cassel
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Fayyaz S Sutterwala
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Hillel Haim
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Jon C Houtman
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
- Department of Microbiology, University of Iowa, Iowa City
| | - Jinhua Xiang
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| |
Collapse
|
11
|
Hu L, Hu X, Long K, Gao C, Dong HL, Zhong Q, Gao XM, Gong FY. Extraordinarily potent proinflammatory properties of lactoferrin-containing immunocomplexes against human monocytes and macrophages. Sci Rep 2017; 7:4230. [PMID: 28652573 PMCID: PMC5484712 DOI: 10.1038/s41598-017-04275-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/14/2017] [Indexed: 12/25/2022] Open
Abstract
Lactoferrin (LTF), an important first line defense molecule against infection, is a common target for humoral autoimmune reactions in humans. Since LTF is a multifunctional protein capable of activating innate immune cells via various surface receptors, we hypothesized that LTF-containing immune complexes (ICs) (LTF-ICs), likely formed in patients with high titer anti-LTF autoantibodies, could possess unique monocyte/macrophage-activating properties compared with other ICs. ELISA analysis on serum samples from rheumatoid arthritis (RA) patients (n = 80) and healthy controls (n = 35) for anti-LTF autoantibodies confirmed a positive correlation between circulating LTF-specific IgG and RA. ICs between human LTF and LTF-specific IgG purified from patient sera or immunized rabbits and mice, but not control ICs, LTF or Abs alone, elicited strong production of TNF-α and IL-1β by freshly fractionated human peripheral blood monocytes and monocytes-derived macrophages. Furthermore, LTF-ICs utilized both membrane-anchored CD14 and CD32a (FcγRIIa) to trigger monocyte activation in an internalization-, Toll-like receptor (TLR)4- and TLR9-dependent manner, and also that LTF-IC-induced cytokine production was blocked by specific inhibitors of caspase-1, NF-κB and MAPK. These results uncover a possible pathway for LTF-ICs perpetuating local inflammation and contributing to the pathogenesis of autoimmune diseases by triggering activation of infiltrating monocytes or tissue macrophages in vivo.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaomin Hu
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kai Long
- Department of Immunology, Peking University Health Science Center, Beijing, China.,Department of Physiology, Jiujiang College, Jiangxi Province, China
| | - Chenhui Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Hong-Liang Dong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qiao Zhong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Czarnewski P, Araújo ECB, Oliveira MC, Mineo TWP, Silva NM. Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression. Front Cell Infect Microbiol 2017; 7:142. [PMID: 28487847 PMCID: PMC5403831 DOI: 10.3389/fcimb.2017.00142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 11/17/2022] Open
Abstract
Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70). Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for vaccine development against toxoplasmosis.
Collapse
Affiliation(s)
- Paulo Czarnewski
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Ester C B Araújo
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Mário C Oliveira
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Tiago W P Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Neide M Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| |
Collapse
|
13
|
Chang TZ, Diambou I, Kim JR, Wang B, Champion JA. Host- and pathogen-derived adjuvant coatings on protein nanoparticle vaccines. Bioeng Transl Med 2017; 2:120-130. [PMID: 28516165 PMCID: PMC5412930 DOI: 10.1002/btm2.10052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 02/01/2023] Open
Abstract
Nanoparticulate and molecular adjuvants have shown great efficacy in enhancing immune responses, and the immunogenic vaccines of the future will most likely contain both. To investigate the immunostimulatory effects of molecular adjuvants on nanoparticle vaccines, we have designed ovalbumin (OVA) protein nanoparticles coated with two different adjuvants-flagellin (FliC) and immunoglobulin M (IgM). These proteins, derived from Salmonella and mice, respectively, are representatives of pathogen- and host-derived molecules that can enhance immune responses. FliC-coated OVA nanoparticles, soluble FliC (sFliC) admixed with OVA nanoparticles, IgM-coated nanoparticles, and OVA-coated nanoparticles were assessed for immunogenicity in an in vivo mouse immunization study. IgM coatings on nanoparticles significantly enhanced both antibody and T cell responses, and promoted IgG2a class switching but not affinity maturation. FliC-coated nanoparticles and FliC-admixed with nanoparticles both triggered IgG2a class switching, but only FliC-coated nanoparticles enhanced antibody affinity maturation. Our findings that affinity maturation and class switching can be directed independently of one another suggest that adjuvant coatings on nanoparticles can be tailored to generate specific vaccine effector responses against different classes of pathogens.
