1
|
Jost S, Reeves RK. Elephant in the room: natural killer cells don't forget HIV either. Curr Opin HIV AIDS 2024:01222929-990000000-00131. [PMID: 39773904 DOI: 10.1097/coh.0000000000000909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Like elephants (and T cells), accumulating evidence suggest natural killer (NK) cells never forget. The description of adaptive or memory NK cells, which can be induced by HIV/SIV infections and vaccines and associated with protective effects in persons with HIV (PWH), has dramatically increased the interest in leveraging NK cells to prevent HIV infection or suppress HIV reservoirs. However, harnessing their full antiviral potential has been hindered by an incomplete understanding of mechanisms underlying adaptive NK cell development and infected cell recognition. Herein, we outline the main discoveries around the adaptive functions of NK cells, with a focus on their involvement in HIV infection. RECENT FINDINGS NK cells with diverse adaptive capabilities, including antigen-specific memory, cytokine-induced and CMV-driven adaptive subsets, likely all play a role in HIV infection. Importantly, true antigen-specific memory NK cells have been identified that mediate recall responses against multiple infectious agents such as HIV, influenza, and SARS-CoV-2. The NKG2C receptor is pivotal for certain adaptive NK cell subsets, as it marks a population with enhanced antibody-dependent functions and has been described as the main receptor mediating antigen-specific responses via recognition of viral peptides presented by HLA-E. SUMMARY Antiviral functions of adaptive/memory NK cells have tremendous, but as of yet, untapped potential to be harnessed for vaccine design, curative, or other therapeutic interventions against HIV.
Collapse
Affiliation(s)
- Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
2
|
Sugawara S, Lee E, Craemer MA, Pruitt A, Balachandran H, Gressens SB, Kroll K, Manickam C, Li Y, Jost S, Woolley G, Reeves RK. Knockdowns of CD3zeta Chain in Primary NK Cells Illustrate Modulation of Antibody-Dependent Cellular Cytotoxicity Against Human Immunodeficiency Virus-1. AIDS Res Hum Retroviruses 2024; 40:631-636. [PMID: 39041622 PMCID: PMC11631794 DOI: 10.1089/aid.2023.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Multifaceted natural killer (NK) cell activities are indispensable for controlling human immunodeficiency virus (HIV)-1 transmission and pathogenesis. Among the diverse functions of NK cells, antibody-dependent cellular cytotoxicity (ADCC) has been shown to predict better HIV-1 protection. ADCC is initiated by the engagement of an Fc γ receptor CD16 with an Fc portion of the antibody, leading to phosphorylation of the CD3 ζ chain (CD3ζ) and Fc receptor γ chain (FcRγ) as well as downstream signaling activation. Though CD3ζ and FcRγ were thought to have overlapping roles in NK cell ADCC, several groups have reported that CD3ζ-mediated signals trigger a more robust ADCC. However, few studies have illustrated the direct contribution of CD3ζ in HIV-1-specific ADCC. To further understand the roles played by CD3ζ in HIV-1-specific ADCC, we developed a CD3ζ knockdown system in primary human NK cells. We observed that HIV-1-specific ADCC was inhibited by CD3ζ perturbation. In summary, we demonstrated that CD3ζ is important for eliciting HIV-1-specific ADCC, and this dynamic can be utilized for NK cell immunotherapeutics against HIV-1 infection and other diseases.
Collapse
Affiliation(s)
- Sho Sugawara
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Esther Lee
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Melissa A. Craemer
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Alayna Pruitt
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Simon B. Gressens
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Center for Biomolecular Therapeutics & Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Naidoo KK, Altfeld M. The Role of Natural Killer Cells and Their Metabolism in HIV-1 Infection. Viruses 2024; 16:1584. [PMID: 39459918 PMCID: PMC11512232 DOI: 10.3390/v16101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Natural killer (NK) cells are multifaceted innate effector cells that critically influence antiviral immunity, and several protective NK cell features that modulate HIV-1 acquisition and viral control have been described. Chronic HIV-1 infection leads to NK cell impairment that has been associated with metabolic dysregulations. Therapeutic approaches targeting cellular immune metabolism represent potential novel interventions to reverse defective NK cell function in people living with HIV.
Collapse
Affiliation(s)
- Kewreshini K. Naidoo
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20251 Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
4
|
Sun B, da Costa KAS, Alrubayyi A, Kokici J, Fisher-Pearson N, Hussain N, D'Anna S, Piermatteo L, Salpini R, Svicher V, Kucykowicz S, Ghosh I, Burns F, Kinloch S, Simoes P, Bhagani S, Kennedy PTF, Maini MK, Bashford-Rogers R, Gill US, Peppa D. HIV/HBV coinfection remodels the immune landscape and natural killer cell ADCC functional responses. Hepatology 2024; 80:649-663. [PMID: 38687604 DOI: 10.1097/hep.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS HBV and HIV coinfection is a common occurrence globally, with significant morbidity and mortality. Both viruses lead to immune dysregulation including changes in natural killer (NK) cells, a key component of antiviral defense and a promising target for HBV cure strategies. Here we used high-throughput single-cell analysis to explore the immune cell landscape in people with HBV mono-infection and HIV/HBV coinfection, on antiviral therapy, with emphasis on identifying the distinctive characteristics of NK cell subsets that can be therapeutically harnessed. APPROACH AND RESULTS Our data show striking differences in the transcriptional programs of NK cells. HIV/HBV coinfection was characterized by an over-representation of adaptive, KLRC2 -expressing NK cells, including a higher abundance of a chemokine-enriched ( CCL3/CCL4 ) adaptive cluster. The NK cell remodeling in HIV/HBV coinfection was reflected in enriched activation pathways, including CD3ζ phosphorylation and ZAP-70 translocation that can mediate stronger antibody-dependent cellular cytotoxicity responses and a bias toward chemokine/cytokine signaling. By contrast, HBV mono-infection imposed a stronger cytotoxic profile on NK cells and a more prominent signature of "exhaustion" with higher circulating levels of HBsAg. Phenotypic alterations in the NK cell pool in coinfection were consistent with increased "adaptiveness" and better capacity for antibody-dependent cellular cytotoxicity compared to HBV mono-infection. Overall, an adaptive NK cell signature correlated inversely with circulating levels of HBsAg and HBV-RNA in our cohort. CONCLUSIONS This study provides new insights into the differential signature and functional profile of NK cells in HBV and HIV/HBV coinfection, highlighting pathways that can be manipulated to tailor NK cell-focused approaches to advance HBV cure strategies in different patient groups.
Collapse
Affiliation(s)
- Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | | | - Jonida Kokici
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Stefano D'Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Stephanie Kucykowicz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Indrajit Ghosh
- Department of HIV, Mortimer Market Centre, CNWL NHS Trust, London, UK
| | - Fiona Burns
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
- UCL Faculty of Population Health Sciences, Institute for Global Health, University College London, London, UK
| | - Sabine Kinloch
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Pedro Simoes
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sanjay Bhagani
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
- Department of HIV Medicine, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Patrick T F Kennedy
- Centre for Immunobiology, Barts Liver Centre, Barts & The London School of Medicine & Dentistry, QMUL, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | | | - Upkar S Gill
- Centre for Immunobiology, Barts Liver Centre, Barts & The London School of Medicine & Dentistry, QMUL, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
- Department of HIV, Mortimer Market Centre, CNWL NHS Trust, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Arellano-Ballestero H, Zubiak A, Dally C, Orchard K, Alrubayyi A, Charalambous X, Michael M, Torrance R, Eales T, Das K, Tran MGB, Sabry M, Peppa D, Lowdell MW. Proteomic and phenotypic characteristics of memory-like natural killer cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e008717. [PMID: 39032940 PMCID: PMC11261707 DOI: 10.1136/jitc-2023-008717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Human and mouse natural killer (NK) cells have been shown to develop memory-like function after short-term exposure to the cocktail of IL-12/15/18 or to overnight co-culture with some tumor cell lines. The resulting cells retain enhanced lytic ability for up to 7 days as well as after cryopreservation, and memory-like NK cells (mlNK) have been shown to induce complete remissions in patients with hematological malignancies. No single phenotype has been described for mlNK and the physiological changes induced by the short-term cytokine or tumor-priming which are responsible for these enhanced functions have not been fully characterized. Here, we have generated mlNK by cytokine and tumor-priming to find commonalities to better define the nature of NK cell "memory" in vitro and, for the first time, in vivo. METHODS We initiated mlNK in vitro from healthy donors with cytokines (initiated cytokine-induced memory-like (iCIML)-NK) and by tumor priming (TpNK) overnight and compared them by high-dimensional flow cytometry, proteomic and metabolomic profiling. As a potential mechanism of enhanced cytolytic function, we analyzed the avidity of binding of the mlNK to NK-resistant tumors (z-Movi). We generated TpNK from healthy donors and from cancer patients to determine whether mlNK generated by interaction with a single tumor type could enhance lytic activity. Finally, we used a replication-incompetent tumor cell line (INKmune) to treat patients with myeloid leukaemias to potentiate NK cell function in vivo. RESULTS Tumor-primed mlNK from healthy donors and patients with cancer showed increased cytotoxicity against multiple tumor cell lines in vitro, analogous to iCIML-NK cells. Multidimensional cytometry identified distinct memory-like profiles of subsets of cells with memory-like characteristics; upregulation of CD57, CD69, CD25 and ICAM1. Proteomic profiling identified 41 proteins restricted to mlNK cells and we identified candidate molecules for the basis of NK memory which can explain how mlNK overcome inhibition by resistant tumors. Finally, of five patients with myelodysplastic syndrome or refractory acute myeloid leukemia treated with INKmune, three responded to treatment with measurable increases in NK lytic function and systemic cytokines. CONCLUSIONS NK cell "memory" is a physiological state associated with resistance to MHC-mediated inhibition, increased metabolic function, mitochondrial fitness and avidity to NK-resistant target cells.
