1
|
Portilho AI, Hermes Monteiro da Costa H, Grando Guereschi M, Prudencio CR, De Gaspari E. Hybrid response to SARS-CoV-2 and Neisseria meningitidis C after an OMV-adjuvanted immunization in mice and their offspring. Hum Vaccin Immunother 2024; 20:2346963. [PMID: 38745461 DOI: 10.1080/21645515.2024.2346963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 μg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.
Collapse
MESH Headings
- Animals
- Mice
- Immunoglobulin G/blood
- Neisseria meningitidis/immunology
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- SARS-CoV-2/immunology
- Adjuvants, Immunologic/administration & dosage
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Immunity, Cellular
- Immunity, Humoral
- Mice, Inbred BALB C
- Meningococcal Infections/prevention & control
- Meningococcal Infections/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Vaccine/administration & dosage
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/immunology
- Immunization/methods
- Antibody Affinity
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Meningococcal Vaccines/immunology
- Meningococcal Vaccines/administration & dosage
- Immunologic Memory
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Hernan Hermes Monteiro da Costa
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Roberto Prudencio
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Tanaka M, Takenouchi N, Arishima S, Matsuzaki T, Nozuma S, Matsuura E, Takashima H, Kubota R. HLA-A*24 Increases the Risk of HTLV-1-Associated Myelopathy despite Reducing HTLV-1 Proviral Load. Int J Mol Sci 2024; 25:6858. [PMID: 38999966 PMCID: PMC11241684 DOI: 10.3390/ijms25136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Increased human T-cell leukemia virus type 1 (HTLV-1) proviral load (PVL) is a significant risk factor for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is controversy surrounding whether HTLV-1-specific cytotoxic T lymphocytes (CTLs) are beneficial or harmful to HAM/TSP patients. Recently, HTLV-1 Tax 301-309 has been identified as an immunodominant epitope restricted to HLA-A*2402. We investigated whether HLA-A*24 reduces HTLV-1 PVL and the risk of HAM/TSP using blood samples from 152 HAM/TSP patients and 155 asymptomatic HTLV-1 carriers. The allele frequency of HLA-A*24 was higher in HAM/TSP patients than in asymptomatic HTLV-1 carriers (72.4% vs. 58.7%, odds ratio 1.84), and HLA-A*24-positive patients showed a 42% reduction in HTLV-1 PVL compared to negative patients. Furthermore, the PVL negatively correlated with the frequency of Tax 301-309-specific CTLs. These findings are opposite to the effects of HLA-A*02, which reduces HTLV-1 PVL and the risk of HAM/TSP. Therefore, we compared the functions of CTLs specific to Tax 11-19 or Tax 301-309, which are immunodominant epitopes restricted to HLA-A*0201 or HLA-A*2402, respectively. The maximum responses of these CTLs were not different in the production of IFN-γ and MIP-1β or in the expression of CD107a-a marker for the degranulation of cytotoxic molecules. However, Tax 301-309-specific CTLs demonstrated 50-fold higher T-cell avidity than Tax 11-19-specific CTLs, suggesting better antigen recognition at low expression levels of the antigens. These findings suggest that HLA-A*24, which induces sensitive HTLV-1-specific CTLs, increases the risk of HAM/TSP despite reducing HTLV-1 PVL.
Collapse
Affiliation(s)
- Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (M.T.)
| | - Norihiro Takenouchi
- Department of Microbiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
- Department of Neurology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Shiho Arishima
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (M.T.)
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (M.T.)
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan (E.M.)
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan (E.M.)
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan (E.M.)
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (M.T.)
| |
Collapse
|
3
|
Moita D, Rôla C, Nunes-Cabaço H, Nogueira G, Maia TG, Othman AS, Franke-Fayard B, Janse CJ, Mendes AM, Prudêncio M. The effect of dosage on the protective efficacy of whole-sporozoite formulations for immunization against malaria. NPJ Vaccines 2023; 8:182. [PMID: 37996533 PMCID: PMC10667361 DOI: 10.1038/s41541-023-00778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Immunization with Plasmodium sporozoites, either attenuated or administered under the cover of an antimalarial drug, can induce strong protection against malaria in pre-clinical murine models, as well as in human trials. Previous studies have suggested that whole-sporozoite (WSpz) formulations based on parasites with longer liver stage development induce higher protection, but a comparative analysis of four different WSpz formulations has not been reported. We employed a rodent model of malaria to analyze the effect of immunization dosage on the protective efficacy of WSpz formulations consisting of (i) early liver arresting genetically attenuated parasites (EA-GAP) or (ii) radiation-attenuated sporozoites (RAS), (iii) late arresting GAP (LA-GAP), and (iv) sporozoites administered under chemoprophylaxis, that are eliminated upon release into the bloodstream (CPS). Our results show that, unlike all other WSpz formulations, EA-GAP fails to confer complete protection against an infectious challenge at any immunization dosage employed, suggesting that a minimum threshold of liver development is required to elicit fully effective immune responses. Moreover, while immunization with RAS, LA-GAP and CPS WSpz yields comparable, dosage-dependent protection, protection by EA-GAP WSpz peaks at an intermediate dosage and markedly decreases thereafter. In-depth immunological analyses suggest that effector CD8+ T cells elicited by EA-GAP WSpz immunization have limited developmental plasticity, with a potential negative impact on the functional versatility of memory cells and, thus, on protective immunity. Our findings point towards dismissing EA-GAP from prioritization for WSpz malaria vaccination and enhance our understanding of the complexity of the protection elicited by these WSpz vaccine candidates, guiding their future optimization.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Rôla
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo Nogueira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Teresa G Maia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ahmad Syibli Othman
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Terengganu, Malaysia
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
4
|
Hartmeier PR, Kosanovich JL, Velankar KY, Ostrowski SM, Busch EE, Lipp MA, Empey KM, Meng WS. Modeling the kinetics of lymph node retention and exposure of a cargo protein delivered by biotin-functionalized nanoparticles. Acta Biomater 2023; 170:453-463. [PMID: 37652212 PMCID: PMC10592217 DOI: 10.1016/j.actbio.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Generation of protective immunity through vaccination arises from the adaptive immune response developed primarily in the lymph nodes drained from the immunization site. Relative to the intramuscular route, subcutaneous administration allows for direct and rapid access to the lymphatics, but accumulation of soluble protein antigens within the lymph nodes is limited. Subunit vaccines also require immune stimulating adjuvants which may not accumulate in the same lymph nodes simultaneously with antigen. Herein we report the use of biotinylated poly (lactic-co-glycolic acid) nanoparticles (bNPs) to enhance delivery of a model protein antigen to the lymphatics. bNPs provide dual functionality as adjuvant and vehicle to localize antigens with stimulated immune cells in the same draining lymph node. Using streptavidin as a model antigen, which can be loaded directly onto the bNP surface, we evaluated the kinetics of lymph node occupancy and adaptive immune responses in wildtype C57BL/6 mice. Antigen exposure in vivo was significantly improved through surface loading onto bNPs, and we developed a working kinetic model to account for the retention of both particles and antigen in draining lymph nodes. We observed enhanced T cell responses and antigen-specific B cell response in vivo when antigen was delivered on the particle surface. This work highlights the advantage of combining intrinsic adjuvant and antigen loading in a single entity, and the utility of kinetic modeling in the understanding of particle-based vaccines. STATEMENT OF SIGNIFICANCE: Development of safe and effective subunit vaccines depends on effective formulations that render optimized exposure and colocalization of antigens and adjuvants. In this work, we utilize a nanoparticle system which features self-adjuvanting properties and allows for surface loading of recombinant protein antigens. Using in vivo imaging, we demonstrated prolonged co-localization of the antigen and adjuvant particles in draining lymph nodes and provided evidence of B cell activation for up to 21 days following subcutaneous injection. A pharmacokinetic model was developed as a step towards bridging the translational gap between particulate-based vaccines and observed outcomes. The results have implications for the rational design of particle-based vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA; Department of Immunology, School of Medicine, University of Pittsburgh, PA 15219, USA.