Collapse
Affiliation(s)
- Timothy Z. Chang
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| | - Ishatou Diambou
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| | - Jong Rok Kim
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGA 30332
| | - Baozhong Wang
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGA 30332
| | - Julie A. Champion
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| |
Collapse
|
14
|
Rhoads JP, Lukens JR, Wilhelm AJ, Moore JL, Mendez-Fernandez Y, Kanneganti TD, Major AS. Oxidized Low-Density Lipoprotein Immune Complex Priming of the Nlrp3 Inflammasome Involves TLR and FcγR Cooperation and Is Dependent on CARD9. THE JOURNAL OF IMMUNOLOGY 2017; 198:2105-2114. [PMID: 28130494 DOI: 10.4049/jimmunol.1601563] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
Abstract
Oxidized low-density lipoprotein (oxLDL) is known to activate inflammatory responses in a variety of cells, especially macrophages and dendritic cells. Interestingly, much of the oxLDL in circulation is complexed to Abs, and these resulting immune complexes (ICs) are a prominent feature of chronic inflammatory disease, such as atherosclerosis, type-2 diabetes, systemic lupus erythematosus, and rheumatoid arthritis. Levels of oxLDL ICs often correlate with disease severity, and studies demonstrated that oxLDL ICs elicit potent inflammatory responses in macrophages. In this article, we show that bone marrow-derived dendritic cells (BMDCs) incubated with oxLDL ICs for 24 h secrete significantly more IL-1β compared with BMDCs treated with free oxLDL, whereas there was no difference in levels of TNF-α or IL-6. Treatment of BMDCs with oxLDL ICs increased expression of inflammasome-related genes Il1a, Il1b, and Nlrp3, and pretreatment with a caspase 1 inhibitor decreased IL-1β secretion in response to oxLDL ICs. This inflammasome priming was due to oxLDL IC signaling via multiple receptors, because inhibition of CD36, TLR4, and FcγR significantly decreased IL-1β secretion in response to oxLDL ICs. Signaling through these receptors converged on the adaptor protein CARD9, a component of the CARD9-Bcl10-MALT1 signalosome complex involved in NF-κB translocation. Finally, oxLDL IC-mediated IL-1β production resulted in increased Th17 polarization and cytokine secretion. Collectively, these data demonstrate that oxLDL ICs induce inflammasome activation through a separate and more robust mechanism than oxLDL alone and that these ICs may be immunomodulatory in chronic disease and not just biomarkers of severity.