Collapse
Affiliation(s)
| | - Agnieszka Zubiak
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Chris Dally
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kim Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | | | | | | - Trinity Eales
- Cancer Institute, University College London, London, UK
| | | | - Maxine G. B. Tran
- Department of Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
| | - May Sabry
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Mark W. Lowdell
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| |
Collapse
|
6
|
Hearps AC, Zhou J, Agius PA, Ha P, Lee S, Price P, Kek H, Kroon E, Akapirat S, Pinyakorn S, Phanuphak N, Sacdalan C, Hsu D, Ananworanich J, Vasan S, Schuetz A, Jaworowski A. Adaptive NK Cells Rapidly Expand during Acute HIV Infection and Persist Despite Early Initiation of Antiretroviral Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1553-1563. [PMID: 38558245 DOI: 10.4049/jimmunol.2300523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
HIV is associated with NK cell dysfunction and expansion of adaptive-like NK cells that persist despite antiretroviral therapy (ART). We investigated the timing of NK cell perturbations during acute HIV infection and the impact of early ART initiation. PBMCs and plasma were obtained from people with HIV (PWH; all men who have sex with men; median age, 26.0 y) diagnosed during Fiebig stages I, II, III, or IV/V. Participants initiated ART a median of 3 d after diagnosis, and immunophenotyping was performed at diagnosis and longitudinally after ART. Anti-CMV Abs were assessed by ELISA. Samples from matched HIV-uninfected males were also analyzed. Proportions of adaptive NK cells (A-NKs; defined as Fcε-Receptor-1γ-) were expanded at HIV diagnosis at all Fiebig stages (pooled median 66% versus 25% for controls; p < 0.001) and were not altered by early ART initiation. Abs to CMV immediate early protein were elevated in PWH diagnosed in Fiebig stages III and IV/V (p < 0.03 for both). Proportions of A-NKs defined as either Fcε-Receptor-1γ- or NKG2C+/CD57+ were significantly associated with HIV DNA levels at diagnosis (p = 0.046 and 0.029, respectively) and trended toward an association after 48 wk of ART. Proportions of activated HLA-DR+/CD38+ NK cells remained elevated in PWH despite early ART initiation. NK cell activation and A-NK expansion occur very early after HIV transmission, before T cell activation, and are not altered by ART initiation during acute infection. A-NKs may contribute to HIV control and thus be useful for HIV cure.
Collapse
Affiliation(s)
- Anna C Hearps
- Burnet Institute, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
| | | | - Paul A Agius
- Burnet Institute, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Faculty of Health, Deakin University, Burwood, Victoria, Australia
| | - Phuongnhi Ha
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Silvia Lee
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Murdoch, Western Australia, Australia
| | - Patricia Price
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Hans Kek
- Burnet Institute, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
| | | | - Siriwat Akapirat
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | | | - Carlo Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Denise Hsu
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Jintanat Ananworanich
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Sandhya Vasan
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Alexandra Schuetz
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Anthony Jaworowski
- Burnet Institute, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
7
|
Anderko RR, DePuyt AE, Bronson R, Bullotta AC, Aga E, Bosch RJ, Jones RB, Eron JJ, Mellors JW, Gandhi RT, McMahon DK, Macatangay BJ, Rinaldo CR, Mailliard RB. Persistence of a Skewed Repertoire of NK Cells in People with HIV-1 on Long-Term Antiretroviral Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1564-1578. [PMID: 38551350 PMCID: PMC11073922 DOI: 10.4049/jimmunol.2300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
HIV-1 infection greatly alters the NK cell phenotypic and functional repertoire. This is highlighted by the expansion of a rare population of FcRγ- NK cells exhibiting characteristics of traditional immunologic memory in people with HIV (PWH). Although current antiretroviral therapy (ART) effectively controls HIV-1 viremia and disease progression, its impact on HIV-1-associated NK cell abnormalities remains unclear. To address this, we performed a longitudinal analysis detailing conventional and memory-like NK cell characteristics in n = 60 PWH during the first 4 y of ART. Throughout this regimen, a skewed repertoire of cytokine unresponsive FcRγ- memory-like NK cells persisted and accompanied an overall increase in NK surface expression of CD57 and KLRG1, suggestive of progression toward immune senescence. These traits were linked to elevated serum inflammatory biomarkers and increasing Ab titers to human CMV, with human CMV viremia detected in approximately one-third of PWH at years 1-4 of ART. Interestingly, 40% of PWH displayed atypical NK cell subsets, representing intermediate stages of NK-poiesis based on single-cell multiomic trajectory analysis. Our findings indicate that NK cell irregularities persist in PWH despite long-term ART, underscoring the need to better understand the causative mechanisms that prevent full restoration of immune health in PWH.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Allison E. DePuyt
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rhianna Bronson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Arlene C. Bullotta
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evgenia Aga
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joseph J. Eron
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajesh T. Gandhi
- Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bernard J. Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles R. Rinaldo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robbie B. Mailliard
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Rallón N, Jiménez-Carretero D, Restrepo C, Ligos JM, Valentín-Quiroga J, Mahillo I, Cabello A, López-Collazo E, Sánchez-Cabo F, Górgolas M, Estrada V, Benito JM. A specific natural killer cells phenotypic signature associated to long term elite control of HIV infection. J Med Virol 2024; 96:e29646. [PMID: 38699988 DOI: 10.1002/jmv.29646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Elite controllers (ECs) are an exceptional group of people living with HIV (PLWH) that control HIV replication without therapy. Among the mechanisms involved in this ability, natural killer (NK)-cells have recently gained much attention. We performed an in-deep phenotypic analysis of NK-cells to search for surrogate markers associated with the long term spontaneous control of HIV. Forty-seven PLWH (22 long-term EC [PLWH-long-term elite controllers (LTECs)], 15 noncontrollers receiving antiretroviral treatment [ART] [PLWH-onART], and 10 noncontrollers cART-naïve [PLWH-offART]), and 20 uninfected controls were included. NK-cells homeostasis was analyzed by spectral flow cytometry using a panel of 15 different markers. Data were analyzed using FCSExpress and R software for unsupervised multidimensional analysis. Six different subsets of NK-cells were defined on the basis of CD16 and CD56 expression, and the multidimensional analysis revealed the existence of 68 different NK-cells clusters based on the expression levels of the 15 different markers. PLWH-offART presented the highest disturbance of NK-cells homeostasis and this was not completely restored by long-term ART. Interestingly, long term spontaneous control of HIV (PLWH-LTEC group) was associated with a specific profile of NK-cells homeostasis disturbance, characterized by an increase of CD16dimCD56dim subset when compared to uninfected controls (UC) group and also to offART and onART groups (p < 0.0001 for the global comparison), an increase of clusters C16 and C26 when compared to UC and onART groups (adjusted p-value < 0.05 for both comparisons), and a decrease of clusters C10 and C20 when compared to all the other groups (adjusted p-value < 0.05 for all comparisons). These findings may provide clues to elucidate markers of innate immunity with a relevant role in the long-term control of HIV.
Collapse
Affiliation(s)
- Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Daniel Jiménez-Carretero
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | | | - Ignacio Mahillo
- Department of Statistics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Eduardo López-Collazo
- Grupo de respuesta inmune innata, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
9
|
Tuyishime M, Spreng RL, Hueber B, Nohara J, Goodman D, Chan C, Barfield R, Beck WE, Jha S, Asdell S, Wiehe K, He MM, Easterhoff D, Conley HE, Hoxie T, Gurley T, Jones C, Adhikary ND, Villinger F, Thomas R, Denny TN, Moody MA, Tomaras GD, Pollara J, Reeves RK, Ferrari G. Multivariate analysis of FcR-mediated NK cell functions identifies unique clustering among humans and rhesus macaques. Front Immunol 2023; 14:1260377. [PMID: 38124734 PMCID: PMC10732150 DOI: 10.3389/fimmu.2023.1260377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University, Durham, NC, United States
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - Brady Hueber
- Center for Human Systems Immunology, Durham, NC, United States
| | - Junsuke Nohara
- Department of Surgery, Duke University, Durham, NC, United States
| | - Derrick Goodman
- Department of Surgery, Duke University, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - Cliburn Chan
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Richard Barfield
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Whitney E. Beck
- Department of Surgery, Duke University, Durham, NC, United States
| | - Shalini Jha
- Department of Surgery, Duke University, Durham, NC, United States
| | - Stephanie Asdell
- Department of Surgery, Duke University, Durham, NC, United States
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Max M. He
- Duke Human Vaccine Institute, Durham, NC, United States
| | | | | | - Taylor Hoxie
- Duke Human Vaccine Institute, Durham, NC, United States
| | | | | | - Nihar Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Michael Anthony Moody
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Pediatrics, Duke University, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - R. Keith Reeves
- Department of Surgery, Duke University, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| |
Collapse
|
10
|
Creegan M, Degler J, Paquin-Proulx D, Eller MA, Machmach K. OMIP-098: A 26 parameter, 24 color flow cytometry panel for human memory NK cell phenotyping. Cytometry A 2023; 103:941-946. [PMID: 37807668 PMCID: PMC10872854 DOI: 10.1002/cyto.a.24802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
This 26-parameter flow cytometry panel has been developed and optimized to analyze NK cell phenotype, using cryopreserved peripheral blood mononuclear cells (PBMCs) from people living with and without human immunodeficiency virus (PLWH, PWOH). Our panel is designed for the analysis of several parameters of total NK cells and memory NK cell subsets including markers of maturation, activation, and proliferation, as well as activating and inhibitory receptors. Other tissues have not been tested (Table 1 ).
Collapse
Affiliation(s)
- Matthew Creegan
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Justin Degler
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Dominic Paquin-Proulx
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Michael A. Eller
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
- Present address: Vaccine Research Program, Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), MD, USA
| | - Kawthar Machmach
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| |
Collapse
|
11
|
Gao F, Mora MC, Constantinides M, Coenon L, Multrier C, Vaillant L, Zhang T, Villalba M. g-NK cells from umbilical cord blood are phenotypically and functionally different than g-NK cells from peripheral blood. Oncoimmunology 2023; 12:2283353. [PMID: 38126036 PMCID: PMC10732642 DOI: 10.1080/2162402x.2023.2283353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
FcRγ-deficient natural killer (NK) cells, designated as g-NK cells, exhibit enhanced antibody-dependent cellular cytotoxicity (ADCC) capacity and increased IFN-γ and TNF-α production, rendering them promising for antiviral and antitumor responses. g-NK cells from peripheral blood (PB) are often associated with prior human cytomegalovirus (HCMV) infection. However, the prevalence, phenotype, and function of g-NK cells in umbilical cord blood (UCB-g-NK) remain unclear. Here, we demonstrate significant phenotypical differences between UCB-g-NK and PB-g-NK cells. Unlike PB-g-NK cells, UCB-g-NK cells did not show heightened cytokine production upon CD16 engagement, in contrast to the conventional NK (c-NK) cell counterparts. Interestingly, following in vitro activation, UCB-g-NK cells also exhibited elevated levels of IFN-γ production, particularly when co-cultured with HCMV and plasma from g-NK+ adults. Furthermore, g-NK+ plasma from PB even facilitated the in vitro expansion of UCB-g-NK cells. These findings underscore the phenotypic and functional heterogeneity of g-NK cells based on their origin and demonstrate that components within g-NK+ plasma may directly contribute to the acquisition of an adult phenotype by the "immature" UCB-g-NK cells.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | | | | | - Loïs Coenon
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | - Caroline Multrier
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | - Loïc Vaillant
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Martin Villalba
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, INSERM, CHRU de Montpellier, CNRS, Univ Montpellier, Montpellier, France
| |
Collapse
|
12
|
Alrubayyi A, Touizer E, Hameiri-Bowen D, Charlton B, Gea-Mallorquí E, Hussain N, da Costa KAS, Ford R, Rees-Spear C, Fox TA, Williams I, Waters L, Barber TJ, Burns F, Kinloch S, Morris E, Rowland-Jones S, McCoy LE, Peppa D. Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1. Sci Rep 2023; 13:18994. [PMID: 37923825 PMCID: PMC10624865 DOI: 10.1038/s41598-023-45412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Emma Touizer
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Bethany Charlton
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Rosemarie Ford
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Thomas A Fox
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Ian Williams
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Laura Waters
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Tristan J Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Emma Morris
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Laura E McCoy
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK.
