1
|
Fan C, Xing X, Murphy SJH, Poursine-Laurent J, Schmidt H, Parikh BA, Yoon J, Choudhary MNK, Saligrama N, Piersma SJ, Yokoyama WM, Wang T. Cis-regulatory evolution of the recently expanded Ly49 gene family. Nat Commun 2024; 15:4839. [PMID: 38844462 PMCID: PMC11156856 DOI: 10.1038/s41467-024-48990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation. Here we systematically profile the epigenome of the recently expanded murine Ly49 gene family that mainly encode either inhibitory or activating surface receptors on natural killer cells. We identify a set of cis-regulatory elements (CREs) for activating Ly49 genes. In addition, we show that in mice, inhibitory and activating Ly49 genes are regulated by two separate sets of proximal CREs, likely resulting from lineage-specific losses of CRE activity. Furthermore, we find that some Ly49 genes are cross-regulated by the CREs of other Ly49 genes, suggesting that the Ly49 family has begun to evolve a concerted cis-regulatory mechanism. Collectively, we demonstrate the different modes of cis-regulatory evolution for a rapidly expanding gene family.
Collapse
Affiliation(s)
- Changxu Fan
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Samuel J H Murphy
- Department of Neurology, Washington University School of Medicine, St. Louis, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, 63110, USA
| | - Jennifer Poursine-Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, 63110, USA
| | - Heather Schmidt
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Jeesang Yoon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, 63110, USA
| | - Mayank N K Choudhary
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Naresha Saligrama
- Department of Neurology, Washington University School of Medicine, St. Louis, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, 63110, USA
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, 63110, USA.
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, USA.
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA.
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, 63110, USA.
| |
Collapse
|
2
|
Kissiov DU, Ethell A, Chen S, Wolf NK, Zhang C, Dang SM, Jo Y, Madsen KN, Paranjpe I, Lee AY, Chim B, Muljo SA, Raulet DH. Binary outcomes of enhancer activity underlie stable random monoallelic expression. eLife 2022; 11:e74204. [PMID: 35617021 PMCID: PMC9135403 DOI: 10.7554/elife.74204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Mitotically stable random monoallelic gene expression (RME) is documented for a small percentage of autosomal genes. We developed an in vivo genetic model to study the role of enhancers in RME using high-resolution single-cell analysis of natural killer (NK) cell receptor gene expression and enhancer deletions in the mouse germline. Enhancers of the RME NK receptor genes were accessible and enriched in H3K27ac on silent and active alleles alike in cells sorted according to allelic expression status, suggesting enhancer activation and gene expression status can be decoupled. In genes with multiple enhancers, enhancer deletion reduced gene expression frequency, in one instance converting the universally expressed gene encoding NKG2D into an RME gene, recapitulating all aspects of natural RME including mitotic stability of both the active and silent states. The results support the binary model of enhancer action, and suggest that RME is a consequence of general properties of gene regulation by enhancers rather than an RME-specific epigenetic program. Therefore, many and perhaps all genes may be subject to some degree of RME. Surprisingly, this was borne out by analysis of several genes that define different major hematopoietic lineages, that were previously thought to be universally expressed within those lineages: the genes encoding NKG2D, CD45, CD8α, and Thy-1. We propose that intrinsically probabilistic gene allele regulation is a general property of enhancer-controlled gene expression, with previously documented RME representing an extreme on a broad continuum.
