1
|
Giorgiutti S, Rottura J, Korganow AS, Gies V. CXCR4: from B-cell development to B cell-mediated diseases. Life Sci Alliance 2024; 7:e202302465. [PMID: 38519141 PMCID: PMC10961644 DOI: 10.26508/lsa.202302465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. The C-X-C chemokine receptor type 4 (CXCR4), one of the most studied chemokine receptors, is widely expressed in hematopoietic and immune cell populations. It is involved in leukocyte trafficking in lymphoid organs and inflammatory sites through its interaction with its natural ligand CXCL12. CXCR4 assumes a pivotal role in B-cell development, ranging from early progenitors to the differentiation of antibody-secreting cells. This review emphasizes the significance of CXCR4 across the various stages of B-cell development, including central tolerance, and delves into the association between CXCR4 and B cell-mediated disorders, from immunodeficiencies such as WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome to autoimmune diseases such as systemic lupus erythematosus. The potential of CXCR4 as a therapeutic target is discussed, especially through the identification of novel molecules capable of modulating specific pockets of the CXCR4 molecule. These insights provide a basis for innovative therapeutic approaches in the field.
Collapse
Affiliation(s)
- Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Pharmacy, Université de Strasbourg, Illkirch, France
| |
Collapse
|
2
|
Wang Z, Zhen C, Guo X, Qu M, Zhang C, Song J, Fan X, Huang H, Xu R, Zhang J, Yuan J, Hong W, Li J, Wang F, Jiao Y, Linghu E. Landscape of gut mucosal immune cells showed gap of follicular or memory B cells into plasma cells in immunological non-responders. Clin Transl Med 2024; 14:e1699. [PMID: 38783408 PMCID: PMC11116468 DOI: 10.1002/ctm2.1699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The gut is an important site for human immunodeficiency virus (HIV) infection and immune responses. The role of gut mucosal immune cells in immune restoration in patients infected with HIV undergoing antiretroviral therapy remains unclear. METHODS Ileocytes, including 54 475 immune cells, were obtained from colonoscopic biopsies of five HIV-negative controls, nine immunological responders (IRs), and three immunological non-responders (INRs) and were analyzed using single-cell RNA sequencing. Immunohistochemical assays were performed for validation. The 16S rRNA gene was amplified using PCR in faecal samples to analyze faecal microbiota. Flow cytometry was used to analyze CD4+ T-cell counts and the activation of T cells. RESULTS This study presents a global transcriptomic profile of the gut mucosal immune cells in patients infected with HIV. Compared with the IRs, the INRs exhibited a lower proportion of gut plasma cells, especially the IGKC+IgA+ plasma cell subpopulation. IGKC+IgA+ plasma cells were negatively associated with enriched f. Prevotellaceae the INRs and negatively correlated with the overactivation of T cells, but they were positively correlated with CD4+ T-cell counts. The INRs exhibited a higher proportion of B cells than the IRs. Follicular and memory B cells were significantly higher in the INRs. Reduced potential was observed in the differentiation of follicular or memory B cells into gut plasma cells in INRs. In addition, the receptor-ligand pairs CD74_MIF and CD74_COPA of memory B/ follicular helper T cells were significantly reduced in the INRs, which may hinder the differentiation of memory and follicular B cells into plasma cells. CONCLUSIONS Our study shows that plasma cells are dysregulated in INRs and provides an extensive resource for deciphering the immune pathogenesis of HIV in INRs. KEY POINTS An investigation was carried out at the single-cell-level to analyze gut mucosal immune cells alterations in PLWH after ART. B cells were significantly increased and plasma cells were significantly decreased in the INRs compared to the IRs and NCs. There are gaps in the transition from gut follicular or memory B cellsinto plasma cells in INRs.
Collapse
Affiliation(s)
- Zerui Wang
- Senior Department of Gastroenterologythe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Cheng Zhen
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Xiaoyan Guo
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Mengmeng Qu
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Chao Zhang
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Jinwen Song
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Xing Fan
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Huihuang Huang
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Ruonan Xu
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Jiyuan Zhang
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Jinhong Yuan
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Weiguo Hong
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Jiaying Li
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Fu‐Sheng Wang
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Yan‐Mei Jiao
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Enqiang Linghu
- Senior Department of Gastroenterologythe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
3
|
de Vicente JC, Lequerica-Fernández P, Rodrigo JP, Rodríguez-Santamarta T, Blanco-Lorenzo V, Prieto-Fernández L, Corte-Torres D, Vallina A, Domínguez-Iglesias F, Álvarez-Teijeiro S, García-Pedrero JM. Lectin-like Transcript-1 (LLT1) Expression in Oral Squamous Cell Carcinomas: Prognostic Significance and Relationship with the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:4314. [PMID: 38673902 PMCID: PMC11050533 DOI: 10.3390/ijms25084314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Lectin-like transcript-1 (LLT1) expression is detected in different cancer types and is involved in immune evasion. The present study investigates the clinical relevance of tumoral and stromal LLT1 expression in oral squamous cell carcinoma (OSCC), and relationships with the immune infiltrate into the tumor immune microenvironment (TIME). Immunohistochemical analysis of LLT1 expression was performed in 124 OSCC specimens, together with PD-L1 expression and the infiltration of CD20+, CD4+, and CD8+ lymphocytes and CD68+ and CD163+-macrophages. Associations with clinicopathological variables, prognosis, and immune cell densities were further assessed. A total of 41 (33%) OSCC samples showed positive LLT1 staining in tumor cells and 55 (44%) positive LLT1 in tumor-infiltrating lymphocytes (TILs). Patients harboring tumor-intrinsic LLT1 expression exhibited poorer survival, suggesting an immunosuppressive role. Conversely, positive LLT1 expression in TILs was significantly associated with better disease-specific survival, and also an immune-active tumor microenvironment highly infiltrated by CD8+ T cells and M1/M2 macrophages. Furthermore, the combination of tumoral and stromal LLT1 was found to distinguish three prognostic categories (favorable, intermediate, and adverse; p = 0.029, Log-rank test). Together, these data demonstrate the prognostic relevance of tumoral and stromal LLT1 expression in OSCC, and its potential application to improve prognosis prediction and patient stratification.
Collapse
Affiliation(s)
- Juan C. de Vicente
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Department of Surgery, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Paloma Lequerica-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain
| | - Juan P. Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Department of Surgery, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Tania Rodríguez-Santamarta
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain; (V.B.-L.); (A.V.)
| | - Llara Prieto-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Daniela Corte-Torres
- Principado de Asturias Biobank, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Aitana Vallina
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain; (V.B.-L.); (A.V.)
- Principado de Asturias Biobank, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Saúl Álvarez-Teijeiro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juana M. García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
4
|
Blunt MD. Targeting CD161 in B-cell malignancies. Blood 2024; 143:1061-1062. [PMID: 38512265 DOI: 10.1182/blood.2023023785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
|
5
|
Abstract
T cells and natural killer (NK) cells have complementary roles in tumor immunity, and dual T cell and NK cell attack thus offers opportunities to deepen the impact of immunotherapy. Recent work has also shown that NK cells play an important role in recruiting dendritic cells to tumors and thus enhance induction of CD8 T cell responses, while IL-2 secreted by T cells activates NK cells. Targeting of immune evasion mechanisms from the activating NKG2D receptor and its MICA and MICB ligands on tumor cells offers opportunities for therapeutic intervention. Interestingly, T cells and NK cells share several important inhibitory and activating receptors that can be targeted to enhance T cell- and NK cell-mediated immunity. These inhibitory receptor-ligand systems include CD161-CLEC2D, TIGIT-CD155, and NKG2A/CD94-HLA-E. We also discuss emerging therapeutic strategies based on inhibitory and activating cytokines that profoundly impact the function of both lymphocyte populations within tumors.