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK.
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
13
|
Lee J, Chang WLW, Scott JM, Hong S, Lee T, Deere JD, Park PH, Sparger EE, Dandekar S, Hartigan-O'Connor DJ, Barry PA, Kim S. FcRγ- NK Cell Induction by Specific Cytomegalovirus and Expansion by Subclinical Viral Infections in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:443-452. [PMID: 37314415 PMCID: PMC10932550 DOI: 10.4049/jimmunol.2200380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
"Adaptive" NK cells, characterized by FcRγ deficiency and enhanced responsiveness to Ab-bound, virus-infected cells, have been found in certain hCMV-seropositive individuals. Because humans are exposed to numerous microbes and environmental agents, specific relationships between hCMV and FcRγ-deficient NK cells (also known as g-NK cells) have been challenging to define. Here, we show that a subgroup of rhesus CMV (RhCMV)-seropositive macaques possesses FcRγ-deficient NK cells that stably persist and display a phenotype resembling human FcRγ-deficient NK cells. Moreover, these macaque NK cells resembled human FcRγ-deficient NK cells with respect to functional characteristics, including enhanced responsiveness to RhCMV-infected target in an Ab-dependent manner and hyporesponsiveness to tumor and cytokine stimulation. These cells were not detected in specific pathogen-free (SPF) macaques free of RhCMV and six other viruses; however, experimental infection of SPF animals with RhCMV strain UCD59, but not RhCMV strain 68-1 or SIV, led to induction of FcRγ-deficient NK cells. In non-SPF macaques, coinfection by RhCMV with other common viruses was associated with higher frequencies of FcRγ-deficient NK cells. These results support a causal role for specific CMV strain(s) in the induction of FcRγ-deficient NK cells and suggest that coinfection by other viruses further expands this memory-like NK cell pool.
Collapse
Affiliation(s)
- Jaewon Lee
- Graduate Group of Immunology, University of California, Davis, Davis, CA
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
| | - W L William Chang
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
- California National Primate Research Center, Davis, CA
| | - Jeannine M Scott
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI
| | - Suyeon Hong
- Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA
| | - Taehyung Lee
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
| | - Jesse D Deere
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
| | - Peter H Park
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Satya Dandekar
- California National Primate Research Center, Davis, CA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, Davis, CA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA
| | - Peter A Barry
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
- California National Primate Research Center, Davis, CA
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA
| | - Sungjin Kim
- Graduate Group of Immunology, University of California, Davis, Davis, CA
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA
| |
Collapse
|
14
|
Siemaszko J, Marzec-Przyszlak A, Bogunia-Kubik K. Activating NKG2C Receptor: Functional Characteristics and Current Strategies in Clinical Applications. Arch Immunol Ther Exp (Warsz) 2023; 71:9. [PMID: 36899273 PMCID: PMC10004456 DOI: 10.1007/s00005-023-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 03/12/2023]
Abstract
The interest in NK cells and their cytotoxic activity against tumour, infected or transformed cells continuously increases as they become a new efficient and off-the-shelf agents in immunotherapies. Their actions are balanced by a wide set of activating and inhibitory receptors, recognizing their complementary ligands on target cells. One of the most studied receptors is the activating CD94/NKG2C molecule, which is a member of the C-type lectin-like family. This review is intended to summarise latest research findings on the clinical relevance of NKG2C receptor and to examine its contribution to current and potential therapeutic strategies. It outlines functional characteristics and molecular features of CD94/NKG2C, its interactions with HLA-E molecule and presented antigens, pointing out a key role of this receptor in immunosurveillance, especially in the human cytomegalovirus infection. Additionally, the authors attempt to shed some light on receptor's unique interaction with its ligand which is shared with another receptor (CD94/NKG2A) with rather opposite properties.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Marzec-Przyszlak
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
15
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
16
|
The Frequency and Function of NKG2C +CD57 + Adaptive NK Cells in Cytomagalovirus Co-Infected People Living with HIV Decline with Duration of Antiretroviral Therapy. Viruses 2023; 15:v15020323. [PMID: 36851537 PMCID: PMC9959045 DOI: 10.3390/v15020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Human cytomegalovirus (CMV) infection drives the expansion and differentiation of natural killer (NK) cells with adaptive-like features. We investigated whether age and time on antiretroviral therapy (ART) influenced adaptive NK cell frequency and functionality. Flow cytometry was used to evaluate the frequency of adaptive and conventional NK cells in 229 CMV+ individuals of whom 170 were people living with HIV (PLWH). The frequency of these NK cell populations producing CD107a, CCL4, IFN-γ or TNF-α was determined following a 6-h antibody dependent (AD) stimulation. Though ART duration and age were correlated, longer time on ART was associated with a reduced frequency of adaptive NK cells. In general, the frequency and functionality of NK cells following AD stimulation did not differ significantly between treated CMV+PLWH and CMV+HIV- persons, suggesting that HIV infection, per se, did not compromise AD NK cell function. AD activation of adaptive NK cells from CMV+PLWH induced lower frequencies of IFN-γ or TNF-α secreting cells in older persons, when compared with younger persons.
Collapse
|
17
|
Alrubayyi A, Rowland-Jones S, Peppa D. Natural killer cells during acute HIV-1 infection: clues for HIV-1 prevention and therapy. AIDS 2022; 36:1903-1915. [PMID: 35851334 PMCID: PMC9612724 DOI: 10.1097/qad.0000000000003319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
Abstract
Despite progress in preexposure prophylaxis, the number of newly diagnosed cases with HIV-1 remains high, highlighting the urgent need for preventive and therapeutic strategies to reduce HIV-1 acquisition and limit disease progression. Early immunological events, occurring during acute infection, are key determinants of the outcome and course of disease. Understanding early immune responses occurring before viral set-point is established, is critical to identify potential targets for prophylactic and therapeutic approaches. Natural killer (NK) cells represent a key cellular component of innate immunity and contribute to the early host defence against HIV-1 infection, modulating the pathogenesis of acute HIV-1 infection (AHI). Emerging studies have identified tools for harnessing NK cell responses and expanding specialized NK subpopulations with adaptive/memory features, paving the way for development of novel HIV-1 therapeutics. This review highlights the knowns and unknowns regarding the role of NK cell subsets in the containment of acute HIV-1 infection, and summarizes recent advances in selectively augmenting NK cell functions through prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford
- Division of Infection and Immunity, University College London
| | | | - Dimitra Peppa
- Division of Infection and Immunity, University College London
- Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, UK
| |
Collapse
|
18
|
Sugawara S, Reeves RK, Jost S. Learning to Be Elite: Lessons From HIV-1 Controllers and Animal Models on Trained Innate Immunity and Virus Suppression. Front Immunol 2022; 13:858383. [PMID: 35572502 PMCID: PMC9094575 DOI: 10.3389/fimmu.2022.858383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022] Open
Abstract
Although antiretroviral therapy (ART) has drastically changed the lives of people living with human immunodeficiency virus-1 (HIV-1), long-term treatment has been associated with a vast array of comorbidities. Therefore, a cure for HIV-1 remains the best option to globally eradicate HIV-1/acquired immunodeficiency syndrome (AIDS). However, development of strategies to achieve complete eradication of HIV-1 has been extremely challenging. Thus, the control of HIV-1 replication by the host immune system, namely functional cure, has long been studied as an alternative approach for HIV-1 cure. HIV-1 elite controllers (ECs) are rare individuals who naturally maintain undetectable HIV-1 replication levels in the absence of ART and whose immune repertoire might be a desirable blueprint for a functional cure. While the role(s) played by distinct human leukocyte antigen (HLA) expression and CD8+ T cell responses expressing cognate ligands in controlling HIV-1 has been widely characterized in ECs, the innate immune phenotype has been decidedly understudied. Comparably, in animal models such as HIV-1-infected humanized mice and simian Immunodeficiency Virus (SIV)-infected non-human primates (NHP), viremic control is known to be associated with specific major histocompatibility complex (MHC) alleles and CD8+ T cell activity, but the innate immune response remains incompletely characterized. Notably, recent work demonstrating the existence of trained innate immunity may provide new complementary approaches to achieve an HIV-1 cure. Herein, we review the known characteristics of innate immune responses in ECs and available animal models, identify gaps of knowledge regarding responses by adaptive or trained innate immune cells, and speculate on potential strategies to induce EC-like responses in HIV-1 non-controllers.
Collapse
|
19
|
Gao F, Zhou Z, Lin Y, Shu G, Yin G, Zhang T. Biology and Clinical Relevance of HCMV-Associated Adaptive NK Cells. Front Immunol 2022; 13:830396. [PMID: 35464486 PMCID: PMC9022632 DOI: 10.3389/fimmu.2022.830396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are an important component of the innate immune system due to their strong ability to kill virally infected or transformed cells without prior exposure to the antigen (Ag). However, the biology of human NK (hNK) cells has largely remained elusive. Recent advances have characterized several novel hNK subsets. Among them, adaptive NK cells demonstrate an intriguing specialized antibody (Ab)-dependent response and several adaptive immune features. Most adaptive NK cells express a higher level of NKG2C but lack an intracellular signaling adaptor, FcϵRIγ (hereafter abbreviated as FcRγ). The specific expression pattern of these genes, with other signature genes, is the result of a specific epigenetic modification. The expansion of adaptive NK cells in vivo has been documented in various viral infections, while the frequency of adaptive NK cells among peripheral blood mononuclear cells correlates with improved prognosis of monoclonal Ab treatment against leukemia. This review summarizes the discovery and signature phenotype of adaptive NK cells. We also discuss the reported association between adaptive NK cells and pathological conditions. Finally, we briefly highlight the application of adaptive NK cells in adoptive cell therapy against cancer.