Collapse
Affiliation(s)
- Djem U Kissiov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Alexander Ethell
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Sean Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Natalie K Wolf
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chenyu Zhang
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Susanna M Dang
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Yeara Jo
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katrine N Madsen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ishan Paranjpe
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Bryan Chim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Stefan A Muljo
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - David H Raulet
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
3
|
Synergized regulation of NK cell education by NKG2A and specific Ly49 family members. Nat Commun 2019; 10:5010. [PMID: 31676749 PMCID: PMC6825122 DOI: 10.1038/s41467-019-13032-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mice lacking MHC class-I (MHC-I) display severe defects in natural killer (NK) cell functional maturation, a process designated as “education”. Whether self-MHC-I specific Ly49 family receptors and NKG2A, which are closely linked within the NK gene complex (NKC) locus, are essential for NK cell education is still unclear. Here we show, using CRISPR/Cas9-mediated gene deletion, that mice lacking all members of the Ly49 family exhibit a moderate defect in NK cell activity, while mice lacking only two inhibitory Ly49 members, Ly49C and Ly49I, have comparable phenotypes. Furthermore, the deficiency of NKG2A, which recognizes non-classical MHC-Ib molecules, mildly impairs NK cell function. Notably, the combined deletion of NKG2A and the Ly49 family severely compromises the ability of NK cells to mediate “missing-self” and “induced-self” recognition. Therefore, our data provide genetic evidence supporting that NKG2A and the inhibitory members of Ly49 family receptors synergize to regulate NK cell education. MHC-I-induced signalling of various natural killer (NK) inhibitory receptors is critical for regulation NK cell education, but clear genetic evidence is still lacking. Here the authors generate multiple lines of mice differentially deficient in Ly49 family and/or NKG2A NK receptors, and find that self-MHCI specific Ly49 members and NKG2A synergize to regulate NK education.
Collapse
|
4
|
McCullen MV, Li H, Cam M, Sen SK, McVicar DW, Anderson SK. Analysis of Ly49 gene transcripts in mature NK cells supports a role for the Pro1 element in gene activation, not gene expression. Genes Immun 2016; 17:349-57. [PMID: 27467282 PMCID: PMC5008998 DOI: 10.1038/gene.2016.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 12/22/2022]
Abstract
The variegated expression of murine Ly49 loci has been associated with the probabilistic behavior of an upstream promoter active in immature cells, the Pro1 element. However, recent data suggest that Pro1 may be active in mature natural killer (NK) cells and function as an enhancer element. To assess directly if Pro1 transcripts are present in mature Ly49-expressing NK cells, RNA-sequencing of the total transcript pool was performed on freshly isolated splenic NK cells sorted for expression of either Ly49G or Ly49I. No Pro1 transcripts were detected from the Ly49a, Ly49c or Ly49i genes in mature Ly49(+) NK cells that contained high levels of Pro2 transcripts. Low levels of Ly49g Pro1 transcripts were found in both Ly49G(+) and Ly49G(-) populations, consistent with the presence of a small population of mature NK cells undergoing Ly49g gene activation, as previously demonstrated by culture of splenic NK cells in interleukin-2. Ly49 gene reporter constructs containing Pro1 failed to show any enhancer activity of Pro1 on Pro2 in a mature Ly49-expressing cell line. Taken together, the results are consistent with Pro1 transcription having a role in gene activation in developing NK, and argue against a role for Pro1 in Ly49 gene transcription by mature NK cells.
