1
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
2
|
Cook ME, Shchukina I, Lin CC, Bradstreet TR, Schwarzkopf EA, Jarjour NN, Webber AM, Zaitsev K, Artyomov MN, Edelson BT. BHLHE40 Mediates Cross-Talk between Pathogenic TH17 Cells and Myeloid Cells during Experimental Autoimmune Encephalomyelitis. Immunohorizons 2023; 7:737-746. [PMID: 37934060 PMCID: PMC10695412 DOI: 10.4049/immunohorizons.2300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
TH17 cells are implicated in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). We previously reported that the transcription factor basic helix-loop-helix family member e40 (BHLHE40) marks cytokine-producing pathogenic TH cells during EAE, and that its expression in T cells is required for clinical disease. In this study, using dual reporter mice, we show BHLHE40 expression within TH1/17 and ex-TH17 cells following EAE induction. Il17a-Cre-mediated deletion of BHLHE40 in TH cells led to less severe EAE with reduced TH cell cytokine production. Characterization of the leukocytes in the CNS during EAE by single-cell RNA sequencing identified differences in the infiltrating myeloid cells when BHLHE40 was present or absent in TH17 cells. Our studies highlight the importance of BHLHE40 in promoting TH17 cell encephalitogenicity and instructing myeloid cell responses during active EAE.
Collapse
Affiliation(s)
- Melissa E. Cook
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | | | - Nicholas N. Jarjour
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ashlee M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Konstantin Zaitsev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Friedman MJ, Lee H, Lee JY, Oh S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw 2023; 23:e5. [PMID: 36911799 PMCID: PMC9995996 DOI: 10.4110/in.2023.23.e5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and three-dimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy Korea University, Sejong 30019, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohwan Oh
- College of Pharmacy Korea University, Sejong 30019, Korea
| |
Collapse
|
4
|
Hall JA, Pokrovskii M, Kroehling L, Kim BR, Kim SY, Wu L, Lee JY, Littman DR. Transcription factor RORα enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element. Immunity 2022; 55:2027-2043.e9. [PMID: 36243007 DOI: 10.1016/j.immuni.2022.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
T helper 17 (Th17) cells regulate mucosal barrier defenses but also promote multiple autoinflammatory diseases. Although many molecular determinants of Th17 cell differentiation have been elucidated, the transcriptional programs that sustain Th17 cells in vivo remain obscure. The transcription factor RORγt is critical for Th17 cell differentiation; however, it is not clear whether the closely related RORα, which is co-expressed in Th17 cells, has a distinct role. Here, we demonstrated that although dispensable for Th17 cell differentiation, RORα was necessary for optimal Th17 responses in peripheral tissues. The absence of RORα in T cells led to reductions in both RORγt expression and effector function among Th17 cells. Cooperative binding of RORα and RORγt to a previously unidentified Rorc cis-regulatory element was essential for Th17 lineage maintenance in vivo. These data point to a non-redundant role of RORα in Th17 lineage maintenance via reinforcement of the RORγt transcriptional program.
Collapse
Affiliation(s)
- Jason A Hall
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Maria Pokrovskii
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Lina Kroehling
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Yong Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Lin Wu
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - June-Yong Lee
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA.
| |
Collapse
|
5
|
Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathog 2022; 18:e1010430. [PMID: 35446923 PMCID: PMC9064098 DOI: 10.1371/journal.ppat.1010430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/03/2022] [Accepted: 03/09/2022] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is frequently detected in patients with sepsis and thus represents a major health burden worldwide. CD4+ T helper cells are involved in the immune response to S. aureus by supporting antibody production and phagocytosis. In particular, Th1 and Th17 cells secreting IFN-γ and IL-17A, are involved in the control of systemic S. aureus infections in humans and mice. To investigate the role of T cells in severe S. aureus infections, we established a mouse sepsis model in which the kidney was identified to be the organ with the highest bacterial load and abundance of Th17 cells. In this model, IL-17A but not IFN-γ was required for bacterial control. Using Il17aCre × R26YFP mice we could show that Th17 fate cells produce Th17 and Th1 cytokines, indicating a high degree of Th17 cell plasticity. Single cell RNA-sequencing of renal Th17 fate cells uncovered their heterogeneity and identified a cluster with a Th1 expression profile within the Th17 cell population, which was absent in mice with T-bet/Tbx21-deficiency in Th17 cells (Il17aCre x R26eYFP x Tbx21-flox). Blocking Th17 to Th1 transdifferentiation in Th17 fate cells in these mice resulted in increased S. aureus tissue loads. In summary, we highlight the impact of Th17 cells in controlling systemic S. aureus infections and show that T-bet expression by Th17 cells is required for bacterial clearance. While targeting the Th17 cell immune response is an important therapeutic option in autoimmunity, silencing Th17 cells might have detrimental effects in bacterial infections. Staphylococcus aureus is a commensal and opportunistic pathogen that is involved in a variety of diseases such as skin infection, food poisoning, endocarditis or pneumonia and sepsis. In particular, in patients with bacterial sepsis, S. aureus causes a high mortality. Despite progress in medical treatment in general, the survival rates of S. aureus sepsis did not improve in the last decades. The interaction between adaptive immune system and this pathogen is a topic of great interest. Infection of mice with S. aureus revealed the highest bacterial load and abundance of Th17 cells in the kidney. We could show prominent T-bet-dependent transdifferentiation of Th17 cells to highly effective anti-bacterial Th1 phenotypes in the kidney. Thus, T-bet is essential for the Th17 to Th1 transdifferentiation which is required for the control of bacterial infections. Targeting the plasticity of pro-inflammatory T cell subset is a promising therapeutic strategy to silence detrimental T cells in autoimmunity while augmenting anti-bacterial T cells in infection.
