1
|
dos Santos HT, Nam K, Gil D, Yellepeddi V, Baker OJ. Current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome. Front Immunol 2023; 13:1094278. [PMID: 36713415 PMCID: PMC9878840 DOI: 10.3389/fimmu.2022.1094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.
Collapse
Affiliation(s)
- Harim T. dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biological and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, United States,Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Olga J. Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biochemistry, University of Missouri, Columbia, MO, United States,*Correspondence: Olga J. Baker,
| |
Collapse
|
2
|
Jasmer KJ, Muñoz Forti K, Woods LT, Cha S, Weisman GA. Therapeutic potential for P2Y 2 receptor antagonism. Purinergic Signal 2022:10.1007/s11302-022-09900-3. [PMID: 36219327 DOI: 10.1007/s11302-022-09900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022] Open
Abstract
G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Li L, Jasmer KJ, Camden JM, Woods LT, Martin AL, Yang Y, Layton M, Petris MJ, Baker OJ, Weisman GA, Petris CK. Early Dry Eye Disease Onset in a NOD.H-2h4 Mouse Model of Sjögren's Syndrome. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35727180 PMCID: PMC9233292 DOI: 10.1167/iovs.63.6.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To develop a mouse model of human dry eye disease (DED) for investigation of sex differences in autoimmune-associated dry eye pathology. Methods Ocular surface disease was assessed by quantifying corneal epithelial damage with lissamine green stain in the NOD.H-2h4,IFNγ−/−,CD28−/− (NOD.H-2h4 DKO) mouse model of Sjögren's syndrome (SS). Lacrimal gland function was assessed by tear volume quantification with phenol red thread and lacrimal gland inflammation (i.e., dacryoadenitis) was assessed by quantification of immune cell foci, flow cytometric analysis of immune cell composition, and expression of proinflammatory markers. Results The NOD.H-2h4 DKO mouse model of SS exhibits greater age-dependent increases in corneal damage than in NOD.H-2h4 parental mice and demonstrates an earlier disease onset in females compared to males. The severity of ocular surface disease correlates with loss of goblet cell density, increased conjunctivitis, and dacryoadenitis that is more pronounced in NOD.H-2h4 DKO than NOD.H-2h4 mice. B cells dominate lacrimal infiltrates in 16-week-old NOD.H-2h4 and NOD.H-2h4 DKO mice, but T helper cells and macrophages are also present. Lacrimal gland expression of proinflammatory genes, including the P2X7 and P2Y2 purinergic receptors, is greater in NOD.H-2h4 DKO than NOD.H-2h4 mice and correlates with dacryoadenitis. Conclusions Our results demonstrate for the first time that autoimmune dry eye disease occurs in both sexes of NOD.H-2h4 DKO and NOD.H-2h4 mice, with earlier onset in female NOD.H-2h4 DKO mice when compared to males of the same strain. This study demonstrates that both NOD.H-2h4 and NOD.H-2h4 DKO mice are novel models that closely resemble SS-related and sex-dependent DED.
