1
|
Maurice De Sousa D, Perkey E, Le Corre L, Boulet S, Gómez Atria D, Allman A, Duval F, Daudelin JF, Brandstadter JD, Lederer K, Mezrag S, Odagiu L, Ennajimi M, Sarrias M, Decaluwe H, Koch U, Radtke F, Ludewig B, Siebel CW, Maillard I, Labrecque N. Early Notch signals from fibroblastic reticular cells program effector CD8+ T cell differentiation. J Exp Med 2025; 222:e20231758. [PMID: 40111253 PMCID: PMC11925062 DOI: 10.1084/jem.20231758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/06/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
A better understanding of the mechanisms regulating CD8+ T cell differentiation is essential to develop new strategies to fight infections and cancer. Using genetic mouse models and blocking antibodies, we uncovered cellular and molecular mechanisms by which Notch signaling favors the efficient generation of effector CD8+ T cells. Fibroblastic reticular cells from secondary lymphoid organs, but not dendritic cells, were the dominant source of Notch signals in T cells via Delta-like1/4 ligands within the first 3 days of immune responses to vaccination or infection. Using transcriptional and epigenetic studies, we identified a unique Notch-driven T cell-specific signature. Early Notch signals were associated with chromatin opening in regions occupied by bZIP transcription factors, specifically BATF, known to be important for CD8+ T cell differentiation. Overall, we show that fibroblastic reticular cell niches control the ultimate molecular and functional fate of CD8+ T cells after vaccination or infection through the delivery of early Notch signals.
Collapse
Affiliation(s)
- Dave Maurice De Sousa
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Laure Le Corre
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
| | - Daniela Gómez Atria
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anneka Allman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frédéric Duval
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
| | | | | | - Katlyn Lederer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Mezrag
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Livia Odagiu
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Myriam Ennajimi
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Marion Sarrias
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Canada
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Ivan Maillard
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
- Département de Médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
2
|
Li W, Jin D, Takai S, Inoue N, Yamanishi K, Tanaka Y, Okamura H. IL-18 primes T cells with an antigen-inexperienced memory phenotype for proliferation and differentiation into effector cells through Notch signaling. J Leukoc Biol 2024; 117:qiae172. [PMID: 39213165 DOI: 10.1093/jleuko/qiae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent studies have revealed that a subset of CD8+ T cells exhibit innate features and can be activated by cytokines. However, the precise mechanisms underlying the proliferation and differentiation of these cells remain unclear. Here, we demonstrated that CD44highCD8+ T cells in the mouse spleen express functional interleukin-18 (IL-18) receptors, whereas CD44lowCD8+ T cells do not. In response to IL-18 stimulation, these cells activated various metabolic pathways, upregulated the expression of surface molecules, such as c-Kit (CD117), CD25, and PD-1, and induced progression through the G1/S phase in the cell cycle. IL-18-primed cells, expressing a high-affinity receptor for IL-2, exhibited robust proliferation in response to IL-2 and underwent differentiation into effector cells. The splenic CD44highCD8+ T cells exhibited high expression levels of CD122, CD62L, CCR7, and CXCR3, along with CD5, indicating their potential for migration to the lymph nodes, where they could undergo expansion and terminal differentiation into effector cells. Additionally, in a tumor model, administration of IL-18 increased the accumulation of CD8+ T cells in both the lymph nodes and tumors. It is noteworthy that stimulation of CD44highCD8+ T cells with IL-18 upregulated the Notch-1 receptor and c-Myc. Moreover, inclusion of γ-secretase inhibitors attenuated the effect of IL-18 on both proliferation and interferon-γ production in the cells. These results demonstrate that IL-18 primes CD44highCD122highCXCR3highCD62LhighCD8+ T cells for expansion and differentiation into effector cells in a Notch signaling-dependent manner.
Collapse
Affiliation(s)
- Wen Li
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Denan Jin
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Shinji Takai
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Natsuko Inoue
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Haruki Okamura
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
Ben Saad E, Oroya A, Anto NP, Bachais M, Rudd CE. PD-1 endocytosis unleashes the cytolytic potential of checkpoint blockade in tumor immunity. Cell Rep 2024; 43:114907. [PMID: 39471174 DOI: 10.1016/j.celrep.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
PD-1 immune checkpoint blockade (ICB) is a key cancer treatment. While blocking PD-1 binding to ligand is known, the role of internalization in enhancing ICB efficacy is less explored. Our study reveals that PD-1 internalization helps unlock ICB's full potential in cancer immunotherapy. Anti-PD-1 induces 50%-60% surface PD-1 internalization from human and mouse cells, leaving low to intermediate levels of resistant receptors. Complexes then appear in early and late endosomes. Both CD4 and CD8 T cells, especially CD8+ effectors, are affected. Nivolumab outperforms pembrolizumab in human T cells, while PD-1 internalization requires crosslinking by bivalent antibody. While mono- and bivalent anti-PD-1 inhibit tumor growth with CD8 tumor-infiltrating cells expressing increased granzyme B, bivalent antibody is more effective where the combination of steric blockade and endocytosis induces greater CD8+ T cell tumor infiltration and the expression of the cytolytic pore protein, perforin. Our findings highlight an ICB mechanism that combines steric blockade and PD-1 endocytosis for optimal checkpoint immunotherapy.
Collapse
Affiliation(s)
- Elham Ben Saad
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada
| | - Andres Oroya
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Nikhil Ponnoor Anto
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Meriem Bachais
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Christopher E Rudd
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Hao Q, Kundu S, Shetty S, Tang H. Runx3 Regulates CD8 + T Cell Local Expansion and CD43 Glycosylation in Mice by H1N1 Influenza A Virus Infection. Int J Mol Sci 2024; 25:4220. [PMID: 38673806 PMCID: PMC11050410 DOI: 10.3390/ijms25084220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
We have recently reported that transcription factor Runx3 is required for pulmonary generation of CD8+ cytotoxic T lymphocytes (CTLs) that play a crucial role in the clearance of influenza A virus (IAV). To understand the underlying mechanisms, we determined the effects of Runx3 knockout (KO) on CD8+ T cell local expansion and phenotypes using an inducible general Runx3 KO mouse model. We found that in contrast to the lungs, Runx3 general KO promoted enlargement of lung-draining mediastinal lymph node (mLN) and enhanced CD8+ and CD4+ T cell expansion during H1N1 IAV infection. We further found that Runx3 deficiency greatly inhibited core 2 O-glycosylation of selectin ligand CD43 on activated CD8+ T cells but minimally affected the cell surface expression of CD43, activation markers (CD44 and CD69) and cell adhesion molecules (CD11a and CD54). Runx3 KO had a minor effect on lung effector CD8+ T cell death by IAV infection. Our findings indicate that Runx3 differently regulates CD8+ T cell expansion in mLNs and lungs by H1N1 IAV infection. Runx3 is required for CD43 core 2 O-glycosylation on activated CD8+ T cells, and the involved Runx3 signal pathway may mediate CD8+ T cell phenotype for pulmonary generation of CTLs.