Collapse
Affiliation(s)
- Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Zhang X, Hou Z, Huang D, Wang F, Gao B, Zhang C, Zhou D, Lou J, Wang H, Gao Y, Kang Z, Lu Y, Liu Q, Yan J. Single-cell heterogeneity and dynamic evolution of Ph-like acute lymphoblastic leukemia patient with novel TPR-PDGFRB fusion gene. Exp Hematol Oncol 2023; 12:19. [PMID: 36797781 PMCID: PMC9936632 DOI: 10.1186/s40164-023-00380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a refractory and recurrent subtype of B-cell ALL enriched with kinase-activating rearrangements. Incomplete understanding of the heterogeneity within the tumor cells presents a major challenge for the diagnosis and therapy of Ph-like ALL. Here, we exhibited a comprehensive cell atlas of one Ph-like ALL patient with a novel TPR-PDGFRB fusion gene at diagnosis and relapse by using single-cell RNA sequencing (scRNA-seq). Twelve heterogeneous B-cell clusters, four with strong MKI67 expression indicating highly proliferating B cells, were identified. A relapse-enriched B-cell subset associated with poor prognosis was discovered, implicating the transcriptomic evolution during disease progression. Integrative single-cell analysis was performed on Ph-like ALL and Ph+ ALL patients, and revealed Ph-like specific B-cell subpopulations and shared malignant B cells characterized by the ectopic expression of the inhibitory receptor CLEC2D. Collectively, scRNA-seq of Ph-like ALL with a novel TPR-PDGFRB fusion gene provides valuable insights into the underlying heterogeneity associated with disease progression and offers useful information for the development of immunotherapeutic techniques in the future.
Collapse
Affiliation(s)
- Xuehong Zhang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China. .,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Zhijie Hou
- grid.452828.10000 0004 7649 7439Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Dan Huang
- grid.452828.10000 0004 7649 7439Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Furong Wang
- grid.452828.10000 0004 7649 7439Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Beibei Gao
- grid.452828.10000 0004 7649 7439Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chengtao Zhang
- grid.452828.10000 0004 7649 7439Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Zhou
- grid.452828.10000 0004 7649 7439Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jiacheng Lou
- grid.452828.10000 0004 7649 7439Department of Neurosurgery, the Second Hospital of Dalian Medical University, Dalian, China
| | - Haina Wang
- grid.452828.10000 0004 7649 7439Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuan Gao
- grid.452828.10000 0004 7649 7439Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhijie Kang
- grid.452828.10000 0004 7649 7439Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ying Lu
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China. .,Institute of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Gao MG, Zhao XS. Mining the multifunction of mucosal-associated invariant T cells in hematological malignancies and transplantation immunity: A promising hexagon soldier in immunomodulatory. Front Immunol 2022; 13:931764. [PMID: 36052080 PMCID: PMC9427077 DOI: 10.3389/fimmu.2022.931764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-like T cells capable of recognizing bacterial and fungal ligands derived from vitamin B biosynthesis. Under different stimulation conditions, MAIT cells can display different immune effector phenotypes, exerting immune regulation and anti-/protumor responses. Based on basic biological characteristics, including the enrichment of mucosal tissue, the secretion of mucosal repair protective factors (interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora, MAIT cells may play an important role in the immune regulation effect of mucosal lesions or inflammation. At the same time, activated MAIT cells secrete granzyme B, perforin, interferon γ, and other toxic cytokines, which can mediate anti-tumor effects. In addition, since a variety of hematological malignancies express the targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially attractive target for cell therapy or immunotherapy for hematological malignancies. In this review, we will provide an overview of MAIT research related to blood system diseases and discuss the possible immunomodulatory or anti-tumor roles that unique biological characteristics or effector phenotypes may play in hematological diseases.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- *Correspondence: Xiao-Su Zhao,
| |
Collapse
|
8
|
Braud VM, Meghraoui-Kheddar A, Elaldi R, Petti L, Germain C, Anjuère F. LLT1-CD161 Interaction in Cancer: Promises and Challenges. Front Immunol 2022; 13:847576. [PMID: 35185935 PMCID: PMC8854185 DOI: 10.3389/fimmu.2022.847576] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
The success of immune checkpoint therapy in cancer has changed our way of thinking, promoting the design of future cancer treatments that places the immune system at the center stage. The knowledge gained on immune regulation and tolerance helped the identification of promising new clinical immune targets. Among them, the lectin-like transcript 1 (LLT1) is the ligand of CD161 (NKR-P1A) receptor expressed on natural killer cells and T cells. LLT1/CD161 interaction modulates immune responses but the exact nature of the signals delivered is still partially resolved. Investigation on the role of LLT1/CD161 interaction has been hampered by the lack of functional homologues in animal models. Also, some studies have been misled by the use of non-specific reagents. Recent studies and meta-analyses of single cell data are bringing new insights into the function of LLT1 and CD161 in human pathology and notably in cancer. The advances made on the characterization of the tumor microenvironment prompt us to integrate LLT1/CD161 interaction into the equation. This review recapitulates the key findings on the expression profile of LLT1 and CD161, their regulation, the role of their interaction in cancer development, and the relevance of targeting LLT1/CD161 interaction.
Collapse
Affiliation(s)
- Veronique M. Braud
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Veronique M. Braud,
| | - Aïda Meghraoui-Kheddar
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Roxane Elaldi
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Luciana Petti
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Fabienne Anjuère
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
9
|
Tang F, Li Z, Lai Y, Lu Z, Lei H, He C, He Z. A 7-gene signature predicts the prognosis of patients with bladder cancer. BMC Urol 2022; 22:8. [PMID: 35090432 PMCID: PMC8796539 DOI: 10.1186/s12894-022-00955-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
The biomarkers have an important guiding role in prognosis and treatment of patients with bladder cancer (BC). The aim of the present study was to identify and evaluate a prognostic gene signature in BC patients. The gene expression profiles of BC samples and the corresponding clinicopathological data were downloaded from GEO and TCGA. The differentially expressed genes (DEGs) were identified by R software. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) Cox regression were applied to construct the prognostic score model. A nomogram was established with the identified prognostic factors to predict the overall survival rates of BC patients. The discriminatory and predictive capacity of the nomogram was evaluated based on the concordance index (C‐index), calibration curves and decision curve analysis (DCA). A 7-gene signature (KLRB1, PLAC9, SETBP1, NR2F1, GRHL2, ANXA1 and APOL1) was identified from 285 DEGs by univariate and LASSO Cox regression analyses. Univariate and multivariate Cox regression analyses showed that age, lymphovascular invasion, lymphatic metastasis, metastasis and the 7-gene signature risk score was an independent predictor of BC patient prognosis. A nomogram that integrated these independent prognostic factors was constructed. The C-index (0.73, CI 95%, 0.693–0.767) and calibration curve demonstrated the good performance of the nomogram. DCA of the nomogram further showed that this model exhibited good net benefit. The combined 7-gene signature could serve as a biomarker for predicting BC prognosis. The nomogram built by risk score and other clinical factors could be an effective tool for predicting the prognosis of patients with BC.
