1
|
Cao S, Fachi JL, Ma K, Ulezko Antonova A, Wang Q, Cai Z, Kaufman RJ, Ciorba MA, Deepak P, Colonna M. The IRE1α/XBP1 pathway sustains cytokine responses of group 3 innate lymphoid cells in inflammatory bowel disease. J Clin Invest 2024; 134:e174198. [PMID: 38722686 PMCID: PMC11214543 DOI: 10.1172/jci174198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are key players in intestinal homeostasis. ER stress is linked to inflammatory bowel disease (IBD). Here, we used cell culture, mouse models, and human specimens to determine whether ER stress in ILC3s affects IBD pathophysiology. We show that mouse intestinal ILC3s exhibited a 24-hour rhythmic expression pattern of the master ER stress response regulator inositol-requiring kinase 1α/X-box-binding protein 1 (IRE1α/XBP1). Proinflammatory cytokine IL-23 selectively stimulated IRE1α/XBP1 in mouse ILC3s through mitochondrial ROS (mtROS). IRE1α/XBP1 was activated in ILC3s from mice exposed to experimental colitis and in inflamed human IBD specimens. Mice with Ire1α deletion in ILC3s (Ire1αΔRorc) showed reduced expression of the ER stress response and cytokine genes including Il22 in ILC3s and were highly vulnerable to infections and colitis. Administration of IL-22 counteracted their colitis susceptibility. In human ILC3s, IRE1 inhibitors suppressed cytokine production, which was upregulated by an IRE1 activator. Moreover, the frequencies of intestinal XBP1s+ ILC3s in patients with Crohn's disease before administration of ustekinumab, an anti-IL-12/IL-23 antibody, positively correlated with the response to treatment. We demonstrate that a noncanonical mtROS-IRE1α/XBP1 pathway augmented cytokine production by ILC3s and identify XBP1s+ ILC3s as a potential biomarker for predicting the response to anti-IL-23 therapies in IBD.
Collapse
Affiliation(s)
- Siyan Cao
- Division of Gastroenterology, Department of Medicine and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jose L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kaiming Ma
- Division of Gastroenterology, Department of Medicine and
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qianli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Headley CA, Gautam S, Olmo‐Fontanez A, Garcia‐Vilanova A, Dwivedi V, Akhter A, Schami A, Chiem K, Ault R, Zhang H, Cai H, Whigham A, Delgado J, Hicks A, Tsao PS, Gelfond J, Martinez‐Sobrido L, Wang Y, Torrelles JB, Turner J. Extracellular Delivery of Functional Mitochondria Rescues the Dysfunction of CD4 + T Cells in Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303664. [PMID: 37990641 PMCID: PMC10837346 DOI: 10.1002/advs.202303664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Indexed: 11/23/2023]
Abstract
Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Shalini Gautam
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | | | | | - Varun Dwivedi
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Anwari Akhter
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Alyssa Schami
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Kevin Chiem
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Russell Ault
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
| | - Hao Zhang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Hong Cai
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Alison Whigham
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Jennifer Delgado
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Amberlee Hicks
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Philip S. Tsao
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Jonathan Gelfond
- UT‐Health San AntonioDepartment of Epidemiology & BiostatisticsSan AntonioTexas78229USA
| | - Luis Martinez‐Sobrido
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Yufeng Wang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Jordi B. Torrelles
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Joanne Turner
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| |
Collapse
|
3
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
4
|
Tamura K, Miyato H, Kanamaru R, Sadatomo A, Takahashi K, Ohzawa H, Koyanagi T, Saga Y, Takei Y, Fujiwara H, Lefor AK, Sata N, Kitayama J. Activated neutrophils inhibit chemotactic migration of activated T lymphocytes to CXCL11 by multiple mechanisms. Cell Immunol 2023; 384:104663. [PMID: 36638767 DOI: 10.1016/j.cellimm.2023.104663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Accumulation of T lymphocytes and neutrophils shows inversed association with the prognosis of cancer patients, suggesting infiltration of neutrophils and T cells might be differently regulated in tumor tissue. In this study, we stimulated neutrophils with PMA or LPS to produce neutrophil extracellular traps (NETs) and examined the effects on chemotactic migration of activated T cells to a representative T cell chemokine, CXCL11. Migration of the activated T cells was totally abrogated by PMA-stimulated neutrophils placed either in upper or lower chamber, which was mostly canceled by pretreatment with Catalase. Although LPS-stimulated neutrophils also inhibited T cell migration, depletion of NETs by ultracentrifugation or degradation of NETs with DNAse I restored T cell migration. Western blots showed that LPS-stimulated neutrophils thoroughly degraded CXCL11 with NETs dependent manner. Activated neutrophils inhibit T cell chemotaxis via multiple mechanisms including the release of H2O2 and chemokine degradation by NETs, which may suppress adaptive immunity.