Collapse
|
6
|
A critical role for Th17 cell-derived TGF-β1 in regulating the stability and pathogenicity of autoimmune Th17 cells. Exp Mol Med 2021; 53:993-1004. [PMID: 34050263 PMCID: PMC8178381 DOI: 10.1038/s12276-021-00632-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 11/08/2022] Open
Abstract
Pathogenic conversion of Th17 cells into multifunctional helper T cells or Th1 cells contributes to the pathogenesis of autoimmune diseases; however, the mechanism regulating the plasticity of Th17 cells remains unclear. Here, we found that Th17 cells expressed latent TGF-β1 in a manner dependent on autocrine TGF-β1. By employing IL-17-producing cell-specific Tgfb1 conditional knockout and fate-mapping systems, we demonstrated that TGF-β1-deficient Th17 cells are relatively susceptible to becoming IFN-γ producers through IL-12Rβ2 and IL-27Rα upregulation. TGF-β1-deficient Th17 cells exacerbated tissue inflammation compared to TGF-β1-sufficient Th17 cells in adoptive transfer models of experimental autoimmune encephalomyelitis and colitis. Thus, TGF-β1 production by Th17 cells provides an essential autocrine signal for maintaining the stability and regulating the pathogenicity of Th17 cells in vivo.
Collapse
|
7
|
Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies. J Immunol Res 2021; 2021:8816041. [PMID: 33553436 PMCID: PMC7846404 DOI: 10.1155/2021/8816041] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
Autoimmune diseases (such as rheumatoid arthritis, asthma, autoimmune bowel disease) are a complex disease. Improper activation of the immune system or imbalance of immune cells can cause the immune system to transform into a proinflammatory state, leading to autoimmune pathological damage. Recent studies have shown that autoimmune diseases are closely related to CD4+ T helper cells (Th). The original CD4 T cells will differentiate into different T helper (Th) subgroups after activation. According to their cytokines, the types of Th cells are different to produce lineage-specific cytokines, which play a role in autoimmune homeostasis. When Th differentiation and its cytokines are not regulated, it will induce autoimmune inflammation. Autoimmune bowel disease (IBD) is an autoimmune disease of unknown cause. Current research shows that its pathogenesis is closely related to Th17 cells. This article reviews the role and plasticity of the upstream and downstream cytokines and signaling pathways of Th17 cells in the occurrence and development of autoimmune bowel disease and summarizes the new progress of IBD immunotherapy.