Collapse
Affiliation(s)
- Fei Gao
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Zhengwei Zhou
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Ying Lin
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Guang Shu
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Gang Yin
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
20
|
Sun Y, Zhou J, Jiang Y. Negative Regulation and Protective Function of Natural Killer Cells in HIV Infection: Two Sides of a Coin. Front Immunol 2022; 13:842831. [PMID: 35320945 PMCID: PMC8936085 DOI: 10.3389/fimmu.2022.842831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells play an important immunologic role, targeting tumors and virus-infected cells; however, NK cells do not impede the progression of human immunodeficiency virus (HIV) infection. In HIV infection, NK cells exhibit impaired functions and negatively regulate other immune cell responses, although NK cells can kill HIV-infected cells and thereby suppress HIV replication. Considerable recent research has emerged regarding NK cells in the areas of immune checkpoints, negative regulation, antibody-dependent cell-mediated cytotoxicity and HIV reservoirs during HIV infection; however, no overall summary of these factors is available. This review focuses on several important aspects of NK cells in relation to HIV infection, including changes in NK cell count, subpopulations, and immune checkpoints, as well as abnormalities in NK cell functions and NK cell negative regulation. The protective function of NK cells in inhibiting HIV replication to reduce the viral reservoir and approaches for enhancing NK cell functions are also summarized.
Collapse
|
21
|
High-dimensional mass cytometry analysis of NK cell alterations in AML identifies a subgroup with adverse clinical outcome. Proc Natl Acad Sci U S A 2021; 118:2020459118. [PMID: 34050021 PMCID: PMC8179170 DOI: 10.1073/pnas.2020459118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are major antileukemic immune effectors. Leukemic blasts have a negative impact on NK cell function and promote the emergence of phenotypically and functionally impaired NK cells. In the current work, we highlight an accumulation of CD56-CD16+ unconventional NK cells in acute myeloid leukemia (AML), an aberrant subset initially described as being elevated in patients chronically infected with HIV-1. Deep phenotyping of NK cells was performed using peripheral blood from patients with newly diagnosed AML (n = 48, HEMATOBIO cohort, NCT02320656) and healthy subjects (n = 18) by mass cytometry. We showed evidence of a moderate to drastic accumulation of CD56-CD16+ unconventional NK cells in 27% of patients. These NK cells displayed decreased expression of NKG2A as well as the triggering receptors NKp30 and NKp46, in line with previous observations in HIV-infected patients. High-dimensional characterization of these NK cells highlighted a decreased expression of three additional major triggering receptors required for NK cell activation, NKG2D, DNAM-1, and CD96. A high proportion of CD56-CD16+ NK cells at diagnosis was associated with an adverse clinical outcome and decreased overall survival (HR = 0.13; P = 0.0002) and event-free survival (HR = 0.33; P = 0.018) and retained statistical significance in multivariate analysis. Pseudotime analysis of the NK cell compartment highlighted a disruption of the maturation process, with a bifurcation from conventional NK cells toward CD56-CD16+ NK cells. Overall, our data suggest that the accumulation of CD56-CD16+ NK cells may be the consequence of immune escape from innate immunity during AML progression.
Collapse
|
22
|
Capuano C, Pighi C, Battella S, De Federicis D, Galandrini R, Palmieri G. Harnessing CD16-Mediated NK Cell Functions to Enhance Therapeutic Efficacy of Tumor-Targeting mAbs. Cancers (Basel) 2021; 13:cancers13102500. [PMID: 34065399 PMCID: PMC8161310 DOI: 10.3390/cancers13102500] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Natural Killer (NK) cells play a major role in cancer immunotherapy based on tumor-targeting mAbs. NK cell-mediated tumor cell killing and cytokine secretion are powerfully stimulated upon interaction with IgG-opsonized tumor cells, through the aggregation of FcγRIIIA/CD16 IgG receptor. Advances in basic and translational NK cell biology have led to the development of strategies that, by improving mAb-dependent antitumor responses, may overcome the current limitations of antibody therapy attributable to tolerance, immunosuppressive microenvironment, and genotypic factors. This review provides an overview of the immunotherapeutic strategies being pursued to improve the efficacy of mAb-induced NK antitumor activity. The exploitation of antibody combinations, antibody-based molecules, used alone or combined with adoptive NK cell therapy, will be uncovered. Within the landscape of NK cell heterogeneity, we stress the role of memory NK cells as promising effectors in the next generation of immunotherapy with the aim to obtain long-lasting tumor control. Abstract Natural killer (NK) cells hold a pivotal role in tumor-targeting monoclonal antibody (mAb)-based activity due to the expression of CD16, the low-affinity receptor for IgG. Indeed, beyond exerting cytotoxic function, activated NK cells also produce an array of cytokines and chemokines, through which they interface with and potentiate adaptive immune responses. Thus, CD16-activated NK cells can concur to mAb-dependent “vaccinal effect”, i.e., the development of antigen-specific responses, which may be highly relevant in maintaining long-term protection of treated patients. On this basis, the review will focus on strategies aimed at potentiating NK cell-mediated antitumor functions in tumor-targeting mAb-based regimens, represented by (a) mAb manipulation strategies, aimed at augmenting recruitment and efficacy of NK cells, such as Fc-engineering, and the design of bi- or trispecific NK cell engagers and (b) the possible exploitation of memory NK cells, whose distinctive characteristics (enhanced responsiveness to CD16 engagement, longevity, and intrinsic resistance to the immunosuppressive microenvironment) may maximize therapeutic mAb antitumor efficacy.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
| | - Chiara Pighi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- ReiThera Srl, 00128 Rome, Italy
| | - Davide De Federicis
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Correspondence: (R.G.); (G.P.)
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Correspondence: (R.G.); (G.P.)
| |
Collapse
|
23
|
Mele D, Oliviero B, Mantovani S, Ludovisi S, Lombardi A, Genco F, Gulminetti R, Novati S, Mondelli MU, Varchetta S. Adaptive Natural Killer Cell Functional Recovery in Hepatitis C Virus Cured Patients. Hepatology 2021; 73:79-90. [PMID: 32281670 DOI: 10.1002/hep.31273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Current evidence suggests that dysfunctional natural killer (NK) cell responses during hepatitis C virus (HCV) infection can be restored after viral eradication with direct acting antivirals (DAAs). However, the fate of the recently described adaptive NK cell population, endowed with increased ability to mediate antibody-dependent cell-mediated cytotoxicity (ADCC), during HCV infection is poorly defined, while no study has explored the effects of DAAs on this NK subset. APPROACH AND RESULTS We performed multicolor flow cytometry to investigate CD57+ FcεRIγneg adaptive and FcεRIγpos conventional NK cell phenotype and function before and after DAA treatment in 59 patients chronically infected with HCV, 39 with advanced liver fibrosis, and 20 with mild-moderate liver fibrosis. Moreover, bulk NK cell phenotype and function were analyzed after cytokine activation following contact with K562 target cells. The proportion of FcεRIγneg NK cells in patients with HCV was associated with increased HCV load at baseline, and it was significantly reduced after treatment. Patients with an advanced fibrosis stage displayed increased NK cell activation and exhaustion markers that normalized after therapy. Of note, adaptive NK cells from patients with HCV were characterized by increased programmed death receptor 1 expression and reduced ADCC activity at baseline. DAA treatment restored ADCC ability and reduced programmed death receptor 1 expression. CONCLUSIONS HCV profoundly affects the frequency, phenotype, and function of adaptive NK cells. DAA therapy restores a normal adaptive NK phenotype and enhances interferon-gamma production by this cell subset.
Collapse
Affiliation(s)
- Dalila Mele
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Pavia, Italy
| | - Barbara Oliviero
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Pavia, Italy
| | - Stefania Mantovani
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Pavia, Italy
| | - Serena Ludovisi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Andrea Lombardi
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Pavia, Italy
| | - Francesca Genco
- Virology and Microbiology Service, Department of Laboratory Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberto Gulminetti
- Division of Infectious Diseases I, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Novati
- Division of Infectious Diseases I, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario U Mondelli
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Stefania Varchetta
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Pavia, Italy
| |
Collapse
|
24
|
Barnes S, Schilizzi O, Audsley KM, Newnes HV, Foley B. Deciphering the Immunological Phenomenon of Adaptive Natural Killer (NK) Cells and Cytomegalovirus (CMV). Int J Mol Sci 2020; 21:ijms21228864. [PMID: 33238550 PMCID: PMC7700325 DOI: 10.3390/ijms21228864] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells play a significant and vital role in the first line of defense against infection through their ability to target cells without prior sensitization. They also contribute significantly to the activation and recruitment of both innate and adaptive immune cells through the production of a range of cytokines and chemokines. In the context of cytomegalovirus (CMV) infection, NK cells and CMV have co-evolved side by side to employ several mechanisms to evade one another. However, during this co-evolution the discovery of a subset of long-lived NK cells with enhanced effector potential, increased antibody-dependent responses and the potential to mediate immune memory has revolutionized the field of NK cell biology. The ability of a virus to imprint on the NK cell receptor repertoire resulting in the expansion of diverse, highly functional NK cells to this day remains a significant immunological phenomenon that only occurs in the context of CMV. Here we review our current understanding of the development of these NK cells, commonly referred to as adaptive NK cells and their current role in transplantation, infection, vaccination and cancer immunotherapy to decipher the complex role of CMV in dictating NK cell functional fate.
