1
|
Yang X, Zhu X, Sheng J, Fu Y, Nie D, You X, Chen Y, Yang X, Ling Q, Zhang H, Li X, Hu S. RNF213 promotes Treg cell differentiation by facilitating K63-linked ubiquitination and nuclear translocation of FOXO1. Nat Commun 2024; 15:5961. [PMID: 39013878 PMCID: PMC11252262 DOI: 10.1038/s41467-024-50392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-β and exerts a crucial role in the therapeutic efficacy of IFN-β for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.
Collapse
MESH Headings
- Ubiquitination
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Differentiation
- Animals
- Forkhead Box Protein O1/metabolism
- Forkhead Box Protein O1/genetics
- Mice
- Humans
- Interferon-beta/metabolism
- Mice, Inbred C57BL
- Cell Nucleus/metabolism
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/genetics
- Multiple Sclerosis/pathology
- Active Transport, Cell Nucleus
- Female
- Mice, Knockout
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- HEK293 Cells
Collapse
Affiliation(s)
- Xiaofan Yang
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaotong Zhu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junli Sheng
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuling Fu
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Dingnai Nie
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong You
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yitian Chen
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Yang
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Qiao Ling
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Huili Zhang
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
| | - Xiaomin Li
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Shengfeng Hu
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Hu H, Li H, Li R, Liu P, Liu H. Re-establishing immune tolerance in multiple sclerosis: focusing on novel mechanisms of mesenchymal stem cell regulation of Th17/Treg balance. J Transl Med 2024; 22:663. [PMID: 39010157 PMCID: PMC11251255 DOI: 10.1186/s12967-024-05450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.
Collapse
Affiliation(s)
- Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
3
|
Gao C, Liu M, Xin Y, Zeng Y, Yang H, Fan X, Zhao C, Zhang B, Zhang L, Li JJ, Zhao M, Wang Z, Lu Q. Immunostimulatory effects of Toll-like receptor ligands as adjuvants in establishing a novel mouse model for pemphigus vulgaris. Clin Transl Med 2024; 14:e1765. [PMID: 39031979 PMCID: PMC11259602 DOI: 10.1002/ctm2.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The meticulous selection of appropriate vaccine adjuvants is crucial for optimizing immune responses. Traditionally, pemphigus vulgaris (PV), an autoimmune disorder, has been modelled using complete Freund's adjuvant (CFA). In this study, we aimed to discern potential variations in immune responses elicited by Toll-like receptor (TLR) ligands as compared to CFA. METHODS A comprehensive investigation was conducted, comparing the effects of these adjuvants in conjunction with ovalbumin or desmoglein-3. Flow cytometry was employed to analyse distinct cell subsets, while enzyme-linked immunosorbent assay quantified antigen-specific antibodies and cytokine levels. Histological examination of harvested skin tissues and transcriptome analysis of skin lesions were performed to identify differentially expressed genes. RESULTS TLR ligands demonstrated efficacy in inducing PV-like symptoms in wild-type mice, in contrast to CFA. This underscored the substantial impact of the adjuvant on self-antigen tolerance. Furthermore, we proposed an enhanced method for establishing a PV model through adoptive transfer, substituting CFA with TLR ligands. Our results revealed that in contrast to the perception that CFA being the most potent immunopotentiator reported, CFA promoted regulatory T cells (Treg), follicular regulatory T cells and IL-10-producing neutrophils, whereas TLR ligands downregulated CCL17 and IL-10. This suggested potential implications for the recruitment and activation of Treg subsets. While B cell and CD8+ T cell responses exhibited similarity, CFA induced less activation in dendritic cell subsets. A novel mouse model of PV and systemic comparison of immunostimulatory effects of adjuvants were provided by this study. CONCLUSIONS The systematic comparison of CFA and TLR ligands shed light on the distinctive properties of these adjuvants, presenting innovative mouse models for the investigation of pemphigus. This study significantly contributes to adjuvant research and advances our understanding of PV pathogenesis. KEY POINTS/HIGHLIGHTS Immunization with desmoglein 3 and Toll-like receptor (TLR) ligands effectively induces pemphigus symptoms in wild-type mice, whereas complete Freund's adjuvant (CFA) fails. TLR ligands heightened the autoreactivity of donor cells in the adoptive transfer pemphigus model. CFA promoted regulatory T cells and IL-10-producing neutrophils, whereas TLR ligands downregulated CCL17 and IL-10, leading to more effective immune responses.