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
5
|
Sun D, Zhang A, Gao B, Zou L, Huang H, Zhao X, Xu D. Identification of Alternative Splicing-Related Genes CYB561 and FOLH1 in the Tumor-Immune Microenvironment for Endometrial Cancer Based on TCGA Data Analysis. Front Genet 2022; 13:770569. [PMID: 35836577 PMCID: PMC9274141 DOI: 10.3389/fgene.2022.770569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Advanced and recurrent endometrial cancer EC remains controversial. Immunotherapy will play a landmark role in cancer treatment, and alternative splicing (AS) of messenger RNA (mRNA) may offer the potential of a broadened target space.Methods: We downloaded the clinical information and mRNA expression profiles from The Cancer Genome Atlas (TCGA) database. Hub genes were extracted from 11 AS-related genes to analyze the correlation between clinical parameters and the tumor-immune microenvironment. We also analyzed the correlations between the copy numbers, gene expressions of hub genes, and immune cells. The correlation between the risk score and the six most important checkpoint genes was also investigated. The ESTIMATE algorithm was finally performed on each EC sample based on the high- and low-risk groups.Results: The risk score was a reliable and stable independent risk predictor in the Uterine Corpus Endometrial Carcinoma (UCEC) cohort. CYB561|42921|AP and FOLH1|15817|ES were extracted. The expression of CYB561 and FOLH1 decreased gradually with the increased grade and International Federation of Gynecology and Obstetrics (FIGO) stage (p < 0.05). Gene copy number changes in CYB561 and FOLH1 led to the deletion number of myeloid DC cells and T cell CD8+. Low expression of both CYB561 and FOLH1 was associated with poor prognosis (p < 0.001). The checkpoint genes, CTLA-4 and PDCD1, exhibited a negative correlation with the risk score of AS in UCEC.Conclusion: AS-related gene signatures were related to the immune-tumor microenvironment and prognosis. These outcomes were significant for studying EC’s immune-related mechanisms and exploring novel prognostic predictors and precise therapy methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dabao Xu
- *Correspondence: Xingping Zhao, ; Dabao Xu,
| |
Collapse
|
6
|
Lokhov PG, Lichtenberg S, Balashova EE. Changing Landscape of Cancer Vaccines-Novel Proteomics Platform for New Antigen Compositions. Int J Mol Sci 2022; 23:4401. [PMID: 35457221 PMCID: PMC9029553 DOI: 10.3390/ijms23084401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The creation of cancer vaccines is a constant priority for research and biotechnology. Therefore, the emergence of any new technology in this field is a significant event, especially because previous technologies have not yielded results. Recently, the development of a cancer vaccine has been complemented by a new proteomics technology platform that allows the creation of antigen compositions known as antigenic essences. Antigenic essence comprises a target fraction of cellular antigens, the composition of which is precisely controlled by peptide mass spectrometry and compared to the proteomic footprint of the target cells to ensure similarity. This proteomics platform offers potential for a massive upgrade of conventional cellular cancer vaccines. Antigenic essences have the same mechanism of action, but without the disadvantages, and with notable advantages such as precise targeting of the immune response, safety, controlled composition, improved immunogenicity, addressed MHC restriction, and extended range of vaccination doses. The present paper calls attention to this novel platform, stimulates discussion of the role of antigenic essence in vaccine development, and consolidates academic science with biotech capabilities. A brief description of the platform, list of cellular cancer vaccines suitable for the upgrade, main recommendations, limitations, and legal and ethical aspects of vaccine upgrade are reported here.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Biobohemia, Inc., 1 Broadway, 14th Floor, Cambridge, MA 02142, USA; (S.L.); (E.E.B.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Steven Lichtenberg
- Biobohemia, Inc., 1 Broadway, 14th Floor, Cambridge, MA 02142, USA; (S.L.); (E.E.B.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Elena E. Balashova
- Biobohemia, Inc., 1 Broadway, 14th Floor, Cambridge, MA 02142, USA; (S.L.); (E.E.B.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| |
Collapse
|
7
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
8
|
Mørk SK, Kadivar M, Bol KF, Draghi A, Westergaard MCW, Skadborg SK, Overgaard N, Sørensen AB, Rasmussen IS, Andreasen LV, Yde CW, Trolle T, Garde C, Friis-Nielsen J, Nørgaard N, Christensen D, Kringelum JV, Donia M, Hadrup SR, Svane IM. Personalized therapy with peptide-based neoantigen vaccine (EVX-01) including a novel adjuvant, CAF®09b, in patients with metastatic melanoma. Oncoimmunology 2022; 11:2023255. [PMID: 35036074 PMCID: PMC8757480 DOI: 10.1080/2162402x.2021.2023255] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The majority of neoantigens arise from unique mutations that are not shared between individual patients, making neoantigen-directed immunotherapy a fully personalized treatment approach. Novel technical advances in next-generation sequencing of tumor samples and artificial intelligence (AI) allow fast and systematic prediction of tumor neoantigens. This study investigates feasibility, safety, immunity, and anti-tumor potential of the personalized peptide-based neoantigen vaccine, EVX-01, including the novel CD8+ T-cell inducing adjuvant, CAF®09b, in patients with metastatic melanoma (NTC03715985). The AI platform PIONEERTM was used for identification of tumor-derived neoantigens to be included in a peptide-based personalized therapeutic cancer vaccine. EVX-01 immunotherapy consisted of 6 administrations with 5–10 PIONEERTM-predicted neoantigens as synthetic peptides combined with the novel liposome-based Cationic Adjuvant Formulation 09b (CAF®09b) to strengthen T-cell responses. EVX-01 was combined with immune checkpoint inhibitors to augment the activity of EVX-01-induced immune responses. The primary endpoint was safety, exploratory endpoints included feasibility, immunologic and objective responses. This interim analysis reports the results from the first dose-level cohort of five patients. We documented a short vaccine manufacturing time of 48–55 days which enabled the initiation of EVX-01 treatment within 60 days from baseline biopsy. No severe adverse events were observed. EVX-01 elicited long-lasting EVX-01-specific T-cell responses in all patients. Competitive manufacturing time was demonstrated. EVX-01 was shown to be safe and able to elicit immune responses targeting tumor neoantigens with encouraging early indications of a clinical and meaningful antitumor efficacy, warranting further study.
Collapse
Affiliation(s)
- Sofie Kirial Mørk
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mohammad Kadivar
- Department of Health Technology, Technical University of Denmark- DTU, HEALTH TECH, Lyngby, Denmark
| | - Kalijn Fredrike Bol
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Nana Overgaard
- Department of Health Technology, Technical University of Denmark- DTU, HEALTH TECH, Lyngby, Denmark
| | | | | | | | | | | | | | | | - Nis Nørgaard
- Department of Urology, Copenhagen University Hospital, Herlev, Denmark
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark- DTU, HEALTH TECH, Lyngby, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
9
|
Garg AK, Mittal S, Padmanabhan P, Desikan R, Dixit NM. Increased B Cell Selection Stringency In Germinal Centers Can Explain Improved COVID-19 Vaccine Efficacies With Low Dose Prime or Delayed Boost. Front Immunol 2021; 12:776933. [PMID: 34917089 PMCID: PMC8669483 DOI: 10.3389/fimmu.2021.776933] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
The efficacy of COVID-19 vaccines appears to depend in complex ways on the vaccine dosage and the interval between the prime and boost doses. Unexpectedly, lower dose prime and longer prime-boost intervals have yielded higher efficacies in clinical trials. To elucidate the origins of these effects, we developed a stochastic simulation model of the germinal center (GC) reaction and predicted the antibody responses elicited by different vaccination protocols. The simulations predicted that a lower dose prime could increase the selection stringency in GCs due to reduced antigen availability, resulting in the selection of GC B cells with higher affinities for the target antigen. The boost could relax this selection stringency and allow the expansion of the higher affinity GC B cells selected, improving the overall response. With a longer dosing interval, the decay in the antigen with time following the prime could further increase the selection stringency, amplifying this effect. The effect remained in our simulations even when new GCs following the boost had to be seeded by memory B cells formed following the prime. These predictions offer a plausible explanation of the observed paradoxical effects of dosage and dosing interval on vaccine efficacy. Tuning the selection stringency in the GCs using prime-boost dosages and dosing intervals as handles may help improve vaccine efficacies.
Collapse
Affiliation(s)
- Amar K. Garg
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Soumya Mittal
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Abstract
Anti-PD-1 therapies can activate tumor-specific T cells to destroy tumors. However, whether and how T cells with different antigen specificity and affinity are differentially regulated by PD-1 remain vaguely understood. Upon antigen stimulation, a variety of genes is induced in T cells. Recently, we found that T cell receptor (TCR) signal strength required for the induction of genes varies across different genes and PD-1 preferentially inhibits the induction of genes that require stronger TCR signal. As each T cell has its own response characteristics, inducibility of genes likely differs across different T cells. Accordingly, the inhibitory effects of PD-1 are also expected to differ across different T cells. In the current study, we investigated whether and how factors that modulate T cell responsiveness to antigenic stimuli influence PD-1 function. By analyzing TCRs with different affinities to peptide-MHC complexes (pMHC) and pMHCs with different affinities to TCR, we demonstrated that PD-1 inhibits the expression of TCR-inducible genes efficiently when TCR:pMHC affinity is low. In contrast, affinities of peptides to MHC and MHC expression levels did not affect PD-1 sensitivity of TCR-inducible genes although they markedly altered the dose responsiveness of T cells by changing the efficiency of pMHC formation, suggesting that the strength of individual TCR signal is the key determinant of PD-1 sensitivity. Accordingly, we observed a preferential expansion of T cells with low-affinity to tumor-antigen in PD-1-deficient mice upon inoculation of tumor cells. These results demonstrate that PD-1 imposes qualitative control of T cell responses by preferentially suppressing low-affinity T cells.