Collapse
Affiliation(s)
- Lili Li
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Visual Science and Optometry Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Kimberly J Jasmer
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Jean M Camden
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Lucas T Woods
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Adam L Martin
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Yong Yang
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Maria Layton
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Michael J Petris
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Ophthalmology, University of Missouri, Columbia, Missouri, United States
| | - Olga J Baker
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri, United States
| | - Gary A Weisman
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Carisa K Petris
- Department of Ophthalmology, University of Missouri, Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Horeth E, Oyelakin A, Song EAC, Che M, Bard J, Min S, Kiripolsky J, Kramer JM, Sinha S, Romano RA. Transcriptomic and Single-Cell Analysis Reveals Regulatory Networks and Cellular Heterogeneity in Mouse Primary Sjögren's Syndrome Salivary Glands. Front Immunol 2021; 12:729040. [PMID: 34912329 PMCID: PMC8666453 DOI: 10.3389/fimmu.2021.729040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Sjögren’s Syndrome (SS) is a chronic autoimmune disease of unknown etiology which primarily affects the salivary and lacrimal glands resulting in the loss of secretory function. Treatment options for SS have been hampered due to the lack of a better understanding of the underlying gene regulatory circuitry and the interplay between the myriad pathological cellular states that contribute to salivary gland dysfunction. To better elucidate the molecular nature of SS, we have performed RNA-sequencing analysis of the submandibular glands (SMG) of a well-established primary Sjögren’s Syndrome (pSS) mouse model. Our comprehensive examination of global gene expression and comparative analyses with additional SS mouse models and human datasets, have identified a number of important pathways and regulatory networks that are relevant in SS pathobiology. To complement these studies, we have performed single-cell RNA sequencing to examine and identify the molecular and cellular heterogeneity of the diseased cell populations of the mouse SMG. Interrogation of the single-cell transcriptomes has shed light on the diversity of immune cells that are dysregulated in SS and importantly, revealed an activated state of the salivary gland epithelial cells that contribute to the global immune mediated responses. Overall, our broad studies have not only revealed key pathways, mediators and new biomarkers, but have also uncovered the complex nature of the cellular populations in the SMG that are likely to drive the progression of SS. These newly discovered insights into the underlying molecular mechanisms and cellular states of SS will better inform targeted therapeutic discoveries.
Collapse
Affiliation(s)
- Erich Horeth
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jonathan Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jeremy Kiripolsky
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
P2Y 2 receptor antagonism resolves sialadenitis and improves salivary flow in a Sjögren's syndrome mouse model. Arch Oral Biol 2021; 124:105067. [PMID: 33561807 DOI: 10.1016/j.archoralbio.2021.105067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Sjögren's syndrome (SS) is a chronic autoimmune exocrinopathy characterized by lymphocytic infiltration of the salivary and lacrimal glands and decreased saliva and tear production. Previous studies indicate that the G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is upregulated in numerous models of salivary gland inflammation (i.e., sialadenitis), where it has been implicated as a key mediator of chronic inflammation. Here, we evaluate both systemic and localized P2Y2R antagonism as a means to resolve sialadenitis in the NOD.H-2h4,IFNγ-/-,CD28-/- (NOD.H-2h4 DKO) mouse model of SS. DESIGN Female 4.5 month old NOD.H-2h4 DKO mice received daily intraperitoneal injections for 10 days of the selective P2Y2R antagonist, AR-C118925, or vehicle-only control. Single-dose localized intraglandular antagonist delivery into the Wharton's duct was also evaluated. Carbachol-induced saliva was measured and then submandibular glands (SMGs) were isolated and either fixed and paraffin-embedded for H&E staining, homogenized for RNA isolation or dissociated for flow cytometry analysis. RESULTS Intraperitoneal injection, but not localized intraglandular administration, of AR-C118925 significantly enhanced carbachol-induced salivation and reduced lymphocytic foci and immune cell markers in SMGs of 5 month old NOD.H-2h4 DKO mice, compared to vehicle-injected control mice. We found that B cells represent the primary immune cell population in inflamed SMGs of NOD.H-2h4 DKO mice that express elevated levels of P2Y2R compared to C57BL/6 control mice. We further demonstrate a role for P2Y2Rs in mediating B cell migration and the release of IgM. CONCLUSION Our findings suggest that the P2Y2R represents a novel therapeutic target for the treatment of Sjögren's syndrome.