Collapse
Affiliation(s)
| | | | | | - Hua Tang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA; (Q.H.); (S.K.); (S.S.)
| |
Collapse
|
5
|
Schneider M, Allman A, Maillard I. Regulation of immune cell development, differentiation and function by stromal Notch ligands. Curr Opin Cell Biol 2023; 85:102256. [PMID: 37806295 PMCID: PMC10873072 DOI: 10.1016/j.ceb.2023.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
In multicellular organisms, cell-to-cell communication is critical for the regulation of tissue organization. Notch signaling relies on direct interactions between Notch receptors on signal-receiving cells and Notch ligands on adjacent cells. Notch evolved to mediate local cellular interactions that are responsive to spatial cues via dosage-sensitive short-lived signals. Immune cells utilize these unique properties of Notch signaling to direct their development, differentiation, and function. In this review, we explore how immune cells interact through Notch receptors with stromal cells in specialized niches of lymphohematopoietic organs that express Notch-activating ligands. We emphasize factors that control these interactions and focus on how Notch signals communicate spatial, quantitative, and temporal information to program the function of signal-receiving cells in the immune system.
Collapse
Affiliation(s)
- Michael Schneider
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Oladipo OO, Adedeji BO, Adedokun SP, Gbadamosi JA, Salaudeen M. Regulation of effector and memory CD8 + T cell differentiation: a focus on orphan nuclear receptor NR4A family, transcription factor, and metabolism. Immunol Res 2022; 71:314-327. [PMID: 36571657 DOI: 10.1007/s12026-022-09353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
CD8 + T cells undergo rapid expansion followed by contraction and the development of memory cells after their receptors are activated. The development of immunological memory following acute infection is a complex phenomenon that involves several molecular, transcriptional, and metabolic mechanisms. As memory cells confer long-term protection and respond to secondary stimulation with strong effector function, understanding the mechanisms that influence their development is of great importance. Orphan nuclear receptors, NR4As, are immediate early genes that function as transcription factors and bind with the NBRE region of chromatin. Interestingly, the NBRE region of activated CD8 + T cells is highly accessible at the same time the expression of NR4As is induced. This suggests a potential role of NR4As in the early events post T cell activation that determines cell fate decisions. In this review, we will discuss the influence of NR4As on the differentiation of CD8 + T cells during the immune response to acute infection and the development of immunological memory. We will also discuss the signals, transcription factors, and metabolic mechanisms that control cell fate decisions. HIGHLIGHTS: Memory CD8 + T cells are an essential subset that mediates long-term protection after pathogen encounters. Some specific environmental cues, transcriptional factors, and metabolic pathways regulate the differentiation of CD8 + T cells and the development of memory cells. Orphan nuclear receptor NR4As are early genes that act as transcription factors and are highly expressed post-T cell receptor activation. NR4As influence the effector function and differentiation of CD8 + T cells and also control the development of immunological memory following acute infection.
Collapse
Affiliation(s)
- Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Bernard O Adedeji
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Samson P Adedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Jibriil A Gbadamosi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Marzuq Salaudeen
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
7
|
Wilkens AB, Fulton EC, Pont MJ, Cole GO, Leung I, Stull SM, Hart MR, Bernstein ID, Furlan SN, Riddell SR. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood 2022; 140:2261-2275. [PMID: 35605191 PMCID: PMC9837446 DOI: 10.1182/blood.2021015144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/09/2022] [Indexed: 01/21/2023] Open
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CAR-T) effectively treats refractory hematologic malignancies in a subset of patients but can be limited by poor T-cell expansion and persistence in vivo. Less differentiated T-cell states correlate with the capacity of CAR-T to proliferate and mediate antitumor responses, and interventions that limit tumor-specific T-cell differentiation during ex vivo manufacturing enhance efficacy. NOTCH signaling is involved in fate decisions across diverse cell lineages and in memory CD8+ T cells was reported to upregulate the transcription factor FOXM1, attenuate differentiation, and enhance proliferation and antitumor efficacy in vivo. Here, we used a cell-free culture system to provide an agonistic NOTCH1 signal during naïve CD4+ T-cell activation and CAR-T production and studied the effects on differentiation, transcription factor expression, cytokine production, and responses to tumor. NOTCH1 agonism efficiently induced a stem cell memory phenotype in CAR-T derived from naïve but not memory CD4+ T cells and upregulated expression of AhR and c-MAF, driving heightened production of interleukin-22, interleukin-10, and granzyme B. NOTCH1-agonized CD4+ CAR-T demonstrated enhanced antigen responsiveness and proliferated to strikingly higher frequencies in mice bearing human lymphoma xenografts. NOTCH1-agonized CD4+ CAR-T also provided superior help to cotransferred CD8+ CAR-T, driving improved expansion and curative antitumor responses in vivo at low CAR-T doses. Our data expand the mechanisms by which NOTCH can shape CD4+ T-cell behavior and demonstrate that activating NOTCH1 signaling during genetic modification ex vivo is a potential strategy for enhancing the function of T cells engineered with tumor-targeting receptors.