Collapse
|
11
|
Catalioto RM, Valenti C, Bellucci F, Cialdai C, Altamura M, Digilio L, Pellacani AUE, Meini S. Booster immunization with a fractional dose of Prevnar 13 affects cell-mediated immune response but not humoral immunity in CD-1 mice. Heliyon 2021; 7:e07314. [PMID: 34195422 PMCID: PMC8239470 DOI: 10.1016/j.heliyon.2021.e07314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/02/2021] [Accepted: 06/10/2021] [Indexed: 12/01/2022] Open
Abstract
Achieving durable protective immunity following vaccination is dependent on many factors, including vaccine composition and antigen dose, and it has been investigated for various types of vaccines. Aim of the present study was to investigate the overall immune response elicited by two different booster doses in CD-1 mice, by exploiting the largely used 13-valent pneumococcal conjugate vaccine Prevnar 13® (PCV13). Immunization was performed by two primary doses of PCV13 two weeks apart, and a full or fractional (1/5) booster dose on week 10. Serotype-specific antibody titer, avidity, and opsonophagocytic activity were evaluated one week later, and compared to cell-mediated immunity (CMI) responses determined as the frequency of cytokines producing splenocytes by in vitro recall with the antigens (carrier protein and polysaccharides). Data showed that regardless of the booster dose, a comparable humoral response was produced, characterized by similar amounts of serotype-specific antibodies, with analog avidity and opsonophagocytic properties. On the other hand, when CMI was evaluated, the presence of CRM197-specific IL-5 and IL-2 producing cells was evident in splenocytes from mice immunized with the full dose, while in those immunized with the fractional booster dose, IFN-γ producing cells responsive to both protein and polysaccharide antigens were significantly increased, whereas the number of IL-5 and IL-2 positive cells remained unaffected. Overall the present findings show that PCV13 humoral response in mice is associated to a Th2 predominant response at the full booster dose, while the fractional one favors a mixed Th1/Th2 response, suggesting an important role of CMI besides measurement of functional protective antibodies, as an additional and important key information in vaccine development.
Collapse
Affiliation(s)
- Rose-Marie Catalioto
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| | - Claudio Valenti
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| | - Francesca Bellucci
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| | - Cecilia Cialdai
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| | - Maria Altamura
- Corporate Preclinical Development for New Technologies, Antiinfectives and Non-oncological Drugs, A. Menarini NewTech S.r.l., Via dei Sette Santi 1, I-50131 Florence, Italy
| | | | | | - Stefania Meini
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| |
Collapse
|
12
|
Gilfillan CB, Hebeisen M, Rufer N, Speiser DE. Constant regulation for stable CD8 T-cell functional avidity and its possible implications for cancer immunotherapy. Eur J Immunol 2021; 51:1348-1360. [PMID: 33704770 PMCID: PMC8252569 DOI: 10.1002/eji.202049016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/30/2022]
Abstract
The functional avidity (FA) of cytotoxic CD8 T cells impacts strongly on their functional capabilities and correlates with protection from infection and cancer. FA depends on TCR affinity, downstream signaling strength, and TCR affinity-independent parameters of the immune synapse, such as costimulatory and inhibitory receptors. The functional impact of coreceptors on FA remains to be fully elucidated. Despite its importance, FA is infrequently assessed and incompletely understood. There is currently no consensus as to whether FA can be enhanced by optimized vaccine dose or boosting schedule. Recent findings suggest that FA is remarkably stable in vivo, possibly due to continued signaling modulation of critical receptors in the immune synapse. In this review, we provide an overview of the current knowledge and hypothesize that in vivo, codominant T cells constantly "equalize" their FA for similar function. We present a new model of constant FA regulation, and discuss practical implications for T-cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Connie B. Gilfillan
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Michael Hebeisen
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Nathalie Rufer
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Daniel E. Speiser
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
13
|
Flynn O, Dillane K, Lanza JS, Marshall JM, Jin J, Silk SE, Draper SJ, Moore AC. Low Adenovirus Vaccine Doses Administered to Skin Using Microneedle Patches Induce Better Functional Antibody Immunogenicity as Compared to Systemic Injection. Vaccines (Basel) 2021; 9:vaccines9030299. [PMID: 33810085 PMCID: PMC8005075 DOI: 10.3390/vaccines9030299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/02/2023] Open
Abstract
Adenovirus-based vaccines are demonstrating promising clinical potential for multiple infectious diseases, including COVID-19. However, the immunogenicity of the vector itself decreases its effectiveness as a boosting vaccine due to the induction of strong anti-vector neutralizing immunity. Here we determined how dissolvable microneedle patches (DMN) for skin immunization can overcome this issue, using a clinically-relevant adenovirus-based Plasmodium falciparum malaria vaccine, AdHu5–PfRH5, in mice. Incorporation of vaccine into patches significantly enhanced its thermostability compared to the liquid form. Conventional high dose repeated immunization by the intramuscular (IM) route induced low antigen-specific IgG titres and high anti-vector immunity. A low priming dose of vaccine, by the IM route, but more so using DMN patches, induced the most efficacious immune responses, assessed by parasite growth inhibitory activity (GIA) assays. Administration of low dose AdHu5–PfRH5 using patches to the skin, boosted by high dose IM, induced the highest antigen-specific serum IgG response after boosting, the greatest skewing of the antibody response towards the antigen and away from the vector, and the highest efficacy. This study therefore demonstrates that repeated use of the same adenovirus vaccine can be highly immunogenic towards the transgene if a low dose is used to prime the response. It also provides a method of stabilizing adenovirus vaccine, in easy-to-administer dissolvable microneedle patches, permitting storage and distribution out of cold chain.
Collapse
Affiliation(s)
- Olivia Flynn
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Kate Dillane
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Juliane Sousa Lanza
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Jennifer M. Marshall
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Anne C. Moore
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
- Correspondence:
| |
Collapse
|
14
|
Boccasavia VL, Bovolenta ER, Villanueva A, Borroto A, Oeste CL, van Santen HM, Prieto C, Alonso-López D, Diaz-Muñoz MD, Batista FD, Alarcón B. Antigen presentation between T cells drives Th17 polarization under conditions of limiting antigen. Cell Rep 2021; 34:108861. [PMID: 33730591 PMCID: PMC7972993 DOI: 10.1016/j.celrep.2021.108861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
T cells form immunological synapses with professional antigen-presenting cells (APCs) resulting in T cell activation and the acquisition of peptide antigen-MHC (pMHC) complexes from the plasma membrane of the APC. They thus become APCs themselves. We investigate the functional outcome of T-T cell antigen presentation by CD4 T cells and find that the antigen-presenting T cells (Tpres) predominantly differentiate into regulatory T cells (Treg), whereas T cells that have been stimulated by Tpres cells predominantly differentiate into Th17 pro-inflammatory cells. Using mice deficient in pMHC uptake by T cells, we show that T-T antigen presentation is important for the development of experimental autoimmune encephalitis and Th17 cell differentiation in vivo. By varying the professional APC:T cell ratio, we can modulate Treg versus Th17 differentiation in vitro and in vivo, suggesting that T-T antigen presentation underlies proinflammatory responses in conditions of antigen scarcity.