Collapse
Affiliation(s)
- Jillian P Rhoads
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232
| | - John R Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Ashley J Wilhelm
- Division of Rheumatology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232
| | - Jared L Moore
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212.,Division of Rheumatology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232
| | | | | | - Amy S Major
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232.,Division of Rheumatology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232
| |
Collapse
|
15
|
Duffy EB, Periasamy S, Hunt D, Drake JR, Harton JA. FcγR mediates TLR2- and Syk-dependent NLRP3 inflammasome activation by inactivated Francisella tularensis LVS immune complexes. J Leukoc Biol 2016; 100:1335-1347. [PMID: 27365531 PMCID: PMC5110000 DOI: 10.1189/jlb.2a1215-555rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/08/2023] Open
Abstract
IgG (mAb)-opsonized, inactivated Francisella tularensis LVS (iFt-mAb) enhances TLR2-dependent IL-6 production by macrophages via Fcγ receptors (FcγR). In mice, vaccination with iFt-mAb provides IgA-dependent protection against lethal challenge with Ft LVS. Because inflammasome maturation of IL-1β is thought important for antibody-mediated immunity, we considered the possibility that iFt-mAb elicits an FcγR-dependent myeloid cell inflammasome response. Herein, we find that iFt-mAb enhances macrophage and dendritic cell IL-1β responses in a TLR2- and FcγR-dependent fashion. Although iFt-mAb complexes bind FcγR and are internalized, sensing of cytosolic DNA by absent in melanoma 2 (AIM2) is not required for the IL-1β response. In contrast, ASC, caspase-1, and NLR family pyrin domain-containing 3 (NLRP3) are indispensable. Further, FcγR-mediated spleen tyrosine kinase (Syk) signaling is required for this NLRP3-dependent IL-1β response, but the alternative IL-1β convertase caspase-8 is insufficient. Finally, iFt-mAb-vaccinated wild-type mice exhibit a significant delay in time to death, but IL-1R1- or Nlrp3-deficient mice vaccinated in this way are not protected and lack appreciable Francisella-specific antibodies. This study demonstrates that FcγR-mediated Syk activation leads to NLRP3 inflammasome-dependent IL-1β production in macrophages and suggests that an Nlrp3- and IL-1R-dependent process contributes to the IgA response important for protection against Ft LVS. These findings extend our understanding of cellular responses to inactivated pathogen-opsonized vaccine, establish FcγR-elicited Syk kinase-mediated NLRP3 inflammasome activation, and provide additional insight toward understanding crosstalk between TLR and FcγR signals.
Collapse
Affiliation(s)
- Ellen B Duffy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sivakumar Periasamy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Danielle Hunt
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - James R Drake
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Jonathan A Harton
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
16
|
Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ, Crea R, Cuzzocrea S, Calabrese V. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J Neurosci Res 2016; 95:1360-1372. [PMID: 27862176 DOI: 10.1002/jnr.23986] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder leading to cognitive decline, neuropsychiatric symptoms, disability, caregiver burden, and premature death. It represents the most prevalent cause of dementia, and its incidence rates exponentially increase with increasing age. The number of Americans living with AD is rapidly increasing. An estimated 5.4 million Americans of all ages have AD in 2016. One in nine people aged 65 and older has AD, and by midcentury, someone in the United States will develop the disease every 33 sec. It is now accepted that neuroinflammation is a common feature of neurological disease. Inflammasomes, which are a multiprotein complex part of the innate immune system, induce inflammation in response to various stimuli, such as pathogens and stress. Inflammasomes activate proinflammatory caspases, such as caspase-1, leading to the activation of the proinflammatory cytokines interleukin (IL)-1b, IL-18, and IL-33, which promote neuroinflammation and brain pathologies. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3 (NLRP3) inflammasome is the best characterized in neurodegenerative diseases, in particular AD. Recent research suggests that NLRP3 could possibly be used in targeted therapies to alleviate neuroinflammation. Modulation of endogenous cellular defense mechanisms may be an innovative approach to therapeutic intervention in AD and other disorders associated with neuroinflammation and neurodegeneration. Herein, we introduce the hormetic dose-response concept and present possible mechanisms and applications to neuroprotection. We summarize the mechanisms involved in activation of the NLRP3 inflammasome and its role in neuroinflammation. We also address and propose the potential therapeutic utility of the nutritional antioxidants sulforaphane and hydroxytyrosol against particular signs and symptoms of AD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Spinal Unit, Emergency Hospital "Cannizzaro,", Catania, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, Massachusetts
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
17
|
The modern interleukin-1 superfamily: Divergent roles in obesity. Semin Immunol 2016; 28:441-449. [DOI: 10.1016/j.smim.2016.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022]
|
18
|