Collapse
|
8
|
Michaelis L, Treß M, Löw HC, Klees J, Klameth C, Lange A, Grießhammer A, Schäfer A, Menz S, Steimle A, Schulze-Osthoff K, Frick JS. Gut Commensal-Induced IκBζ Expression in Dendritic Cells Influences the Th17 Response. Front Immunol 2021; 11:612336. [PMID: 33542719 PMCID: PMC7851057 DOI: 10.3389/fimmu.2020.612336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Intestinal commensal bacteria can have a large impact on the state of health and disease of the host. Regulation of Th17 cell development by gut commensals is known to contribute to their dichotomous role in promoting gut homeostasis and host defense, or development of autoimmune diseases. Yet, the underlying mechanisms remain to be fully elucidated. One candidate factor contributing to Th17 differentiation, and the expression of which could be influenced by commensals is the atypical nuclear IκB protein IκBζ. IκBζ acts as a transcriptional regulator of the expression of Th17-related secondary response genes in many cell types including dendritic cells (DCs). Insights into the regulation of IκBζ in DCs could shed light on how these immune sentinel cells at the interface between commensals, innate and adaptive immune system drive an immune-tolerogenic or inflammatory Th17 cell response. In this study, the influence of two gut commensals of low (Bacteroides vulgatus) or high (Escherichia coli) immunogenicity on IκBζ expression in DCs and its downstream effects was analyzed. We observed that the amount of IκBζ expression and secretion of Th17-inducing cytokines correlated with the immunogenicity of these commensals. However, under immune-balanced conditions, E. coli also strongly induced an IκBζ-dependent secretion of anti-inflammatory IL-10, facilitating a counter-regulative Treg response as assessed in in vitro CD4+ T cell polarization assays. Yet, in an in vivo mouse model of T cell-induced colitis, prone to inflammatory and autoimmune conditions, administration of E. coli promoted an expansion of rather pro-inflammatory T helper cell subsets whereas administration of B. vulgatus resulted in the induction of protective T helper cell subsets. These findings might contribute to the development of new therapeutic strategies for the treatment of autoimmune diseases using commensals or commensal-derived components.
Collapse
Affiliation(s)
- Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Marcel Treß
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Johanna Klees
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christian Klameth
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Grießhammer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Sarah Menz
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alex Steimle
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Poholek CH, Raphael I, Wu D, Revu S, Rittenhouse N, Uche UU, Majumder S, Kane LP, Poholek AC, McGeachy MJ. Noncanonical STAT3 activity sustains pathogenic Th17 proliferation and cytokine response to antigen. J Exp Med 2020; 217:151964. [PMID: 32697822 PMCID: PMC7537401 DOI: 10.1084/jem.20191761] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/10/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
The STAT3 signaling pathway is required for early Th17 cell development, and therapies targeting this pathway are used for autoimmune disease. However, the role of STAT3 in maintaining inflammatory effector Th17 cell function has been unexplored. Th17ΔSTAT3 mice, which delete STAT3 in effector Th17 cells, were resistant to experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Th17 cell numbers declined after STAT3 deletion, corresponding to reduced cell cycle. Th17ΔSTAT3 cells had increased IL-6-mediated phosphorylation of STAT1, known to have antiproliferative functions. Th17ΔSTAT3 cells also had reduced mitochondrial membrane potential, which can regulate intracellular Ca2+. Accordingly, Th17ΔSTAT3 cells had reduced production of proinflammatory cytokines when stimulated with myelin antigen but normal production of cytokines when TCR-induced Ca2+ flux was bypassed with ionomycin. Thus, early transcriptional roles of STAT3 in developing Th17 cells are later complimented by noncanonical STAT3 functions that sustain pathogenic Th17 cell proliferation and cytokine production.
Collapse
Affiliation(s)
- Catherine H. Poholek
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA,Department of Pediatrics, University of Pittsburgh, Pittsburgh PA
| | - Itay Raphael
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA
| | - Dongwen Wu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shankar Revu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA
| | | | - Uzodinma U. Uche
- Department of Immunology, University of Pittsburgh, Pittsburgh PA
| | - Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA
| | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh PA
| | | | - Mandy J. McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA,Correspondence to Mandy J. McGeachy:
| |
Collapse
|
10
|
Gao M, Guo L, Wang H, Huang J, Han F, Xiang S, Wang J. Orphan nuclear receptor RORγ confers doxorubicin resistance in prostate cancer. Cell Biol Int 2020; 44:2170-2176. [PMID: 32584473 DOI: 10.1002/cbin.11411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/23/2020] [Indexed: 01/07/2023]
Abstract
Prostate cancer (PCa) is a malignant tumor with an extremely high prevalence. Doxorubicin is the first-line clinical treatment for castration-resistant PCa. Clinically, relapse is almost inevitable due to the cancer cells' increasing resistance to doxorubicin. Our previous studies have revealed that retinoic acid-related orphan nuclear receptor γ (RORγ) is a key protein for cancer progression and a promising target for PCa therapy. Though, RORγ's role and mechanism in doxorubicin-resistant PCa remain unclear. To study the mechanism of doxorubicin resistance, we generated a doxorubicin-resistant PCa cell line C4-2B (C4-2B DoxR) in this study, by culturing cells in an increasing doxorubicin concentration. Here, we show that RORγ expression was upregulated in C4-2B DoxR cells compared with that in normal C4-2B cells. The RORγ-stably-overexpressing PCa cell line constructed by lentiviral transfection showed an obvious improvement in doxorubicin resistance and a trend toward castration resistance. Furthermore, RORγ-specific small molecule inhibitors XY018, GSK805, and SR2211 can significantly inhibit the proliferation of C4-2B DoxR cells and promote their apoptosis. Collectively, these results have demonstrated the correlation between the upregulation of RORγ and the development of PCa's doxorubicin resistance, thus providing new ideas for solving the problem of chemotherapy drug resistance in PCa.