Collapse
Affiliation(s)
- Matthew V. McCullen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Hongchuan Li
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Lab, Frederick MD 21702, USA
| | - Maggie Cam
- Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shurjo K. Sen
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Daniel W. McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Stephen K. Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Lab, Frederick MD 21702, USA
| |
Collapse
|
5
|
Freund J, May RM, Yang E, Li H, McCullen M, Zhang B, Lenvik T, Cichocki F, Anderson SK, Kambayashi T. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells. PLoS Biol 2016; 14:e1002526. [PMID: 27500644 PMCID: PMC4976927 DOI: 10.1371/journal.pbio.1002526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022] Open
Abstract
It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cells, Cultured
- Flow Cytometry
- Genetic Variation/immunology
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily A/genetics
- NK Cell Lectin-Like Receptor Subfamily A/immunology
- NK Cell Lectin-Like Receptor Subfamily A/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- RNA Interference
- Receptors, KIR/immunology
- Receptors, KIR/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Jacquelyn Freund
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca M. May
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Enjun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hongchuan Li
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Matthew McCullen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Bin Zhang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Todd Lenvik
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Frank Cichocki
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen K. Anderson
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Lab, Frederick, Maryland, United States of America
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Kadri N, Thanh TL, Höglund P. Selection, tuning, and adaptation in mouse NK cell education. Immunol Rev 2016; 267:167-77. [PMID: 26284477 DOI: 10.1111/imr.12330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural killer (NK) cells recognize transformed cells with an array of germline-encoded inhibitory and activating receptors. Inhibitory Ly49 receptors bind major histocompatibility complex class I (MHC-I) molecules, providing a mechanism by which NK cells maintain self-tolerance yet eliminate cells expressing reduced levels of MHC-I. Additionally, MHC-I molecules are required for NK cell education, a process in which NK cells acquire responsiveness. In this review, we discuss three facets of MHC class I-dependent education of mouse NK cells: skewing of the inhibitory receptor repertoire, induction of functional responsiveness, and tuning in response to changes in MHC-I expression. We discuss prevailing models for education such as licensing and disarming and propose a model for positive selection of 'useful' NK cell subsets. Furthermore, we argue that both repertoire skewing and functional NK cell education may be altered in mature NK cells subject to changes in MHC-I input and suggest that this process may provide increased dynamics to the NK cell system.
Collapse
Affiliation(s)
- Nadir Kadri
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Thuy Luu Thanh
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Wight A, Yang D, Ioshikhes I, Makrigiannis AP. Nucleosome Presence at AML-1 Binding Sites Inversely Correlates with Ly49 Expression: Revelations from an Informatics Analysis of Nucleosomes and Immune Cell Transcription Factors. PLoS Comput Biol 2016; 12:e1004894. [PMID: 27124577 PMCID: PMC4849748 DOI: 10.1371/journal.pcbi.1004894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/31/2016] [Indexed: 12/28/2022] Open
Abstract
Beyond its role in genomic organization and compaction, the nucleosome is believed to participate in the regulation of gene transcription. Here, we report a computational method to evaluate the nucleosome sensitivity for a transcription factor over a given stretch of the genome. Sensitive factors are predicted to be those with binding sites preferentially contained within nucleosome boundaries and lacking 10 bp periodicity. Based on these criteria, the Acute Myeloid Leukemia-1a (AML-1a) transcription factor, a regulator of immune gene expression, was identified as potentially sensitive to nucleosomal regulation within the mouse Ly49 gene family. This result was confirmed in RMA, a cell line with natural expression of Ly49, using MNase-Seq to generate a nucleosome map of chromosome 6, where the Ly49 gene family is located. Analysis of this map revealed a specific depletion of nucleosomes at AML-1a binding sites in the expressed Ly49A when compared to the other, silent Ly49 genes. Our data suggest that nucleosome-based regulation contributes to the expression of Ly49 genes, and we propose that this method of predicting nucleosome sensitivity could aid in dissecting the regulatory role of nucleosomes in general. The nucleosome—a large protein complex with DNA wound around it—is the fundamental unit of genomic organization in the eukaryotic cell. More than just a DNA organizer, however, nucleosomes may control gene expression by interfering with the cell’s ability to access the wound-up DNA, as shown by recent research. In this report, we demonstrate a computational method for predicting which elements of the genome are sensitive to regulation by nucleosomes. As a proof-of-concept, we identify AML-1a binding sites—important sequences in DNA regulation—as being specifically nucleosome sensitive. We then show that AML-1a sites are specifically depleted of nucleosomes when a gene is expressed, indicating the ability for nucleosomes to suppress the expression of that gene. This finding confirms that nucleosomes are likely involved in genome regulation, and provides a method for predicting which areas of the genome are probably affected most by nucleosomes. This paper also highlights the usefulness of the Ly49 gene family in testing computer-derived genomic predictions, and is of interest to anyone studying how gene expression is regulated from cell to cell.
Collapse
Affiliation(s)
- Andrew Wight
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Doo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilya Ioshikhes
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (II); (APM)
| | - Andrew P. Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (II); (APM)
| |
Collapse
|