Collapse
Affiliation(s)
- Changxing Gao
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Mei Liu
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Yue Xin
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Yong Zeng
- Department of DermatologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Hui Yang
- Drum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Xinyu Fan
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Cheng Zhao
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Bo Zhang
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Lingzhi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesBeijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyDepartment of PharmacologyInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing J. Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesBeijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyDepartment of PharmacologyInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Zijun Wang
- Department of DermatologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Laboratory of Molecular ImmunologyThe Rockefeller UniversityNew York CityNew YorkUSA
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| |
Collapse
|
4
|
Masuta Y, Minaga K, Otsuka Y, Okai N, Hara A, Masaki S, Nagai T, Honjo H, Kudo M, Watanabe T. Cytokine and chemokine profiles in ulcerative colitis relapse after coronavirus disease 2019 vaccination. J Clin Biochem Nutr 2024; 74:127-135. [PMID: 38510687 PMCID: PMC10948343 DOI: 10.3164/jcbn.23-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 03/22/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines are highly effective; however, vaccine-related adverse events, including autoimmunity, have been reported. Case reports describing relapse or new-onset of ulcerative colitis (UC) after COVID-19 mRNA vaccination are available. However, the molecular mechanisms underlying the development of colonic inflammation associated with COVID-19 mRNA vaccination are poorly understood. Furthermore, it is unclear whether the relapse of UC after COVID-19 vaccination is driven by unique cytokine responses that differ from those of UC not associated with vaccination. mRNAs derived from COVID-19 vaccines are potent inducers of type I IFN response. We encountered three cases of UC relapse after COVID-19 vaccination. mRNA expressions of IFN-α, IFN-β, IL-1β, and IL-12/23p40 showed higher tendency in the colonic mucosa of patients with UC associated with vaccination compared with those not associated with vaccination. In contrast, the expressions of C-X-C motif chemokine ligand 9 (CXCL9) and CXCL10 were comparable. Immunofluorescence analyses also showed higher expression of IFN-α in the colonic mucosa of patients with UC associated with COVID-19 vaccination than in those not associated with vaccination. Taken together, these data suggest that the colonic mucosa of patients with UC who relapsed after COVID-19 vaccination was characterized by enhanced type I IFN responses.
Collapse
Affiliation(s)
- Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Natsuki Okai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Sho Masaki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomoyuki Nagai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
5
|
Amoriello R, Memo C, Ballerini L, Ballerini C. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 2024; 17:4. [PMID: 38263055 PMCID: PMC10807071 DOI: 10.1186/s13041-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.
Collapse
Affiliation(s)
- Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Christian Memo
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Laura Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Clara Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
6
|
Qi H, Yin YS, Yin ZY, Li X, Shuai JW. Mitochondrial outer membrane permeabilization and inner membrane permeabilization in regulating apoptosis and inflammation. J Theor Biol 2023; 571:111558. [PMID: 37327862 DOI: 10.1016/j.jtbi.2023.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Recent studies delineate an intimate crosstalk between apoptosis and inflammation. However, the dynamic mechanism linking them by mitochondrial membrane permeabilization remains elusive. Here, we construct a mathematical model consisting of four functional modules. Bifurcation analysis reveals that bistability stems from Bcl-2 family member interaction and time series shows that the time difference between Cyt c and mtDNA release is around 30 min, which are consistent with previous works. The model predicts that Bax aggregation kinetic determines cells to undergo apoptosis or inflammation, and that modulating the inhibitory effect of caspase 3 on IFN-β production allows the concurrent occurrence of apoptosis and inflammation. This work provides a theoretical framework for exploring the mechanism of mitochondrial membrane permeabilization in controlling cell fate.