Collapse
Affiliation(s)
- Kohei Tamura
- Department of Obstetrics and Gynecology, Jichi Medical University, Japan
| | - Hideyo Miyato
- Department of Surgery, Jichi Medical University, Japan
| | | | - Ai Sadatomo
- Department of Surgery, Jichi Medical University, Japan
| | | | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University, Japan
| | - Takahiro Koyanagi
- Department of Obstetrics and Gynecology, Jichi Medical University, Japan
| | - Yasushi Saga
- Department of Obstetrics and Gynecology, Jichi Medical University, Japan
| | - Yuji Takei
- Department of Obstetrics and Gynecology, Jichi Medical University, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynecology, Jichi Medical University, Japan
| | | | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Japan; Center for Clinical Research, Jichi Medical University Hospital, Japan.
| |
Collapse
|
5
|
Qin Q, Wang Y, Huang X, Jin X. SHIP-1 affects herpetic simplex keratitis prognosis by mediating CD4 + T lymphocytes migration through PI3K signaling and transcription factor KLF2 in the cornea. Antiviral Res 2022; 207:105424. [PMID: 36155071 DOI: 10.1016/j.antiviral.2022.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Herpetic simplex keratitis (HSK) mainly represents an immune cell-mediated, and more specifically, CD4+ T cell-orchestrated inflammatory response to virus invasion. The virus in infected corneas could be easily inhibited or hidden in the trigeminal ganglion using antiviral drugs, but the immune-related inflammation will last for a long time and lead to significant complications. In the present study, we found that the subconjunctival injection of SHIP-1 activator AQX1125 in mouse HSK model alleviated the corneal inflammatory and angiogenic responses, as well as promoted quicker recovery of the cornea, with significantly fewer infiltration of CD4+ T lymphocytes. Furthermore, using primary CD4+ T lymphocytes, we observed that by modulating PI3K signaling and the expression of transcription factors KLF2 and CCR7, SHIP-1 could significantly influence the migration of lymphocytes toward CCL19 and 21, which are the "exit cues" for cells to emigrate from inflammatory sites. Thus, we propose that the pharmacological SHIP-1 activation represents a new potential therapeutic approach to control HSK lesions, and its function on the CCR7-CCL19/21 biological axis may be a novel underlying mechanism for its anti-inflammatory action.
Collapse
Affiliation(s)
- Qiyu Qin
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University No.1 Xihu Boulevard, Hangzhou, 310009, China
| | - Yi Wang
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University No.1 Xihu Boulevard, Hangzhou, 310009, China
| | - Xiaodan Huang
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University No.1 Xihu Boulevard, Hangzhou, 310009, China
| | - Xiuming Jin
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University No.1 Xihu Boulevard, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Liang W, He X, Bi J, Hu T, Sun Y. Role of reactive oxygen species in tumors based on the 'seed and soil' theory: A complex interaction (Review). Oncol Rep 2021; 46:208. [PMID: 34328200 PMCID: PMC8329912 DOI: 10.3892/or.2021.8159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) can serve as the 'soil' for the growth and survival of tumor cells and function synergically with tumor cells to mediate tumor progression and therapeutic resistance. Reactive oxygen species (ROS) is somewhat of a double‑edged sword for tumors. Accumulating evidence has reported that regulating ROS levels can serve an anti‑tumor role in the TME, including the promotion of cancer cell apoptosis, inhibition of angiogenesis, preventing immune escape, manipulating tumor metabolic reorganization and improving drug resistance. In the present review, the potential role of ROS in anti‑tumor therapy was summarized, including the possibility of directly or indirectly targeting the TME.