Eichholz K, Bru T, Tran TTP, Fernandes P, Welles H, Mennechet FJD, Manel N, Alves P, Perreau M, Kremer EJ. Immune-Complexed Adenovirus Induce AIM2-Mediated Pyroptosis in Human Dendritic Cells. PLoS Pathog 2016; 12:e1005871. [PMID: 27636895 PMCID: PMC5026364 DOI: 10.1371/journal.ppat.1005871] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Human adenoviruses (HAdVs) are nonenveloped proteinaceous particles containing a linear double-stranded DNA genome. HAdVs cause a spectrum of pathologies in all populations regardless of health standards. Following repeat exposure to multiple HAdV types, we develop robust and long-lived humoral and cellular immune responses that provide life-long protection from de novo infections and persistent HAdV. How HAdVs, anti-HAdV antibodies and antigen presenting cells (APCs) interact to influence infection is still incompletely understood. In our study, we used physical, pharmacological, biochemical, fluorescence and electron microscopy, molecular and cell biology approaches to dissect the impact of immune-complexed HAdV (IC-HAdV) on human monocyte-derived dendritic cells (MoDCs). We show that IC-HAdV generate stabilized complexes of ~200 nm that are efficiently internalized by, and aggregate in, MoDCs. By comparing IC-HAdV, IC-empty capsid, IC-Ad2ts1 (a HAdV-C2 impaired in endosomal escape due to a mutation that impacts protease encapsidation) and IC-AdL40Q (a HAdV-C5 impaired in endosomal escape due to a mutation in protein VI), we demonstrate that protein VI-dependent endosomal escape is required for the HAdV genome to engage the DNA pattern recognition receptor AIM2 (absent in melanoma 2). AIM2 engagement induces pyroptotic MoDC death via ASC (apoptosis-associated speck protein containing a caspase activation/recruitment domain) aggregation, inflammasome formation, caspase 1 activation, and IL-1β and gasdermin D (GSDMD) cleavage. Our study provides mechanistic insight into how humoral immunity initiates an innate immune response to HAdV-C5 in human professional APCs.
Collapse
Affiliation(s)
- Karsten Eichholz
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Thierry Bru
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Thi Thu Phuong Tran
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Paulo Fernandes
- iBET- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Hugh Welles
- Division of Immunology and Allergy, University of Lausanne, Lausanne, Switzerland
| | - Franck J. D. Mennechet
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | | | - Paula Alves
- iBET- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Matthieu Perreau
- Division of Immunology and Allergy, University of Lausanne, Lausanne, Switzerland
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
19
|
Reduction of Streptococcus pneumoniae Colonization and Dissemination by a Nonopsonic Capsular Polysaccharide Antibody. mBio 2016; 7:e02260-15. [PMID: 26838726 PMCID: PMC4742719 DOI: 10.1128/mbio.02260-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae colonization of the nasopharynx (NP) is a prerequisite for invasive pneumococcal disease (IPD). The marked reduction in IPD that followed the routine use of pneumococcal polysaccharide conjugate vaccines (PCVs) has been linked to reduced NP colonization with vaccine-included serotypes (STs), with the caveat that PCVs are less effective against pneumonia than against IPD. Although PCV-elicited opsonic antibodies that enhance phagocytic killing of the homologous ST are considered a key correlate of PCV-mediated protection, recent studies question this relationship for some STs, including ST3. Studies with monoclonal antibodies (MAbs) to the pneumococcal capsular polysaccharide (PPS) of ST3 (PPS3) have shown that nonopsonic, as well as opsonic, antibodies can each protect mice against pneumonia and sepsis, but the effect of these types of MAbs on NP colonization is unknown. In this study, we determined the effects of protective opsonic and nonopsonic PPS3 MAbs on ST3 NP colonization in mice. Our results show that a nonopsonic MAb reduced early NP colonization and prevented ST3 dissemination to the lungs and blood, but an opsonic MAb did not. Moreover, the opsonic MAb induced a proinflammatory NP cytokine response, but the nonopsonic MAb had an antiinflammatory effect. The effect of the nonopsonic MAb on colonization did not require its Fc region, but its antiinflammatory effect did. Our findings challenge the paradigm that opsonic MAbs are required to prevent NP colonization and suggest that further studies of the activity of nonopsonic antibodies could advance our understanding of mechanisms of PCV efficacy and provide novel correlates of protection. Pneumococcal conjugate vaccines (PCVs) have markedly reduced the incidence of invasive pneumococcal disease (IPD). Vaccine-elicited pneumococcal polysaccharide (PPS) antibodies that enhance in vitro phagocyte killing of vaccine-included serotypes (STs) (opsonic antibodies) have been considered correlates of vaccine protection and are thought to exert their effect at the initial site of infection, the nasopharynx (NP). However, the data presented here show that this is not the necessarily the case. A nonopsonic PPS monoclonal antibody (MAb) reduced pneumococcal colonization and dissemination of its homologous ST in mice, but surprisingly, an opsonic PPS MAb to the same ST did not. These results reveal that PPS antibodies can work in different ways than previously thought, challenge the paradigm that opsonic antibodies are required to prevent IPD, and provide new insights into PCV efficacy that could lead to novel correlates of vaccine protection.