Collapse
Affiliation(s)
- Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Yu-Song Yin
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Zhi-Yong Yin
- School of Mathematics and Statistics, Guangxi Normal University, Guilin, China
| | - Xiang Li
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Jian-Wei Shuai
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
7
|
Nickle RA, DeOca KB, Garcia BL, Mannie MD. Soluble CD25 imposes a low-zone IL-2 signaling environment that favors competitive outgrowth of antigen-experienced CD25 high regulatory and memory T cells. Cell Immunol 2023; 384:104664. [PMID: 36642016 PMCID: PMC10257407 DOI: 10.1016/j.cellimm.2023.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/13/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
This study focused on soluble (s)CD25-mediated regulation of IL-2 signaling in murine and human CD4+ T cells. Recombinant sCD25 reversibly sequestered IL-2 to limit acute maximal proliferative responses while preserving IL-2 bioavailability to subsequently maintain low-zone IL-2 signaling during prolonged culture. By inhibiting IL-2 signaling during acute activation, sCD25 suppressed T-cell growth and inhibited IL-2-evoked transmembrane CD25 expression, thereby resulting in lower prevalence of CD25high T cells. By inhibiting IL-2 signaling during quiescent IL-2-mediated growth, sCD25 competed with transmembrane CD25, IL2Rβγ, and IL2Rαβγ receptors for limited pools of IL-2 such that sCD25 exhibited strong or weak inhibitory efficacy in IL-2-stimulated cultures of CD25low or CD25high T cells, respectively. Preferential blocking of IL-2 signaling in CD25low but not CD25high T cells caused competitive enrichment of CD25high memory/effector and regulatory FOXP3+ subsets. In conclusion, sCD25 modulates IL-2 bioavailability to limit CD25 expression during acute activation while enhancing CD25highT-cell dominance during low-zone homeostatic IL-2-mediated expansion, thereby 'flattening' the inflammatory curve over time.
Collapse
Affiliation(s)
- Rebecca A Nickle
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
8
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
9
|
Fueyo-González F, McGinty M, Ningoo M, Anderson L, Cantarelli C, Andrea Angeletti, Demir M, Llaudó I, Purroy C, Marjanovic N, Heja D, Sealfon SC, Heeger PS, Cravedi P, Fribourg M. Interferon-β acts directly on T cells to prolong allograft survival by enhancing regulatory T cell induction through Foxp3 acetylation. Immunity 2022; 55:459-474.e7. [PMID: 35148827 PMCID: PMC8917088 DOI: 10.1016/j.immuni.2022.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 06/18/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Type I interferons (IFNs) are pleiotropic cytokines with potent antiviral properties that also promote protective T cell and humoral immunity. Paradoxically, type I IFNs, including the widely expressed IFNβ, also have immunosuppressive properties, including promoting persistent viral infections and treating T-cell-driven, remitting-relapsing multiple sclerosis. Although associative evidence suggests that IFNβ mediates these immunosuppressive effects by impacting regulatory T (Treg) cells, mechanistic links remain elusive. Here, we found that IFNβ enhanced graft survival in a Treg-cell-dependent murine transplant model. Genetic conditional deletion models revealed that the extended allograft survival was Treg cell-mediated and required IFNβ signaling on T cells. Using an in silico computational model and analysis of human immune cells, we found that IFNβ directly promoted Treg cell induction via STAT1- and P300-dependent Foxp3 acetylation. These findings identify a mechanistic connection between the immunosuppressive effects of IFNβ and Treg cells, with therapeutic implications for transplantation, autoimmunity, and malignancy.