Collapse
|
7
|
Affiliation(s)
- Toshio Odani
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Woods LT, Camden JM, Khalafalla MG, Petris MJ, Erb L, Ambrus JL, Weisman GA. P2Y 2 R deletion ameliorates sialadenitis in IL-14α-transgenic mice. Oral Dis 2018; 24:761-771. [PMID: 29297959 DOI: 10.1111/odi.12823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Interleukin-14α-transgenic (IL-14αTG) mice develop an autoimmune exocrinopathy with characteristics similar to Sjögren's syndrome, including sialadenitis and hyposalivation. The P2Y2 receptor (P2Y2 R) for extracellular ATP and UTP is upregulated during salivary gland inflammation (i.e., sialadenitis) where it regulates numerous inflammatory responses. This study investigated the role of P2Y2 Rs in autoimmune sialadenitis in the IL-14αTG mouse model of Sjögren's syndrome. MATERIALS AND METHODS IL-14αTG mice were bred with P2Y2 R-/- mice to generate IL-14αTG × P2Y2 R-/- mice. P2Y2 R expression, lymphocytic focus scores, B- and T-cell accumulation, and lymphotoxin-α expression were evaluated in the submandibular glands (SMG) along with carbachol-stimulated saliva secretion in IL-14αTG, IL-14αTG × P2Y2 R-/- , and C57BL/6 control mice at 9 and 12 months of age. RESULTS Genetic ablation of P2Y2 Rs in IL-14αTG mice significantly reduced B and T lymphocyte infiltration of SMGs. However, reduced sialadenitis did not restore saliva secretion in IL-14αTG × P2Y2 R-/- mice. Decreased sialadenitis in IL-14αTG × P2Y2 R-/- mice correlated with decreased lymphotoxin-α levels, a critical proinflammatory cytokine associated with autoimmune pathology in IL-14αTG mice. CONCLUSIONS The results of this study suggest that P2Y2 Rs contribute to the development of salivary gland inflammation in IL-14αTG mice and may also contribute to autoimmune sialadenitis in humans.
Collapse
Affiliation(s)
- L T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - J M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - M G Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - M J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - L Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - J L Ambrus
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - G A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Baldini C, Ferro F, Mosca M, Fallahi P, Antonelli A. The Association of Sjögren Syndrome and Autoimmune Thyroid Disorders. Front Endocrinol (Lausanne) 2018; 9:121. [PMID: 29666604 PMCID: PMC5891591 DOI: 10.3389/fendo.2018.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Sjögren's syndrome (SS) and autoimmune thyroid diseases (AITD) may frequently coexist in clinical practice, resulting in a complex overlapping disorder that represents a particular example of the expression of heterogeneity in patients with autoimmune disorders. Objective of this review was to describe the prevalence of the SS-AITD association in the most recent literature, exploring in particular to what extent the presence of AITD might influence the clinical expression of SS and vice versa. Moreover, we summarized some of the proposed genetic, biologic, and molecular mechanisms implied in the pathogenesis of AITD-SS association. Finally, we explored risk factors for lymphoma development in both AITD and SS. We performed a Medline search of English language articles published in the PubMed database in order to provide a critical overview of the recent literature on pathogenesis and clinical features of AITD-SS overlapping disease. All the articles were critically analyzed to select the most relevant contributions.
Collapse
Affiliation(s)
- Chiara Baldini
- Rheumatology Unit, University of Pisa, Pisa, Italy
- *Correspondence: Chiara Baldini,
| | | | - Marta Mosca
- Rheumatology Unit, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Voynova E, Mahmoud T, Woods LT, Weisman GA, Ettinger R, Braley-Mullen H. Requirement for CD40/CD40L Interactions for Development of Autoimmunity Differs Depending on Specific Checkpoint and Costimulatory Pathways. Immunohorizons 2018; 2:54-66. [PMID: 30607385 PMCID: PMC6309431 DOI: 10.4049/immunohorizons.1700069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CD40/CD40L interactions play a critical role in immunity and autoimmunity. In this study, we sought to understand the requirement for CD40 signaling in the programmed cell death-1 (PD-1) checkpoint and CD28 costimulatory pathways important for maintenance of peripheral tolerance. Blocking either pathway can result in loss of self-tolerance and development of autoimmunity. We found that primary Sjögren's syndrome (pSS) and autoimmune thyroid diseases (ATDs) that develop spontaneously in CD28-deficient IFN-γ-/- NOD.H-2h4 (CD28-/-) mice required CD40 signaling. Specifically, blockade of CD40L with the anti-CD40L mAb, MR1, inhibited autoantibody production and inflammation in thyroid and salivary gland target tissues. Unexpectedly, however, ATD and pSS in PD-1-deficient IFN-γ-/- NOD.H-2h4 (PD-1-/-) mice developed independently of CD40/CD40L interactions. Treatment with MR1 had no effect and even exacerbated disease development in pSS and ATD, respectively. Most interesting, anti-thyroglobulin and pSS-associated autoantibodies were increased following anti-CD40L treatment, even though MR1 effectively inhibited the spontaneous splenic germinal centers that form in PD-1-deficient mice. Importantly, blockade of the PD-1 pathway by administration of anti-PD-1 mAb in CD28-/- mice recapitulated the PD-1-/- phenotype, significantly impacting the ability of MR1 to suppress ATD and pSS in these mice. These results indicate that there can be different pathways and requirements to autoimmune pathogenesis depending on the availability of specific checkpoint and costimulatory receptors, and an intact PD-1 pathway is apparently required for inhibition of autoimmunity by anti-CD40L.