Collapse
Affiliation(s)
- Viola L Boccasavia
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Elena R Bovolenta
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Villanueva
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aldo Borroto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara L Oeste
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hisse M van Santen
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Prieto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Alonso-López
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cancer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Manuel D Diaz-Muñoz
- Center for Physiopathology Toulouse-Purpan, INSERM UMR1043/CNRS UMR5282, CHU Purpan, BP3028, 31024 Toulouse, France
| | | | - Balbino Alarcón
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
15
|
Perciani CT, Liu LY, Wood L, MacParland SA. Enhancing Immunity with Nanomedicine: Employing Nanoparticles to Harness the Immune System. ACS NANO 2021; 15:7-20. [PMID: 33346646 DOI: 10.1021/acsnano.0c08913] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The failure of immune responses to vaccines and dysfunctional immune responses to viral infection, tumor development, or neoantigens lead to chronic viral infection, tumor progression, or incomplete immune protection after vaccination. Thus, strategies to boost host immunity are a topic of intense research and development. Engineered nanoparticles (NPs) possess immunological properties and can be modified to promote improved local immune responses. Nanoparticle-based approaches have been employed to enhance vaccine efficacy and host immune responses to viral and tumor antigens, with impressive results. In this Perspective, we present an overview of studies, such as the one reported by Alam et al. in this issue of ACS Nano, in which virus-like particles have been employed to enhance immunity. We review the cellular cornerstones of effective immunity and discuss how NPs can harness these interactions to overcome the current obstacles in vaccinology and oncology. We also discuss the barriers to effective NP-mediated immune priming including (1) NP delivery to the site of interest, (2) the quality of response elicited, and (3) the potential of the response to overcome immune escape. Through this Perspective, we aim to highlight the value of nanomedicine not only in delivering therapies but also in coordinating the enhancement of host immune responses. We provide a forward-looking outlook for future NP-based approaches and how they could be tailored to promote this outcome.
Collapse
Affiliation(s)
- Catia T Perciani
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Lewis Y Liu
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lawrence Wood
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Sonya A MacParland
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
16
|
Zhang A, Ba X, Weng X, Zhao B, Wang D, Cao H, Huang J. Immunological activities of the aqueous extracts of Cistanche deserticola as a polysaccharide adjuvant for inactivated foot-and-mouth disease vaccines. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1880551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Ailian Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Xueli Ba
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Xiang Weng
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Bin Zhao
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Danyang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Hui Cao
- Xinjiang Tiankang Animal Biotechnology Co., Ltd., Urumqi, People’s Republic of China
| | - Jiong Huang
- Xinjiang Tiankang Animal Biotechnology Co., Ltd., Urumqi, People’s Republic of China
| |
Collapse
|
17
|
Han HJ, Nwagwu C, Anyim O, Ekweremadu C, Kim S. COVID-19 and cancer: From basic mechanisms to vaccine development using nanotechnology. Int Immunopharmacol 2020; 90:107247. [PMID: 33307513 PMCID: PMC7709613 DOI: 10.1016/j.intimp.2020.107247] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Shows updated understanding of SARS-CoV-2, including the interaction between ACE 2 and the viral spike protein. More effective vaccines are required for immunocompromised cancer patients. Cancer alters the immune system through different levels of D-Dimer, albumin, prothrombin, and neutrophils. Nanomaterials assist vaccine delivery, including viral vector and mRNA vaccines with lipid nanoparticles.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic which has induced unprecedented ramifications, severely affecting our society due to the long incubation time, unpredictably high prevalence and lack of effective vaccines. One of the interesting notions is that there is an association between COVID-19 and cancer. Cancer patients seem to exhibit exacerbated conditions and a higher mortality rate when exposed to the virus. Therefore, vaccines are the promising solution to minimise the problem amongst cancer patients threatened by the new viral strains. However, there are still limitations to be considered, including the efficacy of COVID vaccines for immunocompromised individuals, possible interactions between the vaccine and cancer, and personalised medicine. Not only to eradicate the pandemic, but also to make it more effective for immunocompromised patients who are suffering from cancer, a successful vaccine platform is required through the implementation of nanotechnology which can also enable scalable manufacturing and worldwide distribution along with its faster and precise delivery. In this review, we summarise the current understanding of COVID-19 with clinical perspectives, highlighting the association between COVID-19 and cancer, followed by a vaccine development for this association using nanotechnology. We suggest different administration methods for the COVID-19 vaccine formulation options. This study will contribute to paving the way towards the prevention and treatment of COVID-19, especially for the immunocompromised individuals.
Collapse
Affiliation(s)
- Hyun Jee Han
- University College London, Department of Neonatology, United Kingdom.
| | - Chinekwu Nwagwu
- Department of Pharmaceutics, University of Nigeria Nsukka, Nigeria.
| | - Obumneme Anyim
- Department of Internal Medicine, University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu, Nigeria
| | - Chinedu Ekweremadu
- Department of Pharmaceutics and Pharmaceutical Technology Enugu State University of Science and Technology, Nigeria.
| | - San Kim
- Basildon and Thurrock University Hospital, United Kingdom.
| |
Collapse
|
18
|
Bansal A, Gamal W, Menon IJ, Olson V, Wu X, D'Souza MJ. Laser-assisted skin delivery of immunocontraceptive rabies nanoparticulate vaccine in poloxamer gel. Eur J Pharm Sci 2020; 155:105560. [PMID: 32949750 PMCID: PMC10964170 DOI: 10.1016/j.ejps.2020.105560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023]
Abstract
A painless skin delivery of vaccine for disease prevention is of great advantage in improving compliance in patients. To test this idea as a proof of concept, we utilized a pDNA vaccine construct, pDNAg333-2GnRH that has a dual function of controlling rabies and inducing immunocontraception in animals. The pDNA was administered to mice in a nanoparticulate form delivered through the skin using the P.L.E.A.S.E.® (Precise Laser Epidermal System) microporation laser device. Laser application was well tolerated, and mild skin reaction was healed completely in 8 days. We demonstrated that adjuvanted nanoparticulate pDNA vaccine significantly upregulated the expression of co-stimulatory molecules in dendritic cells. After topical administration of the adjuvanted nano-vaccine in mice, the high avidity serum for GnRH antibodies were induced and maintained up to 9 weeks. The induced immune response was of a mixed Th1/Th2 profile as measured by IgG subclasses (IgG2a and IgG1) and cytokine levels (IFN-γ and IL-4). Using flow cytometry, we revealed an increase of CD8+ T-cells and CD45R B cells upon the administration of the adjuvanted vaccine. Our previous study used the same pDNA nanoparticulate vaccine through an IM route, and a comparable immune response was induced using P.L.E.A.S.E. However, the vaccine dose in the current study was four-fold less than what was applied through the IM route.We concluded that laser-assisted skin vaccination has a potential of becoming a safe and reliable vaccination tool for rabies vaccination in animals or even in humans for pre- or post-exposure prophylaxis.
Collapse
Affiliation(s)
- Amit Bansal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA.
| | - Wael Gamal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Ipshita Jayaprakash Menon
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Victoria Olson
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Xianfu Wu
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Martin J D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| |
Collapse
|
19
|
Therapeutic Vaccines for the Treatment of HIV. Transl Res 2020; 223:61-75. [PMID: 32438074 PMCID: PMC8188575 DOI: 10.1016/j.trsl.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Despite the success of anti-retroviral therapy (ART) in transforming HIV into a manageable disease, it has become evident that long-term ART will not eliminate the HIV reservoir and cure the infection. Alternative strategies to eradicate HIV infection, or at least induce a state of viral control and drug-free remission are therefore needed. Therapeutic vaccination aims to induce or enhance immunity to alter the course of a disease. In this review we provide an overview of the current state of therapeutic HIV vaccine research and summarize the obstacles that the field faces while highlighting potential ways forward for a strategy to cure HIV infection.
Collapse
|
20
|
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS NANO 2020; 14:7760-7782. [PMID: 32571007 PMCID: PMC7325519 DOI: 10.1021/acsnano.0c04006] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
The current global health threat by the novel coronavirus disease 2019 (COVID-19) requires an urgent deployment of advanced therapeutic options available. The role of nanotechnology is highly relevant to counter this "virus" nano enemy. Nano intervention is discussed in terms of designing effective nanocarriers to counter the conventional limitations of antiviral and biological therapeutics. This strategy directs the safe and effective delivery of available therapeutic options using engineered nanocarriers, blocking the initial interactions of viral spike glycoprotein with host cell surface receptors, and disruption of virion construction. Controlling and eliminating the spread and reoccurrence of this pandemic demands a safe and effective vaccine strategy. Nanocarriers have potential to design risk-free and effective immunization strategies for severe acute respiratory syndrome coronavirus 2 vaccine candidates such as protein constructs and nucleic acids. We discuss recent as well as ongoing nanotechnology-based therapeutic and prophylactic strategies to fight against this pandemic, outlining the key areas for nanoscientists to step in.