Collapse
Affiliation(s)
- Francisco Fueyo-González
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Mitchell McGinty
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Mehek Ningoo
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lisa Anderson
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Parma, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis, Transplantation, IRCCS Giannina Gaslini, Genoa, Italy
| | - Markus Demir
- Department of Anesthesiology, University of Cologne, Cologne, Germany
| | - Inés Llaudó
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Carolina Purroy
- Department of Nephrology, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Nada Marjanovic
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Heja
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Stuart C Sealfon
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Peter S Heeger
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Miguel Fribourg
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
10
|
Shimizu K, Agata K, Takasugi S, Goto S, Narita Y, Asai T, Magata Y, Oku N. New strategy for MS treatment with autoantigen-modified liposomes and their therapeutic effect. J Control Release 2021; 335:389-397. [PMID: 34033858 DOI: 10.1016/j.jconrel.2021.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
As current treatments for multiple sclerosis (MS) remain chemotherapeutic ones directed toward symptoms, the development of a curative treatment is urgently required. Herein, we show an autoreactive immune cell-targetable approach using autoantigen-modified liposomes for the curative treatment of MS. In these experiments, experimental autoimmune encephalomyelitis (EAE) induced by autoantigenic myelin oligodendrocyte glycoprotein (MOG) peptide was used as a model of primary progressive MS, and MOG-modified liposomes encapsulating doxorubicin (MOG-LipDOX) were used as a therapeutic drug. The results showed that the progression of encephalomyelitis symptoms was significantly suppressed by MOG-LipDOX injection, whereas the other samples failed to show any effect. Additionally, invasion of inflammatory immune cells into the spinal cord and demyelination of neurons were clearly suppressed in the MOG-LipDOX-treated mice. FACS analysis revealed that the number of both MOG-recognizable CD4+ T cells in the spleen was obviously decreased after MOG-LipDOX treatment. Furthermore, the number of effector Th17 cells in the spleen was significantly decreased and that of regulatory Treg cells was concomitantly increased. Finally, we demonstrated that myelin proteolipid protein (PLP)-modified liposomes encapsulating DOX (PLP-LipDOX) also showed the therapeutic effect on relapsing-remitting EAE. These findings indicate that autoantigen-modified liposomal drug produced a highly therapeutic effect on EAE by delivering the encapsulated drug to autoantigen-recognizable CD4+ T cells and thus suppressing autoreactive immune responses. The present study suggests that the use of these autoantigen-modified liposomes promises to be a suitable therapeutic approach for the cure of MS.
Collapse
Affiliation(s)
- Kosuke Shimizu
- Department of Molecular Imaging, Institute of Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan; Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan.
| | - Kazuki Agata
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shohei Takasugi
- Department of Molecular Imaging, Institute of Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan; Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shungo Goto
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yudai Narita
- Department of Molecular Imaging, Institute of Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan; Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Institute of Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan; Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
11
|
Moorman CD, Sohn SJ, Phee H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front Immunol 2021; 12:657768. [PMID: 33854514 PMCID: PMC8039385 DOI: 10.3389/fimmu.2021.657768] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. TNF-α blockade quickly became the "standard of care" for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient's adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.