Collapse
Affiliation(s)
- Menghan Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lang Guo
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jialuo Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fanghai Han
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Songtao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21093379. [PMID: 32403220 PMCID: PMC7247009 DOI: 10.3390/ijms21093379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn’s disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.
Collapse
|
12
|
Álvarez-Salamero C, Castillo-González R, Pastor-Fernández G, Mariblanca IR, Pino J, Cibrian D, Navarro MN. IL-23 signaling regulation of pro-inflammatory T-cell migration uncovered by phosphoproteomics. PLoS Biol 2020; 18:e3000646. [PMID: 32203518 PMCID: PMC7117768 DOI: 10.1371/journal.pbio.3000646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2020] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Abstract
Interleukin 23 (IL-23) triggers pathogenic features in pro-inflammatory, IL-17-secreting T cells (Th17 and Tγδ17) that play a key role in the development of inflammatory diseases. However, the IL-23 signaling cascade remains largely undefined. Here, we used quantitative phosphoproteomics to characterize IL-23 signaling in primary murine Th17 cells. We quantified 6,888 phosphorylation sites in Th17 cells and found 168 phosphorylations regulated upon IL-23 stimulation. IL-23 increased the phosphorylation of the myosin regulatory light chain (RLC), an actomyosin contractibility marker, in Th17 and Tγδ17 cells. IL-23-induced RLC phosphorylation required Janus kinase 2 (JAK2) and Rho-associated protein kinase (ROCK) catalytic activity, and further study of the IL-23/ROCK connection revealed an unexpected role of IL-23 in the migration of Tγδ17 and Th17 cells through ROCK activation. In addition, pharmacological inhibition of ROCK reduced Tγδ17 recruitment to inflamed skin upon challenge with inflammatory agent Imiquimod. This work (i) provides new insights into phosphorylation networks that control Th17 cells, (ii) widely expands the current knowledge on IL-23 signaling, and (iii) contributes to the increasing list of immune cells subsets characterized by global phosphoproteomic approaches. Phosphoproteomics of interleukin-17-secreting T cells (Th17 cells) identifies more than 100 phosphorylation events in response to interleukin-23 stimulation, revealing increased phosphorylation of myosin regulatory light chain (RLC) and a role for an IL-23/ROCK pathway in controlling migration of Th17 and Tγδ17 cells.
Collapse
Affiliation(s)
- Candelas Álvarez-Salamero
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - Raquel Castillo-González
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - Gloria Pastor-Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Isabel R. Mariblanca
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Jesús Pino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Danay Cibrian
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - María N. Navarro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiol Mol Biol Rev 2020; 84:84/2/e00064-19. [PMID: 32132244 DOI: 10.1128/mmbr.00064-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Technologies allowing genetic sequencing of the human microbiome are opening new realms to discovery. The host microbiota substantially impacts immune responses both in immune-mediated inflammatory diseases (IMIDs) and in tumors affecting tissues beyond skin and mucosae. However, a mechanistic link between host microbiota and cancer or IMIDs has not been well established. Here, we propose T helper 17 (TH17) lymphocytes as the connecting factor between host microbiota and rheumatoid or psoriatic arthritides, multiple sclerosis, breast or ovarian cancer, and multiple myeloma. We theorize that similar mechanisms favor the expansion of gut-borne TH17 cells and their deployment at the site of inflammation in extraborder IMIDs and tumors, where TH17 cells are driving forces. Thus, from a pathogenic standpoint, tumors may share mechanistic routes with IMIDs. A review of similarities and divergences in microbiota-TH17 cell interactions in IMIDs and cancer sheds light on previously ignored pathways in either one of the two groups of pathologies and identifies novel therapeutic avenues.