Collapse
Affiliation(s)
- Samantha Barnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ophelia Schilizzi
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Katherine M. Audsley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hannah V. Newnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bree Foley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- Correspondence:
| |
Collapse
|
25
|
Anderko RR, Rinaldo CR, Mailliard RB. IL-18 Responsiveness Defines Limitations in Immune Help for Specialized FcRγ - NK Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:3429-3442. [PMID: 33188073 DOI: 10.4049/jimmunol.2000430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022]
Abstract
Despite being prolific innate killers, NK cells are also key helper cells in antiviral defense, influencing adaptive immune responses via interactions with dendritic cells (DCs). In addition to causing NK cell dysfunction, HIV-1 infection contributes to the expansion of a rare population of NK cells deficient in FcRγ (FcRγ-), an intracellular adaptor protein that associates with CD16. The implications of this inflated NK cell subset in treated HIV-1 infection remain unclear. In this study, we explored the helper function of human NK cells in chronic HIV-1 infection, with a particular focus on characterizing FcRγ- NK cells. Exposure of NK cells to innate DC-derived costimulatory factors triggered their helper activity, defined by their ability to produce IFN-γ and to drive the maturation of high IL-12-producing DCs. In this setting, however, FcRγ- NK cells were defective at producing the dominant DC-polarizing agent IFN-γ. The reduced responsiveness of FcRγ- NK cells to IL-18 in particular, which was attributable to impaired inducible expression of IL-18Rα, extended beyond an inability to produce IFN-γ, as FcRγ- NK cells showed limited potential to differentiate into CD16-/CD25+/CD83+ helper cells. Notwithstanding their deficiencies in responsiveness to innate environmental cues, FcRγ- NK cells responded robustly to adaptive Ab-mediated signaling through CD16. The presence of an expanded population of FcRγ- NK cells with a diminished capacity to respond to IL-18 and to effectively modulate DC function may contribute to disturbances in proper immune homeostasis associated with HIV-1 infection and to defects in the initiation of optimal adaptive antiviral responses.
Collapse
Affiliation(s)
- Renee R Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261; and.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261; and
| |
Collapse
|
26
|
Liu W, Scott JM, Langguth E, Chang H, Park PH, Kim S. FcRγ Gene Editing Reprograms Conventional NK Cells to Display Key Features of Adaptive Human NK Cells. iScience 2020; 23:101709. [PMID: 33205022 PMCID: PMC7649287 DOI: 10.1016/j.isci.2020.101709] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/03/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Adaptive human natural killer (NK) cells display significantly enhanced responsiveness to a broad-range of antibody-bound targets through the engagement of CD16 compared to conventional NK cells, yet direct reactivity against tumor targets is generally reduced. Adaptive NK cells also display a distinct phenotype and differential expression of numerous genes, including reduced expression of signaling adapter FcRγ and transcription factor PLZF. However, it is unclear whether differential expression of specific genes is responsible for the characteristics of adaptive NK cells. Using CRISPR-Cas9, we show deletion of FcRγ in conventional NK cells led to enhanced CD16 responsiveness, abolished cell surface expression of natural cytotoxicity receptors, NKp46 and NKp30, and dramatically reduced responsiveness to K562 and Raji tumor cells. However, deletion of PLZF had no notable effects. These results suggest multiple roles for FcRγ and identify its deficiency as an important factor responsible for the functional and phenotypic characteristics exhibited by adaptive NK cells. FcRγ deletion leads to increased cytokine production in response to CD16 stimulation FcRγ deletion abolishes cell surface expression of NKp46 and NKp30 FcRγ deletion results in reduced responsiveness to K562 and Raji cells PLZF deletion does not change responsiveness to CD16 and cytokine stimulation
Collapse
Affiliation(s)
- Weiru Liu
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.,Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, USA
| | - Jeannine M Scott
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Emma Langguth
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA
| | - Helena Chang
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA
| | - Peter H Park
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA
| | - Sungjin Kim
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.,Department of Microbiology and Immunology, University of California, Davis, CA 95616, USA
| |
Collapse
|
27
|
Bloch M, John M, Smith D, Rasmussen TA, Wright E. Managing HIV-associated inflammation and ageing in the era of modern ART. HIV Med 2020; 21 Suppl 3:2-16. [PMID: 33022087 DOI: 10.1111/hiv.12952] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This paper aims to address the concerns around ongoing immune activation, inflammation, and resistance in those ageing with HIV that represent current challenges for clinicians. METHODS Presentations at a symposium addressing issues of ageing with HIV infection were reviewed and synthesised. RESULTS The changing natural history and demographics of human immunodeficiency virus (HIV)-infected individuals means new challenges in contemporary management. In the early years of the epidemic,management was focussed on acute, potentially life-threatening AIDS-related complications. From initial monotherapy with first-generation antiretroviral therapy (ART), the development of combination highly active ART (HAART) allowed HIV control but ART toxicities, treatment adherence and drug resistance emerged as major issues. Today, the availability of potent and tolerable ART has made viral suppression achievable in most people living with HIV (PLHIV), and clinicians are confronted with managing a chronic condition among an ageing population. The combination of diseases of ageing and the co-morbidities associated with HIV-infection, even when well controlled, results in a complex set of challenges for many older PLHIV. There is a growing appreciation that many non-AIDS-related co-morbidities are caused, at least in part, by persistent, low-grade immune activation, inflammation, and hypercoagulability, despite suppressive ART. CONCLUSIONS In order to further improve HIV management, it is important to understand the enduring effects of chronically suppressed HIV infection, the potential contribution of these factors to the ageing process, the possibility of drug resistance, and the impact of different treatment strategies, including early ART initiation.
Collapse
Affiliation(s)
- M Bloch
- Holdsworth House Medical Practice, Sydney, NSW, Australia.,Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - M John
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.,Royal Perth Hospital, Perth, WA, Australia.,Institute of Immunology and Infectious Disease, Perth, WA, Australia
| | - D Smith
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia.,The Albion Centre, Sydney, NSW, Australia
| | - T A Rasmussen
- Doherty Institute for Infection and Immunity, Melbourne, Vic., Australia.,University of Melbourne, Melbourne, Vic., Australia
| | - E Wright
- The Alfred Hospital, Melbourne, Vic., Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Vic., Australia.,The Burnett Institute, Melbourne, Vic., Australia
| |
Collapse
|
28
|
Kobyzeva PA, Streltsova MA, Erokhina SA, Kanevskiy LM, Telford WG, Sapozhnikov AM, Kovalenko EI. CD56 dim CD57 - NKG2C + NK cells retaining proliferative potential are possible precursors of CD57 + NKG2C + memory-like NK cells. J Leukoc Biol 2020; 108:1379-1395. [PMID: 32930385 DOI: 10.1002/jlb.1ma0720-654rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Formation of the adaptive-like NK cell subset in response to HCMV infection is associated with epigenetic rearrangements, accompanied by multiple changes in the protein expression. This includes a decrease in the expression level of the adapter chain FcεRIγ, NKp30, and NKG2A receptors and an increase in the expression of NKG2C receptor, some KIR family receptors, and co-stimulating molecule CD2. Besides, adaptive-like NK cells are characterized by surface expression of CD57, a marker of highly differentiated cells. Here, it is shown that CD57-negative CD56dim NKG2C+ NK cells may undergo the same changes, as established by the similarity of the phenotypic expression pattern with that of the adaptive-like CD57+ NKG2C+ NK cells. Regardless of their differentiation stage, NKG2C-positive NK cells had increased HLA-DR expression indicating an activated state, both ex vivo and after cultivation in stimulating conditions. Additionally, CD57- NKG2C+ NK cells exhibited better proliferative activity compared to CD57+ NKG2C+ and NKG2C- NK cells, while retaining high level of natural cytotoxicity. Thus, CD57- NKG2C+ NK cells may represent a less differentiated, but readily expanding stage of the adaptive-like CD57+ NKG2C+ NK cells. Moreover, it is shown that NK cells have certain phenotypic plasticity and may both lose NKG2C expression and acquire it de novo during proliferation, induced by IL-2 and K562-mbIL21 feeder cells.
Collapse
Affiliation(s)
- Polina A Kobyzeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria A Streltsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sofya A Erokhina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Leonid M Kanevskiy
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - William G Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander M Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena I Kovalenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Alrubayyi A, Ogbe A, Moreno Cubero E, Peppa D. Harnessing Natural Killer Cell Innate and Adaptive Traits in HIV Infection. Front Cell Infect Microbiol 2020; 10:395. [PMID: 32850493 PMCID: PMC7417314 DOI: 10.3389/fcimb.2020.00395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Despite efficient virological suppression on antiretroviral therapy (ART), people living with HIV (PLWH), experience an increased burden of premature co-morbidities, such as cancer and end-organ disease. With remaining challenges in terms of access to therapy, adherence and potential long-term drug toxicity, improving their long-term healthcare outcome, including new strategies for HIV clearance, remains a global priority. There is, therefore, an ongoing need to better characterize and harness the immune response in order to develop new strategies and supplement current therapeutic approaches for a “functional” cure. Current efforts toward HIV eradication to enhance immune recognition and elimination of persistently infected cells have highlighted the need for an optimized “kill” approach. Natural killer (NK) cells play an important role in antiviral defense and by virtue of their innate and adaptive features hold great promise as a focus of “kill” efforts. Galvanized by advances in the cancer field, NK cell exploitation, represents a transformative approach to augment HIV therapeutic modalities, circumventing many of the limitations inherent to T cell approaches. In this review we will discuss recent advances in our understanding of the development of NK cell adaptive/memory responses in HIV infection and highlight new and exciting opportunities to exploit the beneficial attributes of NK cells for HIV immunotherapy.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elia Moreno Cubero
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Dimitra Peppa
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,Department of HIV, Mortimer Market Centre, CNWL NHS Trust, London, OH, United Kingdom
| |
Collapse
|
30
|
Zhao NQ, Ferreira AM, Grant PM, Holmes S, Blish CA. Treated HIV Infection Alters Phenotype but Not HIV-Specific Function of Peripheral Blood Natural Killer Cells. Front Immunol 2020; 11:829. [PMID: 32477342 PMCID: PMC7235409 DOI: 10.3389/fimmu.2020.00829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are the predominant antiviral cells of the innate immune system, and may play an important role in acquisition and disease progression of HIV. While untreated HIV infection is associated with distinct alterations in the peripheral blood NK cell repertoire, less is known about how NK phenotype is altered in the setting of long-term viral suppression with antiretroviral therapy (ART), as well as how NK memory can impact functional responses. As such, we sought to identify changes in NK cell phenotype and function using high-dimensional mass cytometry to simultaneously analyze both surface and functional marker expression of peripheral blood NK cells in a cohort of ART-suppressed, HIV+ patients and HIV- healthy controls. We found that the NK cell repertoire following IL-2 treatment was altered in individuals with treated HIV infection compared to healthy controls, with increased expression of markers including NKG2C and CD2, and decreased expression of CD244 and NKp30. Using co-culture assays with autologous, in vitro HIV-infected CD4 T cells, we identified a subset of NK cells with enhanced responsiveness to HIV-1-infected cells, but no differences in the magnitude of anti-HIV NK cell responses between the HIV+ and HIV− groups. In addition, by profiling of NK cell receptors on responding cells, we found similar phenotypes of HIV-responsive NK cell subsets in both groups. Lastly, we identified clusters of NK cells that are altered in individuals with treated HIV infection compared to healthy controls, but found that these clusters are distinct from those that respond to HIV in vitro. As such, we conclude that while chronic, treated HIV infection induces a reshaping of the IL-2-stimulated peripheral blood NK cell repertoire, it does so in a way that does not make the repertoire more HIV-specific.