Collapse
Affiliation(s)
- Alec B. Wilkens
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| | - Elena C. Fulton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Margot J. Pont
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gabriel O. Cole
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Isabel Leung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sylvia M. Stull
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Matthew R. Hart
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Irwin D. Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Jiang N, Hu Y, Wang M, Zhao Z, Li M. The Notch Signaling Pathway Contributes to Angiogenesis and Tumor Immunity in Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022; 14:291-309. [PMID: 36193236 PMCID: PMC9526507 DOI: 10.2147/bctt.s376873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Breast cancer in women is the first leading tumor in terms of incidence worldwide. Some subtypes of BC lack distinct molecular targets and exhibit therapeutic resistance; these patients have a poor prognosis. Thus, the search for new molecular targets is an ongoing challenge for BC therapy. The Notch signaling pathway is found in both vertebrates and invertebrates, and it is a highly conserved in the evolution of the species, controlling cellular fates such as death, proliferation, and differentiation. Numerous studies have shown that improper activation of Notch signaling may lead to excessive cell proliferation and cancer, with tumor-promoting and tumor-suppressive effects in various carcinomas. Thus, inhibitors of Notch signaling are actively being investigated for the treatment of various tumors. The role of Notch signaling in BC has been widely studied in recent years. There is a growing body of evidence suggesting that Notch signaling has a pro-oncogenic role in BC, and the tumor-promoting effect is largely a result of the diverse nature of tumor immunity. Immunological abnormality is also a factor involved in the pathogenesis of BC, suggesting that Notch signaling could be a target for BC immunotherapies. Furthermore, angiogenesis is essential for BC growth and metastasis, and the Notch signaling pathway has been implicated in angiogenesis, so studying the role of Notch signaling in BC angiogenesis will provide new prospects for the treatment of BC. We summarize the potential roles of the current Notch signaling pathway and its inhibitors in BC angiogenesis and the immune response in this review and describe the pharmacological targets of Notch signaling in BC, which may serve as a theoretical foundation for future research into exploring this pathway for novel BC therapies.
Collapse
Affiliation(s)
- Nina Jiang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ye Hu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Meiling Wang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zuowei Zhao
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Correspondence: Zuowei Zhao, Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Man Li, Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| |
Collapse
|
9
|
Cheng S, Li F, Qin H, Ping Y, Zhao Q, Gao Q, Song M, Qu J, Shan J, Zhang K, Zhang Z, Lian J, Liu S, Wang L, Zhang Y. Long Noncoding RNA lncNDEPD1 Regulates PD-1 Expression via miR-3619-5p in CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1483-1492. [PMID: 35246494 DOI: 10.4049/jimmunol.2100602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Therapies targeting programmed cell death protein 1 (PD-1) have gained great success in patients with multiple types of cancer. The regulatory mechanisms underlying PD-1 expression have been extensively explored. However, the impact of long noncoding RNAs on PD-1 expression remains elusive. In this study, we identified the Notch1/lncNDEPD1 axis, which plays a critical role in PD-1 expression in human CD8+ T cells. RNA sequencing and quantitative reverse transcription PCR data showed that lncNDEPD1 was upregulated in activated T cells, especially in PD-1high subsets. Fluorescence in situ hybridization demonstrated that lncNDEPD1 was localized in the cytoplasm. A mechanistic study showed that lncNDEPD1 could bind with miR-3619-5p and PDCD1 mRNA to prevent PDCD1 mRNA degradation and then upregulate PD-1 expression. A chromatin immunoprecipitation assay showed that Notch1 directly binds to the promoter of lncNDEPD1 instead of PDCD1 Furthermore, chimeric Ag receptor T cells expressing lncNDEPD1-specific short hairpin RNAs were generated. Chimeric Ag receptor T cells with decreased lncNDEPD1 expression showed enhanced tumoricidal effects when PD-L1 was present. Our work uncovered a new regulatory mechanism of PD-1 expression and thus provided a potential target to decrease PD-1 without affecting T cell function.
Collapse
Affiliation(s)
- Shaoyan Cheng
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Haiming Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Qitai Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Qun Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Mengjia Song
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jiao Qu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jiqi Shan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Kai Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China;
| | - Yi Zhang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China;
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan Province, People's Republic of China; and
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
10
|
Lombard-Vadnais F, Collin R, Daudelin JF, Chabot-Roy G, Labrecque N, Lesage S. The Idd2 Locus Confers Prominent Resistance to Autoimmune Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:898-909. [PMID: 35039332 DOI: 10.4049/jimmunol.2100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Type 1 diabetes is an autoimmune disease characterized by pancreatic β cell destruction. It is a complex genetic trait driven by >30 genetic loci with parallels between humans and mice. The NOD mouse spontaneously develops autoimmune diabetes and is widely used to identify insulin-dependent diabetes (Idd) genetic loci linked to diabetes susceptibility. Although many Idd loci have been extensively studied, the impact of the Idd2 locus on autoimmune diabetes susceptibility remains to be defined. To address this, we generated a NOD congenic mouse bearing B10 resistance alleles on chromosome 9 in a locus coinciding with part of the Idd2 locus and found that NOD.B10-Idd2 congenic mice are highly resistant to diabetes. Bone marrow chimera and adoptive transfer experiments showed that the B10 protective alleles provide resistance in an immune cell-intrinsic manner. Although no T cell-intrinsic differences between NOD and NOD.B10-Idd2 mice were observed, we found that the Idd2 resistance alleles limit the formation of spontaneous and induced germinal centers. Comparison of B cell and dendritic cell transcriptome profiles from NOD and NOD.B10-Idd2 mice reveal that resistance alleles at the Idd2 locus affect the expression of specific MHC molecules, a result confirmed by flow cytometry. Altogether, these data demonstrate that resistance alleles at the Idd2 locus impair germinal center formation and influence MHC expression, both of which likely contribute to reduced diabetes incidence.
Collapse
Affiliation(s)
- Félix Lombard-Vadnais
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Roxanne Collin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Jean-François Daudelin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Geneviève Chabot-Roy
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
11
|
Early programming of CD8 + T cell response by the orphan nuclear receptor NR4A3. Proc Natl Acad Sci U S A 2020; 117:24392-24402. [PMID: 32913051 DOI: 10.1073/pnas.2007224117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Enhancing long-term persistence while simultaneously potentiating the effector response of CD8+ T cells has been a long-standing goal in immunology to produce better vaccines and adoptive cell therapy products. NR4A3 is a transcription factor of the orphan nuclear receptor family. While it is rapidly and transiently expressed following T cell activation, its role in the early stages of T cell response is unknown. We show that NR4A3-deficient murine CD8+ T cells differentiate preferentially into memory precursor and central memory cells, but also produce more cytokines. This is explained by an early influence of NR4A3 deficiency on the memory transcriptional program and on accessibility of chromatin regions with motifs for bZIP transcription factors, which impacts the transcription of Fos/Jun target genes. Our results reveal a unique and early role for NR4A3 in programming CD8+ T cell differentiation and function. Manipulating NR4A3 activity may represent a promising strategy to improve vaccination and T cell therapy.