Collapse
Affiliation(s)
| | | | - Hyewon Phee
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
12
|
Shahi SK, Jensen SN, Murra AC, Tang N, Guo H, Gibson-Corley KN, Zhang J, Karandikar NJ, Murray JA, Mangalam AK. Human Commensal Prevotella histicola Ameliorates Disease as Effectively as Interferon-Beta in the Experimental Autoimmune Encephalomyelitis. Front Immunol 2020; 11:578648. [PMID: 33362764 PMCID: PMC7759500 DOI: 10.3389/fimmu.2020.578648] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota has emerged as an important environmental factor in the pathobiology of multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS). Both genetic and environmental factors have been shown to play an important role in MS. Among genetic factors, the human leukocyte antigen (HLA) class II allele such as HLA-DR2, DR3, DR4, DQ6, and DQ8 show the association with the MS. We have previously used transgenic mice expressing MS susceptible HLA class II allele such as HLA-DR2, DR3, DQ6, and DQ8 to validate significance of HLA alleles in MS. Although environmental factors contribute to 2/3 of MS risk, less is known about them. Gut microbiota is emerging as an imporatnt environmental factor in MS pathogenesis. We and others have shown that MS patients have distinct gut microbiota compared to healthy control (HC) with a lower abundance of Prevotella. Additionally, the abundance of Prevotella increased in patients receiving disease-modifying therapies (DMTs) such as Copaxone and/or Interferon-beta (IFNβ). We have previously identified a specific strain of Prevotella (Prevotella histicola), which can suppress experimental autoimmune encephalomyelitis (EAE) disease in HLA-DR3.DQ8 transgenic mice. Since Interferon-β-1b [IFNβ (Betaseron)] is a major DMTs used in MS patients, we hypothesized that treatment with the combination of P. histicola and IFNβ would have an additive effect on the disease suppression. We observed that treatment with P. histicola suppressed disease as effectively as IFNβ. Surprisingly, the combination of P. histicola and IFNβ was not more effective than either treatment alone. P. histicola alone or in combination with IFNβ increased the frequency and number of CD4+FoxP3+ regulatory T cells in the gut-associated lymphoid tissue (GALT). Treatment with P. histicola alone, IFNβ alone, and in the combination decreased frequency of pro-inflammatory IFN-γ and IL17-producing CD4+ T cells in the CNS. Additionally, P. histicola alone or IFNβ alone or the combination treatments decreased CNS pathology, characterized by reduced microglia and astrocytic activation. In conclusion, our study indicates that the human gut commensal P. histicola can suppress disease as effectively as commonly used MS drug IFNβ and may provide an alternative treatment option for MS patients.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Astrocytes/drug effects
- Astrocytes/immunology
- Astrocytes/metabolism
- Astrocytes/microbiology
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/microbiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Forkhead Transcription Factors/metabolism
- Gastrointestinal Microbiome
- HLA-DQ beta-Chains/genetics
- HLA-DRB1 Chains/genetics
- Humans
- Interferon-beta/pharmacology
- Interferon-gamma/metabolism
- Interleukin-17/metabolism
- Intestines/microbiology
- Lymphoid Tissue/drug effects
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/microbiology
- Male
- Mice, Transgenic
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Microglia/microbiology
- Prevotella/physiology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/microbiology
Collapse
Affiliation(s)
- Shailesh K. Shahi
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Samantha N. Jensen
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Alexandra C. Murra
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Na Tang
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Hui Guo
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | | | - Jian Zhang
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Nitin J. Karandikar
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States
| | - Joseph A. Murray
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