Collapse
Affiliation(s)
- Gaurav Chauhan
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| | - Marc J. Madou
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
- Department of Mechanical and Aerospace
Engineering, University of California
Irvine, Engineering Gateway 4200, Irvine,
California 92697, United States
| | - Sourav Kalra
- Department of Pharmaceutical Technology
(Process Chemistry), National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S. Nagar,
Punjab 160062, India
| | - Vianni Chopra
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Deepa Ghosh
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| |
Collapse
|
21
|
Nakano T, Ohara Y, Fujita H, Ainai A, Yamamura ET, Suzuki T, Hasegawa H, Sone T, Asano K. Double-Stranded Structure of the Polyinosinic-Polycytidylic Acid Molecule to Elicit TLR3 Signaling and Adjuvant Activity in Murine Intranasal A(H1N1)pdm09 Influenza Vaccination. DNA Cell Biol 2020; 39:1730-1740. [PMID: 32580635 DOI: 10.1089/dna.2019.5324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyinosinic-polycytidylic acid (PIC) is a potent double-stranded RNA (dsRNA) adjuvant useful in intranasal influenza vaccination. In mice, the intensity and duration of immune responses to PIC correlated with the double-stranded chain length. A rational method to avoid PIC chain extension in PIC production is to use multiple short poly(I) molecules and one long poly(C) molecule for PIC assembly. In this study, we elucidate that a newly developed uPIC100-400 molecule comprising multiple 0.1 kb poly(I) molecules and one 0.4 kb poly(C) molecule effectively enhanced the immune responses in mice, by preventing the challenged viral propagation and inducing hemagglutinin-specific IgA, after intranasal A(H1N1)pdm09 influenza vaccination. Reduced intraperitoneal toxicity of PIC prepared with multiple short poly(I) molecules in mice indicates the widened effective range of uPIC100-400 as an adjuvant. In contrast to uPIC100-400, the PIC molecule comprising multiple 0.05 kb poly(I) molecules failed to elicit mouse mucosal immunity. These results were consistent with TLR3 response but not retinoic acid inducible gene I (RIG-I)-like receptor response in the cell assays, which suggests that the adjuvant effect of PIC in mouse intranasal immunization depends on TLR3 signaling. In conclusion, the double-stranded PIC with reduced toxicity developed in this study would contribute to the development of PIC-adjuvanted vaccines.
Collapse
Affiliation(s)
- Tetsuo Nakano
- Technical Research Laboratories, Kyowa Hakko Bio Co., Ltd., Hofu, Japan.,Division of Research Innovation and Cooperation, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuki Ohara
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Fujita
- Technical Research Laboratories, Kyowa Hakko Bio Co., Ltd., Hofu, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ei-Tora Yamamura
- Technical Research Laboratories, Kyowa Hakko Bio Co., Ltd., Hofu, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teruo Sone
- Division of Research Innovation and Cooperation, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kozo Asano
- Division of Research Innovation and Cooperation, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Herst CV, Burkholz S, Sidney J, Sette A, Harris PE, Massey S, Brasel T, Cunha-Neto E, Rosa DS, Chao WCH, Carback R, Hodge T, Wang L, Ciotlos S, Lloyd P, Rubsamen R. An effective CTL peptide vaccine for Ebola Zaire Based on Survivors' CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design. Vaccine 2020; 38:4464-4475. [PMID: 32418793 PMCID: PMC7186210 DOI: 10.1016/j.vaccine.2020.04.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 12/21/2022]
Abstract
The 2013-2016 West Africa EBOV epidemic was the biggest EBOV outbreak to date. An analysis of virus-specific CD8+ T-cell immunity in 30 survivors showed that 26 of those individuals had a CD8+ response to at least one EBOV protein. The dominant response (25/26 subjects) was specific to the EBOV nucleocapsid protein (NP). It has been suggested that epitopes on the EBOV NP could form an important part of an effective T-cell vaccine for Ebola Zaire. We show that a 9-amino-acid peptide NP44-52 (YQVNNLEEI) located in a conserved region of EBOV NP provides protection against morbidity and mortality after mouse adapted EBOV challenge. A single vaccination in a C57BL/6 mouse using an adjuvanted microsphere peptide vaccine formulation containing NP44-52 is enough to confer immunity in mice. Our work suggests that a peptide vaccine based on CD8+ T-cell immunity in EBOV survivors is conceptually sound and feasible. Nucleocapsid proteins within SARS-CoV-2 contain multiple Class I epitopes with predicted HLA restrictions consistent with broad population coverage. A similar approach to a CTL vaccine design may be possible for that virus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Disease Models, Animal
- Drug Design
- Ebola Vaccines/chemistry
- Ebola Vaccines/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Mice
- Mice, Inbred C57BL
- Nucleocapsid Proteins/chemistry
- Nucleocapsid Proteins/immunology
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- C V Herst
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - S Burkholz
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - J Sidney
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, United States
| | - A Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, United States
| | - P E Harris
- Endocrinology Division, Department of Medicine, School of Medicine, Columbia University, New York, NY, USA
| | - S Massey
- University of Texas, Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - T Brasel
- University of Texas, Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - E Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii) INCT, São Paulo, Brazil; Heart Institute (Incor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - D S Rosa
- Institute for Investigation in Immunology (iii) INCT, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - W C H Chao
- University of Macau, E12 Avenida da Universidade, Taipa, Macau, China
| | - R Carback
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - T Hodge
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - L Wang
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - S Ciotlos
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - P Lloyd
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - R Rubsamen
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States; Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
23
|
Lucchesi S, Furini S, Medaglini D, Ciabattini A. From Bivariate to Multivariate Analysis of Cytometric Data: Overview of Computational Methods and Their Application in Vaccination Studies. Vaccines (Basel) 2020; 8:E138. [PMID: 32244919 PMCID: PMC7157606 DOI: 10.3390/vaccines8010138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Flow and mass cytometry are used to quantify the expression of multiple extracellular or intracellular molecules on single cells, allowing the phenotypic and functional characterization of complex cell populations. Multiparametric flow cytometry is particularly suitable for deep analysis of immune responses after vaccination, as it allows to measure the frequency, the phenotype, and the functional features of antigen-specific cells. When many parameters are investigated simultaneously, it is not feasible to analyze all the possible bi-dimensional combinations of marker expression with classical manual analysis and the adoption of advanced automated tools to process and analyze high-dimensional data sets becomes necessary. In recent years, the development of many tools for the automated analysis of multiparametric cytometry data has been reported, with an increasing record of publications starting from 2014. However, the use of these tools has been preferentially restricted to bioinformaticians, while few of them are routinely employed by the biomedical community. Filling the gap between algorithms developers and final users is fundamental for exploiting the advantages of computational tools in the analysis of cytometry data. The potentialities of automated analyses range from the improvement of the data quality in the pre-processing steps up to the unbiased, data-driven examination of complex datasets using a variety of algorithms based on different approaches. In this review, an overview of the automated analysis pipeline is provided, spanning from the pre-processing phase to the automated population analysis. Analysis based on computational tools might overcame both the subjectivity of manual gating and the operator-biased exploration of expected populations. Examples of applications of automated tools that have successfully improved the characterization of different cell populations in vaccination studies are also presented.
Collapse
Affiliation(s)
- Simone Lucchesi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (S.L.); (D.M.)
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (S.L.); (D.M.)
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (S.L.); (D.M.)
| |
Collapse
|
24
|
Afrough S, Rhodes S, Evans T, White R, Benest J. Immunologic Dose-Response to Adenovirus-Vectored Vaccines in Animals and Humans: A Systematic Review of Dose-Response Studies of Replication Incompetent Adenoviral Vaccine Vectors when Given via an Intramuscular or Subcutaneous Route. Vaccines (Basel) 2020; 8:E131. [PMID: 32192058 PMCID: PMC7157626 DOI: 10.3390/vaccines8010131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Optimal vaccine dosing is important to ensure the greatest protection and safety. Analysis of dose-response data, from previous studies, may inform future studies to determine the optimal dose. Implementing more quantitative modelling approaches in vaccine dose finding have been recently suggested to accelerate vaccine development. Adenoviral vectored vaccines are in advanced stage of development for a variety of prophylactic and therapeutic indications, however dose-response has not yet been systematically determined. To further inform adenoviral vectored vaccines dose identification, historical dose-response data should be systematically reviewed. A systematic literature review was conducted to collate and describe the available dose-response studies for adenovirus vectored vaccines. Of 2787 papers identified by Medline search strategy, 35 were found to conform to pre-defined criteria. The majority of studies were in mice or humans and studied adenovirus serotype 5. Dose-response data were available for 12 different immunological responses. The majority of papers evaluated three dose levels, only two evaluated more than five dose levels. The most common dosing range was 107-1010 viral particles in mouse studies and 108-1011 viral particles in human studies. Data were available on adenovirus vaccine dose-response, primarily on adenovirus serotype 5 backbones and in mice and humans. These data could be used for quantitative adenoviral vectored vaccine dose optimisation analysis.