Collapse
|
12
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Perkey E, Maurice De Sousa D, Carrington L, Chung J, Dils A, Granadier D, Koch U, Radtke F, Ludewig B, Blazar BR, Siebel CW, Brennan TV, Nolz J, Labrecque N, Maillard I. GCNT1-Mediated O-Glycosylation of the Sialomucin CD43 Is a Sensitive Indicator of Notch Signaling in Activated T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1674-1688. [PMID: 32060138 DOI: 10.4049/jimmunol.1901194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Notch signaling is emerging as a critical regulator of T cell activation and function. However, there is no reliable cell surface indicator of Notch signaling across activated T cell subsets. In this study, we show that Notch signals induce upregulated expression of the Gcnt1 glycosyltransferase gene in T cells mediating graft-versus-host disease after allogeneic bone marrow transplantation in mice. To determine if Gcnt1-mediated O-glycosylation could be used as a Notch signaling reporter, we quantified the core-2 O-glycoform of CD43 in multiple T cell subsets during graft-versus-host disease. Pharmacological blockade of Delta-like Notch ligands abrogated core-2 O-glycosylation in a dose-dependent manner after allogeneic bone marrow transplantation, both in donor-derived CD4+ and CD8+ effector T cells and in Foxp3+ regulatory T cells. CD43 core-2 O-glycosylation depended on cell-intrinsic canonical Notch signals and identified CD4+ and CD8+ T cells with high cytokine-producing ability. Gcnt1-deficient T cells still drove lethal alloreactivity, showing that core-2 O-glycosylation predicted, but did not cause, Notch-dependent T cell pathogenicity. Using core-2 O-glycosylation as a marker of Notch signaling, we identified Ccl19-Cre+ fibroblastic stromal cells as critical sources of Delta-like ligands in graft-versus-host responses irrespective of conditioning intensity. Core-2 O-glycosylation also reported Notch signaling in CD8+ T cell responses to dendritic cell immunization, Listeria infection, and viral infection. Thus, we uncovered a role for Notch in controlling core-2 O-glycosylation and identified a cell surface marker to quantify Notch signals in multiple immunological contexts. Our findings will help refine our understanding of the regulation, cellular source, and timing of Notch signals in T cell immunity.
Collapse
Affiliation(s)
- Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Dave Maurice De Sousa
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Léolène Carrington
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Jooho Chung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alexander Dils
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - David Granadier
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | | | | | - Jeffrey Nolz
- Oregon Health and Sciences University, Portland, OR 97239; and
| | - Nathalie Labrecque
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
| |
Collapse
|
14
|
Abstract
The evolutionarily conserved Notch signalling pathway regulates the differentiation and function of mature T lymphocytes with major context-dependent consequences in host defence, autoimmunity and alloimmunity. The emerging effects of Notch signalling in T cell responses build upon a more established role for Notch in T cell development. Here, we provide a critical review of this burgeoning literature to make sense of what has been learned so far and highlight the experimental strategies that have been most useful in gleaning physiologically relevant information. We outline the functional consequences of Notch signalling in mature T cells in addition to key specific Notch ligand–receptor interactions and downstream molecular signalling pathways. Our goal is to help clarify future directions for this expanding body of work and the best approaches to answer important open questions.
Collapse
Affiliation(s)
- Joshua D Brandstadter
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Chung J, Radojcic V, Perkey E, Parnell TJ, Niknafs Y, Jin X, Friedman A, Labrecque N, Blazar BR, Brennan TV, Siebel CW, Maillard I. Early Notch Signals Induce a Pathogenic Molecular Signature during Priming of Alloantigen-Specific Conventional CD4 + T Cells in Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2019; 203:557-568. [PMID: 31182480 DOI: 10.4049/jimmunol.1900192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Graft-versus-host disease (GVHD) is the most serious complication of allogeneic hematopoietic cell transplantation. Notch signals delivered during the first 48 h after transplantation drive proinflammatory cytokine production in conventional T cells (Tconv) and inhibit the expansion of regulatory T cells (Tregs). Short-term Notch inhibition induces long-term GVHD protection. However, it remains unknown whether Notch blockade blunts GVHD through its effects on Tconv, Tregs, or both and what early Notch-regulated molecular events occur in alloantigen-specific T cells. To address these questions, we engineered T cell grafts to achieve selective Notch blockade in Tconv versus Tregs and evaluated their capacity to trigger GVHD in mice. Notch blockade in Tconv was essential for GVHD protection as GVHD severity was similar in the recipients of wild-type Tconv combined with Notch-deprived versus wild-type Tregs. To identify the impact of Notch signaling on the earliest steps of T cell activation in vivo, we established a new acute GVHD model mediated by clonal alloantigen-specific 4C CD4+ Tconv. Notch-deprived 4C T cells had preserved early steps of activation, IL-2 production, proliferation, and Th cell polarization. In contrast, Notch inhibition dampened IFN-γ and IL-17 production, diminished mTORC1 and ERK1/2 activation, and impaired transcription of a subset of Myc-regulated genes. The distinct Notch-regulated signature had minimal overlap with known Notch targets in T cell leukemia and developing T cells, highlighting the specific impact of Notch signaling in mature T cells. Our findings uncover a unique molecular program associated with the pathogenic effects of Notch in T cells at the earliest stages of GVHD.
Collapse
Affiliation(s)
- Jooho Chung
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Vedran Radojcic
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Timothy J Parnell
- Huntsman Cancer Institute Bioinformatic Analysis Shared Resource, University of Utah, Salt Lake City, UT 84112
| | - Yashar Niknafs
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Xi Jin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Nathalie Labrecque
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec H1T 2M4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T IJ4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T IJ4, Canada
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - Todd V Brennan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | | | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; .,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology-Oncology, Department of Internal Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
16
|
De Sousa DM, Duval F, Daudelin JF, Boulet S, Labrecque N. The Notch signaling pathway controls CD8+ T cell differentiation independently of the classical effector HES1. PLoS One 2019; 14:e0215012. [PMID: 30951556 PMCID: PMC6450647 DOI: 10.1371/journal.pone.0215012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/25/2019] [Indexed: 01/14/2023] Open
Abstract
During CD8+ T cell response, Notch signaling controls short-lived-effector-cell (SLEC) generation, but the exact mechanisms by which it does so remains unclear. The Notch signaling pathway can act as a key regulator of Akt signaling via direct transcriptional induction of Hes1, which will then repress the transcription of Pten, an inhibitor of Akt signaling. As both Notch and Akt signaling can promote effector CD8+ T cell differentiation, we asked whether Notch signaling influences SLEC differentiation via the HES1-PTEN axis. Here, we demonstrate that HES1 deficiency in murine CD8+ T cells did not impact SLEC differentiation. Moreover, we show that Pten transcriptional repression in effector CD8+ T cells is not mediated by Notch signaling although Akt activation requires Notch signaling. Therefore, HES1 is not an effector of Notch signaling during CD8+ T cell response.