Collapse
|
14
|
Bittner-Eddy PD, Fischer LA, Costalonga M. Cre-loxP Reporter Mouse Reveals Stochastic Activity of the Foxp3 Promoter. Front Immunol 2019; 10:2228. [PMID: 31616418 PMCID: PMC6763954 DOI: 10.3389/fimmu.2019.02228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Mouse models that combine specific loxP-flanked gene sequences with Cre recombinase expressed from cell-regulated promoters have become important tools to investigate gene function. Critically however, expression of Cre recombinase may not always be restricted to the target cell or tissue of interest due to promiscuous activity of the driving promoter. Expression of Cre recombinase and, by extension, excision of the loxP-flanked gene may occur in non-target cells and may not be readily apparent. Here we report on the fidelity of Cre recombinase expressed from the il17a or Foxp3 promoters by combining them with a constitutively expressed floxed-stopped tdTomato reporter gene. Foxp3-driven Cre recombinase in F1 mice induced tdTomato red fluorescent protein in Treg cells but also in a range of other immune cells. Frequency of tdTomato expression was variable but positively correlated (p < 0.0001) amongst lymphoid (B cells and CD8 T cells) and blood-resident myeloid cells (dendritic cells, monocytes, neutrophils) suggesting stochastic activity of the Foxp3 promoter rather than developmental regulation in common ancestral progenitors. Interestingly, frequency of tdTomato+ dendritic cells, monocytes and neutrophils did not correlate with the tdTomato+ fraction in eosinophils, indicating that activity of the Foxp3 promoter in eosinophils occurred after the split from a common multipotent progenitor. When these F1 mice were crossed to achieve homozygosity of the promoter and reporter gene, a novel visually red phenotype was observed segregating amongst littermates. The red coloration was widespread and prevalent in non-immune tissues. Thymocytes examined from these red mice showed that all four subsets of immature thymocytes (CD4− CD8−) based on differential expression of CD25 and CD44 were expressing tdTomato. Finally, we show evidence of Foxp3 Cre recombinase independent tdTomato expression, suggesting germ line transmission of an activated tdTomato reporter gene. Our data highlights potential issues with conclusions drawn from using specifically the B6.129(Cg)-Foxp3tm4(YFP/Cre)Ayr/J mice.
Collapse
Affiliation(s)
- Peter D Bittner-Eddy
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Lori A Fischer
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Massimo Costalonga
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Rizk J, Kaplinsky J, Agerholm R, Kadekar D, Ivars F, Agace WW, Wong WWL, Szucs MJ, Myers SA, Carr SA, Waisman A, Bekiaris V. SMAC mimetics promote NIK-dependent inhibition of CD4 + T H17 cell differentiation. Sci Signal 2019; 12:eaaw3469. [PMID: 31455723 DOI: 10.1126/scisignal.aaw3469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Second mitochondria-derived activator of caspase (SMAC) mimetics (SMs) are selective antagonists of the inhibitor of apoptosis proteins (IAPs), which activate noncanonical NF-κB signaling and promote tumor cell death. Through gene expression analysis, we found that treatment of CD4+ T cells with SMs during T helper 17 (TH17) cell differentiation disrupted the balance between two antagonistic transcription factor modules. Moreover, proteomics analysis revealed that SMs altered the abundance of proteins associated with cell cycle, mitochondrial activity, and the balance between canonical and noncanonical NF-κB signaling. Whereas SMs inhibited interleukin-17 (IL-17) production and ameliorated TH17 cell-driven inflammation, they stimulated IL-22 secretion. Mechanistically, SM-mediated activation of NF-κB-inducing kinase (NIK) and the transcription factors RelB and p52 directly suppressed Il17a expression and IL-17A protein production, as well as the expression of a number of other immune genes. Induction of IL-22 production correlated with the NIK-dependent reduction in cMAF protein abundance and the enhanced activity of the aryl hydrocarbon receptor. Last, SMs also increased IL-9 and IL-13 production and, under competing conditions, favored the differentiation of naïve CD4+ T cells into TH2 cells rather than TH17 cells. These results demonstrate that SMs shape the gene expression and protein profiles of TH17 cells and inhibit TH17 cell-driven autoimmunity.
Collapse
Affiliation(s)
- John Rizk
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Joseph Kaplinsky
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Rasmus Agerholm
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Darshana Kadekar
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| | - Fredrik Ivars
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - William W Agace
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Matthew J Szucs
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samuel A Myers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, Mainz 55131, Germany
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
16
|
Ariotti S, Veldhoen M. Immunology: Skin T Cells Switch Identity to Protect and Heal. Curr Biol 2019; 29:R220-R223. [PMID: 30889396 DOI: 10.1016/j.cub.2019.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Skin-resident T cells protect against invasive microorganisms. A new study reports that commensal-specific type-17 (but not type-1) T cells in the skin are poised to switch to a type-2 response upon tissue injury and contribute to wound repair.