Collapse
|
10
|
Duurland CL, Santegoets SJ, Abdulrahman Z, Loof NM, Sturm G, Wesselink TH, Arens R, Boekestijn S, Ehsan I, van Poelgeest MIE, Finotello F, Hackl H, Trajanoski Z, Ten Dijke P, Braud VM, Welters MJP, van der Burg SH. CD161 expression and regulation defines rapidly responding effector CD4+ T cells associated with improved survival in HPV16-associated tumors. J Immunother Cancer 2022; 10:e003995. [PMID: 35039463 PMCID: PMC8765066 DOI: 10.1136/jitc-2021-003995] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Expression of killer cell lectin-like receptor B1 (KLRB1), the gene encoding the cell surface molecule CD161, is associated with favorable prognosis in many cancers. CD161 is expressed by several lymphocyte populations, but its role and regulation on tumor-specific CD4+ T cells is unknown. METHODS We examined the clinical impact of CD4+CD161+ T cells in human papillomavirus (HPV)16+ oropharyngeal squamous cell carcinoma (OPSCC), analyzed their contribution in a cohort of therapeutically vaccinated patients and used HPV16-specific CD4+CD161+ tumor-infiltrating lymphocytes and T cell clones for in-depth mechanistic studies. RESULTS Central and effector memory CD4+ T cells express CD161, but only CD4+CD161+ effector memory T cells (Tem) are associated with improved survival in OPSCC. Therapeutic vaccination activates and expands type 1 cytokine-producing CD4+CD161+ effector T cells. The expression of CD161 is dynamic and follows a pattern opposite of the checkpoint molecules PD1 and CD39. CD161 did not function as an immune checkpoint molecule as demonstrated using multiple experimental approaches using antibodies to block CD161 and gene editing to knockout CD161 expression. Single-cell transcriptomics revealed KLRB1 expression in many T cell clusters suggesting differences in their activation. Indeed, CD4+CD161+ effector cells specifically expressed the transcriptional transactivator SOX4, known to enhance T cell receptor (TCR) signaling via CD3ε. Consistent with this observation, CD4+CD161+ cells respond more vigorously to limiting amounts of cognate antigen in presence of interleukin (IL)-12 and IL-18 compared to their CD161- counterparts. The expression of CD161/KLRB1 and SOX4 was downregulated upon TCR stimulation and this effect was boosted by transforming growth factor (TGF)β1. CONCLUSION High levels of CD4+CD161+ Tem are associated with improved survival and our data show that CD161 is dynamically regulated by cell intrinsic and extrinsic factors. CD161 expressing CD4+ T cells rapidly respond to suboptimal antigen stimulation suggesting that CD161, similar to SOX4, is involved in the amplification of TCR signals in CD4+ T cells.
Collapse
Affiliation(s)
- Chantal L Duurland
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia J Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ziena Abdulrahman
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikki M Loof
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Tom H Wesselink
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanne Boekestijn
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilina Ehsan
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
- Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Veronique M Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, UMR7275, 06560 Valbonne, Sophia Antipolis, France
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice. Protein Cell 2021; 13:422-445. [PMID: 34748200 PMCID: PMC9095810 DOI: 10.1007/s13238-021-00882-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Aging-induced changes in the immune system are associated with a higher incidence of infection and vaccination failure. Lymph nodes, which filter the lymph to identify and fight infections, play a central role in this process. However, careful characterization of the impact of aging on lymph nodes and associated autoimmune diseases is lacking. We combined single-cell RNA sequencing (scRNA-seq) with flow cytometry to delineate the immune cell atlas of cervical draining lymph nodes (CDLNs) of both young and old mice with or without experimental autoimmune uveitis (EAU). We found extensive and complicated changes in the cellular constituents of CDLNs during aging. When confronted with autoimmune challenges, old mice developed milder EAU compared to young mice. Within this EAU process, we highlighted that the pathogenicity of T helper 17 cells (Th17) was dampened, as shown by reduced GM-CSF secretion in old mice. The mitigated secretion of GM-CSF contributed to alleviation of IL-23 secretion by antigen-presenting cells (APCs) and may, in turn, weaken APCs’ effects on facilitating the pathogenicity of Th17 cells. Meanwhile, our study further unveiled that aging downregulated GM-CSF secretion through reducing both the transcript and protein levels of IL-23R in Th17 cells from CDLNs. Overall, aging altered immune cell responses, especially through toning down Th17 cells, counteracting EAU challenge in old mice.
Collapse
|
12
|
Verma V, Kumar P, Gupta S, Yadav S, Dhanda RS, Yadav M. NLRP3‐mediated dysfunction of mitochondria leads to cell death in CFT073‐stimulated macrophages. Scand J Immunol 2021. [DOI: 10.1111/sji.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| | - Parveen Kumar
- Department of Urology University of Alabama at Birmingham Birmingham Alabama USA
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| | - Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| |
Collapse
|
13
|
Ye W, Luo C, Li C, Liu Z, Liu F. CD161, a promising Immune Checkpoint, correlates with Patient Prognosis: A Pan-cancer Analysis. J Cancer 2021; 12:6588-6599. [PMID: 34659549 PMCID: PMC8489134 DOI: 10.7150/jca.63236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023] Open
Abstract
Background: CD161 is a promising immune checkpoint mainly expressed on natural killer (NK) cells and is essential for immunoregulatory functions. However, it remains obscure how CD161 correlates with immune infiltration and patient prognosis in pan-cancer. Methods: We employed HPA, TCGA, GTEx, TIMER2.0, and GEPIA2 databases as well as R language to analyze and visualize CD161 in cancers. Our twenty-four glioma samples were sequenced for validation. Results: Overall, CD161 was differentially expressed between most paired cancer and normal controls. Higher CD161 expression was associated with poorer overall survival (OS) in the TCGA LGG (HR = 2.18, 95%CI = 1.79-2.66, P < 0.001) and UVM (HR = 1.32, 95%CI = 1.05-1.65, P = 0.016) cohorts. In these two cancer types, CD161 was significantly correlated with expression levels of recognized immune checkpoints and the abundance of markers of specific immune subsets, including CD8+ T cells, dendric cells (DCs), M2 macrophages, and exhausted T cells (Texs). In addition, CD161 was involved in several immune pathways in LGG and UVM, highlighting its role in regulating immune processes in the context of oncology. Conclusions: CD161 is a potential prognostic biomarker and immunotherapy target in human cancers, especially brain lower grade gliomas.
Collapse
Affiliation(s)
- Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Cong Luo
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Chenglong Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| |
Collapse
|
14
|
Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM, Marx S, Jerby-Arnon L, Chanoch-Myers R, Hara T, Richman AR, Ito Y, Pyrdol J, Friedrich M, Schumann K, Poitras MJ, Gokhale PC, Gonzalez Castro LN, Shore ME, Hebert CM, Shaw B, Cahill HL, Drummond M, Zhang W, Olawoyin O, Wakimoto H, Rozenblatt-Rosen O, Brastianos PK, Liu XS, Jones PS, Cahill DP, Frosch MP, Louis DN, Freeman GJ, Ligon KL, Marson A, Chiocca EA, Reardon DA, Regev A, Suvà ML, Wucherpfennig KW. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 2021; 184:1281-1298.e26. [PMID: 33592174 PMCID: PMC7935772 DOI: 10.1016/j.cell.2021.01.022] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/03/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
T cells are critical effectors of cancer immunotherapies, but little is known about their gene expression programs in diffuse gliomas. Here, we leverage single-cell RNA sequencing (RNA-seq) to chart the gene expression and clonal landscape of tumor-infiltrating T cells across 31 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and IDH mutant glioma. We identify potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes. Analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 (encoding CD161) as a candidate inhibitory receptor. Accordingly, genetic inactivation of KLRB1 or antibody-mediated CD161 blockade enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other human cancers. Our work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immunotherapy targets.