Collapse
Affiliation(s)
- Nancy Q Zhao
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Anne-Maud Ferreira
- Department of Statistics, Stanford University School of Medicine, Stanford, CA, United States
| | - Philip M Grant
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan Holmes
- Department of Statistics, Stanford University School of Medicine, Stanford, CA, United States
| | - Catherine A Blish
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
31
|
TIGIT is upregulated by HIV-1 infection and marks a highly functional adaptive and mature subset of natural killer cells. AIDS 2020; 34:801-813. [PMID: 32028328 DOI: 10.1097/qad.0000000000002488] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Our objective was to investigate the mechanisms that govern natural killer (NK)-cell responses to HIV, with a focus on specific receptor--ligand interactions involved in HIV recognition by NK cells. DESIGN AND METHODS We first performed a mass cytometry-based screen of NK-cell receptor expression patterns in healthy controls and HIV individuals. We then focused mechanistic studies on the expression and function of T cell immunoreceptor with Ig and ITIM domains (TIGIT). RESULTS The mass cytometry screen revealed that TIGIT is upregulated on NK cells of untreated HIV women, but not in antiretroviral-treated women. TIGIT is an inhibitory receptor that is thought to mark exhausted NK cells; however, blocking TIGIT did not improve anti-HIV NK-cell responses. In fact, the TIGIT ligands CD112 and CD155 were not upregulated on CD4 T cells in vitro or in vivo, providing an explanation for the lack of benefit from TIGIT blockade. TIGIT expression marked a unique subset of NK cells that express significantly higher levels of NK-cell-activating receptors (DNAM-1, NTB-A, 2B4, CD2) and exhibit a mature/adaptive phenotype (CD57, NKG2C, LILRB1, FcRγ, Syk). Furthermore, TIGIT NK cells had increased responses to mock-infected and HIV-infected autologous CD4 T cells, and to PMA/ionomycin, cytokine stimulation and the K562 cancer cell line. CONCLUSION TIGIT expression is increased on NK cells from untreated HIV individuals. Although TIGIT does not participate directly to the response to HIV-infected cells, it marks a population of mature/adaptive NK cells with increased functional responses.
Collapse
|
32
|
Shah SV, Manickam C, Ram DR, Kroll K, Itell H, Permar SR, Barouch DH, Klatt NR, Reeves RK. CMV Primes Functional Alternative Signaling in Adaptive Δg NK Cells but Is Subverted by Lentivirus Infection in Rhesus Macaques. Cell Rep 2019; 25:2766-2774.e3. [PMID: 30517864 PMCID: PMC6372106 DOI: 10.1016/j.celrep.2018.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022] Open
Abstract
Despite burgeoning evidence demonstrating the adaptive properties of natural killer (NK) cells, mechanistic data explaining these phenomena are lacking. Following antibody sensitization, NK cells lacking the Fc receptor (FcR) signaling chain (Δg) acquire adaptive features, including robust proliferation, multi-functionality, rapid killing, and mobilization to sites of virus exposure. Using the rhesus macaque model, we demonstrate the systemic distribution of Δg NK cells expressing memory features, including downregulated Helios and Eomes. Furthermore, we find that Δg NK cells abandon typical γ-chain/Syk in lieu of CD3ζ-Zap70 signaling. FCγRIIIa (CD16) density, mucosal homing, and function are all coupled to this alternate signaling, which in itself requires priming by rhesus cytomegalovirus (rhCMV). Simian immunodeficiency virus (SIV) infections further expand gut-homing adaptive NK cells but result in pathogenic suppression of CD3ζ-Zap70 signaling and function. Herein, we provide a mechanism of virus-dependent alternative signaling that may explain the acquisition of adaptive features by primate NK cells and could be targeted for future vaccine or curative therapies. Gamma-chain-deficient adaptive NK cells are robust mediators of antiviral immunity via ADCC. Shah et al. demonstrate using macaque models that acquisition of these features requires previous priming with CMV infection and involves alternative signaling via CD3zeta but is actively suppressed by lentivirus infection.
Collapse
Affiliation(s)
- Spandan V Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Itell
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Nichole R Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Miami, Miami, FL 33136, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Lucar O, Reeves RK, Jost S. A Natural Impact: NK Cells at the Intersection of Cancer and HIV Disease. Front Immunol 2019; 10:1850. [PMID: 31474977 PMCID: PMC6705184 DOI: 10.3389/fimmu.2019.01850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Despite efficient suppression of plasma viremia in people living with HIV (PLWH) on cART, evidence of HIV-induced immunosuppression remains, and normally benign and opportunistic pathogens become major sources of co-morbidities, including virus-induced cancers. In fact, cancer remains a primary cause of death even in virally suppressed PLWH. Natural killer (NK) cells provide rapid early responses to HIV infection, contribute substantially to disease modulation and vaccine protection, and are also major therapeutic targets for cancer immunotherapy. However, much like other lymphocyte populations, recent burgeoning evidence suggests that in chronic conditions like HIV, NK cells can become functionally exhausted with impaired cytotoxic function, altered cytokine production and impaired antibody-dependent cell-mediated cytotoxicity. Recent work suggests functional anergy is likely due to low-level ongoing virus replication, increased inflammatory cytokines, or increased presence of MHClow target cells. Indeed, HIV-induced loss of NK cell-mediated control of lytic EBV infection has been specifically shown to cause lymphoma and also increases replication of CMV. In this review, we will discuss current understanding of NK cell modulation of HIV disease, reciprocal exhaustion of NK cells, and how this may impact increased cancer incidences and prospects for NK cell-targeted immunotherapies. Finally, we will review the most recent evidence supporting adaptive functions of NK cells and highlight the potential of adaptive NK cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| | - Stephanie Jost
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Peppa D. Entering a new era of harnessing natural killer cell responses in HIV infection. EBioMedicine 2019; 44:26-27. [PMID: 31147292 PMCID: PMC6606953 DOI: 10.1016/j.ebiom.2019.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Dimitra Peppa
- Nuffield Dept of Clinical Medicine, University of Oxford, UK; Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, UK.
| |
Collapse
|
35
|
Manickam C, Shah SV, Nohara J, Ferrari G, Reeves RK. Monkeying Around: Using Non-human Primate Models to Study NK Cell Biology in HIV Infections. Front Immunol 2019; 10:1124. [PMID: 31191520 PMCID: PMC6540610 DOI: 10.3389/fimmu.2019.01124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the major innate effectors primed to eliminate virus-infected and tumor or neoplastic cells. Recent studies also suggest nuances in phenotypic and functional characteristics among NK cell subsets may further permit execution of regulatory and adaptive roles. Animal models, particularly non-human primate (NHP) models, are critical for characterizing NK cell biology in disease and under homeostatic conditions. In HIV infection, NK cells mediate multiple antiviral functions via upregulation of activating receptors, inflammatory cytokine secretion, and antibody dependent cell cytotoxicity through antibody Fc-FcR interaction and others. However, HIV infection can also reciprocally modulate NK cells directly or indirectly, leading to impaired/ineffective NK cell responses. In this review, we will describe multiple aspects of NK cell biology in HIV/SIV infections and their association with viral control and disease progression, and how NHP models were critical in detailing each finding. Further, we will discuss the effect of NK cell depletion in SIV-infected NHP and the characteristics of newly described memory NK cells in NHP models and different mouse strains. Overall, we propose that the role of NK cells in controlling viral infections remains incompletely understood and that NHP models are indispensable in order to efficiently address these deficits.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Junsuke Nohara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
36
|
Hart GT, Tran TM, Theorell J, Schlums H, Arora G, Rajagopalan S, Sangala ADJ, Welsh KJ, Traore B, Pierce SK, Crompton PD, Bryceson YT, Long EO. Adaptive NK cells in people exposed to Plasmodium falciparum correlate with protection from malaria. J Exp Med 2019; 216:1280-1290. [PMID: 30979790 PMCID: PMC6547858 DOI: 10.1084/jem.20181681] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/19/2019] [Accepted: 03/22/2019] [Indexed: 11/04/2022] Open
Abstract
How antibodies naturally acquired during Plasmodium falciparum infection provide clinical immunity to blood-stage malaria is unclear. We studied the function of natural killer (NK) cells in people living in a malaria-endemic region of Mali. Multi-parameter flow cytometry revealed a high proportion of adaptive NK cells, which are defined by the loss of transcription factor PLZF and Fc receptor γ-chain. Adaptive NK cells dominated antibody-dependent cellular cytotoxicity responses, and their frequency within total NK cells correlated with lower parasitemia and resistance to malaria. P. falciparum-infected RBCs induced NK cell degranulation after addition of plasma from malaria-resistant individuals. Malaria-susceptible subjects with the largest increase in PLZF-negative NK cells during the transmission season had improved odds of resistance during the subsequent season. Thus, antibody-dependent lysis of P. falciparum-infected RBCs by NK cells may be a mechanism of acquired immunity to malaria. Consideration of antibody-dependent NK cell responses to P. falciparum antigens is therefore warranted in the design of malaria vaccines.