Collapse
Affiliation(s)
- Silvia Ariotti
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal.
| |
Collapse
|
17
|
Meyer Zu Horste G, Przybylski D, Schramm MA, Wang C, Schnell A, Lee Y, Sobel R, Regev A, Kuchroo VK. Fas Promotes T Helper 17 Cell Differentiation and Inhibits T Helper 1 Cell Development by Binding and Sequestering Transcription Factor STAT1. Immunity 2018; 48:556-569.e7. [PMID: 29562202 DOI: 10.1016/j.immuni.2018.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
The death receptor Fas removes activated lymphocytes through apoptosis. Previous transcriptional profiling predicted that Fas positively regulates interleukin-17 (IL-17)-producing T helper 17 (Th17) cells. Here, we demonstrate that Fas promoted the generation and stability of Th17 cells and prevented their differentiation into Th1 cells. Mice with T-cell- and Th17-cell-specific deletion of Fas were protected from induced autoimmunity, and Th17 cell differentiation and stability were impaired. Fas-deficient Th17 cells instead developed a Th1-cell-like transcriptional profile, which a new algorithm predicted to depend on STAT1. Experimentally, Fas indeed bound and sequestered STAT1, and Fas deficiency enhanced IL-6-induced STAT1 activation and nuclear translocation, whereas deficiency of STAT1 reversed the transcriptional changes induced by Fas deficiency. Thus, our computational and experimental approach identified Fas as a regulator of the Th17-to-Th1 cell balance by controlling the availability of opposing STAT1 and STAT3 to have a direct impact on autoimmunity.
Collapse
Affiliation(s)
- Gerd Meyer Zu Horste
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, University Hospital Münster, Münster, Germany
| | | | - Markus A Schramm
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Youjin Lee
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Raymond Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Agalioti T, Villablanca EJ, Huber S, Gagliani N. T H17 cell plasticity: The role of dendritic cells and molecular mechanisms. J Autoimmun 2018; 87:50-60. [PMID: 29371049 DOI: 10.1016/j.jaut.2017.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 01/18/2023]
Abstract
Upon interaction with dendritic cells (DCs), naïve CD4 T cells differentiate into distinct subsets and orchestrate the development of a physiological immune response. When uncontrolled by cellular and molecular mechanisms, CD4 T cells can also lead to immune mediated inflammatory diseases (IMIDs). Initially, these distinct CD4 T-cell subsets were defined according to the expression of a limited number of cytokines. Later it was revealed that CD4 T cells can acquire much more complex functional phenotypes than previously thought. Experimental data showed that the CD4 T-cell subset TH17 can secrete IFN-γ and IL-4, which are signature molecules of other T-cell subsets. Furthermore, some TH17 cells can also explore an anti-inflammatory fate and participate in the resolution of the immune response. A more flexible theory has therefore evolved with the scope to better represent the plastic biology of CD4 T cells. In this context, several aspects still remain unclear. The goal of this review is to discuss the role of extrinsic and intrinsic cellular and molecular mechanisms, which can drive the plasticity of TH17 cells. In particular, we will outline the role of DCs and the function of transcriptional factors in shaping the fate of TH17 cells towards either a pathogenic or a regulatory phenotype. Finally, we will discuss whether TH17 cell plasticity could be a target for new therapies for IMIDs. We indeed envision that when the cellular and molecular mechanisms controlling TH17 plasticity are known, new therapies, which aim to reset the immune system, will be developed. This will be achieved by either selectively depleting only the pathogenic TH17 cells or, if possible, re converting these cells from pathogenic to regulatory. This will overcome the challenge posed by the immune suppressive side effects caused by the current therapies, which impair the function of CD4 cells or delete all of them, to the detriment of the patient.
Collapse
Affiliation(s)
- Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden.