Collapse
Affiliation(s)
- Nathan D Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orr Ashenberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Simon Gritsch
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth M Perez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sascha Marx
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Livnat Jerby-Arnon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Rony Chanoch-Myers
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Toshiro Hara
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Alyssa R Richman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Yoshinaga Ito
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jason Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mirco Friedrich
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathrin Schumann
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Michael J Poitras
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marni E Shore
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Christine M Hebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Brian Shaw
- Departments of Neurology and Radiation Oncology, Divisions of Hematology/Oncology and Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Heather L Cahill
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew Drummond
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Wubing Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olamide Olawoyin
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Genentech, South San Francisco, CA, USA
| | - Priscilla K Brastianos
- Departments of Neurology and Radiation Oncology, Divisions of Hematology/Oncology and Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Matthew P Frosch
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - David N Louis
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Genentech, South San Francisco, CA, USA; Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Mario L Suvà
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
15
|
Ioannidis M, Cerundolo V, Salio M. The Immune Modulating Properties of Mucosal-Associated Invariant T Cells. Front Immunol 2020; 11:1556. [PMID: 32903532 PMCID: PMC7438542 DOI: 10.3389/fimmu.2020.01556] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes that express a semi-invariant T cell receptor (TCR) recognizing microbial vitamin B metabolites presented by the highly conserved major histocompatibility complex (MHC) class I like molecule, MR1. The vitamin B metabolites are produced by several commensal and pathogenic bacteria and yeast, but not viruses. Nevertheless, viral infections can trigger MAIT cell activation in a TCR-independent manner, through the release of pro-inflammatory cytokines by antigen-presenting cells (APCs). MAIT cells belong to the innate like T family of cells with a memory phenotype, which allows them to rapidly release Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and in some circumstances Interleukin (IL)-17 and IL-10, exerting an immunomodulatory role on the ensuing immune response, akin to iNKT cells and γδ T cells. Recent studies implicate MAIT cells in a variety of inflammatory, autoimmune diseases, and in cancer. In addition, through the analysis of the transcriptome of MAIT cells activated in different experimental conditions, an important function in tissue repair and control of immune homeostasis has emerged, shared with other innate-like T cells. In this review, we discuss these recent findings, focussing on the understanding of the molecular mechanisms underpinning MAIT cell activation and effector function in health and disease, which ultimately will aid in clinically harnessing this unique, not donor-restricted cell subtype.
Collapse
Affiliation(s)
- Melina Ioannidis
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Tian Z, Song Y, Yao Y, Guo J, Gong Z, Wang Z. Genetic Etiology Shared by Multiple Sclerosis and Ischemic Stroke. Front Genet 2020; 11:646. [PMID: 32719717 PMCID: PMC7348066 DOI: 10.3389/fgene.2020.00646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Although dramatic progress has been achieved in the understanding and treatment of multiple sclerosis (MS) and ischemic stroke (IS), more precise and instructive support is required for further research. Recent large-scale genome-wide association studies (GWASs) have already revealed risk variants for IS and MS, but the common genetic etiology between MS and IS remains an unresolved issue. This research was designed to overlapping genes between MS and IS and unmask their transcriptional features. We designed a three-section analysis process. Firstly, we computed gene-based analyses of MS GWAS and IS GWAS data sets by VGEAS2. Secondly, overlapping genes of significance were identified in a meta-analysis using the Fisher’s procedure. Finally, we performed gene expression analyses to confirm transcriptional changes. We identified 24 shared genes with Bonferroni correction (Pcombined < 2.31E-04), and five (FOXP1, CAMK2G, CLEC2D, LBH, and SLC2A4RG) had significant expression differences in MS and IS gene expression omnibus data sets. These meaningful shared genes between IS and MS shed light on the underlying genetic etiologies shared by the diseases. Our results provide a basis for in-depth genomic studies of associations between MS and IS.
Collapse
Affiliation(s)
- Zhu Tian
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Yang Song
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Yang Yao
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Jie Guo
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
17
|
Romero-Masters JC, Ohashi M, Djavadian R, Eichelberg MR, Hayes M, Zumwalde NA, Bristol JA, Nelson SE, Ma S, Ranheim EA, Gumperz JE, Johannsen EC, Kenney SC. An EBNA3A-Mutated Epstein-Barr Virus Retains the Capacity for Lymphomagenesis in a Cord Blood-Humanized Mouse Model. J Virol 2020; 94:e02168-19. [PMID: 32132242 PMCID: PMC7199417 DOI: 10.1128/jvi.02168-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) causes B cell lymphomas and transforms B cells in vitro The EBV protein EBNA3A collaborates with EBNA3C to repress p16 expression and is required for efficient transformation in vitro An EBNA3A deletion mutant EBV strain was recently reported to establish latency in humanized mice but not cause tumors. Here, we compare the phenotypes of an EBNA3A mutant EBV (Δ3A) and wild-type (WT) EBV in a cord blood-humanized (CBH) mouse model. The hypomorphic Δ3A mutant, in which a stop codon is inserted downstream from the first ATG and the open reading frame is disrupted by a 1-bp insertion, expresses very small amounts of EBNA3A using an alternative ATG at residue 15. Δ3A caused B cell lymphomas at rates similar to their induction by WT EBV but with delayed onset. Δ3A and WT tumors expressed equivalent levels of EBNA2 and p16, but Δ3A tumors in some cases had reduced LMP1. Like the WT EBV tumors, Δ3A lymphomas were oligoclonal/monoclonal, with typically one dominant IGHV gene being expressed. Transcriptome sequencing (RNA-seq) analysis revealed small but consistent gene expression differences involving multiple cellular genes in the WT EBV- versus Δ3A-infected tumors and increased expression of genes associated with T cells, suggesting increased T cell infiltration of tumors. Consistent with an impact of EBNA3A on immune function, we found that the expression of CLEC2D, a receptor that has previously been shown to influence responses of T and NK cells, was markedly diminished in cells infected with EBNA3A mutant virus. Together, these studies suggest that EBNA3A contributes to efficient EBV-induced lymphomagenesis in CBH mice.IMPORTANCE The EBV protein EBNA3A is expressed in latently infected B cells and is important for efficient EBV-induced transformation of B cells in vitro In this study, we used a cord blood-humanized mouse model to compare the phenotypes of an EBNA3A hypomorph mutant virus (Δ3A) and wild-type EBV. The Δ3A virus caused lymphomas with delayed onset compared to the onset of those caused by WT EBV, although the tumors occurred at a similar rate. The WT EBV and EBNA3A mutant tumors expressed similar levels of the EBV protein EBNA2 and cellular protein p16, but in some cases, Δ3A tumors had less LMP1. Our analysis suggested that Δ3A-infected tumors have elevated T cell infiltrates and decreased expression of the CLEC2D receptor, which may point to potential novel roles of EBNA3A in T cell and NK cell responses to EBV-infected tumors.
Collapse
Affiliation(s)
- James C Romero-Masters
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reza Djavadian
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark R Eichelberg
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicholas A Zumwalde
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jillian A Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott E Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shidong Ma
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric C Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shannon C Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Abstract
Mucosal-associated invariant T (MAIT) cells have been attracting increasing attention over the last few years as a potent unconventional T cell subset. Three factors largely account for this emerging interest. Firstly, these cells are abundant in humans, both in circulation and especially in some tissues such as the liver. Secondly is the discovery of a ligand that has uncovered their microbial targets, and also allowed for the development of tools to accurately track the cells in both humans and mice. Finally, it appears that the cells not only have a diverse range of functions but also are sensitive to a range of inflammatory triggers that can enhance or even bypass T cell receptor–mediated signals—substantially broadening their likely impact in health and disease. In this review we discuss how MAIT cells display antimicrobial, homeostatic, and amplifier roles in vivo, and how this may lead to protection and potentially pathology.