Collapse
Affiliation(s)
- Elisaveta Voynova
- Respiratory, Inflammation and Autoimmunity Group, Medimmune LLC, Gaithersburg, MD 20878
| | - Tamer Mahmoud
- Respiratory, Inflammation and Autoimmunity Group, Medimmune LLC, Gaithersburg, MD 20878
| | - Lucas T. Woods
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Gary A. Weisman
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Rachel Ettinger
- Respiratory, Inflammation and Autoimmunity Group, Medimmune LLC, Gaithersburg, MD 20878
| | - Helen Braley-Mullen
- Department of Medicine and Microbiology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
11
|
Ross GR, Fabersani E, Russo M, Gómez A, Japaze H, González SN, Gauffin Cano P. Effect of Excess Iodide Intake on Salivary Glands in a Swiss Albino Mice Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6302869. [PMID: 29250546 PMCID: PMC5698784 DOI: 10.1155/2017/6302869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/16/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
Iodine is an important micronutrient required for nutrition. Excess iodine has adverse effects on thyroid, but there is not enough information regarding its effect on salivary glands. In addition to food and iodized salt, skin disinfectants and maternal nutritional supplements contain iodide, so its intake could be excessive during pregnancy, lactation, and infancy. The aim of this work was to evaluate the effect of excess iodide ingestion on salivary glands during mating, gestation, lactation, and postweaning period in mouse. During assay, mice were allocated into groups: control and treatment groups (received distilled water with NaI 1 mg/mL). Water intake, glandular weight, and histology were analyzed. Treatment groups showed an increase in glandular weight and a significantly (p < 0.05) higher water intake than control groups. Lymphocyte infiltration was observed in animals of treatment groups, while there was no infiltration in glandular sections of control groups. Results demonstrated that a negative relationship could exist between iodide excess and salivary glands. This work is novel evidence that high levels of iodide intake could induce mononuclear infiltration in salivary glands. These results should be considered, especially in pregnant/lactating women, to whom a higher iodine intake is usually recommended.