Collapse
Affiliation(s)
- Geoffrey T Hart
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD .,Division of Infectious Disease and International Medicine, Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jakob Theorell
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gunjan Arora
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - A D Jules Sangala
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD.,Division of Infectious Disease and International Medicine, Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Kerry J Welsh
- Clinical Chemistry Division, Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Boubacar Traore
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| |
Collapse
|
37
|
Affiliation(s)
- Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Lucy Golden-Mason
- Department of Medicine, Keck School of Medicine, Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
NK-cell responses are biased towards CD16-mediated effector functions in chronic hepatitis B virus infection. J Hepatol 2019; 70:351-360. [PMID: 30342116 DOI: 10.1016/j.jhep.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Phenotypic and functional natural killer (NK)-cell alterations are well described in chronic hepatitis B virus (cHBV) infection. However, it is largely unknown whether these alterations result from general effects on the overall NK-cell population or the emergence of distinct NK-cell subsets. Human cytomegalovirus (HCMV) is common in cHBV and is associated with the emergence of memory-like NK cells. We aimed to assess the impact of these cells on cHBV infection. METHODS To assess the impact of memory-like NK cells on phenotypic and functional alterations in cHBV infection, we performed in-depth analyses of circulating NK cells in 52 patients with cHBV, 45 with chronic hepatitis C virus infection and 50 healthy donors, with respect to their HCMV serostatus. RESULTS In patients with cHBV/HCMV+, FcεRIγ- memory-like NK cells were present in higher frequencies and with higher prevalence than in healthy donors with HCMV+. This pronounced HCMV-associated memory-like NK-cell expansion could be identified as key determinant of the NK-cell response in cHBV infection. Furthermore, we observed that memory-like NK cells consist of epigenetically distinct subsets and exhibit key metabolic characteristics of long-living cells. Despite ongoing chronic infection, the phenotype of memory-like NK cells was conserved in patients with cHBV/HCMV+. Functional characteristics of memory-like NK cells also remained largely unaffected by cHBV infection with the exception of an increased degranulation capacity in response to CD16 stimulation that was, however, detectable in both memory-like and conventional NK cells. CONCLUSIONS The emergence of HCMV-associated memory-like NK cells shapes the overall NK-cell response in cHBV infection and contributes to a general shift towards CD16-mediated effector functions. Therefore, HCMV coinfection needs to be considered in the design of immunotherapeutic approaches that target NK cells in cHBV. LAY SUMMARY In chronic hepatitis B virus infection, natural killer (NK)-cell phenotype and function is altered. In this study, we demonstrate that these changes are linked to the emergence of a distinct NK-cell subset, namely memory-like NK cells. The emergence of these memory-like NK cells is associated with coinfection of human cytomegalovirus that affects the majority of patients with chronic hepatitis B.
Collapse
|
39
|
Abuharfeil NM, Yaseen MM, Alsheyab FM. Harnessing Antibody-Dependent Cellular Cytotoxicity To Control HIV-1 Infection. ACS Infect Dis 2019; 5:158-176. [PMID: 30525453 DOI: 10.1021/acsinfecdis.8b00167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Passive administration of broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies (bNAbs) has been recently suggested as a promising alternative therapeutic approach for HIV-1 infection. Although the success behind the studies that used this approach has been attributed to the potency and neutralization breadth of anti-HIV-1 antibodies, several lines of evidence support the idea that specific antibody-dependent effector functions, particularly antibody-dependent cellular cytotoxicity (ADCC), play a critical role in controlling HIV-1 infection. In this review, we showed that there is a direct association between the activation of ADCC and better clinical outcomes. This, in turn, suggests that ADCC could be harnessed to control HIV-1 infection. To this end, we addressed the passive administration of bNAbs capable of selectively activating ADCC responses to HIV-1 patients. Finally, we summarized the potential barriers that may impede the optimal activation of ADCC during HIV-1 infection and provided strategic solutions to overcome these barriers.
Collapse
Affiliation(s)
- Nizar Mohammad Abuharfeil
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Mohammad Yaseen
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110. Jordan
| | - Fawzi M. Alsheyab
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
40
|
Memory NK Cell Features Exploitable in Anticancer Immunotherapy. J Immunol Res 2019; 2019:8795673. [PMID: 30882007 PMCID: PMC6381560 DOI: 10.1155/2019/8795673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023] Open
Abstract
Besides their innate ability to rapidly produce effector cytokines and kill virus-infected or transformed cells, natural killer (NK) cells display a strong capability to adapt to environmental modifications and to differentiate into long-lived, hyperfunctional populations, dubbed memory or memory-like NK cells. Despite significant progress in the field of NK cell-based immunotherapies, some factors including their short life span and the occurrence of a tumor-dependent functional exhaustion have limited their clinical efficacy so that strategies aimed at overcoming these limitations represent one of the main current challenges in the field. In this scenario, the exploitation of NK cell memory may have a considerable potential. This article summarizes recent evidence in the literature on the peculiar features that render memory NK cells an attractive tool for antitumor immunotherapy, including their long-term survival and in vivo persistence, the resistance to tumor-dependent immunosuppressive microenvironment, the amplified functional responses to IgG-opsonized tumor cells, and in vitro expansion capability. Along with highlighting these issues, we speculate that memory NK cell-based adoptive immunotherapy settings would greatly take advantage from the combination with tumor-targeting therapeutic antibodies (mAbs), as a strategy to fully unleash their clinical efficacy.
Collapse
|
41
|
Lee S, Doualeh M, Affandi JS, Makwana N, Irish A, Price P. Functional and clinical consequences of changes to natural killer cell phenotypes driven by chronic cytomegalovirus infections. J Med Virol 2019; 91:1120-1127. [DOI: 10.1002/jmv.25401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Silvia Lee
- School of Biomedical Science and the Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin UniversityBentley Western Australia
- Department of MicrobiologyPathWest Laboratory MedicinePerth Western Australia
| | - Mariam Doualeh
- School of Biomedical Science and the Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin UniversityBentley Western Australia
| | - Jacquita S. Affandi
- School of Public Health, Faculty of Health Sciences, Curtin University Western Australia
| | - Nandini Makwana
- School of Biomedical Science and the Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin UniversityBentley Western Australia
| | - Ashley Irish
- Renal Unit, Department of NephrologyFiona Stanley HospitalMurdoch Western Australia
| | | |
Collapse
|
42
|
Muccio L, Falco M, Bertaina A, Locatelli F, Frassoni F, Sivori S, Moretta L, Moretta A, Della Chiesa M. Late Development of FcεRγ neg Adaptive Natural Killer Cells Upon Human Cytomegalovirus Reactivation in Umbilical Cord Blood Transplantation Recipients. Front Immunol 2018; 9:1050. [PMID: 29868012 PMCID: PMC5968376 DOI: 10.3389/fimmu.2018.01050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/27/2018] [Indexed: 01/25/2023] Open
Abstract
In human natural killer (NK) cells, human cytomegalovirus (HCMV) has been shown to be a driving force capable of inducing the expansion of a highly differentiated NKG2C+CD57+ subset, persisting over time in both HCMV+ healthy subjects and umbilical cord blood transplantation (UCBT) recipients experiencing HCMV viral reactivation. In HCMV+ healthy subjects, such expanded NK-cells are characterized by epigenetic modifications that modulate their phenotypic and functional characteristics. In particular, an enhanced ADCC activity is detectable in NK cells lacking the signaling protein FcεRγ. Timing and mechanisms involved in the acquisition of HCMV-induced, adaptive-like features by NK cells are currently unknown. In this study, we investigated the de novo acquisition of several adaptive features in NK cells developing after UCBT by monitoring NK-cell differentiation for at least 2 years after transplant. In UCBT recipients experiencing HCMV reactivation, a rapid phenotypic reconfiguration occurred resulting in the expected expansion of CD56dim NKG2C+CD57+ NK cells. However, while certain HCMV-driven adaptive hallmarks, including high KIR, LILRB1, CD2 and low/negative NKG2A, Siglec-7, and CD161 expression, were acquired early after UCBT (namely by month 6), downregulation of the signaling protein FcεRγ was detected at a later time interval (i.e., by month 12). This feature characterized only a minor fraction of the HCMV-imprinted NKG2C+CD57+ CD56dim NK cell subset, while it was detectable in higher proportions of CD57+ NK cells lacking NKG2C. Interestingly, in patients developing a hyporesponsive CD56-CD16bright NK-cell subset, FcεRγ downregulation occurred in these cells earlier than in CD56dim NK cells. Our data suggest that the acquisition of a fully "adaptive" profile requires signals that may lack in UCBT recipients and/or longer time is needed to obtain a stable epigenetic reprogramming. On the other hand, we found that both HCMV-induced FcεRγneg and FcεRγ+ NK cells from these patients, display similar CD107a degranulation and IFN-γ production capabilities in response to different stimuli, thus indicating that the acquisition of specialized effector functions can be achieved before the "adaptation" to HCMV is completed. Our study provides new insights in the process leading to the generation of different adaptive NK-cell subsets and may contribute to develop new approaches for their employment as novel immunotherapeutic tools.