Collapse
Affiliation(s)
- Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
19
|
Sun Y, Malaer JD, Mathew PA. Lectin-like transcript 1 as a natural killer cell-mediated immunotherapeutic target for triple negative breast cancer and prostate cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2019; 2019:80. [PMID: 34322598 PMCID: PMC8315106 DOI: 10.20517/2394-4722.2019.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Breast and prostate cancer are the leading causes of death in females and males, respectively. Triple negative breast cancer (TNBC) does not express the estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2, resulting in limited treatment options. Androgen deprivation therapy is the standard care for prostate cancer patients; however, metastasis and recurrence are seen in androgen-independent prostate cancer. Both prostate and breast cancer show higher resistance after recurrence and metastasis, which increases the difficulty of treatment. Natural killer (NK) cells play a critical role during innate immunity and tumor recognition and elimination. NK cell function is determined by a delicate balance of inhibitory signals and activation signals received through cell surface receptors. Lectin-like transcript 1 (LLT1, CLEC2D, OCIL) is a ligand of NK cell inhibitory receptor NKRP1A (CD161). Several studies have that reported higher expression of LLT1 is associated with the development of various tumors. Our studies revealed that TNBC and prostate cancer cells express higher levels of LLT1. In the presence of a monoclonal antibody against LLT1, NK cell-mediated killing of TNBC and prostate cancer cells were greatly enhanced. This review highlights the potential that using monoclonal antibodies to block LLT1 - NKRP1A interactions could be an effective immunotherapeutic approach to treat triple negative breast cancer and prostate cancer.
Collapse
Affiliation(s)
- Yuanhong Sun
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Joseph D Malaer
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| |
Collapse
|
20
|
Agostinelli C, Akarca AU, Ramsay A, Rizvi H, Rodriguez-Justo M, Pomplun S, Proctor I, Sabattini E, Linch D, Daw S, Pittaluga S, Pileri SA, Jaffe ES, Quintanilla-Martinez L, Marafioti T. Novel markers in pediatric-type follicular lymphoma. Virchows Arch 2019; 475:771-779. [PMID: 31686194 PMCID: PMC6881426 DOI: 10.1007/s00428-019-02681-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to review the histopathological, phenotypic, and molecular characteristics of pediatric-type follicular lymphoma (PTFL) and to assess the diagnostic value of novel immunohistochemical markers in distinguishing PTFL from follicular hyperplasia (FH). A total of 13 nodal PTFLs were investigated using immunohistochemistry, fluorescence in situ hybridization (FISH), and PCR and were compared with a further 20 reactive lymph nodes showing FH. Morphologically, PTFL cases exhibited a follicular growth pattern with irregular lymphoid follicles in which the germinal centers were composed of numerous blastoid cells showing a starry-sky appearance. Immunohistochemistry highlighted preserved CD10 (13/13) and BCL6 (13/13) staining, CD20 (13/13) positivity, a K light chain predominance (7/13), and partial BCL2 expression in 6/13 cases (using antibodies 124, E17, and SP66). The germinal center (GC)–associated markers stathmin and LLT-1 were positive in most of the cases (12/13 and 12/13, respectively). Interestingly, FOXP-1 was uniformly positive in PTFL (12/13 cases) in contrast to reactive GCs in FH, where only a few isolated positive cells were observed. FISH revealed no evidence of BCL2, BCL6, or MYC rearrangements in the examined cases. By PCR, clonal immunoglobulin gene rearrangements were detected in 100% of the tested PTFL cases. Our study confirmed the unique morphological and immunophenotypic features of PTFL and suggests that FOXP-1 can represent a novel useful diagnostic marker in the differential diagnosis between PTFL and FH.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Ayse U Akarca
- Department of Pathology, University College London, London, UK
| | - Alan Ramsay
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Hasan Rizvi
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Manuel Rodriguez-Justo
- Department of Pathology, University College London, London, UK.,Department of Cellular Pathology, University College Hospital London, London, UK
| | - Sabine Pomplun
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Ian Proctor
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Elena Sabattini
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - David Linch
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Stephen Daw
- Children and Young People's Cancer Service, University College Hospital London, London, UK
| | - Stefania Pittaluga
- Haematology section, Laboratory of Pathology, Center for Cancer Research National Cancer Institute, Bethesda, MD, USA
| | - Stefano A Pileri
- Division of Haematopathology, European Institute of Oncology, University Hospital of Tübingen, Institute of Pathology, Tübingen, Germany
| | - Elaine S Jaffe
- Haematology section, Laboratory of Pathology, Center for Cancer Research National Cancer Institute, Bethesda, MD, USA
| | | | - Teresa Marafioti
- Department of Pathology, University College London, London, UK. .,Department of Cellular Pathology, University College Hospital London, London, UK.
| |
Collapse
|
21
|
Du L, Yu X, Hou L, Zhang D, Zhang Y, Qiao X, Hou J, Chen J, Zheng Q. Identification of mechanisms conferring an enhanced immune response in mice induced by CVC1302-adjuvanted killed serotype O foot-and-mouth virus vaccine. Vaccine 2019; 37:6362-6370. [PMID: 31526618 DOI: 10.1016/j.vaccine.2019.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
The adjuvant CVC1302 was previously shown to efficiently enhance the immunogenicity of killed foot-and-mouth disease virus (FMDV) in mice and piglets. However, the underlining mechanism of action of CVC1302 remains unclear, especially at local injection sites and draining lymph nodes. Since the FMDV vaccine is administrated intramuscularly in field settings, we studied local immune responses to FMDV following intramuscular injection in mice, and found that CVC1302-adjuvanted killed FMDV (KV-CVC1302) induced secretion of several chemokines in murine muscle tissues, including MCP-1, MIP-1α, and MIP-1β. The number of monocytes recruited to the site of injection was significantly higher in mice immunized with KV-CVC1302 compared with mice immunized with killed FMDV alone (KV). iTAQ-based quantitative proteomic assays were additionally employed to explore the molecular mechanisms of CVC1302 action in the draining lymph nodes. A total of 35 proteins were identified as being differentially expressed among the control group, KV-immunized group and KV-CVC1302-immunized group at 10 days post immunization (dpi). Proteins exhibiting differential expression were mainly involved in signal transduction, apoptosis, endocytosis and innate immune responses. Pathway analysis demonstrated that AMPK, phospholipase D, cAMP, Rap1, and MAPK signaling pathways were potentially induced by the immunopotentiator CVC1302. Understanding the local mechanism of CVC1302 action at injection sites and draining lymph nodes will provide new insights into the development of FMDV vaccines.
Collapse
Affiliation(s)
- Luping Du
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Xiaoming Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Liting Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Dong Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, Shandong 250022, China
| | - Yuanpeng Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China.
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China.
| |
Collapse
|
22
|
Halkias J, Rackaityte E, Hillman SL, Aran D, Mendoza VF, Marshall LR, MacKenzie TC, Burt TD. CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF+ T cells. J Clin Invest 2019; 129:3562-3577. [PMID: 31145102 DOI: 10.1172/jci125957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown. METHODS We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with pro-inflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared to healthy term controls. RESULTS We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF). PLZF+ CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced pro-inflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFNγ in a fetal-specific manner. IFNγ-producing PLZF+ CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation. CONCLUSION Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.