Collapse
Affiliation(s)
- Sara Afrough
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK;
| | - Sophie Rhodes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| | - Thomas Evans
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK;
| | - Richard White
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| | - John Benest
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| |
Collapse
|
25
|
Lacroix-Desmazes S, Voorberg J, Lillicrap D, Scott DW, Pratt KP. Tolerating Factor VIII: Recent Progress. Front Immunol 2020; 10:2991. [PMID: 31998296 PMCID: PMC6965068 DOI: 10.3389/fimmu.2019.02991] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/05/2019] [Indexed: 02/02/2023] Open
Abstract
Development of neutralizing antibodies against biotherapeutic agents administered to prevent or treat various clinical conditions is a longstanding and growing problem faced by patients, medical providers and pharmaceutical companies. The hemophilia A community has deep experience with attempting to manage such deleterious immune responses, as the lifesaving protein drug factor VIII (FVIII) has been in use for decades. Hemophilia A is a bleeding disorder caused by genetic mutations that result in absent or dysfunctional FVIII. Prophylactic treatment consists of regular intravenous FVIII infusions. Unfortunately, 1/4 to 1/3 of patients develop neutralizing anti-FVIII antibodies, referred to clinically as “inhibitors,” which result in a serious bleeding diathesis. Until recently, the only therapeutic option for these patients was “Immune Tolerance Induction,” consisting of intensive FVIII administration, which is extraordinarily expensive and fails in ~30% of cases. There has been tremendous recent progress in developing novel potential clinical alternatives for the treatment of hemophilia A, ranging from encouraging results of gene therapy trials, to use of other hemostatic agents (either promoting coagulation or slowing down anti-coagulant or fibrinolytic pathways) to “bypass” the need for FVIII or supplement FVIII replacement therapy. Although these approaches are promising, there is widespread agreement that preventing or reversing inhibitors remains a high priority. Risk profiles of novel therapies are still unknown or incomplete, and FVIII will likely continue to be considered the optimal hemostatic agent to support surgery and manage trauma, or to combine with other therapies. We describe here recent exciting studies, most still pre-clinical, that address FVIII immunogenicity and suggest novel interventions to prevent or reverse inhibitor development. Studies of FVIII uptake, processing and presentation on antigen-presenting cells, epitope mapping, and the roles of complement, heme, von Willebrand factor, glycans, and the microbiome in FVIII immunogenicity are elucidating mechanisms of primary and secondary immune responses and suggesting additional novel targets. Promising tolerogenic therapies include development of FVIII-Fc fusion proteins, nanoparticle-based therapies, oral tolerance, and engineering of regulatory or cytotoxic T cells to render them FVIII-specific. Importantly, these studies are highly applicable to other scenarios where establishing immune tolerance to a defined antigen is a clinical priority.
Collapse
Affiliation(s)
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David W Scott
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kathleen P Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
26
|
Carretero-Iglesia L, Couturaud B, Baumgaertner P, Schmidt J, Maby-El Hajjami H, Speiser DE, Hebeisen M, Rufer N. High Peptide Dose Vaccination Promotes the Early Selection of Tumor Antigen-Specific CD8 T-Cells of Enhanced Functional Competence. Front Immunol 2020; 10:3016. [PMID: 31969886 PMCID: PMC6960191 DOI: 10.3389/fimmu.2019.03016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
CD8 T-cell response efficiency critically depends on the TCR binding strength to peptide-MHC, i.e., the TCR binding avidity. A current challenge in onco-immunology lies in the evaluation of vaccine protocols selecting for tumor-specific T-cells of highest avidity, offering maximal immune protection against tumor cells and clinical benefit. Here, we investigated the impact of peptide and CpG/adjuvant doses on the quality of vaccine-induced CD8 T-cells in relation to binding avidity and functional responses in treated melanoma patients. Using TCR-pMHC binding avidity measurements combined to phenotype and functional assays, we performed a comprehensive study on representative tumor antigen-specific CD8 T-cell clones (n = 454) from seven patients vaccinated with different doses of Melan-A/ELA peptide (0.1 mg vs. 0.5 mg) and CpG-B adjuvant (1–1.3 mg vs. 2.6 mg). Vaccination with high peptide dose favored the early and strong in vivo expansion and differentiation of Melan-A-specific CD8 T-cells. Consistently, T-cell clones generated from those patients showed increased TCR binding avidity (i.e., slow off-rates and CD8 binding independency) readily after 4 monthly vaccine injections (4v). In contrast, the use of low peptide or high CpG-B doses required 8 monthly vaccine injections (8v) for the enrichment of anti-tumor T-cells with high TCR binding avidity and low CD8 binding dependency. Importantly, the CD8 binding-independent vaccine-induced CD8 T-cells displayed enhanced functional avidity, reaching a plateau of maximal function. Thus, T-cell functional potency following peptide/CpG/IFA vaccination may not be further improved beyond a certain TCR binding avidity limit. Our results also indicate that while high peptide dose vaccination induced the early selection of Melan-A-specific CD8 T-cells of increased functional competence, continued serial vaccinations also promoted such high-avidity T-cells. Overall, the systematic assessment of T-cell binding avidity may contribute to optimize vaccine design for improving clinical efficacy.
Collapse
Affiliation(s)
- Laura Carretero-Iglesia
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Barbara Couturaud
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Petra Baumgaertner
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Hélène Maby-El Hajjami
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rufer
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Gilfillan CB, Wang C, Mohsen MO, Rufer N, Hebeisen M, Allard M, Verdeil G, Irvine DJ, Bachmann MF, Speiser DE. Murine CD8 T-cell functional avidity is stable in vivo but not in vitro: Independence from homologous prime/boost time interval and antigen density. Eur J Immunol 2019; 50:505-514. [PMID: 31785153 PMCID: PMC7187562 DOI: 10.1002/eji.201948355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 01/13/2023]
Abstract
It is known that for achieving high affinity antibody responses, vaccines must be optimized for antigen dose/density, and the prime/boost interval should be at least 4 weeks. Similar knowledge is lacking for generating high avidity T‐cell responses. The functional avidity (FA) of T cells, describing responsiveness to peptide, is associated with the quality of effector function and the protective capacity in vivo. Despite its importance, the FA is rarely determined in T‐cell vaccination studies. We addressed the question whether different time intervals for short‐term homologous vaccinations impact the FA of CD8 T‐cell responses. Four‐week instead of 2‐week intervals between priming and boosting with potent subunit vaccines in C57BL/6 mice did not improve FA. Equally, similar FA was observed after vaccination with virus‐like particles displaying low versus high antigen densities. Interestingly, FA was stable in vivo but not in vitro, depending on the antigen dose and the time interval since T‐cell activation, as observed in murine monoclonal T cells. Our findings suggest dynamic in vivo modulation for equal FA. We conclude that low antigen density vaccines or a minimal 4‐week prime/boost interval are not crucial for the T‐cell's FA, in contrast to antibody responses.
Collapse
Affiliation(s)
| | - Chensu Wang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Mona O Mohsen
- Inselspital, Universitaetsklinik RIA, Immunologie, Bern, Switzerland.,Jenner Institute, University of Oxford, Oxford, UK
| | - Nathalie Rufer
- Department of Oncology, University of Lausanne, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Martin F Bachmann
- Inselspital, Universitaetsklinik RIA, Immunologie, Bern, Switzerland.,Jenner Institute, University of Oxford, Oxford, UK
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
28
|
Current Possibilities of Gynecologic Cancer Treatment with the Use of Immune Checkpoint Inhibitors. Int J Mol Sci 2019; 20:ijms20194705. [PMID: 31547532 PMCID: PMC6801535 DOI: 10.3390/ijms20194705] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Despite the ongoing progress in cancer research, the global cancer burden has increased to 18.1 million new cases and 9.6 million deaths in 2018. Gynecological cancers, such as ovarian, endometrial, and cervical cancers, considerably contribute to global cancer burden, leading to $5,862.6, $2,945.7, and $1,543.9 million of annual costs of cancer care, respectively. Thus, the development of effective therapies against gynecological cancers is still a largely unmet medical need. One of the novel therapeutic approaches is to induce anti-cancer immunity by the inhibition of the immune checkpoint pathways using monoclonal antibodies. The molecular targets for monoclonal antibodies are cytotoxic T lymphocyte-associated protein-4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed death-ligand 1 (PD-L1). The rationale for the use of immune checkpoint inhibitors in patients with gynecological cancers was based on the immunohistological studies showing high expression levels of PD-1 and PD-L1 in those cancers. Currently available immune checkpoint inhibitors include nivolumab, pembrolizumab, atezolizumab, avelumab, durvalumab, and ipilimumab. The efficacy and safety of these inhibitors, used as monotherapy and with combination with chemotherapy, is being currently evaluated in several clinical studies. As the results are promising, more clinical trials are being planned, which may lead to the development of efficient therapies for gynecological cancer patients.