Collapse
Affiliation(s)
- Wei Liang
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Xinying He
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jianqiang Bi
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Tingting Hu
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Yunchuan Sun
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
7
|
Rubilar T, Barbieri ES, Gazquez A, Avaro M. Sea Urchin Pigments: Echinochrome A and Its Potential Implication in the Cytokine Storm Syndrome. Mar Drugs 2021; 19:267. [PMID: 34064550 PMCID: PMC8151293 DOI: 10.3390/md19050267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle approved to be used in humans, usually for cardiopathies and glaucoma. EchA is used as a pharmaceutical drug. Methods: A comprehensive literature and patent search review was undertaken using PubMed, as well as Google Scholar and Espacenet search engines to review these areas. Conclusions: In the bloodstream, EchA can mediate cellular responses, act as a radical scavenger, and activate the glutathione pathway. It decreases ROS imbalance, prevents and limits lipid peroxidation, and enhances mitochondrial functions. Most importantly, EchA contributes to the modulation of the immune system. EchA can regulate the generation of regulatory T cells, inhibit pro-inflammatory IL-1β and IL-6 cytokine production, while slightly reducing IL-8, TNF-α, INF-α, and NKT, thus correcting immune imbalance. These characteristics suggest that EchA is a candidate drug to alleviate the cytokine storm syndrome (CSS).
Collapse
Affiliation(s)
- Tamara Rubilar
- Laboratorio de Química de Organismos Marinos, Instituto Patagónico del Mar, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn 9120, Chubut, Argentina;
- Laboratorio de Oceanografía Biológica, Centro Para el Estudio de Sistemas Marinos (CESIMAR), CONICET, Puerto Madryn 9120, Chubut, Argentina;
| | - Elena S. Barbieri
- Laboratorio de Oceanografía Biológica, Centro Para el Estudio de Sistemas Marinos (CESIMAR), CONICET, Puerto Madryn 9120, Chubut, Argentina;
- Laboratorio de Virología, Instituto Patagónico del Mar, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn 9120, Chubut, Argentina
| | - Ayelén Gazquez
- Instituto Tecnológico de Chascomús, The Chascomús Technological Institute (INTECH), CONICET-UNSAM, Chascomús 7130, Buenos Aires, Argentina;
| | - Marisa Avaro
- Laboratorio de Química de Organismos Marinos, Instituto Patagónico del Mar, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn 9120, Chubut, Argentina;
| |
Collapse
|
8
|
Morad H, Luqman S, Tan CH, Swann V, McNaughton PA. TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide. Sci Rep 2021; 11:9339. [PMID: 33927223 PMCID: PMC8085234 DOI: 10.1038/s41598-021-88224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/31/2021] [Indexed: 01/16/2023] Open
Abstract
Neutrophils must navigate accurately towards pathogens in order to destroy invaders and thus defend our bodies against infection. Here we show that hydrogen peroxide, a potent neutrophil chemoattractant, guides chemotaxis by activating calcium-permeable TRPM2 ion channels and generating an intracellular leading-edge calcium "pulse". The thermal sensitivity of TRPM2 activation means that chemotaxis towards hydrogen peroxide is strongly promoted by small temperature elevations, suggesting that an important function of fever may be to enhance neutrophil chemotaxis by facilitating calcium influx through TRPM2. Chemotaxis towards conventional chemoattractants such as LPS, CXCL2 and C5a does not depend on TRPM2 but is driven in a similar way by leading-edge calcium pulses. Other proposed initiators of neutrophil movement, such as PI3K, Rac and lyn, influence chemotaxis by modulating the amplitude of calcium pulses. We propose that intracellular leading-edge calcium pulses are universal drivers of the motile machinery involved in neutrophil chemotaxis.
Collapse
Affiliation(s)
- Hassan Morad
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Suaib Luqman
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
- CSIR-Central Institute of Medicinal and Aromatic Plants, Uttar Pradesh, Lucknow, 226015, India
| | - Chun-Hsiang Tan
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
- Department of Neurology, Kaohsiung Medical University Hospital, and Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Victoria Swann
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK.