Collapse
Affiliation(s)
| | - Elze Rackaityte
- Biomedical Sciences Program, UCSF, San Francisco, California, USA
| | - Sara L Hillman
- Maternal and Fetal Medicine Department, Institute for Women's Health, University College London, London, United Kingdom
| | - Dvir Aran
- Institute for Computational Health Sciences, UCSF, San Francisco, California, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Lucy R Marshall
- Division of Infection Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tippi C MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA.,Department of Surgery, UCSF, San Francisco, California, USA
| | - Trevor D Burt
- Division of Neonatology, Department of Pediatrics, and.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| |
Collapse
|
23
|
Santos-Juanes J, Fernández-Vega I, Lorenzo-Herrero S, Sordo-Bahamonde C, Martínez-Camblor P, García-Pedrero JM, Vivanco B, Galache-Osuna C, Vazquez-Lopez F, Gonzalez S, Rodrigo JP. Lectin-like transcript 1 (LLT1) expression is associated with nodal metastasis in patients with head and neck cutaneous squamous cell carcinoma. Arch Dermatol Res 2019; 311:369-376. [PMID: 30955082 DOI: 10.1007/s00403-019-01916-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
Abstract
The interaction of lectin-like transcript 1 (LLT1) with CD161 inhibits Natural Killer cell activation. Overexpression of LLT1 contributes to the immunosuppressive properties of tumor cells. However, there are little data about LLT1 expression in human solid tumors. The objective of this paper is to investigate the relationship between LLT1 expression with the clinicopathologic features and its impact on the prognosis of head and neck cutaneous squamous cell carcinoma (cSCC). LLT1 expression was analyzed on paraffin-embedded tissue samples obtained from 100 patients with cSCC by immunohistochemistry. The estimator of Fine and Gray was used to estimate the cumulative incidence curves for relapse. Proportional Hazard models and Hazard ratios (HRs) were used for studying the risk of tumor relapse and mortality. LLT1 strong expression was a significant risk factor for nodal metastasis with crude and adjusted ratios (HRs) of 3.40 (95% CI 1.39-9.28) and 3.25 (95% CI 1.15-9.16); and for cSCC specific death of 6.17 (95% CI 1.79-21.2) and 6.10 (95% CI 1.45-25.7). Strong LLT1 expression is an independent predictor of nodal metastasis and poor disease-specific survival and it might be helpful for risk stratification of patients with cSCC.
Collapse
Affiliation(s)
- J Santos-Juanes
- Service of Dermatology, Hospital Universitario Central de Asturias, Oviedo, Spain. .,Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain. .,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.
| | - I Fernández-Vega
- Service of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Departamento de Cirugía y especialidades Médico-quirúrgicas, Universidad de Oviedo, Oviedo, Spain
| | - S Lorenzo-Herrero
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - C Sordo-Bahamonde
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - P Martínez-Camblor
- Geisel School of Medicine at Dartmouth, Dartmouth College, Hannover, NH, USA
| | - J M García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - B Vivanco
- Service of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Departamento de Cirugía y especialidades Médico-quirúrgicas, Universidad de Oviedo, Oviedo, Spain
| | - C Galache-Osuna
- Service of Dermatology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - F Vazquez-Lopez
- Service of Dermatology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - S Gonzalez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - J P Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Department of Otolaryngology, Hospital Universitario Central de Asturias and Oviedo, Oviedo, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
24
|
Marrufo AM, Mathew SO, Chaudhary P, Malaer JD, Vishwanatha JK, Mathew PA. Blocking LLT1 (CLEC2D, OCIL)-NKRP1A (CD161) interaction enhances natural killer cell-mediated lysis of triple-negative breast cancer cells. Am J Cancer Res 2018; 8:1050-1063. [PMID: 30034942 PMCID: PMC6048397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/08/2018] [Indexed: 06/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most invasive form of breast cancer due to an absence of estrogen (ER), progesterone (PR), and human epidermal growth factor-2 (HER2) receptors on the cell surface. TNBC accounts for approximately 12 to 20 percent of all breast cancer cases. The absence of ER, PR, and HER2 receptors on TNBCs and its ability to develop drug resistance renders it difficult to eradicate or retrogress tumor growth with hormonal therapy and chemotherapy. Triple-negative breast cancer is associated with poorer prognosis, increased chance of relapse, and lower chance of survival. Patients with TNBC have poorer outcome to conventional treatments than patients with other types of breast cancer. Natural killer cell-mediated immunotherapy is a promising therapeutic option for patients with TNBC. Natural killer cells contribute to the immune system by recognizing tumor cells through interactions between ligands on tumor cells and natural killer cell receptors. NK cell function is regulated by a net balance of signals from activating and inhibitory receptors interacting with ligands on target cells. Lectin-like Transcript-1 (LLT1, CLEC2D, OCIL) is a ligand that interacts with NK cell receptor NKRP1A (CD161) and inhibits NK cell activation. In this study, we have identified expression of LLT1 on TNBC cell lines MDA-MB-231 and MDA-MB-436 through flow cytometry, western blot, and confocal microscopy. We have demonstrated that blocking LLT1 on TNBCs with antibodies disrupts interaction with NKRP1A and enhances lysis of TNBCs by primary natural killer cells. We have also shown that a gene knockdown of LLT1 decreases cell surface expression of LLT1 on TNBCs and increases NK cell-mediated lysis of these TNBCs. The results suggest that LLT1 on TNBCs function as a method of evasion from immunosurveillance by NK cells. Blocking LLT1-NKRP1A interaction activates lysis by NK cells and will potentially open a new immunotherapeutic strategy for treatment of TNBC.
Collapse
Affiliation(s)
- Armando M Marrufo
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center Fort Worth 76107, TX, USA
| | - Stephen O Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center Fort Worth 76107, TX, USA
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center Fort Worth 76107, TX, USA
| | - Joseph D Malaer
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center Fort Worth 76107, TX, USA
| | - Jamboor K Vishwanatha
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center Fort Worth 76107, TX, USA
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center Fort Worth 76107, TX, USA
| |
Collapse
|
25
|
Flentje A, Kober KM, Carrico AW, Neilands TB, Flowers E, Heck NC, Aouizerat BE. Minority stress and leukocyte gene expression in sexual minority men living with treated HIV infection. Brain Behav Immun 2018; 70:335-345. [PMID: 29548994 PMCID: PMC5953835 DOI: 10.1016/j.bbi.2018.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Sexual minority (i.e., non-heterosexual) individuals experience poorer mental and physical health, accounted for in part by the additional burden of sexual minority stress occurring from being situated in a culture favoring heteronormativity. Informed by previous research, the purpose of this study was to identify the relationship between sexual minority stress and leukocyte gene expression related to inflammation, cancer, immune function, and cardiovascular function. Sexual minority men living with HIV who were on anti-retroviral medication, had viral load < 200 copies/mL, and had biologically confirmed, recent methamphetamine use completed minority stress measures and submitted blood samples for RNA sequencing on leukocytes. Differential gene expression and pathway analyses were conducted comparing those with clinically elevated minority stress (n = 18) and those who did not meet the clinical cutoff (n = 20), covarying reactive urine toxicology results for very recent stimulant use. In total, 90 differentially expressed genes and 138 gene set pathways evidencing 2-directional perturbation were observed at false discovery rate (FDR) < 0.10. Of these, 41 of the differentially expressed genes and 35 of the 2-directionally perturbed pathways were identified as functionally related to hypothesized mechanisms of inflammation, cancer, immune function, and cardiovascular function. The neuroactive-ligand receptor pathway (implicated in cancer development) was identified using signaling pathway impact analysis. Our results suggest several potential biological pathways for future work investigating the relationship between sexual minority stress and health.
Collapse
Affiliation(s)
- Annesa Flentje
- Community Health Systems, School of Nursing, University of California, San Francisco, United States.