Collapse
Affiliation(s)
- Dave Maurice De Sousa
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Frédéric Duval
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
17
|
Li Q, He X, Yu Q, Wu Y, Du M, Chen J, Peng F, Zhang W, Chen J, Wang Y, Chen H, Wang H, He D, Wang Q. RETRACTED ARTICLE: The Notch signal mediates macrophage polarization by regulating miR-125a/miR-99b expression. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:833-843. [PMID: 30862190 DOI: 10.1080/21691401.2019.1576711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Li
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yuan Wu
- Department of Internal Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Mingyu Du
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jing Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Fanyu Peng
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Zhang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jie Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hanbo Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hairong Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Dan He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Qiang Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, PR China
| |
Collapse
|
18
|
Sun J, Zhao F, Zhang W, Lv J, Lv J, Yin A. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway. J Cell Mol Med 2018; 22:4840-4855. [PMID: 30024097 PMCID: PMC6156290 DOI: 10.1111/jcmm.13747] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
BMSCs are important in replacement therapy of diabetic nephropathy (DN). MiR‐124a exerts effect on the differentiation capability of pancreatic progenitor cells. The objective of this study was to explore the molecular mechanisms, the functions of miR‐124a and bone marrow mesenchymal stem cells (BMSCs) in the treatment of DN. Characterizations of BMSCs were identified using the inverted microscope and flow cytometer. The differentiations of BMSCs were analysed by immunofluorescence assay and DTZ staining. The expression levels of islet cell‐specific transcription factors, apoptosis‐related genes, podocytes‐related genes and Notch signalling components were detected using quantitative real‐time reverse transcription PCR (qRT‐PCR) and Western blot assays. The production of insulin secretion was detected by adopting radioimmunoassay. Cell proliferation and apoptosis abilities were detected by CCK‐8, flow cytometry and TUNEL assays. We found that BMSCs was induced into islet‐like cells and that miR‐124a could promote the BMSCs to differentiate into islet‐like cells. BMSCs in combination with miR‐124a regulated islet cell‐specific transcription factors, apoptosis‐related genes, podocytes‐related genes as well as the activity of Notch signalling pathway. However, BMSCs in combination with miR‐124a relieved renal lesion caused by DN and decreased podocyte apoptosis caused by HG. The protective effect of BMSCs in combination with miR‐124a was closely related to the inactivation of Notch signalling pathway. MSCs in combination with miR‐124a protected kidney tissue from impairment and inhibited nephrocyte apoptosis in DN.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Fei Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Wenjing Zhang
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jia Lv
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jing Lv
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Aiping Yin
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Janghorban M, Xin L, Rosen JM, Zhang XHF. Notch Signaling as a Regulator of the Tumor Immune Response: To Target or Not To Target? Front Immunol 2018; 9:1649. [PMID: 30061899 PMCID: PMC6055003 DOI: 10.3389/fimmu.2018.01649] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
The Notch signaling pathway regulates important cellular processes involved in stem cell maintenance, proliferation, development, survival, and inflammation. These responses to Notch signaling involving both canonical and non-canonical pathways can be spatially and temporally variable and are highly cell-type dependent. Notch signaling can elicit opposite effects in regulating tumorigenicity (tumor-promoting versus tumor-suppressing function) as well as controlling immune cell responses. In various cancer types, Notch signaling elicits a "cancer stem cell (CSC)" phenotype that results in decreased proliferation, but resistance to various therapies, hence potentially contributing to cell dormancy and relapse. CSCs can reshape their niche by releasing paracrine factors and inflammatory cytokines, and the niche in return can support their quiescence and resistance to therapies as well as the immune response. Moreover, Notch signaling is one of the key regulators of hematopoiesis, immune cell differentiation, and inflammation and is implicated in various autoimmune diseases, carcinogenesis (leukemia), and tumor-induced immunosuppression. Notch can control the fate of various T cell types, including Th1, Th2, and the regulatory T cells (Tregs), and myeloid cells including macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSCs). Both MDSCs and Tregs play an important role in supporting tumor cells (and CSCs) and in evading the immune response. In this review, we will discuss how Notch signaling regulates multiple aspects of the tumor-promoting environment by elucidating its role in CSCs, hematopoiesis, normal immune cell differentiation, and subsequently in tumor-supporting immunogenicity.
Collapse
Affiliation(s)
- Mahnaz Janghorban
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xiang H.-F. Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
20
|
Milner JJ, Goldrath AW. Transcriptional programming of tissue-resident memory CD8 + T cells. Curr Opin Immunol 2018; 51:162-169. [PMID: 29621697 PMCID: PMC5943164 DOI: 10.1016/j.coi.2018.03.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/18/2018] [Indexed: 01/28/2023]
Abstract
Tissue-resident memory CD8+ T cells (TRM) are localized in non-lymphoid tissues throughout the body where they mediate long-lived protective immunity at common sites of pathogen exposure. As the signals controlling TRM differentiation are uncovered, it is becoming apparent that the dynamic activities of numerous transcription factors are intricately involved in TRM formation. Here, we highlight known transcriptional regulators of TRM differentiation and discuss how understanding the transcriptional programming of CD8+ T cell residency in non-lymphoid tissues can be leveraged to prevent or treat disease.