DeOca KB, Moorman CD, Garcia BL, Mannie MD. Low-Zone IL-2 Signaling: Fusion Proteins Containing Linked CD25 and IL-2 Domains Sustain Tolerogenic Vaccination in vivo and Promote Dominance of FOXP3 + Tregs in vitro. Front Immunol 2020; 11:541619. [PMID: 33072087 PMCID: PMC7538601 DOI: 10.3389/fimmu.2020.541619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Low-zone IL-2 signaling is key to understanding how CD4+ CD25high FOXP3+ regulatory T cells (Tregs) exhibit dominance and overgrow conventional effector T cells (Tcons) that typically express lower levels of the IL-2 receptor alpha chain (i.e., CD25). Thus, modalities such as low-dose IL-2 or IL-2/anti-IL-2 antibody complexes have been advanced in the clinic to selectively expand Treg populations as a treatment for chronic inflammatory autoimmune diseases. However, more effective reagents that efficiently lock IL-2 signaling into a low signaling mode are needed to validate and exploit the low-zone IL-2 signaling niche of Tregs. This study focuses on CD25-IL2 and IL2-CD25 fusion proteins (FPs) that were approximately 32 and 320-fold less potent than IL-2. These FPs exhibited transient binding to transmembrane CD25 on human embryonic kidney (HEK) cells, had partially occluded IL-2 binding sites, and formed higher order multimeric conformers that limited the availability of bioactive IL-2. These FPs exhibited broad bell-shaped concentration ranges that favored dominant Treg outgrowth during continuous culture and were used to derive essentially pure long-term Treg monocultures (∼98% Treg purity). FP-induced Tregs had canonical Treg suppressive activity in that these Tregs suppressed antigen-specific proliferative responses of naïve CD4+ T cells. The in vivo administration of CD25-IL2/Alum elicited robust increases in circulating Tregs and selectively augmented CD25 expression on Tregs but not on Tcons. A single injection of a Myelin Oligodendrocyte Glycoprotein (MOG35-55)-specific tolerogenic vaccine elicited high levels of circulating MOG-specific Tregs in vivo that waned after 2–3 weeks, whereas boosting with CD25-IL2/Alum maintained MOG-specific CD25high Tregs throughout the 30-day observation period. However, these FPs did not antagonize free monomeric IL-2 and lacked therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). In conclusion, these data reveal that CD25-IL2 FPs can be used to select essentially pure long-term lines of FOXP3+ CD25high Tregs. This study also shows that CD25-IL2 FPs can be administered in vivo in synergy with tolerogenic vaccination to maintain high circulating levels of antigen-specific Tregs. Because tolerogenic vaccination and Treg-based adoptive immunotherapy are limited by gradual waning of Tregs, these FPs have potential utility in sustaining tolerogenic Treg responses in vivo.
Collapse
Affiliation(s)
- Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
14
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
15
|
Chenna Narendra S, Chalise JP, Biggs S, Kalinke U, Magnusson M. Regulatory T-Cells Mediate IFN-α-Induced Resistance against Antigen-Induced Arthritis. Front Immunol 2018. [PMID: 29515584 PMCID: PMC5826073 DOI: 10.3389/fimmu.2018.00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective CD4+FoxP3+CD25+ regulatory T-cells (Tregs) are important for preventing tissue destruction. Here, we investigate the role of Tregs for protection against experimental arthritis by IFN-α. Methods Arthritis was triggered by intra-articular injection of methylated bovine serum albumin (mBSA) in wild-type mice, Foxp3DTReGFP+/− mice [allowing selective depletion of Tregs by diphtheria toxin (DT)] and CD4-Cre+/− IFNA1R flox/flox mice (devoid of IFNAR signaling in T-cells) earlier immunized with mBSA, with or without treatment with IFN-α or the indoleamine 2,3-dioxygenase (IDO)-metabolite kynurenine. Tregs were depleted in DT-treated Foxp3DTReGFP+/− mice and enumerated by FoxP3 staining. Suppressive capacity of FACS-sorted CD25+highCD4+ Tregs was tested in vivo by adoptive transfer and ex vivo in cocultures with antigen-stimulated CFSE-stained T-responder (CD25−CD4+) cells. IDO was inhibited by 1-methyl tryptophan. Results Both control mice and mice devoid of IFNAR-signaling in T helper cells were protected from arthritis by IFN-α. Depletion of Tregs in the arthritis phase, but not at immunization, abolished the protective effect of IFN-α and kynurenine against arthritis. IFN-α increased the number of Tregs in ex vivo cultures upon antigen recall stimulation but not in naïve cells. IFN-α also increased the suppressive capacity of Tregs against mBSA-induced T-responder cell proliferation ex vivo and against arthritis when adoptively transferred. The increased suppressive activity against proliferation conferred by IFN-α was clearly reduced by in vivo inhibition of IDO at immunization, which also abolished the protective effect of IFN-α against arthritis. Conclusion By activating IDO during antigen sensitization, IFN-α activates Tregs, which prevent arthritis triggered by antigen rechallenge. This is one way by which IFN-α suppresses inflammation.