Collapse
Affiliation(s)
- Letizia Muccio
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Michela Falco
- IRCCS Istituto Giannina Gaslini, Dipartimento dei Laboratori di Ricerca, Genova, Italy
| | - Alice Bertaina
- IRCCS Ospedale Pediatrico Bambino Gesù, Dipartimento di Oncoematologia e Terapia Cellulare e Genica, Rome, Italy
| | - Franco Locatelli
- IRCCS Ospedale Pediatrico Bambino Gesù, Dipartimento di Oncoematologia e Terapia Cellulare e Genica, Rome, Italy.,Dipartimento di Scienze Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Francesco Frassoni
- IRCCS Istituto Giannina Gaslini, Dipartimento dei Laboratori di Ricerca, Genova, Italy
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Lorenzo Moretta
- IRCCS Ospedale Pediatrico Bambin Gesù, Area di Ricerca Immunologica, Rome, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
43
|
Capuano C, Battella S, Pighi C, Franchitti L, Turriziani O, Morrone S, Santoni A, Galandrini R, Palmieri G. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming. Front Immunol 2018; 9:1031. [PMID: 29867997 PMCID: PMC5958227 DOI: 10.3389/fimmu.2018.01031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells represent a pivotal player of innate anti-tumor immune responses. The impact of environmental factors in shaping the representativity of different NK cell subsets is increasingly appreciated. Human cytomegalovirus (HCMV) infection profoundly affects NK cell compartment, as documented by the presence of a CD94/NKG2C+FcεRIγ- long-lived “memory” NK cell subset, endowed with enhanced CD16-dependent functional capabilities, in a fraction of HCMV-seropositive subjects. However, the requirements for memory NK cell pool establishment/maintenance and activation have not been fully characterized yet. Here, we describe the capability of anti-CD20 tumor-targeting therapeutic monoclonal antibodies (mAbs) to drive the selective in vitro expansion of memory NK cells and we show the impact of donor’ HCMV serostatus and CD16 affinity ligation conditions on this event. In vitro expanded memory NK cells maintain the phenotypic and functional signature of their freshly isolated counterpart; furthermore, our data demonstrate that CD16 affinity ligation conditions differently affect memory NK cell proliferation and functional activation, as rituximab-mediated low-affinity ligation represents a superior proliferative stimulus, while high-affinity aggregation mediated by glycoengineered obinutuzumab results in improved multifunctional responses. Our work also expands the molecular and functional characterization of memory NK cells, and investigates the possible impact of CD16 functional allelic variants on their in vivo and in vitro expansions. These results reveal new insights in Ab-driven memory NK cell responses in a therapeutic setting and may ultimately inspire new NK cell-based intervention strategies against cancer, in which the enhanced responsiveness to mAb-bound target could significantly impact therapeutic efficacy.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Pighi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lavinia Franchitti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | | | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
Kared H, Martelli S, Tan SW, Simoni Y, Chong ML, Yap SH, Newell EW, Pender SLF, Kamarulzaman A, Rajasuriar R, Larbi A. Adaptive NKG2C +CD57 + Natural Killer Cell and Tim-3 Expression During Viral Infections. Front Immunol 2018; 9:686. [PMID: 29731749 PMCID: PMC5919961 DOI: 10.3389/fimmu.2018.00686] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
Repetitive stimulation by persistent pathogens such as human cytomegalovirus (HCMV) or human immunodeficiency virus (HIV) induces the differentiation of natural killer (NK) cells. This maturation pathway is characterized by the acquisition of phenotypic markers, CD2, CD57, and NKG2C, and effector functions—a process regulated by Tim-3 and orchestrated by a complex network of transcriptional factors, involving T-bet, Eomes, Zeb2, promyelocytic leukemia zinc finger protein, and Foxo3. Here, we show that persistent immune activation during chronic viral co-infections (HCMV, hepatitis C virus, and HIV) interferes with the functional phenotype of NK cells by modulating the Tim-3 pathway; a decrease in Tim-3 expression combined with the acquisition of inhibitory receptors skewed NK cells toward an exhausted and cytotoxic phenotype in an inflammatory environment during chronic HIV infection. A better understanding of the mechanisms underlying NK cell differentiation could aid the identification of new immunological targets for checkpoint blockade therapies in a manner that is relevant to chronic infection and cancer.
Collapse
Affiliation(s)
- Hassen Kared
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Serena Martelli
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Yannick Simoni
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Meng Li Chong
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
| | - Siew Hwei Yap
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Sylvia L F Pender
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
45
|
Wines BD, Billings H, Mclean MR, Kent SJ, Hogarth PM. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field. Curr HIV Res 2018; 15:202-215. [PMID: 28322167 PMCID: PMC5543561 DOI: 10.2174/1570162x15666170320112247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022]
Abstract
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| | - Hugh Billings
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia
| | - Milla R Mclean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Victoria, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
46
|
Peppa D, Pedroza-Pacheco I, Pellegrino P, Williams I, Maini MK, Borrow P. Adaptive Reconfiguration of Natural Killer Cells in HIV-1 Infection. Front Immunol 2018; 9:474. [PMID: 29616021 PMCID: PMC5864861 DOI: 10.3389/fimmu.2018.00474] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/22/2018] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) co-infection is highly prevalent within HIV-1 cohorts and is an important cofactor in driving ongoing immune activation, even during effective antiretroviral treatment. HCMV infection has recently been associated with expansion of adaptive-like natural killer (NK) cells, which harbor epigenetic alterations that impact on their cellular function and phenotype. The influence of HCMV co-infection on the considerable heterogeneity among NK cells and their functional responses to different stimuli was assessed in a cohort of HIV-1-infected individuals sampled during different stages of infection, compared with healthy subjects stratified according to HCMV serostatus. Our data demonstrate a reshaping of the NK cell pool in HIV-1 infection of HCMV-seropositive individuals, with an accentuated peripheral transition of CD56dim NK cells toward a mature CD57+ CD85j+ NKG2C+ NKG2A− phenotype. Lack of PLZF further distinguishes adaptive NK cells from other NK cells expressing CD57 or NKG2C. PLZF− NK cells from HIV-infected individuals had high expression of CD2, were Siglec-7 negative and exhibited downregulation of key signaling molecules, SYK and FcεRI-γ, overwhelmingly displaying features of adaptive NK cells that correlated with HCMV serum Ab levels. Notably this adaptive-like signature was detected during early HIV-1 infection and persisted during treatment. Adaptive-like NK cell subsets in HIV-1-infected individuals displayed enhanced IFN-γ production following Fc receptor triggering compared with their conventional NK cell counterparts, and their ability to produce TNF-α and degranulate was preserved. Together, these data suggest that HMCV infection/reactivation, a hallmark of HIV-1 infection, plays a role in driving a relative expansion of NK cells with adaptive features during HIV-1 infection. The identification of selective NK subsets with retained effector activity in HIV-1-infected subjects raises the possibility of developing therapeutic strategies that exploit specific NK subpopulations to achieve better HIV-1 control.
Collapse
Affiliation(s)
- Dimitra Peppa
- Division of Infection and Immunity, University College London (UCL), London, United Kingdom.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,Centre for Sexual Health and HIV Research, University College London (UCL), London, United Kingdom
| | | | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London (UCL), London, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London (UCL), London, United Kingdom
| | - Mala K Maini
- Division of Infection and Immunity, University College London (UCL), London, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Adaptive reprogramming of NK cells in X-linked lymphoproliferative syndrome. Blood 2017; 131:699-702. [PMID: 29233820 DOI: 10.1182/blood-2017-08-803668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/02/2017] [Indexed: 12/27/2022] Open
|
48
|
Waters S, Brook E, Lee S, Estiasari R, Ariyanto I, Price P. HIV patients, healthy aging and transplant recipients can reveal the hidden footprints of CMV. Clin Immunol 2017; 187:107-112. [PMID: 29108855 DOI: 10.1016/j.clim.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/24/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
Cytomegalovirus (CMV) is a β-herpesvirus. Latent infections are common in all populations. However age-associated increases in levels of CMV-reactive antibody are testament to repeated reactivations and periods of viral replication. CMV has been associated with several diseases of aging, including vasculopathy and neurocognitive impairment. These conditions occur at a younger age in persons with particularly high burdens of CMV - transplant recipients and people living with HIV. Here we define the "clinical footprints" as immunopathologies triggered by CMV that develop over many years. A high burden of CMV also drives accumulation of multifunctional terminally-differentiated αβ T-cells, a novel population of Vδ2- γδ T-cells, and a population of CD56lo NK cells lacking a key regulatory molecule. An understanding of these "immunological footprints" of CMV may reveal how they collectively promote the "clinical footprints" of the virus. This is explored here in transplant recipients, HIV patients and healthy aging.
Collapse
Affiliation(s)
- Shelley Waters
- School of Biomedical Science, Curtin University, Bentley, Australia
| | - Emily Brook
- School of Biomedical Science, Curtin University, Bentley, Australia
| | - Silvia Lee
- School of Biomedical Science, Curtin University, Bentley, Australia; Department of Microbiology, Pathwest Laboratory Medicine, Fiona Stanley Hospital, Australia
| | - Riwanti Estiasari
- Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ibnu Ariyanto
- Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Patricia Price
- School of Biomedical Science, Curtin University, Bentley, Australia; Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| |
Collapse
|
49
|
Mikulak J, Oriolo F, Zaghi E, Di Vito C, Mavilio D. Natural killer cells in HIV-1 infection and therapy. AIDS 2017; 31:2317-2330. [PMID: 28926399 DOI: 10.1097/qad.0000000000001645] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
: Natural killer (NK) cells are important effectors of innate immunity playing a key role in the eradication and clearance of viral infections. Over the recent years, several studies have shown that HIV-1 pathologically changes NK cell homeostasis and hampers their antiviral effector functions. Moreover, high levels of chronic HIV-1 viremia markedly impair those NK cell regulatory features that normally regulate the cross talks between innate and adaptive immune responses. These pathogenic events take place early in the infection and are associated with a pathologic redistribution of NK cell subsets that includes the expansion of anergic CD56/CD16 NK cells with an aberrant repertoire of activating and inhibitory receptors. Nevertheless, the presence of specific haplotypes for NK cell receptors and the engagement of NK cell antibody-dependent cell cytotocity have been reported to control HIV-1 infection. This dichotomy can be extremely useful to both predict the clinical outcome of the infection and to develop alternative antiviral pharmacological approaches. Indeed, the administration of antiretroviral therapy in HIV-1-infected patients restores NK cell phenotype and functions to normal levels. Thus, antiretroviral therapy can help to develop NK cell-directed therapeutic strategies that include the use of broadly neutralizing antibodies and toll-like receptor agonists. The present review discusses how our current knowledge of NK cell pathophysiology in HIV-1 infection is being translated both in experimental and clinical trials aimed at controlling the infection and disease.
Collapse
|
50
|
Peppa D. Natural Killer Cells in Human Immunodeficiency Virus-1 Infection: Spotlight on the Impact of Human Cytomegalovirus. Front Immunol 2017; 8:1322. [PMID: 29089947 PMCID: PMC5650968 DOI: 10.3389/fimmu.2017.01322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) has been closely associated with the human race across evolutionary time. HCMV co-infection is nearly universal in human immunodeficiency virus-1 (HIV-1)-infected individuals and remains an important cofactor in HIV-1 disease progression even in the era of effective antiretroviral treatment. HCMV infection has been shown to have a broad and potent influence on the human immune system and has been linked with the discovery and characterization of adaptive natural killer (NK) cells. Distinct NK-cell subsets, predominately expressing the activating receptor NKG2C and the marker of terminal differentiation CD57, expand in response to HCMV. These NK-cell populations engaged in the long-lasting interaction with HCMV, in addition to characteristic but variable expression of surface receptors, exhibit reduced expression of signaling proteins and transcription factors expressed by canonical NK cells. Broad epigenetic modifications drive the emergence and persistence of HCMV-adapted NK cells that have distinct functional characteristics. NKG2C+ NK-cell expansions have been observed in HIV-1 infected patients and other acute and chronic viral infections being systematically associated with HCMV seropositivity. The latter is potentially an important confounding variable in studies focused on the cellular NK-cell receptor repertoire and functional capacity. Here, focusing on HIV-1 infection we review the evidence in favor of “adaptive” changes likely induced by HCMV co-infection in NK-cell subsets. We highlight a number of key questions and how insights into the adaptive behavior of NK cells will inform new strategies exploiting their unique properties in the fight against HIV-1.
Collapse
Affiliation(s)
- Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|