Collapse
|
29
|
Bhide Y, Dong W, Gribonika I, Voshart D, Meijerhof T, de Vries-Idema J, Norley S, Guilfoyle K, Skeldon S, Engelhardt OG, Boon L, Christensen D, Lycke N, Huckriede A. Cross-Protective Potential and Protection-Relevant Immune Mechanisms of Whole Inactivated Influenza Virus Vaccines Are Determined by Adjuvants and Route of Immunization. Front Immunol 2019; 10:646. [PMID: 30984200 PMCID: PMC6450434 DOI: 10.3389/fimmu.2019.00646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/11/2019] [Indexed: 12/27/2022] Open
Abstract
Adjuvanted whole inactivated virus (WIV) influenza vaccines show promise as broadly protective influenza vaccine candidates. Using WIV as basis we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the liposome-based adjuvants CAF01 and CAF09 and the protein-based adjuvants CTA1-DD and CTA1-3M2e-DD and evaluated whether one or more of the adjuvants could induce broadly protective immunity. Mice were immunized with WIV prepared from A/Puerto Rico/8/34 (H1N1) virus intramuscularly with or without CAF01 or intranasally with or without CAF09, CTA1-DD, or CTA1-3M2e-DD, followed by challenge with homologous, heterologous or heterosubtypic virus. In general, intranasal immunizations were significantly more effective than intramuscular immunizations in inducing virus-specific serum-IgG, mucosal-IgA, and splenic IFNγ-producing CD4 T cells. Intranasal immunizations with adjuvanted vaccines afforded strong cross-protection with milder clinical symptoms and better control of virus load in lungs. Mechanistic studies indicated that non-neutralizing IgG antibodies and CD4 T cells were responsible for the improved cross-protection while IgA antibodies were dispensable. The role of CD4 T cells was particularly pronounced for CTA1-3M2e-DD adjuvanted vaccine as evidenced by CD4 T cell-dependent reduction of lung virus titers and clinical symptoms. Thus, intranasally administered WIV in combination with effective mucosal adjuvants appears to be a promising broadly protective influenza vaccine candidate.
Collapse
Affiliation(s)
- Yoshita Bhide
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wei Dong
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Daniëlle Voshart
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephen Norley
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Kate Guilfoyle
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Sarah Skeldon
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Othmar G Engelhardt
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | | | - Dennis Christensen
- Adjuvant Research, Department of Infectious Diseases Immunology, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Anke Huckriede
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
30
|
Applications of Immunomodulatory Immune Synergies to Adjuvant Discovery and Vaccine Development. Trends Biotechnol 2018; 37:373-388. [PMID: 30470547 DOI: 10.1016/j.tibtech.2018.10.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Pathogens comprise a diverse set of immunostimulatory molecules that activate the innate immune system during infection. The immune system recognizes distinct combinations of pathogenic molecules leading to multiple immune activation events that cooperate to produce enhanced immune responses, known as 'immune synergies'. Effective immune synergies are essential for the clearance of pathogens, thus inspiring novel adjuvant design to improve vaccines. We highlight current vaccine adjuvants and the importance of immune synergies to adjuvant and vaccine design. The focus is on new technologies used to study and apply immune synergies to adjuvant and vaccine development. Finally, we discuss how recent findings can be applied to the future design and characterization of synergistic adjuvants and vaccines.
Collapse
|
31
|
Billeskov R, Beikzadeh B, Berzofsky JA. The effect of antigen dose on T cell-targeting vaccine outcome. Hum Vaccin Immunother 2018; 15:407-411. [PMID: 30277831 DOI: 10.1080/21645515.2018.1527496] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
During the past 3-4 decades, an increasing amount of evidence has pointed to the complex role of the antigen dose or T cell receptor (TCR) stimulation strength on the subsequent type, duration and "flavor" or quality of the response. Antigen dose was initially shown to impact Th1/Th2 bias, and later also shown to differentially affect development and induction of Tregs, Th17, T-follicular helper (Tfh), cells, and others. In recent years the quality of both CD4/8 T cells during infections, cancer and/or autoimmunity has turned out to be critical for subsequent disease outcome. Importantly, different vaccination strategies also lead to different types of T cell responses, and the role of the antigen dose is emerging as an important factor as well as a tool for investigators to utilize in fine-tuning vaccine efficacy. This commentary will highlight essential background of how antigen dose can impact and affect the quality of T cell responses, and discuss how this translates in different vaccine settings.
Collapse
Affiliation(s)
- Rolf Billeskov
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,c Department of Infectious Disease Immunology , Statens Serum Institut , Copenhagen , Denmark
| | - Babak Beikzadeh
- b Department of Microbiology and Immunology, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran.,c Department of Infectious Disease Immunology , Statens Serum Institut , Copenhagen , Denmark
| | - Jay A Berzofsky
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
32
|
Targeting the Mincle and TLR3 receptor using the dual agonist cationic adjuvant formulation 9 (CAF09) induces humoral and polyfunctional memory T cell responses in calves. PLoS One 2018; 13:e0201253. [PMID: 30063728 PMCID: PMC6067743 DOI: 10.1371/journal.pone.0201253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022] Open
Abstract
There is a need for the rational design of safe and effective vaccines to protect against chronic bacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium avium subsp. paratuberculosis in a number of species. One of the main challenges for vaccine development is the lack of safe adjuvants that induce protective immune responses. Cationic Adjuvant Formulation 01 (CAF01)—an adjuvant based on trehalose dibehenate (TDB) and targeting the Mincle receptor—has entered human trials based on promising pre-clinical results in a number of species. However, in cattle CAF01 only induces weak systemic immune responses. In this study, we tested the ability of three pattern recognition receptors, either alone or in combination, to activate bovine monocytes and macrophages. We found that addition of the TLR3 agonist, polyinosinic:polycytidylic acid (Poly(I:C)) to either one of the Mincle receptor agonists, TDB or monomycoloyl glycerol (MMG), enhanced monocyte activation, and calves vaccinated with CAF09 containing MMG and Poly(I:C) had increased cell-mediated and humoral immune response compared to CAF01 vaccinated animals. In contrast to the highly reactogenic Montanide ISA 61 VG, CAF09-primed T cells maintained a higher frequency of polyfunctional CD4+ T cells (IFN-γ+ TNF-α+ IL-2+). In conclusion, CAF09 supports the development of antibodies along with a high-quality cell-mediated immune response and is a promising alternative to oil-in-water adjuvant in cattle and other ruminants.
Collapse
|
33
|
Johnson LE, Brockstedt D, Leong M, Lauer P, Theisen E, Sauer JD, McNeel DG. Heterologous vaccination targeting prostatic acid phosphatase (PAP) using DNA and Listeria vaccines elicits superior anti-tumor immunity dependent on CD4+ T cells elicited by DNA priming. Oncoimmunology 2018; 7:e1456603. [PMID: 30221049 DOI: 10.1080/2162402x.2018.1456603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background. Sipuleucel T, an autologous cell-based vaccine targeting prostatic acid phosphatase (PAP), has demonstrated efficacy for the treatment of advanced prostate cancer. DNA vaccines encoding PAP and live attenuated Listeria vaccines have entered clinical trials for patients with prostate cancer, and have advantages in terms of eliciting predominantly Th1-biased immunity. In this study, we investigated whether the immunogenicity and anti-tumor efficacy of a DNA and Listeria vaccine, each encoding PAP, could be enhanced by using them in a heterologous prime/boost approach. Methods. Transgenic mice expressing HLA-A2.01 and HLA-DRB1*0101 were immunized alone or with a heterologous prime/boost strategy. Splenocytes were evaluated for MHC class I and II-restricted, PAP-specific immune responses by IFNγ ELISPOTs. Anti-tumor activity to a syngeneic, PAP-expressing tumor line was evaluated. Results. PAP-specific cellular immunity and anti-tumor activity were elicited in mice after immunization with DNA- or listeria-based vaccines. Greater CD4+ and CD8+ responses, and anti-tumor responses, were elicited when mice were immunized first with DNA and boosted with Listeria, but not when administered in the opposite order. This was found to be dependent on CD4+ T cells elicited with DNA priming, and was not due to inflammatory signals by Listeria itself or due to B cells serving as antigen-presenting cells for DNA during priming. Conclusions. Heterologous prime/boost vaccination using DNA priming with Listeria boosting may provide better anti-tumor immunity, similar to many reports evaluating DNA priming with vaccines targeting foreign microbial antigens. These findings have implications for the design of future clinical trials.