Collapse
Affiliation(s)
- Sudeep Chenna Narendra
- Division of Rheumatology, Autoimmunity and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Sophie Biggs
- Division of Rheumatology, Autoimmunity and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ulrich Kalinke
- Twincore, Zentrum für Experimentelle und Klinische Infektionsforschung, Hannover, Germany
| | - Mattias Magnusson
- Division of Rheumatology, Autoimmunity and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Wilkinson DS, Ghosh D, Nickle RA, Moorman CD, Mannie MD. Partial CD25 Antagonism Enables Dominance of Antigen-Inducible CD25 high FOXP3 + Regulatory T Cells As a Basis for a Regulatory T Cell-Based Adoptive Immunotherapy. Front Immunol 2017; 8:1782. [PMID: 29312311 PMCID: PMC5735073 DOI: 10.3389/fimmu.2017.01782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/29/2017] [Indexed: 02/02/2023] Open
Abstract
FOXP3+ regulatory T cells (Tregs) represent a promising platform for effective adoptive immunotherapy of chronic inflammatory disease, including autoimmune diseases such as multiple sclerosis. Successful Treg immunotherapy however requires new technologies to enable long-term expansion of stable, antigen-specific FOXP3+ Tregs in cell culture. Antigen-specific activation of naïve T cells in the presence of TGF-β elicits the initial differentiation of the FOXP3+ lineage, but these Treg lines lack phenotypic stability and rapidly transition to a conventional T cell (Tcon) phenotype during in vitro propagation. Because Tregs and Tcons differentially express CD25, we hypothesized that anti-CD25 monoclonal antibodies (mAbs) would only partially block IL-2 signaling in CD25high FOXP3+ Tregs while completely blocking IL-2 responses of CD25low-intermediate Tcons to enable preferential outgrowth of Tregs during in vitro propagation. Indeed, murine TGF-β-induced MOG-specific Treg lines from 2D2 transgenic mice that were maintained in IL-2 with the anti-CD25 PC61 mAb rapidly acquired and indefinitely maintained a FOXP3high phenotype during long-term in vitro propagation (>90% FOXP3+ Tregs), whereas parallel cultures lacking PC61 rapidly lost FOXP3. These results pertained to TGF-β-inducible "iTregs" because Tregs from 2D2-FIG Rag1-/- mice, which lack thymic or natural Tregs, were stabilized by continuous culture in IL-2 and PC61. MOG-specific and polyclonal Tregs upregulated the Treg-associated markers Neuropilin-1 (NRP1) and Helios (IKZF2). Just as PC61 stabilized FOXP3+ Tregs during expansion in IL-2, TGF-β fully stabilized FOXP3+ Tregs during cellular activation in the presence of dendritic cells and antigen/mitogen. Adoptive transfer of blastogenic CD25high FOXP3+ Tregs from MOG35-55-specific 2D2 TCR transgenic mice suppressed experimental autoimmune encephalomyelitis in pretreatment and therapeutic protocols. In conclusion, low IL-2 concentrations coupled with high PC61 concentrations constrained IL-2 signaling to a low-intensity range that enabled dominant stable outgrowth of suppressive CD25high FOXP3+ Tregs. The ability to indefinitely expand stable Treg lines will provide insight into FOXP3+ Treg physiology and will be foundational for Treg-based immunotherapy.