Collapse
Affiliation(s)
- J Justin Milner
- Division of Biological Sciences, University of California, San Diego , La Jolla, CA, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego , La Jolla, CA, USA.
| |
Collapse
|
21
|
Bland CL, Byrne-Hoffman CN, Fernandez A, Rellick SL, Deng W, Klinke DJ. Exosomes derived from B16F0 melanoma cells alter the transcriptome of cytotoxic T cells that impacts mitochondrial respiration. FEBS J 2018; 285:1033-1050. [PMID: 29399967 DOI: 10.1111/febs.14396] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 01/26/2018] [Indexed: 01/14/2023]
Abstract
While recent clinical studies demonstrate the promise of cancer immunotherapy, a barrier for broadening the clinical benefit is identifying how tumors locally suppress cytotoxic immunity. As an emerging mode of intercellular communication, exosomes secreted by malignant cells can deliver a complex payload of coding and noncoding RNA to cells within the tumor microenvironment. Here, we quantified the RNA payload within tumor-derived exosomes and the resulting dynamic transcriptomic response to cytotoxic T cells upon exosome delivery to better understand how tumor-derived exosomes can alter immune cell function. Exosomes derived from B16F0 melanoma cells were enriched for a subset of coding and noncoding RNAs that did not reflect the abundance in the parental cell. Upon exosome delivery, RNAseq revealed the dynamic changes in the transcriptome of CTLL2 cytotoxic T cells. In analyzing transiently coexpressed gene clusters, pathway enrichment suggested that the B16F0 exosomal payload altered mitochondrial respiration, which was confirmed independently, and upregulated genes associated with the Notch signaling pathway. Interestingly, exosomal miRNA appeared to have no systematic effect on downregulating target mRNA levels. DATABASES Gene expression data are available in the GEO database under the accession SuperSeries number GSE102951.
Collapse
Affiliation(s)
- Cassidy L Bland
- Department of Chemical and Biomedical Engineering and WVU Cancer Institute, West Virginia University, Morgantown, WV, USA
| | | | - Audry Fernandez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Stephanie L Rellick
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Wentao Deng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - David J Klinke
- Department of Chemical and Biomedical Engineering and WVU Cancer Institute, West Virginia University, Morgantown, WV, USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
22
|
Tsukumo SI, Yasutomo K. Regulation of CD8 + T Cells and Antitumor Immunity by Notch Signaling. Front Immunol 2018; 9:101. [PMID: 29441071 PMCID: PMC5797591 DOI: 10.3389/fimmu.2018.00101] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Cancer immunosurveillance is critical for the elimination of neoplastic cells. In addition, recent advances in immunological checkpoint blockade drugs have revealed the importance of the immune system in cancer treatment. As a component of the immune system, CD8+ T cells have important roles in suppressing tumors. CD8+ T cells can kill tumor cells with cytotoxic molecules, such as granzymes and perforin. IFNγ, which is produced by CD8+ T cells, can increase the expression of MHC class I antigens by tumor cells, thereby rendering them better targets for CD8+ T cells. IFNγ also has crucial functions in enhancing the antitumor abilities of other immune cells. Therefore, it has been hypothesized that antitumor immunity could be improved by modulating the activity of CD8+ T cells. The Notch pathway regulates CD8+ T cells in multiple ways. It directly upregulates mRNA expression of granzyme B and perforin, enhances differentiation toward short-lived effector cells, and maintains memory T cells. Intriguingly, CD8+ T cell-specific Notch2 deletion impairs antitumor immunity, whereas the stimulation of the Notch pathway can increase tumor suppression. In this review, we will summarize the roles of the Notch pathway in CD8+ T cells and discuss issues and implications for its use in antitumor immunity.
Collapse
Affiliation(s)
- Shin-Ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| |
Collapse
|
23
|
Backer RA, Hombrink P, Helbig C, Amsen D. The Fate Choice Between Effector and Memory T Cell Lineages: Asymmetry, Signal Integration, and Feedback to Create Bistability. Adv Immunol 2018; 137:43-82. [DOI: 10.1016/bs.ai.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Abstract
Notch drives critical decisions in a multitude of developmental decisions in many invertebrate and vertebrate organisms including flies, worms, fish, mice and humans. Therefore, it is not surprising that Notch family members also play a key role in cell fate choices in the vertebrate immune system. This review highlights the critical function of Notch in the development of mature T lymphocytes from hematopoietic precursors and describes the role of Notch in mature T cell activation, proliferation and differentiation.
Collapse
|
25
|
Sierra RA, Trillo-Tinoco J, Mohamed E, Yu L, Achyut BR, Arbab A, Bradford JW, Osborne BA, Miele L, Rodriguez PC. Anti-Jagged Immunotherapy Inhibits MDSCs and Overcomes Tumor-Induced Tolerance. Cancer Res 2017; 77:5628-5638. [PMID: 28904063 DOI: 10.1158/0008-5472.can-17-0357] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/17/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are a major obstacle to promising forms of cancer immunotherapy, but tools to broadly limit their immunoregulatory effects remain lacking. In this study, we assessed the therapeutic effect of the humanized anti-Jagged1/2-blocking antibody CTX014 on MDSC-mediated T-cell suppression in tumor-bearing mice. CTX014 decreased tumor growth, affected the accumulation and tolerogenic activity of MDSCs in tumors, and inhibited the expression of immunosuppressive factors arginase I and iNOS. Consequently, anti-Jagged therapy overcame tumor-induced T-cell tolerance, increased the infiltration of reactive CD8+ T cells into tumors, and enhanced the efficacy of T-cell-based immunotherapy. Depletion of MDSC-like cells restored tumor growth in mice treated with anti-Jagged, whereas coinjection of MDSC-like cells from anti-Jagged-treated mice with cancer cells delayed tumor growth. Jagged1/2 was induced in MDSCs by tumor-derived factors via NFkB-p65 signaling, and conditional deletion of NFkB-p65 blocked MDSC function. Collectively, our results offer a preclinical proof of concept for the use of anti-Jagged1/2 to reprogram MDSC-mediated T-cell suppression in tumors, with implications to broadly improve the efficacy of cancer therapy. Cancer Res; 77(20); 5628-38. ©2017 AACR.