Collapse
Affiliation(s)
- Laura E Johnson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| | | | | | | | - Erin Theisen
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| |
Collapse
|
34
|
Bocanegra Gondan AI, Ruiz-de-Angulo A, Zabaleta A, Gómez Blanco N, Cobaleda-Siles BM, García-Granda MJ, Padro D, Llop J, Arnaiz B, Gato M, Escors D, Mareque-Rivas JC. Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles. Biomaterials 2018; 170:95-115. [PMID: 29656235 DOI: 10.1016/j.biomaterials.2018.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 02/07/2023]
Abstract
Encouraging results are emerging from systems that exploit Toll like receptor (TLR) signaling, nanotechnology, checkpoint inhibition and molecular imaging for cancer immunotherapy. A major remaining challenge is developing effective, durable and tumour-specific immune responses without systemic toxicity. Here, we report a simple and versatile system based on synergistic activation of immune responses and direct cancer cell killing by combined TLR ligation using polyIC as TLR3 and imiquimod (R837) as TLR7 agonist, in combination with the model antigen ovalbumin (OVA) and phospholipid micelles loaded with zinc-doped iron oxide magnetic nanoparticles (MNPs). The combination of TLR agonists triggered a strong innate immune response in the lymph nodes (LNs) without systemic release of pro-inflammatory cytokines. The vaccines showed excellent efficacy against aggressive B16-F10 melanoma cells expressing OVA, which was improved with immune checkpoint abrogation of the immunosuppressive programmed death-ligand 1 (PD-L1) at the level of the cancer cells. By magnetic resonance (MR) and nuclear imaging we could track the vaccine migration from the site of injection to LNs and tumour. Overall, we show this synergistic TLR agonists and their combination with MNPs and immune checkpoint blockade to have considerable potential for preclinical and clinical development of vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel Padro
- CIC biomaGUNE, Paseo Miramón 182, 20014 San Sebastián, Spain
| | - Jordi Llop
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Blanca Arnaiz
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - María Gato
- Department of Oncology, Navarrabiomed-Biomedical Research Centre, Fundación Miguel Servet, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - David Escors
- Department of Oncology, Navarrabiomed-Biomedical Research Centre, Fundación Miguel Servet, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Juan C Mareque-Rivas
- CIC biomaGUNE, Paseo Miramón 182, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Chemistry and Centre for NanoHealth, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
35
|
Panagioti E, Klenerman P, Lee LN, van der Burg SH, Arens R. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Front Immunol 2018; 9:276. [PMID: 29503649 PMCID: PMC5820320 DOI: 10.3389/fimmu.2018.00276] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lian N. Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
36
|
Frey BF, Jiang J, Sui Y, Boyd LF, Yu B, Tatsuno G, Billeskov R, Solaymani-Mohammadi S, Berman PW, Margulies DH, Berzofsky JA. Effects of Cross-Presentation, Antigen Processing, and Peptide Binding in HIV Evasion of T Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2018; 200:1853-1864. [PMID: 29374075 DOI: 10.4049/jimmunol.1701523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/27/2017] [Indexed: 11/19/2022]
Abstract
Unlike cytosolic processing and presentation of viral Ags by virus-infected cells, Ags first expressed in infected nonprofessional APCs, such as CD4+ T cells in the case of HIV, are taken up by dendritic cells and cross-presented. This generally requires entry through the endocytic pathway, where endosomal proteases have first access for processing. Thus, understanding virus escape during cross-presentation requires an understanding of resistance to endosomal proteases, such as cathepsin S (CatS). We have modified HIV-1MN gp120 by mutating a key CatS cleavage site (Thr322Thr323) in the V3 loop of the immunodominant epitope IGPGRAFYTT to IGPGRAFYVV to prevent digestion. We found this mutation to facilitate cross-presentation and provide evidence from MHC binding and X-ray crystallographic structural studies that this results from preservation of the epitope rather than an increased epitope affinity for the MHC class I molecule. In contrast, when the protein is expressed by a vaccinia virus in the cytosol, the wild-type protein is immunogenic without this mutation. These proof-of-concept results show that a virus like HIV, infecting predominantly nonprofessional presenting cells, can escape T cell recognition by incorporating a CatS cleavage site that leads to destruction of an immunodominant epitope when the Ag undergoes endosomal cross-presentation.
Collapse
Affiliation(s)
- Blake F Frey
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Bin Yu
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Gwen Tatsuno
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rolf Billeskov
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shahram Solaymani-Mohammadi
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Phillip W Berman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
37
|
Billeskov R, Lindenstrøm T, Woodworth J, Vilaplana C, Cardona PJ, Cassidy JP, Mortensen R, Agger EM, Andersen P. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis. Front Immunol 2018; 8:1973. [PMID: 29379507 PMCID: PMC5775287 DOI: 10.3389/fimmu.2017.01973] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI), and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.
Collapse
Affiliation(s)
- Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Joshua Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Cristina Vilaplana
- Unitat de Tuberculosi Experimental, Institut per a la Investigació en Ciències de la Salut Germans Trias I Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Institut per a la Investigació en Ciències de la Salut Germans Trias I Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Joseph P Cassidy
- Veterinary Sciences Centre, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
38
|
Mothe B, Brander C. HIV T-Cell Vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:31-51. [DOI: 10.1007/978-981-13-0484-2_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Poston TB, Qu Y, Girardi J, O'Connell CM, Frazer LC, Russell AN, Wall M, Nagarajan UM, Darville T. A Chlamydia-Specific TCR-Transgenic Mouse Demonstrates Th1 Polyfunctionality with Enhanced Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2845-2854. [PMID: 28855311 PMCID: PMC5770186 DOI: 10.4049/jimmunol.1700914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Chlamydia is responsible for millions of new infections annually, and current efforts focus on understanding cellular immunity for targeted vaccine development. The Chlamydia-specific CD4 T cell response is characterized by the production of IFN-γ, and polyfunctional Th1 responses are associated with enhanced protection. A major limitation in studying these responses is the paucity of tools available for detection, quantification, and characterization of polyfunctional Ag-specific T cells. We addressed this problem by developing a TCR-transgenic (Tg) mouse with CD4 T cells that respond to a common Ag in Chlamydia muridarum and Chlamydia trachomatis Using an adoptive-transfer approach, we show that naive Tg CD4 T cells become activated, proliferate, migrate to the infected tissue, and acquire a polyfunctional Th1 phenotype in infected mice. Polyfunctional Tg Th1 effectors demonstrated enhanced IFN-γ production compared with polyclonal cells, protected immune-deficient mice against lethality, mediated bacterial clearance, and orchestrated an anamnestic response. Adoptive transfer of Chlamydia-specific CD4 TCR-Tg T cells with polyfunctional capacity offers a powerful approach for analysis of protective effector and memory responses against chlamydial infection and demonstrates that an effective monoclonal CD4 T cell response may successfully guide subunit vaccination strategies.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Yanyan Qu
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Lauren C Frazer
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Ali N Russell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - McKensie Wall
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| |
Collapse
|
40
|
Low antigen dose formulated in CAF09 adjuvant Favours a cytotoxic T-cell response following intraperitoneal immunization in Göttingen minipigs. Vaccine 2017; 35:5629-5636. [DOI: 10.1016/j.vaccine.2017.08.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 12/18/2022]
|
41
|
Allen JD, Owino SO, Carter DM, Crevar CJ, Reese VA, Fox CB, Coler RN, Reed SG, Baldwin SL, Ross TM. Broadened immunity and protective responses with emulsion-adjuvanted H5 COBRA-VLP vaccines. Vaccine 2017; 35:5209-5216. [PMID: 28789850 DOI: 10.1016/j.vaccine.2017.07.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 12/23/2022]
Abstract
A number of challenges for developing a protective pre-pandemic influenza A vaccine exists including predicting the target influenza strain and designing the vaccine for an immunologically naïve population. Manufacturing and supply of the vaccine would also require implementing ways to increase coverage for the largest number of people through dose-sparing methods, while not compromising the potency of the vaccine. Previously, our group described a novel hemagglutinin (HA) for H5N1 influenza derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This report describes a strategy combining a COBRA-based HA vaccine with an oil-in-water emulsion, resulting in a dose-sparing, immunologically broadened, and protective response against multiple H5N1 isolates. Here, we show that an emulsion-based adjuvant enhances the magnitude and breadth of antibody responses with both a wild-type H5HA (H5N1 WT) and the H5N1 COBRA HA VLP vaccines. The H5N1 COBRA HA VLP, combined with an emulsion adjuvant, elicited HAI specific antibodies against a larger panel of H5N1 viruses that resulted in protection against challenge as efficiently as the homologous, matched vaccine.
Collapse
Affiliation(s)
- James D Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Simon O Owino
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Donald M Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA; University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | | | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA; University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|