Collapse
Affiliation(s)
- Gloria Romina Ross
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL-CONICET), Tucumán, Argentina
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Tucumán, Argentina
| | - Emanuel Fabersani
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Matías Russo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Alba Gómez
- Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Hugo Japaze
- Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Silvia Nelina González
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL-CONICET), Tucumán, Argentina
| | - Paola Gauffin Cano
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Tucumán, Argentina
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
12
|
Khalafalla MG, Woods LT, Camden JM, Khan AA, Limesand KH, Petris MJ, Erb L, Weisman GA. P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J Biol Chem 2017; 292:16626-16637. [PMID: 28798231 DOI: 10.1074/jbc.m117.790741] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Indexed: 01/06/2023] Open
Abstract
Salivary gland inflammation is a hallmark of Sjögren's syndrome (SS), a common autoimmune disease characterized by lymphocytic infiltration of the salivary gland and loss of saliva secretion, predominantly in women. The P2X7 receptor (P2X7R) is an ATP-gated nonselective cation channel that induces inflammatory responses in cells and tissues, including salivary gland epithelium. In immune cells, P2X7R activation induces the production of proinflammatory cytokines, including IL-1β and IL-18, by inducing the oligomerization of the multiprotein complex NLRP3-type inflammasome. Here, our results show that in primary mouse submandibular gland (SMG) epithelial cells, P2X7R activation also induces the assembly of the NLRP3 inflammasome and the maturation and release of IL-1β, a response that is absent in SMG cells isolated from mice deficient in P2X7Rs (P2X7R-/-). P2X7R-mediated IL-1β release in SMG epithelial cells is dependent on transmembrane Na+ and/or K+ flux and the activation of heat shock protein 90 (HSP90), a protein required for the activation and stabilization of the NLRP3 inflammasome. Also, using the reactive oxygen species (ROS) scavengers N-acetyl cysteine and Mito-TEMPO, we determined that mitochondrial reactive oxygen species are required for P2X7R-mediated IL-1β release. Lastly, in vivo administration of the P2X7R antagonist A438079 in the CD28-/-, IFNγ-/-, NOD.H-2h4 mouse model of salivary gland exocrinopathy ameliorated salivary gland inflammation and enhanced carbachol-induced saliva secretion. These findings demonstrate that P2X7R antagonism in vivo represents a promising therapeutic strategy to limit salivary gland inflammation and improve secretory function.
Collapse
Affiliation(s)
- Mahmoud G Khalafalla
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Lucas T Woods
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Jean M Camden
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Aslam A Khan
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Kirsten H Limesand
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721
| | - Michael J Petris
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and.,Department of Nutrition and Exercise Physiology,University of Missouri, Columbia, Missouri, 65211-7310 and
| | - Laurie Erb
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Gary A Weisman
- From the Department of Biochemistry, .,Christopher S. Bond Life Sciences Center, and
| |
Collapse
|
13
|
Qiao YC, Pan YH, Ling W, Tian F, Chen YL, Zhang XX, Zhao HL. The Yin and Yang of regulatory T cell and therapy progress in autoimmune disease. Autoimmun Rev 2017; 16:1058-1070. [PMID: 28778708 DOI: 10.1016/j.autrev.2017.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases (ADs) are primarily mediated by the failure of immunological self-tolerance. Regulatory T cells (Tregs) play a critical role in the maintenance of induced tolerance to peripheral self-antigens, suppressing immoderate immune responses deleterious to the host and preventing the AD development. Tregs and suppressive cytokines are homeostatic with effective cells plus pro-inflammatory cytokines in healthy hosts which is defined as "Yang", and ADs are usually induced in case of disturbed homeostasis, which is defined as "Yin". Indeed, the Yin-Yang balance could explain the pathogenic mechanism of ADs. Tregs not only suppress CD4+ and CD8+ T cells but also can suppress other immune cells such as B cell, natural killer cell, DC and other antigen-presenting cell through cell-cell contact or secreting suppressive cytokines. In Tregs, Foxp3 as an intracellular protein displays a more specific marker than currently used other cell-surface markers (such as CD25, CD40L, CTLA-4, ICOS and GITR) in defining the naturally occurring CD4+ Tregs. Though the precise mechanism for the opposite effects of Tregs has not been fully elucidated, the importance of Tregs in ADs has been proved to be associated with kinds of immunocytes. At present, the surface marker, frequency and function of Tregs existed conflicts and hence the Tregs therapy in ADs faces challenges. Though some success has been achieved with Tregs therapy in few ADs both in murine models and humans, more effort should paid to meet the future challenges. This review summarizes the progress and discusses the phenotypic, numeric and functional abnormalities of Tregs and is the first time to systematically review the progress of Tregs therapy in kinds of ADs.
Collapse
Affiliation(s)
- Yong-Chao Qiao
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan-Hong Pan
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Wei Ling
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Fang Tian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yin-Ling Chen
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Xiao-Xi Zhang
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Hai-Lu Zhao
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|