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Computational Health Sciences, University of California, San Francisco, United States
| | | | - Torsten B Neilands
- Center for AIDS Prevention Studies, Department of Medicine, University of California, San Francisco, United States
| | - Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Human Genetics, University of California, San Francisco, United States
| | - Nicholas C Heck
- Department of Psychology, Marquette University, United States
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States
| |
Collapse
|
26
|
van der Geest KSM, Kroesen BJ, Horst G, Abdulahad WH, Brouwer E, Boots AMH. Impact of Aging on the Frequency, Phenotype, and Function of CD161-Expressing T Cells. Front Immunol 2018; 9:752. [PMID: 29725326 PMCID: PMC5917671 DOI: 10.3389/fimmu.2018.00752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
Immune-aging is associated with perturbed immune responses in the elderly. CD161-expressing T cells, i.e., the previously described subsets of CD161+ CD4+ T cells, CD161high CD8+ T cells, and CD161int CD8+ T cells, are highly functional, pro-inflammatory T cells. These CD161-expressing T cells are critical in immunity against microbes, while possibly contributing to autoimmune diseases. So far, little is known about the impact of aging on the frequency, phenotype, and function of these CD161-expressing T cells. In the current study, we investigated the impact of aging on CD161+ CD4+ T cells, CD161high CD8+ T cells, and CD161int CD8+ T cells in peripheral blood samples of 96 healthy subjects (age 20–84). Frequencies of CD161+ CD4+ T cells and CD161int CD8+ T cells were stable with aging, whereas frequencies of CD161high CD8+ T cells declined. Although CD161high CD8+ T cells were mostly T cell receptor-Vα7.2+ mucosal-associated invariant T cells, CD161 expressing CD4+ and CD8+ T cells showed a limited expression of markers for gamma–delta T cells or invariant natural killer (NK) T cells, in both young and old subjects. In essence, CD161-expressing T cells showed a similar memory phenotype in young and old subjects. The expression of the inhibitory NK receptor KLRG1 was decreased on CD161+ CD4+ T cells of old subjects, whereas the expression of other NK receptors by CD161-expressing T cells was unaltered with age. The expression of cytotoxic effector molecules was similar in CD161high and CD161int CD8+ T cells of young and old subjects. The ability to produce pro-inflammatory cytokines was preserved in CD161high and CD161int CD8+ T cells of old subjects. However, the percentages of IFN-γ+ and interleukin-17+ cells were significantly lower in CD161+ CD4+ T cells of old individuals than those of young individuals. In addition, aging was associated with a decrease of nonclassic T helper 1 cells, as indicated by decreased percentages of CD161-expressing cells within the IFN-γ+ CD4+ T cell compartment of old subjects. Taken together, aging is associated with a numerical decline of circulating CD161high CD8+ T cells, as well as a decreased production of pro-inflammatory cytokines by CD161+ CD4+ T cells. These aging-associated changes could contribute to perturbed immunity in the elderly.
Collapse
Affiliation(s)
- Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bart-Jan Kroesen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerda Horst
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Hunte R, Alonso P, Thomas R, Bazile CA, Ramos JC, van der Weyden L, Dominguez-Bendala J, Khan WN, Shembade N. CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS Pathog 2018; 14:e1006968. [PMID: 29698475 PMCID: PMC5919438 DOI: 10.1371/journal.ppat.1006968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Approximately 12% of all human cancers worldwide are caused by infections with oncogenic viruses. Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) is one of the oncogenic viruses responsible for human cancers, including Kaposi's sarcoma (KS), Primary Effusion Lymphoma (PEL), and the lymphoproliferative disorder multicentric Castleman's disease (MCD). Chronic inflammation mediated by KSHV infection plays a decisive role in the development and survival of these cancers. NF-κB, a family of transcription factors regulating inflammation, cell survival, and proliferation, is persistently activated in KSHV-infected cells. The KSHV latent and lytic expressing oncogenes involved in NF-κB activation are vFLIP/K13 and vGPCR, respectively. However, the mechanisms by which NF-κB is activated by vFLIP and vGPCR are poorly understood. In this study, we have found that a host molecule, Cell Adhesion Molecule 1 (CADM1), is robustly upregulated in KSHV-infected PBMCs and KSHV-associated PEL cells. Further investigation determined that both vFLIP and vGPCR interacted with CADM1. The PDZ binding motif localized at the carboxyl terminus of CADM1 is essential for both vGPCR and vFLIP to maintain chronic NF-κB activation. Membrane lipid raft associated CADM1 interaction with vFLIP is critical for the initiation of IKK kinase complex and NF-κB activation in the PEL cells. In addition, CADM1 played essential roles in the survival of KSHV-associated PEL cells. These data indicate that CADM1 plays key roles in the activation of NF-κB pathways during latent and lytic phases of the KSHV life cycle and the survival of KSHV-infected cells.
Collapse
MESH Headings
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/virology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Richard Hunte
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Patricia Alonso
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Remy Thomas
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Cassandra Alexandria Bazile
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Juan Carlos Ramos
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, and Center for AIDS Research and Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Wasif Noor Khan
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Noula Shembade
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| |
Collapse
|
28
|
Jeffery HC, Braitch MK, Bagnall C, Hodson J, Jeffery LE, Wawman RE, Wong LL, Birtwistle J, Bartlett H, Lohse AW, Hirschfield GM, Dyson J, Jones D, Hubscher SG, Klenerman P, Adams DH, Oo YH. Changes in natural killer cells and exhausted memory regulatory T Cells with corticosteroid therapy in acute autoimmune hepatitis. Hepatol Commun 2018; 2:421-436. [PMID: 29619420 PMCID: PMC5880196 DOI: 10.1002/hep4.1163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated liver disease currently treated by immunosuppressive medications with significant side effects. Thus, novel mechanistic treatments are greatly needed. We performed prospective deep immunophenotyping of blood immune cells in patients with acute AIH before and after corticosteroid therapy. Blood samples from 26 patients with acute AIH (United Kingdom-AIH Consortium) were phenotyped by flow cytometry at baseline and 4 months after starting corticosteroids. Pretreatment liver tissues were stained for forkhead box P3-positive (FOXP3POS) regulatory T cells (Tregs), clusters of differentiation (CD)56POS natural killer (NK) cells, and chemokine (C-X-C motif) ligand 10. Chemokine secretion by cultured primary hepatocyte and biliary epithelial cells was measured by enzyme-linked immunosorbent assay. Functional coculture assays with stimulated NK cells and Tregs were performed. CD161 ligand, lectin-like transcript-1 expression by intrahepatic immune cells was demonstrated with flow cytometry. Frequencies of NKbright cells declined with therapy (P < 0.001) and correlated with levels of alanine aminotransferase (P = 0.023). The Treg:NKbright ratio was lower pretreatment, and Tregs had an activated memory phenotype with high levels of CD39, cytotoxic T lymphocyte antigen 4, and FOXP3 but also high programmed death ligand 1, indicating exhaustion. Coculture experiments suggested the Tregs could not efficiently suppress interferon-γ secretion by NK cells. Both Tregs and NK cells had high expression of liver infiltration and T helper 17 plasticity-associated marker CD161 (P = 0.04). Pretreatment and CD161pos NK cells expressed high levels of perforin and granzyme B, consistent with an activated effector phenotype (P < 0.05). Lectin-like transcript 1, a ligand for CD161, is expressed on intrahepatic B cells, monocytes, and neutrophils. Conclusion: Activated effector NK cells, which correlate with biochemical measurements of hepatitis, and exhausted memory Tregs are increased in the blood of patients with treatment-naive AIH and decline with corticosteroid therapy. Inadequate regulation of NK cells by exhausted FOXP3pos Tregs may play a role in AIH pathogenesis and contribute to liver injury. (Hepatology Communications 2018;2:421-436).