Collapse
|
20
|
Callaway JB, Smith SA, McKinnon KP, de Silva AM, Crowe JE, Ting JPY. Spleen Tyrosine Kinase (Syk) Mediates IL-1β Induction by Primary Human Monocytes during Antibody-enhanced Dengue Virus Infection. J Biol Chem 2015; 290:17306-20. [PMID: 26032420 PMCID: PMC4498069 DOI: 10.1074/jbc.m115.664136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/06/2022] Open
Abstract
Approximately 500,000 people are hospitalized with severe dengue illness annually. Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is believed to contribute to the pathogenic cytokine storm described in severe dengue patients, but the precise signaling pathways contributing to elevated cytokine production are not elucidated. IL-1β is a potent inflammatory cytokine that is frequently elevated during severe dengue, and the unique dual regulation of IL-1β provides an informative model to study ADE-induced cytokines. This work utilizes patient-derived anti-DENV mAbs and primary human monocytes to study ADE-induced IL-1β and other cytokines. ADE of DENV serotype 2 (DENV-2) elevates mature IL-1β secretion by monocytes independent of DENV replication by 4 h postinoculation (hpi). Prior to this, DENV immune complexes activate spleen tyrosine kinase (Syk) within 1 hpi. Syk induces elevated IL1B, TNF, and IL6 mRNA by 2 hpi. Syk mediates elevated IL-1β secretion by activating ERK1/2, and both Syk and ERK1/2 inhibitors ablated ADE-induced IL-1β secretion. Maturation of pro-IL-1β during ADE requires caspase-1 and NLRP3, but caspase-1 is suboptimally increased by ADE and can be significantly enhanced by a typical inflammasome agonist, ATP. Importantly, this inflammatory Syk-ERK signaling axis requires DENV immune complexes, because DENV-2 in the presence of serotype-matched anti-DENV-2 mAb, but not anti-DENV-1 mAb, activates Syk, ERK, and IL-1β secretion. This study provides evidence that DENV-2 immune complexes activate Syk to mediate elevated expression of inflammatory cytokines. Syk and ERK may serve as new therapeutic targets for interfering with ADE-induced cytokine expression during severe dengue.