| |
Collapse
|
9
|
Artyukov AA, Zelepuga EA, Bogdanovich LN, Lupach NM, Novikov VL, Rutckova TA, Kozlovskaya EP. Marine Polyhydroxynaphthoquinone, Echinochrome A: Prevention of Atherosclerotic Inflammation and Probable Molecular Targets. J Clin Med 2020; 9:E1494. [PMID: 32429179 PMCID: PMC7291202 DOI: 10.3390/jcm9051494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
The effect of low doses of echinochrome A (EchA), a natural polyhydroxy-1,4-naphthoquinone pigment from the sea urchin Scaphechinus mirabilis, has been studied in clinical trials, when it was used as an active substance of the drug Histochrome® and biologically active supplement Thymarin. Several parameters of lipid metabolism, antioxidant status, and the state of the immune system were analyzed in patients with cardiovascular diseases (CVD), including contaminating atherosclerosis. It has been shown that EchA effectively normalizes lipid metabolism, recovers antioxidant status and reduces atherosclerotic inflammation, regardless of the method of these preparations' administrations. Treatment of EchA has led to the stabilization of patients, improved function of the intracellular matrix and decreased epithelial dysfunction. The increased expression of surface human leukocyte antigen DR isotype (HLA-DR) receptors reflects the intensification of intercellular cooperation of immune cells, as well as an increase in the efficiency of processing and presentation of antigens, while the regulation of CD95 + expression levels suggests the stimulation of cell renewal processes. The immune system goes to a different level of functioning. Computer simulations suggest that EchA, with its aromatic structure of the naphthoquinone nucleus, may be a suitable ligand of the cytosolic aryl cell receptor, which affects the response of the immune system and causes the rapid expression of detoxification enzymes such as CYP and DT diaphorase, which play a protective role with CVD. Therefore, EchA possesses not only an antiradical effect and antioxidant activity, but is also a SOD3 mimetic, producing hydrogen peroxide and controlling the expression of cell enzymes through hypoxia-inducible factors (HIF), peroxisome proliferator-activated receptors (PPARs) and aryl hydrocarbon receptor (AhR).
Collapse
Affiliation(s)
- Aleksandr A. Artyukov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| | - Elena A. Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| | - Larisa N. Bogdanovich
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences (FEB RAS MO), Kirov Str., 95, Vladivostok 690022, Russia;
| | - Natalia M. Lupach
- Primorye Regional Clinical Hospital No. One (SHI), Aleutskaya Str., 57, Vladivostok, Primorsky Krai 690091, Russia;
| | - Vyacheslav L. Novikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| | - Tatyana A. Rutckova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| | - Emma P. Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| |
Collapse
|
10
|
Rapoport BL, Steel HC, Theron AJ, Smit T, Anderson R. Role of the Neutrophil in the Pathogenesis of Advanced Cancer and Impaired Responsiveness to Therapy. Molecules 2020; 25:molecules25071618. [PMID: 32244751 PMCID: PMC7180559 DOI: 10.3390/molecules25071618] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Notwithstanding the well-recognized involvement of chronic neutrophilic inflammation in the initiation phase of many types of epithelial cancers, a growing body of evidence has also implicated these cells in the pathogenesis of the later phases of cancer development, specifically progression and spread. In this setting, established tumors have a propensity to induce myelopoiesis and to recruit neutrophils to the tumor microenvironment (TME), where these cells undergo reprogramming and transitioning to myeloid-derived suppressor cells (MDSCs) with a pro-tumorigenic phenotype. In the TME, these MDSCs, via the production of a broad range of mediators, not only attenuate the anti-tumor activity of tumor-infiltrating lymphocytes, but also exclude these cells from the TME. Realization of the pro-tumorigenic activities of MDSCs of neutrophilic origin has resulted in the development of a range of adjunctive strategies targeting the recruitment of these cells and/or the harmful activities of their mediators of immunosuppression. Most of these are in the pre-clinical or very early clinical stages of evaluation. Notable exceptions, however, are several pharmacologic, allosteric inhibitors of neutrophil/MDSC CXCR1/2 receptors. These agents have entered late-stage clinical assessment as adjuncts to either chemotherapy or inhibitory immune checkpoint-targeted therapy in patients with various types of advanced malignancy. The current review updates the origins and identities of MDSCs of neutrophilic origin and their spectrum of immunosuppressive mediators, as well as current and pipeline MDSC-targeted strategies as potential adjuncts to cancer therapies. These sections are preceded by a consideration of the carcinogenic potential of neutrophils.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa;
- Correspondence: ; Tel.: +27-11-880-4169
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
11
|