| |
Collapse
|
19
|
Maseda D, Johnson EM, Nyhoff LE, Baron B, Kojima F, Wilhelm AJ, Ward MR, Woodward JG, Brand DD, Crofford LJ. mPGES1-Dependent Prostaglandin E 2 (PGE 2) Controls Antigen-Specific Th17 and Th1 Responses by Regulating T Autocrine and Paracrine PGE 2 Production. THE JOURNAL OF IMMUNOLOGY 2017; 200:725-736. [PMID: 29237778 DOI: 10.4049/jimmunol.1601808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/06/2017] [Indexed: 01/24/2023]
Abstract
The integration of inflammatory signals is paramount in controlling the intensity and duration of immune responses. Eicosanoids, particularly PGE2, are critical molecules in the initiation and resolution of inflammation and in the transition from innate to acquired immune responses. Microsomal PGE synthase 1 (mPGES1) is an integral membrane enzyme whose regulated expression controls PGE2 levels and is highly expressed at sites of inflammation. PGE2 is also associated with modulation of autoimmunity through altering the IL-23/IL-17 axis and regulatory T cell (Treg) development. During a type II collagen-CFA immunization response, lack of mPGES1 impaired the numbers of CD4+ regulatory (Treg) and Th17 cells in the draining lymph nodes. Ag-experienced mPGES1-/- CD4+ cells showed impaired IL-17A, IFN-γ, and IL-6 production when rechallenged ex vivo with their cognate Ag compared with their wild-type counterparts. Additionally, production of PGE2 by cocultured APCs synergized with that of Ag-experienced CD4+ T cells, with mPGES1 competence in the APC compartment enhancing CD4+ IL-17A and IFN-γ responses. However, in contrast with CD4+ cells that were Ag primed in vivo, exogenous PGE2 inhibited proliferation and skewed IL-17A to IFN-γ production under Th17 polarization of naive T cells in vitro. We conclude that mPGES1 is necessary in vivo to mount optimal Treg and Th17 responses during an Ag-driven primary immune response. Furthermore, we uncover a coordination of autocrine and paracrine mPGES1-driven PGE2 production that impacts effector T cell IL-17A and IFN-γ responses.
Collapse
Affiliation(s)
- Damian Maseda
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Elizabeth M Johnson
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Lindsay E Nyhoff
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Bridgette Baron
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Fumiaki Kojima
- Department of Pharmacology, Kitasato University, Tokyo 108-8641, Japan
| | - Ashley J Wilhelm
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Martin R Ward
- University of Kentucky Medical Center, Lexington, KY 40536; and
| | | | - David D Brand
- Division of Rheumatology, University of Tennessee, Memphis, TN 38104
| | - Leslie J Crofford
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202;
| |
Collapse
|
20
|
Hu D, Notarbartolo S, Croonenborghs T, Patel B, Cialic R, Yang TH, Aschenbrenner D, Andersson KM, Gattorno M, Pham M, Kivisakk P, Pierre IV, Lee Y, Kiani K, Bokarewa M, Tjon E, Pochet N, Sallusto F, Kuchroo VK, Weiner HL. Transcriptional signature of human pro-inflammatory T H17 cells identifies reduced IL10 gene expression in multiple sclerosis. Nat Commun 2017; 8:1600. [PMID: 29150604 PMCID: PMC5693957 DOI: 10.1038/s41467-017-01571-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/29/2017] [Indexed: 01/08/2023] Open
Abstract
We have previously reported the molecular signature of murine pathogenic TH17 cells that induce experimental autoimmune encephalomyelitis (EAE) in animals. Here we show that human peripheral blood IFN-γ+IL-17+ (TH1/17) and IFN-γ−IL-17+ (TH17) CD4+ T cells display distinct transcriptional profiles in high-throughput transcription analyses. Compared to TH17 cells, TH1/17 cells have gene signatures with marked similarity to mouse pathogenic TH17 cells. Assessing 15 representative signature genes in patients with multiple sclerosis, we find that TH1/17 cells have elevated expression of CXCR3 and reduced expression of IFNG, CCL3, CLL4, GZMB, and IL10 compared to healthy controls. Moreover, higher expression of IL10 in TH17 cells is found in clinically stable vs. active patients. Our results define the molecular signature of human pro-inflammatory TH17 cells, which can be used to both identify pathogenic TH17 cells and to measure the effect of treatment on TH17 cells in human autoimmune diseases. CD4+ T cells secreting interleukin-17 (TH17) have diverse functions in modulating autoimmune diseases. Here the authors show via transcriptome analyses that a subset of human TH 17 co-expressing interferon-γ (TH1/17) has a molecular signature similar to “pathogenic” mouse TH 17 but distinct from “non-pathogenic” mouse TH 17.