Collapse
Affiliation(s)
- Hannah C. Jeffery
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
| | - Manjit K. Braitch
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
| | - Chris Bagnall
- Human Biomaterials Resource CentreUniversity of BirminghamUnited Kingdom
| | - James Hodson
- Institute of Translational MedicineUniversity Hospitals Birmingham National Health Services Foundation Trust, University of BirminghamBirminghamUnited Kingdom
| | - Louisa E. Jeffery
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
| | - Rebecca E. Wawman
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- School of Life Sciences, Faculty of Health and Life SciencesCoventry UniversityCoventryUnited Kingdom
| | - Lin Lee Wong
- Newcastle Biomedical Research Centre and Newcastle UniversityNewcastleUnited Kingdom
| | - Jane Birtwistle
- Clinical Immunology DepartmentUniversity of BirminghamBirminghamUnited Kingdom
| | - Helen Bartlett
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Gideon M. Hirschfield
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- Liver Transplantation and Hepatobiliary Unit, Queen Elizabeth HospitalUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Jessica Dyson
- Newcastle Biomedical Research Centre and Newcastle UniversityNewcastleUnited Kingdom
| | - David Jones
- Newcastle Biomedical Research Centre and Newcastle UniversityNewcastleUnited Kingdom
| | - Stefan G. Hubscher
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- Department of Histopathology, Queen Elizabeth HospitalUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Paul Klenerman
- Peter Medawar Building of Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - David H. Adams
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- Liver Transplantation and Hepatobiliary Unit, Queen Elizabeth HospitalUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Ye H. Oo
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- Liver Transplantation and Hepatobiliary Unit, Queen Elizabeth HospitalUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| |
Collapse
|
29
|
Braud VM, Biton J, Becht E, Knockaert S, Mansuet-Lupo A, Cosson E, Damotte D, Alifano M, Validire P, Anjuère F, Cremer I, Girard N, Gossot D, Seguin-Givelet A, Dieu-Nosjean MC, Germain C. Expression of LLT1 and its receptor CD161 in lung cancer is associated with better clinical outcome. Oncoimmunology 2018; 7:e1423184. [PMID: 29721382 PMCID: PMC5927544 DOI: 10.1080/2162402x.2017.1423184] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Co-stimulatory and inhibitory receptors expressed by immune cells in the tumor microenvironment modulate the immune response and cancer progression. Their expression and regulation are still not fully characterized and a better understanding of these mechanisms is needed to improve current immunotherapies. Our previous work has identified a novel ligand/receptor pair, LLT1/CD161, that modulates immune responses. Here, we extensively characterize its expression in non-small cell lung cancer (NSCLC). We show that LLT1 expression is restricted to germinal center (GC) B cells within tertiary lymphoid structures (TLS), representing a new hallmark of the presence of active TLS in the tumor microenvironment. CD161-expressing immune cells are found at the vicinity of these structures, with a global enrichment of NSCLC tumors in CD161+ CD4+ and CD8+ T cells as compared to normal distant lung and peripheral blood. CD161+ CD4+ T cells are more activated and produce Th1-cytokines at a higher frequency than their matched CD161-negative counterparts. Interestingly, CD161+ CD4+ T cells highly express OX40 co-stimulatory receptor, less frequently 4-1BB, and display an activated but not completely exhausted PD-1-positive Tim-3-negative phenotype. Finally, a meta-analysis revealed a positive association of CLEC2D (coding for LLT1) and KLRB1 (coding for CD161) gene expression with favorable outcome in NSCLC, independently of the size of T and B cell infiltrates. These data are consistent with a positive impact of LLT1/CD161 on NSCLC patient survival, and make CD161-expressing CD4+ T cells ideal candidates for efficient anti-tumor recall responses.
Collapse
Affiliation(s)
- Véronique M. Braud
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Jérôme Biton
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Etienne Becht
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Samantha Knockaert
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Audrey Mansuet-Lupo
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Pathology, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Estelle Cosson
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Diane Damotte
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Pathology, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Marco Alifano
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Thoracic Surgery, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Pierre Validire
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Fabienne Anjuère
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Isabelle Cremer
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Nicolas Girard
- University of Lyon, University Lyon 1, Lyon, France
- Institut du Thorax Curie-Montsouris, Institut Curie, Paris, France
| | - Dominique Gossot
- Thoracic Department, Institut du Thorax Curie-Montsouris, Institut Mutualiste Montsouris, Paris, France
| | - Agathe Seguin-Givelet
- Thoracic Department, Institut du Thorax Curie-Montsouris, Institut Mutualiste Montsouris, Paris, France
- Paris 13 University, Sorbonne Paris Cité, Faculty of Medicine SMBH, Bobigny, France
| | - Marie-Caroline Dieu-Nosjean
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Claire Germain
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
30
|
The role of G protein-coupled receptors in lymphoid malignancies. Cell Signal 2017; 39:95-107. [PMID: 28802842 DOI: 10.1016/j.cellsig.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
Abstract
B cell lymphoma consists of multiple individual diseases arising throughout the lifespan of B cell development. From pro-B cells in the bone marrow, through circulating mature memory B cells, each stage of B cell development is prone to oncogenic mutation and transformation, which can lead to a corresponding lymphoma. Therapies designed against individual types of lymphoma often target features that differ between malignant cells and the corresponding normal cells from which they arise. These genetic changes between tumor and normal cells can include oncogene activation, tumor suppressor gene repression and modified cell surface receptor expression. G protein-coupled receptors (GPCRs) are an important class of cell surface receptors that represent an ideal target for lymphoma therapeutics. GPCRs bind a wide range of ligands to relay extracellular signals through G protein-mediated signaling cascades. Each lymphoma subgroup expresses a unique pattern of GPCRs and efforts are underway to fully characterize these patterns at the genetic level. Aberrations such as overexpression, deletion and mutation of GPCRs have been characterized as having causative roles in lymphoma and such studies describing GPCRs in B cell lymphomas are summarized here.
Collapse
|
31
|
Llibre A, Garner L, Partridge A, Freeman GJ, Klenerman P, Willberg CB. Expression of lectin-like transcript-1 in human tissues. F1000Res 2016; 5:2929. [PMID: 28413611 PMCID: PMC5365220 DOI: 10.12688/f1000research.10009.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2016] [Indexed: 01/10/2023] Open
Abstract
Background: Receptor-ligand pairs of C-type lectin-like proteins have been shown to play an important role in cross talk between lymphocytes, as well as in immune responses within concrete tissues and structures, such as the skin or the germinal centres. The CD161-Lectin-like Transcript 1 (LLT1) pair has gained particular attention in recent years, yet a detailed analysis of LLT1 distribution in human tissue is lacking. One reason for this is the limited availability and poor characterisation of anti-LLT1 antibodies.
Methods: We assessed the staining capabilities of a novel anti-LLT1 antibody clone (2H7), both by immunohistochemistry and flow cytometry, showing its efficiency at LLT1 recognition in both settings. We then analysed LLT1 expression in a wide variety of human tissues.
Results: We found LLT1 expression in circulating B cells and monocytes, but not in lung and liver-resident macrophages. We found strikingly high LLT1 expression in immune-privileged sites, such as the brain, placenta and testes, and confirmed the ability of LLT1 to inhibit NK cell function.
Conclusions: Overall, this study contributes to the development of efficient tools for the study of LLT1. Moreover, its expression in different healthy human tissues and, particularly, in immune-privileged sites, establishes LLT1 as a good candidate as a regulator of immune responses.
Collapse
Affiliation(s)
- Alba Llibre
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Lucy Garner
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Amy Partridge
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Chris B Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, Oxford, UK
| |
Collapse
|
32
|
Multi-functional lectin-like transcript-1: A new player in human immune regulation. Immunol Lett 2016; 177:62-9. [DOI: 10.1016/j.imlet.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022]
|