Collapse
Affiliation(s)
- Rosa A Sierra
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Eslam Mohamed
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lolie Yu
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | - Ali Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | | | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Lucio Miele
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Paulo C Rodriguez
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
26
|
Neal LM, Qiu Y, Chung J, Xing E, Cho W, Malachowski AN, Sandy-Sloat AR, Osterholzer JJ, Maillard I, Olszewski MA. T Cell-Restricted Notch Signaling Contributes to Pulmonary Th1 and Th2 Immunity during Cryptococcus neoformans Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:643-655. [PMID: 28615417 DOI: 10.4049/jimmunol.1601715] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/17/2017] [Indexed: 12/31/2022]
Abstract
Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen but the cell signaling pathways that drive T cell responses regulating antifungal immunity are incompletely understood. Notch is a key signaling pathway regulating T cell development, and differentiation and functional responses of mature T cells in the periphery. The targeting of Notch signaling within T cells has been proposed as a potential treatment for alloimmune and autoimmune disorders, but it is unknown whether disturbances to T cell immunity may render these patients vulnerable to fungal infections. To elucidate the role of Notch signaling during fungal infections, we infected mice expressing the pan-Notch inhibitor dominant negative mastermind-like within mature T cells with C. neoformans Inhibition of T cell-restricted Notch signaling increased fungal burdens in the lungs and CNS, diminished pulmonary leukocyte recruitment, and simultaneously impaired Th1 and Th2 responses. Pulmonary leukocyte cultures from T cell Notch-deprived mice produced less IFN-γ, IL-5, and IL-13 than wild-type cells. This correlated with lower frequencies of IFN-γ-, IL-5-, and IL-13-producing CD4+ T cells, reduced expression of Th1 and Th2 associated transcription factors, Tbet and GATA3, and reduced production of IFN-γ by CD8+ T cells. In contrast, Th17 responses were largely unaffected by Notch signaling. The changes in T cell responses corresponded with impaired macrophage activation and reduced leukocyte accumulation, leading to diminished fungal control. These results identify Notch signaling as a previously unappreciated regulator of Th1 and Th2 immunity and an important element of antifungal defenses against cryptococcal infection and CNS dissemination.
Collapse
Affiliation(s)
- Lori M Neal
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109.,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Yafeng Qiu
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Jooho Chung
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109
| | - Enze Xing
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Woosung Cho
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | | | | | - John J Osterholzer
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109.,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Michal A Olszewski
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109; .,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| |
Collapse
|
27
|
Abstract
Solid organ and allogeneic hematopoietic cell transplantation have become standard therapeutic interventions that save patient lives and improve quality of life. Our enhanced understanding of transplantation immunobiology has refined clinical management and improved outcomes. However, organ rejection and graft-versus-host disease remain major obstacles to the broader successful application of these therapeutic procedures. Notch signaling regulates multiple aspects of adaptive and innate immunity. Preclinical studies identified Notch signaling as a promising target in autoimmune diseases, as well as after allogeneic hematopoietic cell and solid organ transplantation. Notch was found to be a central regulator of alloreactivity across clinically relevant models of transplantation. Notch inhibition in T cells prevented graft-versus-host disease and organ rejection, establishing organ tolerance by skewing CD4 T helper polarization away from a proinflammatory response toward suppressive regulatory T cells. Notch ligand blockade also dampened alloantibody deposition and prevented chronic rejection through humoral mechanisms. Toxicities of systemic Notch blockade were observed with γ-secretase inhibitors in preclinical and early clinical trials across different indications, but they did not arise upon preclinical targeting of Delta-like Notch ligands, a strategy sufficient to confer full benefits of Notch ablation in T cell alloimmunity. Because multiple clinical grade reagents have been developed to target individual Notch ligands and receptors, the benefits of Notch blockade in transplantation are calling for translation of preclinical findings into human transplantation medicine.
Collapse
|
28
|
Chung J, Ebens CL, Perkey E, Radojcic V, Koch U, Scarpellino L, Tong A, Allen F, Wood S, Feng J, Friedman A, Granadier D, Tran IT, Chai Q, Onder L, Yan M, Reddy P, Blazar BR, Huang AY, Brennan TV, Bishop DK, Ludewig B, Siebel CW, Radtke F, Luther SA, Maillard I. Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands. J Clin Invest 2017; 127:1574-1588. [PMID: 28319044 PMCID: PMC5373885 DOI: 10.1172/jci89535] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity.
Collapse
Affiliation(s)
- Jooho Chung
- Graduate Program in Cellular and Molecular Biology
- Life Sciences Institute, and
| | - Christen L. Ebens
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology
- Life Sciences Institute, and
| | - Vedran Radojcic
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Alexander Tong
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Frederick Allen
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sherri Wood
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiane Feng
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Qian Chai
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Minhong Yan
- Genentech, South San Francisco, California, USA
| | - Pavan Reddy
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alex Y. Huang
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Todd V. Brennan
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - D. Keith Bishop
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ivan Maillard
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Amsen D. T cells take directions from supporting cast in graft-versus-host disease. J Clin Invest 2017; 127:1215-1217. [PMID: 28319046 DOI: 10.1172/jci93552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) remains the only treatment option for several severe hematological malignancies. The development of graft-versus-host disease (GVHD) is a common complication of the procedure and results when donor T cells become activated against recipient-specific antigens. The factors that drive the alloreactive T cell response are not completely understood. In this issue of the JCI, Chung and colleagues present evidence that stromal cells within lymphoid tissue express the Notch ligands Delta-like 1/4 (DLL1 and DLL4), which in turn directly activate T cells. Importantly, inhibition of DLL1/DLL4-mediated Notch signaling in murine HSCT models dramatically reduced GVHD and improved graft survival.
Collapse
|
30
|
Murakami N, Maillard I, Riella LV. Notch Signaling and Immune Regulation in Alloimmunity. CURRENT TRANSPLANTATION REPORTS 2016; 3:294-302. [PMID: 29977738 DOI: 10.1007/s40472-016-0126-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Notch signaling plays a pivotal role in the differentiation and fate determination of T cells, B cells, dendritic cells (DCs) and innate lymphoid cells (ILCs). Recent gene-targeting and antibody approaches advanced our knowledge of the importance of Notch signaling in fine-tuning the peripheral immune response. Here we review current knowledge of the Notch pathway, focusing on solid organ transplant and graft-versus-host disease preclinical models, and discuss the potential of targeting Notch to suppress the immune response and improve transplant outcomes.