Liu H, Wan Y, Wang Y, Zhao Y, Zhang Y, Zhang A, Weng Q, Xu M. Walnut Polyphenol Extract Protects against Fenitrothion-Induced Immunotoxicity in Murine Splenic Lymphocytes. Nutrients 2018; 10:nu10121838. [PMID: 30513644 PMCID: PMC6315471 DOI: 10.3390/nu10121838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Fenitrothion (FNT), an organophosphate pesticide, exerts an immunotoxic effect on splenocytes. Dietary polyphenol compounds exert antioxidant, anticancer and antihypertensive effects. In this study, we investigated the effect of walnut polyphenol extract (WPE) on FNT-induced immunotoxicity in splenic lymphocytes in vitro. Treatment with WPE significantly increased the proliferation of FNT-exposed splenocytes, as evidenced by increases in the proportions of splenic T lymphocytes (CD3+ T cells) and T-cell subsets (CD8+ T cells), as well as the secretion of the T-cell-related cytokines interleukin (IL)-2, interferon-γ, IL-4 and granzyme B. These effects were associated with a reduction in oxidative stress, as evidenced by changes in the levels of hydroxyl radical, superoxide dismutase, glutathione peroxidase and malondialdehyde. Moreover, WPE decreased the FNT-induced overexpression of NADPH oxidase 2 and dual oxidase 1 by regulating Toll-like receptor 4 signaling in splenic T-cells. Taken together, these findings suggest that WPE protects against FNT-mediated immunotoxicity and improves immune function by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Hong Liu
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Yifang Wan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Yuxin Wang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Yue Zhao
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Yue Zhang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Ao Zhang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Meiyu Xu
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
12
|
Li Q, Zhang M, Xuan L, Liu Y, Chen C. Anagliptin inhibits neointimal hyperplasia after balloon injury via endothelial cell-specific modulation of SOD-1/RhoA/JNK signaling in the arterial wall. Free Radic Biol Med 2018; 121:105-116. [PMID: 29715547 DOI: 10.1016/j.freeradbiomed.2018.04.580] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 11/27/2022]
Abstract
Intimal hyperplasia is one of the major complications after stenting, but the underlying mechanisms remain unclear. Our previous study found that the dipeptidyl peptidase IV (DPP-4) inhibitor, Anagliptin, suppresses intimal hyperplasia after balloon injury. Here, we further investigated the effects of Anagliptin on endothelial cell (EC) migration after balloon injury. The results showed that Anagliptin administration significantly reduced intimal hyperplasia by stimulating the migration of endothelial cells, but had no effect on the medial area after balloon injury. Anagliptin elevated the total plasma activity of SOD by up-regulating the level of SOD-1, but not SOD-2, after balloon injury. Meanwhile, pre-incubation with Anagliptin suppressed the hydrogen peroxide-mediated formation of oxidant species and apoptosis in HUVECs. In vitro pre-incubation with Anagliptin promoted the migration of HUVECs via the SOD-1/RhoA/JNK signaling pathway mediating the formation of F-actin. Collectively, the DPP-4 inhibitor, Anagliptin, regulates SOD-1/RhoA/ JNK-mediated HUVECs migration. The results suggest that Anagliptin could serve as a potential drug to prevent intimal hyperplasia formation after balloon injury.
Collapse
Affiliation(s)
- Qi Li
- The Biotherapy Center, Tumor Hospital of Harbin Medical University, 150 Haping Road Harbin, PR China
| | - Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yanli Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Chang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
13
|
Liu H, Li JX, Tian JL, Wang C, Wang YX, Wan YF, Weng Q, Xu MY. Selective effects of fenitrothion on murine splenic T-lymphocyte populations and cytokine/granzyme production. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:319-326. [PMID: 29431569 DOI: 10.1080/03601234.2018.1431466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate in vitro effects of fenitrothion (FNT) on mouse splenic lymphocytes. Here, naïve mice had their spleens harvested and splenocytes isolated. After exposure to FNT for 48 hr: splenocyte viability was measured using a tetrazolium dye assay; cell phenotypes, i.e., B-cells (CD19+), T-cells (CD3+), and T-cell subsets (CD4+ and CD8+), were quantified by flow cytometry; and, production of cytokines/granzyme-B was assessed via enzyme-linked immunosorbent assay. The ability for FNT to induce oxidative stress in the cells was evaluated by measuring hydroxyl radical (·OH) and malondialdehyde (MDA) production and changes in glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity. The results showed that FNT significantly inhibited splenocyte proliferation, and decreased production of interleukin (IL)-2, interferon gamma, IL-4, and granzyme B, but had no impact on IL-6 production. FNT also selectively decreased splenic T-cell levels but did not induce changes in CD19+ B-cells. Further, within the T-cell populations, percentages of CD3+, CD4+, and CD8+ T-cells (particularly CD8+ T-cells) were reduced. Lastly, FNT selectively increased MDA and ·OH production and inhibited SOD and GSH-Px activities in the splenic lymphocytes. These findings suggest that, due to oxidative damage, FNT selectively inhibits splenic T-lymphocyte survival and cytokine/granzyme production in vitro.
Collapse
Affiliation(s)
- Hong Liu
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Jiang X Li
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Jing L Tian
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Chen Wang
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Yu X Wang
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Yi F Wan
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Qiang Weng
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
| | - Mei Y Xu
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| |
Collapse
|