Collapse
Affiliation(s)
- Dan Hu
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuele Notarbartolo
- Institute for Research in Biomedicine, Università della Svizzera italiana, via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Tom Croonenborghs
- Program in Translational NeuroPsychiatric Genomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,KU Leuven Technology Campus Geel, AdvISe, Kleinhoefstraat 4, 2440, Geel, Belgium.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bonny Patel
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ron Cialic
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tun-Hsiang Yang
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Dominik Aschenbrenner
- Institute for Research in Biomedicine, Università della Svizzera italiana, via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland.,Translational Gastroenterology Unit, NDM Experimental Medicine, University of Oxford, Headington, OX3 9DU, UK
| | - Karin M Andersson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Box 480, 405 30, Gothenburg, Sweden
| | - Marco Gattorno
- Second Division of Pediatrics, G. Gaslini Scientific Institute, Largo Gerolamo Gaslini, 5, 16100, Genova(GE), Italy
| | - Minh Pham
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pia Kivisakk
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Isabelle V Pierre
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Youjin Lee
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Karun Kiani
- Program in Translational NeuroPsychiatric Genomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Bokarewa
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Box 480, 405 30, Gothenburg, Sweden
| | - Emily Tjon
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nathalie Pochet
- Program in Translational NeuroPsychiatric Genomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Vijay K Kuchroo
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Abstract
Helicobacter pylori is usually acquired in early childhood and the infection persists lifelong without causing symptoms. In a small of cases, the infection leads to gastric or duodenal ulcer disease, or gastric cancer. Why disease occurs in these individuals remains unclear, however the host response is known to play a very important part. Understanding the mechanisms involved in maintaining control over the immune and inflammatory response is therefore extremely important. Vaccines against H. pylori have remained elusive but are desperately needed for the prevention of gastric carcinogenesis. This review focuses on research findings which may prove useful in the development of prognostic tests for gastric cancer development, therapeutic agents to control immunopathology, and effective vaccines.
Collapse
Affiliation(s)
- Karen Robinson
- Nottingham Digestive Diseases Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Kazuyo Kaneko
- Nottingham Digestive Diseases Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Leif Percival Andersen
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
22
|
Péré-Védrenne C, Flahou B, Loke MF, Ménard A, Vadivelu J. Other Helicobacters, gastric and gut microbiota. Helicobacter 2017; 22 Suppl 1. [PMID: 28891140 DOI: 10.1111/hel.12407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current article is a review of the most important and relevant literature published in 2016 and early 2017 on non-Helicobacter pylori Helicobacter infections in humans and animals, as well as interactions between H. pylori and the microbiota of the stomach and other organs. Some putative new Helicobacter species were identified in sea otters, wild boars, dogs, and mice. Many cases of Helicobacter fennelliae and Helicobacter cinaedi infection have been reported in humans, mostly in immunocompromised patients. Mouse models have been used frequently as a model to investigate human Helicobacter infection, although some studies have investigated the pathogenesis of Helicobacters in their natural host, as was the case for Helicobacter suis infection in pigs. Our understanding of both the gastric and gut microbiome has made progress and, in addition, interactions between H. pylori and the microbiome were demonstrated to go beyond the stomach. Some new approaches of preventing Helicobacter infection or its related pathologies were investigated and, in this respect, the probiotic properties of Saccharomyces, Lactobacillus and Bifidobacterium spp. were confirmed.
Collapse
Affiliation(s)
- Christelle Péré-Védrenne
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,University of Bordeaux, Bacteriology Laboratory, Bordeaux, France
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Armelle Ménard
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,University of Bordeaux, Bacteriology Laboratory, Bordeaux, France
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol 2017; 18:612-621. [DOI: 10.1038/ni.3742] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
|
24
|
Mufazalov IA, Schelmbauer C, Regen T, Kuschmann J, Wanke F, Gabriel LA, Hauptmann J, Müller W, Pinteaux E, Kurschus FC, Waisman A. IL-1 signaling is critical for expansion but not generation of autoreactive GM-CSF+ Th17 cells. EMBO J 2016; 36:102-115. [PMID: 27827809 DOI: 10.15252/embj.201694615] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/05/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022] Open
Abstract
Interleukin-1 (IL-1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL-1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL-1 receptor type 1 (IL-1R1)-dependent IL-1β expression by myeloid cells in the draining lymph nodes. This myeloid-derived IL-1β did not vitally contribute to the generation and plasticity of Th17 cells, but rather promoted the expansion of a GM-CSF+ Th17 cell subset, thereby enhancing its encephalitogenic potential. Lack of expansion of GM-CSF-producing Th17 cells led to ameliorated disease in mice deficient for IL-1R1 specifically in T cells. Importantly, pathogenicity of IL-1R1-deficient T cells was fully restored by IL-23 polarization and expansion in vitro Therefore, our data demonstrate that IL-1 functions as a mitogenic mediator of encephalitogenic Th17 cells rather than qualitative inducer of their generation.
Collapse
Affiliation(s)
- Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Janina Kuschmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Laureen A Gabriel
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Judith Hauptmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|