Collapse
Affiliation(s)
- Daniel S Wilkinson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Debjani Ghosh
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Rebecca A Nickle
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
17
|
Palle P, Monaghan KL, Milne SM, Wan ECK. Cytokine Signaling in Multiple Sclerosis and Its Therapeutic Applications. Med Sci (Basel) 2017; 5:medsci5040023. [PMID: 29099039 PMCID: PMC5753652 DOI: 10.3390/medsci5040023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is one of the most common neurological disorders in young adults. The etiology of MS is not known but it is widely accepted that it is autoimmune in nature. Disease onset is believed to be initiated by the activation of CD4+ T cells that target autoantigens of the central nervous system (CNS) and their infiltration into the CNS, followed by the expansion of local and infiltrated peripheral effector myeloid cells that create an inflammatory milieu within the CNS, which ultimately lead to tissue damage and demyelination. Clinical studies have shown that progression of MS correlates with the abnormal expression of certain cytokines. The use of experimental autoimmune encephalomyelitis (EAE) model further delineates the role of these cytokines in neuroinflammation and the therapeutic potential of manipulating their biological activity in vivo. In this review, we will first present an overview on cytokines that may contribute to the pathogenesis of MS or EAE, and provide successful examples and roadblock of translating data obtained from EAE to MS. We will then focus in depth on recent findings that demonstrate the pathological role of granulocyte-macrophage colony-stimulating factor (GM-CSF) in MS and EAE, and briefly discuss the potential of targeting effector myeloid cells as a treatment strategy for MS.
Collapse
Affiliation(s)
- Pushpalatha Palle
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Center for Basic and Translational Stroke Research and the Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | - Kelly L Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Center for Basic and Translational Stroke Research and the Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | - Sarah M Milne
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Center for Basic and Translational Stroke Research and the Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | - Edwin C K Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Center for Basic and Translational Stroke Research and the Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
18
|
Barik S, Ellis JS, Cascio JA, Miller MM, Ukah TK, Cattin-Roy AN, Zaghouani H. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 199:2236-2248. [PMID: 28801358 DOI: 10.4049/jimmunol.1700372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 01/04/2023]
Abstract
IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R-/-) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R+/+) and develop early onset and more severe disease. Moreover, Th17 cells from 13R-/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R+/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Jason S Ellis
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Jason A Cascio
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Mindy M Miller
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Tobechukwu K Ukah
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Alexis N Cattin-Roy
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212; .,Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212; and.,Department of Neurology, University of Missouri School of Medicine, Columbia, MO 65212
| |
Collapse
|
19
|
Mondal S, Rangasamy SB, Ghosh S, Watson RL, Pahan K. Nebulization of RNS60, a Physically-Modified Saline, Attenuates the Adoptive Transfer of Experimental Allergic Encephalomyelitis in Mice: Implications for Multiple Sclerosis Therapy. Neurochem Res 2017; 42:1555-1570. [PMID: 28271325 DOI: 10.1007/s11064-017-2214-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 01/12/2023]
Abstract
Developing a new and effective therapeutic approach against multiple sclerosis (MS) is always an important area of research. RNS60 is a bioactive aqueous solution generated by subjecting normal saline to Taylor-Couette-Poiseuille flow under elevated oxygen pressure. Recently we have demonstrated that RNS60, administered through intraperitoneal injection, ameliorated clinical symptoms and disease progression of experimental allergic encephalomyelitis (EAE), an animal model of MS. Since the intravenous route is not preferred for treating a chronic condition, we tested if nebulization of RNS60 could attenuate the disease process of adoptively-transferred EAE in mice. Although we could not directly image RNS60 after nebulization, nebulized Alexa680 reached spleen, spinal cord and different parts of the brain. Nebulization of RNS60 starting from the acute phase attenuated clinical symptoms of relapsing-remitting EAE in female SJL/J mice. RNS60 nebulization also inhibited perivascular cuffing, maintained the integrity of blood-brain and blood-spinal cord barriers, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the CNS of EAE mice. On the immunomodulatory front, nebulization of RNS60 to EAE mice led to the enrichment of anti-autoimmune regulatory T cells (Tregs) and suppression of autoimmune Th17 cells. Together, these results suggest that nebulization of RNS60 may be used to control aberrant immune responses in MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA
| | - Suresh B Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA
| | - Supurna Ghosh
- Revalesio Corporation, 1200 East D Street, Tacoma, WA, 98421, USA
| | - Richard L Watson
- Revalesio Corporation, 1200 East D Street, Tacoma, WA, 98421, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA.
| |
Collapse
|