Collapse
Affiliation(s)
- Justin B Callaway
- From the Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center
| | - Scott A Smith
- the Vanderbilt Vaccine Center and the Departments of Medicine
| | | | | | - James E Crowe
- the Vanderbilt Vaccine Center and Pathology, Microbiology, and Immunology, and Pediatrics, Vanderbilt Medical Center, Nashville, Tennessee 37232
| | - Jenny P-Y Ting
- From the Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Department of Genetics, and Institute of Inflammatory Diseases, University of North Carolina, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
21
|
Esch KJ, Schaut RG, Lamb IM, Clay G, Morais Lima ÁL, do Nascimento PRP, Whitley EM, Jeronimo SMB, Sutterwala FS, Haynes JS, Petersen CA. Activation of autophagy and nucleotide-binding domain leucine-rich repeat-containing-like receptor family, pyrin domain-containing 3 inflammasome during Leishmania infantum-associated glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2105-17. [PMID: 26079813 DOI: 10.1016/j.ajpath.2015.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/14/2015] [Accepted: 04/16/2015] [Indexed: 01/21/2023]
Abstract
Chronic kidney disease is a major contributor to human and companion animal morbidity and mortality. Renal complications are sequelae of canine and human visceral leishmaniasis (VL). Despite the high incidence of infection-mediated glomerulonephritis, little is known about pathogenesis of VL-associated renal disease. Leishmania infantum-infected dogs are a naturally occurring model of VL-associated glomerulonephritis. Membranoproliferative glomerulonephritis type I [24 of 25 (96%)], with interstitial lymphoplasmacytic nephritis [23 of 25 (92%)], and glomerular and interstitial fibrosis [12 of 25 (48%)] were predominant lesions. An ultrastructural evaluation of glomeruli from animals with VL identified mesangial cell proliferation and interposition. Immunohistochemistry demonstrated significant Leishmania antigen, IgG, and C3b deposition in VL dog glomeruli. Asymptomatic and symptomatic dogs had increased glomerular nucleotide-binding domain leucine-rich repeat-containing-like receptor family, pyrin domain containing 3 and autophagosome-associated microtubule-associated protein 1 light chain 3 associated with glomerular lesion severity. Transcriptional analyses from symptomatic dogs confirmed induction of autophagy and inflammasome genes within glomeruli and tubules. On the basis of temporal VL staging, glomerulonephritis was initiated by IgG and complement deposition. This deposition preceded presence of nucleotide-binding domain leucine-rich repeat-containing-like receptor family, pyrin domain containing 3-associated inflammasomes and increased light chain 3 puncta indicative of autophagosomes in glomeruli from dogs with clinical VL and renal failure. These findings indicate potential roles for inflammasome complexes in glomerular damage during VL and autophagy in ensuing cellular responses.
Collapse
Affiliation(s)
- Kevin J Esch
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Robert G Schaut
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Ian M Lamb
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Gwendolyn Clay
- Inflammation Program, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Ádila L Morais Lima
- Department of Biochemistry, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paulo R P do Nascimento
- Department of Biochemistry, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Elizabeth M Whitley
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Selma M B Jeronimo
- Department of Biochemistry, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fayyaz S Sutterwala
- Inflammation Program, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Joseph S Haynes
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Christine A Petersen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa; Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
22
|
Vogelpoel LTC, Baeten DLP, de Jong EC, den Dunnen J. Control of cytokine production by human fc gamma receptors: implications for pathogen defense and autoimmunity. Front Immunol 2015; 6:79. [PMID: 25759693 PMCID: PMC4338787 DOI: 10.3389/fimmu.2015.00079] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 01/21/2023] Open
Abstract
Control of cytokine production by immune cells is pivotal for counteracting infections via orchestration of local and systemic inflammation. Although their contribution has long been underexposed, it has recently become clear that human Fc gamma receptors (FcγRs), which are receptors for the Fc region of immunoglobulin G (IgG) antibodies, play a critical role in this process by controlling tissue- and pathogen-specific cytokine production. Whereas individual stimulation of FcγRs does not evoke cytokine production, FcγRs cell-type specifically interact with various other receptors for selective amplification or inhibition of particular cytokines, thereby tailoring cytokine responses to the immunological context. The physiological function of FcγR-mediated control of cytokine production is to counteract infections with various classes of pathogens. Upon IgG opsonization, pathogens are simultaneously recognized by FcγRs as well as by various pathogen-sensing receptors, leading to the induction of pathogen class-specific immune responses. However, when erroneously activated, the same mechanism also contributes to the development of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. In this review, we discuss control of cytokine production as a novel function of FcγRs in human innate immune cells in the context of homeostasis, infection, and autoimmunity and address the possibilities for future therapeutic exploitation.
Collapse
Affiliation(s)
- Lisa T C Vogelpoel
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Dominique L P Baeten
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Esther C de Jong
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Jeroen den Dunnen
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|