Collapse
Affiliation(s)
- Naoka Murakami
- Transplantation Research Center, Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Ivan Maillard
- Life Sciences Institute and Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Leonardo V Riella
- Transplantation Research Center, Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Chung J, Riella LV, Maillard I. Targeting the Notch Pathway to Prevent Rejection. Am J Transplant 2016; 16:3079-3085. [PMID: 27037759 PMCID: PMC7017453 DOI: 10.1111/ajt.13816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 01/25/2023]
Abstract
Immune rejection is mediated by a complex interplay of cellular and humoral mechanisms. Current therapeutic strategies, which rely on global immunosuppression, can result in serious complications and are not completely effective. Notch signaling is a cell-to-cell communication pathway that plays an important role during T cell development and in the regulation of peripheral immune responses. Initial work, performed mainly through gain-of-function approaches, paradoxically identified Notch as an inducer of tolerance; however, recent studies using loss-of-function approaches in mouse models of transplant rejection and graft-versus-host disease have clarified an important role for Notch as a central mediator of T cell alloreactivity. Short-term inhibition of individual Notch ligands in the peritransplant period had long-lasting protective effects. In a vascularized heart allograft model, blockade of Delta-like Notch ligands dampened both cellular and humoral rejection. In this minireview, we summarize current knowledge about the role of Notch signaling during allograft rejection and provide an overarching mechanism through which Notch acts to promote T cell pathogenicity and allograft damage. We propose that targeting elements of the Notch pathway could provide a new therapeutic approach to prevent allograft rejection.
Collapse
Affiliation(s)
- J. Chung
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI,Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - L. V. Riella
- Schuster Transplantation Research Center, Harvard Medical School, Boston, MA,Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - I. Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI,Corresponding author: Ivan Maillard,
| |
Collapse
|
32
|
DLL4 + dendritic cells: Key regulators of Notch Signaling in effector T cell responses. Pharmacol Res 2016; 113:449-457. [PMID: 27639599 DOI: 10.1016/j.phrs.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DCs) are critical regulators of adaptive immune responses. DCs can elicit primary T cell responses at low DC:T cell ratios through their expression of high levels of antigen-presenting molecules and costimulatory molecules. DCs are important for induction of functionally diverse T cell subsets such as CD4+ T helper (Th)1 and Th17 cells and effector CD8+ T cells able to reside in epithelial tissues. Recent studies begin illuminating the underlying mechanism by which DCs regulate specialized T cell subsets. DCs are composed of subsets that differ in their phenotype, localization and function. DCs expressing high levels of DLL4 (DLL4+ DCs), which is a member of Notch ligand family, are newly discovered cells that have greater ability than DLL4- DCs to promote the generation of Th1 and Th17 CD4+ T cells. DLL4 derived from DLL4+ DCs is also important for promoting the differentiation and expansion of effector CD8+ T cells. Experimental studies have demonstrated that selective deletion of DLL4 in DCs causes impaired antitumor immunity. In contrast, blocking DLL4 leads to dramatic reduction of inflammatory T cell responses and their-mediated tissue damage. We will discuss emerging functional specialization within the DLL4+ DC compartment, DLL4+ DC biology and the impact of pharmacological modulation of DLL4 to control inflammatory disorders.
Collapse
|
33
|
Mayya V, Dustin ML. What Scales the T Cell Response? Trends Immunol 2016; 37:513-522. [PMID: 27364960 DOI: 10.1016/j.it.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 01/14/2023]
Abstract
T cells are known to scale their clonal expansion and effector cytokine response according to the dose and strength of antigenic signal so as to balance their role of affecting protection with the intertwined and immunologically driven tissue damage. How T cells achieve this is now beginning to be understood. We underscore temporal integration of digital T cell receptor (TCR) signaling as the basis for achieving scaled response by means of accumulating crucial mediators over time. We also discuss the role of temporally integrated crosstalk between TCR and IL2 signaling in mediating a scaled, coherent, collective response by T cells. Finally, we highlight numerous known and putative regulatory interactions in the transcriptional program that are expected to quantitatively scale the T cell response, and also offer new mechanisms to hitherto unexplained observations.
Collapse
Affiliation(s)
- Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK; Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
34
|
|
35
|
Abstract
PURPOSE OF REVIEW The Notch signaling pathway is known to play a pivotal role in T- and B-cell development and fate, presenting it as an attractive therapeutic target in alloimmunity. This review provides an overview of the mechanisms of Notch signaling, focusing on new insights into its diverse functions in T-cell activation, differentiation and memory subset formation, and the consequences thereof in transplantation. RECENT FINDINGS Recent evidence has shown that while not critical for early antigen-specific CD4 T-cell activation, Notch signaling regulates the survival of memory CD4 T cells via control of glycolytic metabolism; in contrast, Notch signaling is critical for the generation of short-lived CD8 effector T cells, but not memory CD8 cells. Transient, selective inhibition of various Notch receptors and ligands in models of solid organ transplantation has been shown to successfully modulate the alloimmune response, affecting the balance between effector and regulatory cells, with particular influence on the natural regulatory T-cell population. SUMMARY These studies reveal diverse roles for individual Notch receptors and ligands in peripheral immunity and indicate that selective targeting of the Notch pathway is a promising, novel approach for immune modulation in transplantation; the advent of therapeutic human antibodies to neutralize both the Notch ligands and the individual Notch receptors suggests that this approach could be efficiently developed.
Collapse
|
36
|
Xie L, Lin W, Dai K. Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.3.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Lin W, Dai K, Xie L. Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.4.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Amsen D, Helbig C, Backer RA. Notch in T Cell Differentiation: All Things Considered. Trends Immunol 2015; 36:802-814. [PMID: 26617322 DOI: 10.1016/j.it.2015.10.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/24/2022]
Abstract
Differentiation of naïve T cells into effector cells is required for optimal protection against different classes of microbial pathogen and for the development of immune memory. Recent findings have revealed important roles for the Notch signaling pathway in T cell differentiation into all known effector subsets, raising the question of how this pathway controls such diverse differentiation programs. Studies in preclinical models support the therapeutic potential of manipulating the Notch pathway to alleviate immune pathology, highlighting the importance of understanding the mechanisms through which Notch regulates T cell differentiation and function. We review these findings here, and outline both unifying principles involved in Notch-mediated T cell fate decisions and cell type- and context-specific differences that may present the most suitable points for therapeutic intervention.
Collapse
Affiliation(s)
- Derk Amsen
- Department of Hematopoiesis, Sanquin and Landsteiner Laboratory at the CLB, Plesmanlaan125, 1066CX, Amsterdam, the Netherlands.
| | - Christina Helbig
- Department of Hematopoiesis, Sanquin and Landsteiner Laboratory at the CLB, Plesmanlaan125, 1066CX, Amsterdam, the Netherlands
| | - Ronald A Backer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
39
|
Zeng C, Xing R, Liu J, Xing F. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis. Apoptosis 2015; 21:1-12. [DOI: 10.1007/s10495-015-1188-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|